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ABSTRACT. In this paper we study a specific type of structured reinsurance deals, for which the
indemnification scheme is contingent upon the performance of the cedent, for instance measured
in terms of his loss ratio compared to the average loss ratio of the market. We show that this type
of deals may be efficiently used to manage risk in the presence of financial distress cost when the
cover is provided to a cohort of insurers with positively correlated loss experience. In addition to
theoretical results we quantitatively illustrate the potential performance improvement in a numerical
example.

1. INTRODUCTION

Reinsurance is considered to be one of the key strategic levers used to manage risk and optimise
capital and its cost in order to preserve and enhance shareholder value. Along with other risk
levers, such as underwriting portfolio mix, diversification, asset mix, funding composition and
dividend policy, it is often used to address the following key issues:

(1) Risk-taking: what risks to write where and how much.
(2) Risk retention: what part of risk to retain and what part to transfer.
(3) Funding and cost of funding: how to fund the retained risk (i.e., debt, equity, reinsurance

or hybrids) and at what cost.
Conventional forms of reinsurance – whilst being efficient in finding optimal risk management
strategies to address mainly (2) and (3) and to some extent (1) – are uni-dimensional focusing on
insurance risk only and thus result in a local optimisation. In contrast, structured reinsurance deals
are more flexible allowing to manage different parts of enterprise risk of the insurance company in
a holistic way and thus enable global risk optimisation. Reinsurance companies offer such deals
in various forms, concrete examples being catastrophe bonds, finite risk solutions or multi-line
products. For a broad overview, we refer to Culp [11] and Albrecher et al. [1].

A frequently used type of reinsurance deal consists of an indemnification scheme that – in addi-
tion to the insurance risk – depends on the realization of one or more observable random variables
(triggers) which are related to other sources of risk the insurer is exposed to. Structured deals of
this type are sometimes referred to as contingent covers, i.e. the nature of the risk transfer applying
is contingent upon the realization of such additional random variable(s). Contingent covers have
already been studied by several authors and under different denominations. For example, Gründl
and Schmeiser [18] discussed several approaches to pricing double-trigger contracts, which refer
to reinsurance deals for which the indemnity is triggered if both the reinsured loss exceeds a fixed
deductible and some capital market index falls below a pre-defined threshold value. Asimit et
al. [4] considered a framework in which an insurer shares his risk with a reinsurer according to
an indemnification scheme that may vary with the risk environment, and showed that for a wide

1991 Mathematics Subject Classification. Primary: 91B28; Secondary: 91G05.
Key words and phrases. Structured reinsurance, contingent reinsurance, optimal reinsurance, relative market per-

formance, financial distress cost.
∗ Partly supported by the Swiss National Science Foundation Project 200021 191984.

1



2 L. VINCENT, H. ALBRECHER, AND Y. KRVAVYCH

class of risk measures layer-type indemnities with parameters that vary with the risk environment
can minimize the resulting sum of risk measures of insurer and reinsurer. In other contributions,
contingent covers are considered but the random variables they depend on are not related to any
source of risk the insurer is already exposed to, and thus the contingent nature of the indemnifica-
tion scheme is used as a purely mathematical tool. For instance, Gajek and Zagrodny [17] found
that for an insurer being endowed with a fixed budget to purchase reinsurance, if the loss to be
reinsured has discrete components, then covers contingent upon the realization of an independent
random event can provide the insurer with a lower ruin probability than those who are not. Under
the name of random treaties, Guerra and Centeno [19] used contingent reinsurance as a mathemat-
ical tool (and intermediate step) to solve an optimal reinsurance problem for deterministic treaties.
In a framework with regulatory solvency constraints and cost of capital, Albrecher and Cani [2]
studied a form of stop-loss cover, where the deductible is randomized according to an independent
external mechanism and they showed that this can yield higher expected profits than traditional
stop-loss covers.

While these three latter contributions reveal interesting properties of contingent covers, the main
purpose of such covers in practice is to increase the efficiency of the risk transfer, by focusing it
on the scenarios where the cedent expects to need it the most regarding his overall financial risk,
and hence to appropriately mitigate that risk for a smaller reinsurance premium. It is therefore
intuitive that for a contingent cover to be relevant, the random variable(s) it depends on should
somehow be related to the overall financial result of the insurer. Among many different sources of
potential losses contributing to the overall financial result, we would like to distinguish:

• Insurance (core) risk, which consists of the risks the insurer expects to make money on
and generate return on capital (underwriting, reserving, catastrophe).
• Peripheral (non-core) risks, such as investment risk and operational risk, which are con-

tained and actively managed to reduce leakages and additional drag on capital.
• Frictional cost, which emerges as the result of insufficient and/or inefficient control of risk.

In the actuarial literature, the peripheral risks of an insurer are sometimes referred to as back-
ground risks. While in practice peripheral risks and frictional cost should be considered as two
distinct sources of potential losses, from a mathematical point of view the latter can also be treated
as a materialisation of background risk. Multiple contributions have shown that the presence of
background risk can influence the choice of reinsurance made by an insurer. For instance, Dana
and Scarsini [12], Lu et al. [22] and Chi and Wei [9] showed that the optimal traditional (non-
contingent) reinsurance cover can be influenced by the presence of a background risk. Fan [14]
considered an insurer maximizing his expected utility and facing a background risk, and proved the
stop-loss reinsurance with a deductible being contingent upon the realization of the background
risk to be optimal in this setup.

In this paper we consider a structured reinsurance deal whose indemnification scheme is con-
tingent upon the performance of the insurer buying it, for instance measured in terms of his loss
ratio relative to the average loss ratio of the market, or relative performance for short. There are
several arguments for doing so, which we explain hereafter.
On the one hand, as the insurer incurs larger insurance losses, his solvency is at stake, which may
put him into financial distress. During such periods, the insurer will face additional expenses (the
path to ruin is costly), such as the ones related to the intervention of the regulator or the increased
difficulty of issuing new debt or acquiring new business. These expenses, once combined together,
are referred to as the financial distress cost (see e.g. Froot et al. [15]), which is a particular type
of non-negligible frictional cost. Moreover, since the market stakeholders partly assess the perfor-
mance of insurers by benchmarking them to one another, the ones who perform below the average
will typically go through worse financial distress periods and thus have a larger financial distress
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cost. For this reason, but also simply because a bad relative performance is in general the conse-
quence of large insurance losses, the overall financial risk of an insurer can be expected to be well
related with his relative performance, which makes the latter an interesting candidate to be used in
a contingent cover.
On the other hand, since the worse the relative performance of a particular insurer is, the better
the one of the other insurers will be, a reinsurance company selling covers of this kind to several
insurers in a given market will benefit from some degree of hedging.

It is hence assumed that a key driver of the need (demand) for this special type of reinsurance
is the financial distress cost (this is also in line with findings in Krvavych and Sherris [21]). We
will consider the above simple structured reinsurance deal as a toy model and assess the benefits
it might bring when used for optimising capital resources to enhance firm value. In particular,
we want to quantify the potential improvements, for both the insurer(s) and the reinsurer, when
the latter offers such covers simultaneously to various insurers. To do so, in a simple yet realistic
model, we consider a representative insurer who manages his risk according to a scenario-based
approach and seeks to minimize his reinsurance premium. We solve the resulting optimal reinsur-
ance problem and explicitly derive the optimal reinsurance cover, both when contingent covers are
available and when they are not. The optimal contingent and traditional covers are then compared,
first theoretically and then quantitatively, by means of a numerical application.

The rest of the paper is organised as follows. In Section 2, we formulate a model in which the
insurer faces both an insurance risk and financial distress cost, and we then describe the two forms
of reinsurance he has at his disposal, namely contingent and traditional covers. In Section 3, we
formulate the optimization problem that allows us to determine both the optimal contingent cover
and the optimal traditional one. In Section 4, the optimal contingent and traditional reinsurance
covers are explicitly derived, and their properties are discussed and compared. In Section 5, we
give a concrete application in which we are able to determine the cases where the optimal contin-
gent cover outperforms the traditional one, and we quantify the eventual improvements. Finally,
we provide a conclusion in Section 6.

2. PRELIMINARIES

2.1. The Model. In this paper, all random variables are defined on the probability space (Ω,F ,P).
Let PX ≥ 0 be the total premium received by an insurer for covering an (annual aggregate) in-
surance loss. This insurance loss is represented by the non-negative random variable X with
distribution function FX(x) = P(X ≤ x).

As a tool to manage his risk, the insurer may purchase a reinsurance cover, under which he will
cede the portion R (the ceded loss) of his insurance loss to a reinsurance company (the reinsurer),
and in turn pay the corresponding reinsurance premium PR. That reinsurance premium is defined
as PR = π[R], where the functional π : Ω → R+ satisfying π[0] = 0 is the premium principle,
that is, the rule determining the amount to be paid by the insurer for ceding R.

Under a reinsurance cover, the part ofX and PX being retained by the insurer are thusD = X−R
(the retained loss) and PD = PX − PR (the retained premium). Here, for simplicity the insurer
is assumed to face only one other source of loss, namely the financial distress cost. The latter is
assumed to depend on the retained loss and is therefore denoted YD. The cash-flows are consid-
ered to occur according to the following sequence: the insurer first receives PX and pays PR at
the same time (t = 0), and then one year later (t = 1) he pays D and YD. We refer to the sum

HD := D + YD
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as the insurer’s retained risk.

The financial distress cost is modelled as a function of the excess of the retained loss over the
retained premium, and its concrete shape depends on the insurer’s relative performance described
by the discrete random variable Z, leading to

YD = gZ
(
(D − PD)+

)
=
∑
z∈Z

gz
(
(D − PD)+

)
· 1{Z = z},

where gz : R+ → R+ is the financial distress cost function for the risk scenario z and 1{Z = z}
the indicator function of the event Z = z. We assume that

(A1) gz(x) is continuous and increasing in x, with gz(0) = 0, for all z.

(throughout this paper, we write ”increasing” for ”non-decreasing” and ”decreasing” for ”non-
increasing”). As a consequence, the financial distress cost is non-negative, and can only be greater
than 0 if the retained loss of the insurer exceeds the retained premium. In practice, the shape of
each function gz would typically be linked to the market capitalization of the insurer, as studied
by Froot [16].

The insurer is part of an insurance market with a total of n ≥ 2 insurers. Let V and V n be
variables measuring at t = 1 the performance realized during the elapsed year by the insurer and
the market, respectively. Typically V is a function of X , and V n is based on public data. For in-
stance, in the concrete example in Section 5, we will consider the insurer’s loss ratio V = X/PX ,
and V n will be the average loss ratio of the market.

The relative performance of the insurer is now modelled as Z := s(V, V n), where s : R+×R+ →
R is a bivariate step function. It is assumed that both the insurer and the reinsurer know the func-
tion s. The relative performance Z is thus a random variable at t = 0, whose realization can be
known with no ambiguity by both the insurer and the reinsurer at t = 1. Correspondingly, Z is
a discrete random variable that represents mutually exclusive scenarios for the realization of the
relative performance of the insurer at t = 1, and we denote its domain by Z .

Consider a risk scenario z ∈ Z . The random variable (X | Z = z) has the conditional dis-
tribution function FX|Z=z(x) = P(X ≤ x | Z = z), and we denote its Value-at-Risk at one
particular β ∈ [0, 1] by

ρz[X] := VaRβ[X|Z = z] = inf{x : FX|Z=z(x) ≥ β}.

Then, we make the two additional assumptions

(A2) ρz[X] increases in z,

and

(A3) gz(x) increases in z, for all x,

so Z can be seen as measuring how bad the relative performance of the insurer has been. From
this, we finally define supZ as the worst-case scenario.

Remark 2.1. Studies on the optimal choice of reinsurance in the presence of background risk
(or a related risk factor) often consider the property of stochastic increasingness (see e.g. Dana
and Scarsini [12], Lu et al. [22] and Chi and Wei [9]). Note that in our framework the stochastic
increasingness of X in Z – i.e. having P(X > x | Z = z) that increases in z, for all x – is a
sufficient, but not a necessary condition for (A2).
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2.2. Traditional and Contingent Reinsurance. The ceded loss of a traditional reinsurance cover
is computed as

R = f(X)

where f : R+ → R+ is a pre-defined deterministic function, referred to as the ceded loss function.
For instance, the ceded loss function of a quota-share (qs) cover at x ∈ R+ is f qs(x) = a · x,
where a ∈ [0, 1] is the proportionality factor, and the one of a (traditional) bounded stop-loss (tbsl)
(also referred to as limited stop-loss or one-layer reinsurance cover) is

f tbsl(x; d, `) = min{(x− d)+, `},
where d ≥ 0 is the deductible (or retention) and ` ≥ 0 the limit (or layer). The reader interested
in a broader overview of traditional reinsurance covers can refer to Albrecher et al. [1].

In contrast to traditional reinsurance, under a contingent cover the type of the ceded loss func-
tion (or the values of the parameters involved in it) can depend on the realization of one or more
random variables. For a reinsurance cover being contingent upon the realization of Z, the ceded
loss is computed as

R = fZ(X) =
∑
z∈Z

fz(X) · 1{Z = z},

where fZ denotes the contingent ceded loss function that depends on Z (so fz is the ceded loss
function when Z = z).

Remark 2.2. Any traditional ceded loss function f is a special case of a contingent one with
fz = f for all z. Consequently, any result that holds in general for contingent ceded loss functions,
also holds for the traditional ones.

The contingent version of a bounded stop-loss (cbsl) has ceded loss function

f cbslZ (x; dZ , `Z) = min{(x− dZ)+, `Z} =
∑
z∈Z

min{(x− dz)+, `z} · 1{Z = z},

where dz ≥ 0 and `z ≥ 0 are the pre-defined deductible and limit that apply if Z = z, and
dZ =

∑
z∈Z dz ·1{Z = z} and `Z =

∑
z∈Z `z ·1{Z = z} are the resulting contingent deductible

and contingent limit.

3. CHOICE OF REINSURANCE

3.1. The Optimization Problem. Sometimes insurers are willing (or constrained by law) to mea-
sure and manage their risk in several distinct risk scenarios, rather than on the average over all the
risk scenarios. When an insurer does so, but contingent reinsurance is not available (for instance
because the realized risk scenario is not observable), he usually has no other choice than purchas-
ing the traditional cover that fits his needs under the worst-case risk scenario and therefore tends
to pay a high reinsurance premium. A typical example of a non-observable realized risk scenario
is the one of model risk (or model uncertainty, ambiguity), that is, when an insurer considers mul-
tiple probability models to describe his risk but cannot determine which is the correct one (for a
suggestion of mixing of quantile levels over different such scenarios, see e.g. Cohignac and Kazi-
Tani [10]). In that case, if the insurer wants to manage his risk over all the considered models
by purchasing a reinsurance cover, then he will have to make his choice under the worst one. In
the literature, this situation is referred to as worst-case or minimax (maxmin) optimization. For
recent studies on that topic we refer to Asimit et al. [3], Birghila and Pflug [6] and Birghila et
al. [5]. If, by contrast, the realized risk scenario is observable (for instance, whether a hailstorm
occurs or not in a particular geographical region and time period), then using it in a contingent
reinsurance cover allows the insurer to choose a potentially different indemnification scheme for
each risk scenario, which lowers the reinsurance premium but still achieves the desired mitigation
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of risk.

The nature of the financial distress cost motivates a scenario-based measurement of risk for each
z separately. For the purposes of this paper, we thus consider, for all z, the concrete conditional
risk measure

ρz[HD] = VaRβ[HD|Z = z],

where β is typically large. If the insurer enters into a reinsurance deal at t = 0, then ρz[HD]
corresponds to the funds needed at t = 1 in order to limit his ruin probability to at most 1 − β in
scenario z. The insurer then sets his maximal acceptable level of riskiness k ≥ 0, and chooses the
reinsurance cover so that none of the resulting conditional risk measures exceeds it. Concretely, if
the insurer does so and has the funds k (and hence the capital k − PD) available at t = 1, then for
any realization of Z his ruin probability is at most 1 − β, which represents an additional level of
safety over simply having a ruin probability of at most 1− β.

Remark 3.1. For an insurer managing his risk according to the approach described above, the
choice of the maximal acceptable level of risk k will depend on several factors, such as the result-
ing retained premium, the capital available and the objective function. While the determination
of this choice is a question of interest, it is outside the scope of this paper. Therefore, in order
to keep our results general, we will consider the maximal acceptable level of risk to be chosen
exogenously and assume k to be given. However, the optimality results from Section 4 can be
used in a second step to determine k endogenously.

Since in general there will be several covers reducing all the conditional risk measures to at most
k, we are led to the mathematical problem of choosing the contingent cover with the smallest
premium. Also, in order to avoid ending up with a cover that has undesirable properties, as in
Asimit et al. [4] we restrict this choice to ceded loss functions in the set

C(1) =
{
fZ : 0 ≤ fz(x) ≤ x and both fz(x) and x− fz(x) are increasing functions, for all z

}
,

where the first condition ensures that the insurer cedes a loss that is neither negative nor greater
than the original loss, and the second one reduces moral hazard from both parties within each risk
scenario. The constraints in C(1) are in fact an extension of those suggested by Huberman et al.
[20], that were for traditional reinsurance covers only.

Remark 3.2. While restricting the choice of ceded loss functions to C(1) reduces moral hazard
within each risk scenario, the insurer may still have an incentive to misreport X and hence V in
order to increase his ceded loss fZ(X). In practice, there may, however, be ways to deal with this
issue applying a proper level of governance and auditing.

In mathematical terms, the optimal contingent reinsurance cover can be formulated as

(1) f
(1)
Z ( · ; k) = arg min

fZ( · ; k)∈C(1)(k)
π[fZ(X)],

where
C(1)(k) =

{
fZ ∈ C(1) : ρz[HX−fZ(X)] ≤ k, for all z

}
is the set of admissible contingent ceded loss functions for a given maximal acceptable level of
riskiness k.

Remark 3.3. If instead of reducing the conditional risk measure ρz[HD] to at most k for each
risk scenario z, we considered it to be done for VaRβ[HD] globally, then in many cases ceding
less risk in more dangerous risk scenarios is the optimal strategy for minimizing the reinsurance
premium (see e.g. some solutions in Asimit et al. [4]). A contingent cover with such a property
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might, however, be viewed as a theoretical optimization tool rather than a risk management in-
strument that could be implemented in practice. So among other advantages, the scenario-based
approach above can be seen as a way to prevent the optimal contingent cover to have this possibly
undesirable property.

Regarding the traditional reinsurance cover that will be used as a benchmark for the optimal con-
tingent one, we consider the same problem as (1), but with C(1) replaced by

C(2) =
{
f : 0 ≤ f(x) ≤ x and both f(x) and x− f(x) are increasing functions

}
.

The best choice of the benchmark cover can then be formulated as

(2) f (2)( · ; k) = arg min
f( · ; k)∈C(2)(k)

π[f(X)],

where
C(2)(k) =

{
f(x) ∈ C(2) : ρz[HX−f(X)] ≤ k, for all z

}
.

Remark 3.4. When the relative performance and the financial distress cost are ignored, the
constraints on the conditional risk measures in C(2)(k) can be replaced by the single condition
VaRβ[X − f(X)] ≤ k. If reinsurance is priced according to the expected value principle, the op-
timal reinsurance problem (2) then becomes the dual problem of (3.10) in Chi and Tan [8], which
consists in the minimization of VaR[X − f(X)] + π[f(X)] under the set of admissible ceded loss
functions C(2). Problem (2) is thus closely related to (3.10) in Chi and Tan [8], and as a conse-
quence so is problem (1), as it is simply a relaxed version of (2) (the difference being the set of
admissible ceded loss functions, with C(2)(k) ⊆ C(1)(k)). Note that problems (1) and (2) slightly
differ in spirit from the formulation of many other optimal reinsurance problems in the literature,
in that the measure of risk is to be made acceptable rather than minimal (see also [1, Sec.8], the
review paper Cai and Chi [7] and references therein). In our formulation, the insurer can make
an explicit trade-off between the reinsurance premium and his maximal acceptable measure of
riskiness k, see also Remark 3.1.

3.2. The Premium Principle. In this paper, problems (1) and (2) will be solved for monotone
premium principles.

Definition 3.1. The premium principle π is said to be monotone if for any two ceded losses R and
R̃, having R ≤ R̃ almost surely always results in π[R] ≤ π[R̃].

An important property of monotone premium principles is that they preserve the order relation-
ships of contingent ceded loss functions.

Definition 3.2. If two contingent ceded loss functions fZ and f̃Z satisfy fz(x) ≤ f̃z(x) for all x
and z, then fZ is said to be pointwise smaller than f̃Z , and we write fZ � f̃Z .

We state this property formally:

Property 3.1. If π is a monotone premium principle, then for any two ceded loss functions fZ and
f̃Z satisfying fZ � f̃Z , we have π[fZ(X)] ≤ π[f̃Z(X)].

A well-known instance of a monotone premium principle is the expected value premium principle

π[R] = (1 + θ) E[R],

where E[R] is the expectation of R and θ ≥ 0 the safety loading factor. Another example is the
risk-adjusted premium principle introduced by Wang [25] (also referred to as Wang or distortion
premium principle)

π[R] =

∫ ∞
0

w(P(R > x)) dx,
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with w(u) being a non-negative increasing and concave function such that w(0) = 0 and w(1) =
1.

4. OPTIMALITY RESULTS

4.1. Preliminaries. We begin by recalling Theorem 1 from Dhaene et al. [13], according to which
for any increasing and continuous function η(x) and β ∈ [0, 1], the Value-at-Risk of a random
variable X satisfies

(3) VaRβ[η(X)] = η(VaRβ[X]).

Given the definition of the financial distress costs YD, the retained risk of the insurer can alterna-
tively be expressed as

HD = hZ(D;PD) =
∑
z∈Z

hz(D;PD) · 1{Z = z},

where
hz(x; p) = x+ gz

(
(x− p)+

)
is a function of x that depends on both p and z. More specifically, we have that

(4) hz(x; p) is a continuous and strictly increasing function of x,

from (A1),

(5) hz(x; p) decreases in p,

and finally

(6) hz(x; p) increases in z,

from (A3).

Note that in absence of reinsurance, the insurer’s retained risk is HX = hZ(X;PX).

We then define the random variables

h−1Z (u; p) =
∑
z∈Z

h−1z (u; p) · 1{Z = z}

where h−1z (u; p) = inf{x : hz(x; p) ≥ u} is the inverse function of hz(x; p), and

ρZ [X] =
∑
z∈Z

ρz[X] · 1{Z = z}.

For i = 1, 2, the minimal reinsurance premium and the related retained premium resulting from
problem (i) are denoted

P
(i)
R (k) = π[f

(i)
Z (X; k)] and P

(i)
D (k) = PX − P (i)

R (k),

and the retained risk of the insurer is

H
(i)
D (k) = hZ

(
X − f (i)Z (X; k);P

(i)
D (k)

)
,

where f (2)Z ( · ; k) = f (2)( · ; k).

Let us derive the following results.

Proposition 4.1. For i = 1, 2, let π be a monotone premium principle and k the maximal accept-
able level of riskiness. If the set C(i)(k) of candidates is non-empty, then problem (i) admits a
solution.
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Proof. For i = 1, 2, let j ≥ 1 be an integer and z ∈ Z . Let further fZ( · ; k, xj−1,z, xj,z) be the
pointwise smallest element of C(i)(k) for x ∈ [xj−1,z, xj,z) and Z = z (or an arbitrarily chosen
one of them, if there are several), where x0,z = 0 and xj−1,z ≤ xj,z for all j and z. Since by
definition

(7) fZ( · ; k, xj−1,z, xj,z) ∈ C(i)(k), for all j and z,

the functions fz(x; k, xj−1,z, xj,z) and x−fz(x; k, xj−1,z, xj,z) are both increasing in x, and hence
they are both continuous in x too, which yields

(8) fz(xj,z; k, xj−1,z, xj,z) = fz(xj,z; k, xj,z, xj+1,z), for all j and z.

Let then
fZ(x; k) =

∑
z∈Z

fz(x; k) · 1{Z = z},

where
fz(x; k) =

∑
j≥1

fz(x; k, xj−1,z, xj,z) · 1{x ∈ [xj−1,z, xj,z)}.

Given (7), we know that fz(x; k) and x−fz(x; k) are both increasing in each interval (xj−1,z, xj,z).
Therefore, since (8) yields that fz(x; k) is continuous in x at x = xj,z , for all j and z, we have
that fz(x; k) and x− fz(x; k) are both increasing in x, which yields

(9) fZ( · ; k) ∈ C(i)(k).

By definition, we have that fZ( · ; k) � f̃Z( · ; k), for any f̃Z( · ; k) ∈ C(i)(k), and hence from
(9) we deduce that fZ( · ; k) is the pointwise smallest element in C(i)(k). Since π is a monotone
premium principle, Property 3.1 yields f (i)Z ( · ; k) = fZ( · ; k), which proves the result. �

Proposition 4.2. For i = 1, 2, let π be a monotone premium principle and k
(i)
inf the smallest

maximal acceptable level of riskiness for which problem (i) admits a solution. Then problem
(i) admits a solution for any k ≥ k

(i)
inf , and the resulting minimal reinsurance premium P

(i)
R (k)

decreases in k, down to 0 for k ≥ ρsupZ [HX ].

Proof. For i = 1, 2, consider the maximal acceptable levels of riskiness k and k̃ satisfying k(i)inf ≤
k ≤ k̃. By definition, for any fZ( · ; k) ∈ C(i)(k) we have fZ( · ; k) ∈ C(i)(k̃), leading to

(10) C(i)(k) ⊆ C(i)(k̃).

Since by definition problem (i) admits a solution for the maximal acceptable level of riskiness
k
(i)
inf , the set C(i)(k(i)inf) is non-empty and hence from (10), neither is C(i)(k), which, given Proposi-

tion 4.1, proves that problem (i) admits a solution for any k satisfying k ≥ k(i)inf .

Therefore, since k and k̃ satisfy k
(i)
inf ≤ k ≤ k̃, the solutions f (i)Z ( · ; k) and f

(i)
Z ( · ; k̃) are

both defined, and from (10), they satisfy f (i)Z ( · ; k) � f (i)Z ( · ; k̃). Given that π is monotone, from
Property 3.1 this last relationship yields P (i)

R (k) ≤ P (i)
R (k̃), which proves that P (i)

R decreases in k
for any k ≥ k(i)inf .

Finally, consider the case where the insurer cedes no loss to the reinsurer, and hence R = 0
for any realization of X and Z. The corresponding contingent ceded loss function is

(11) fZ(x) = 0, for all x and any realization of Z,

which belongs to both C(i). Since by definition π[0] = 0, the reinsurance premium resulting from
(11) is

(12) PR = 0,
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and for each z, the related conditional risk measure is thus ρz[HX ]. By virtue of (3) and (4), the
latter can be rewritten as

(13) ρz[HX ] = hz(ρz[X];PX).

By considering properties (4) and (6) in (13), and since ρz[X] is assumed to increase in z, the
conditional risk measure ρz[HX ] increases in z, which leads to

(14) ρz[HX ] ≤ ρsupZ [HX ], for all z.

As a consequence, if

(15) k ≥ ρsupZ [HX ],

then from (14) we know that (11) belongs to C(i)(k). Moreover, since by the definition of π the
reinsurance premium must be non-negative, from (12) we deduce that under (15), the contingent
ceded loss function (11) is a solution to problem (i), which proves that P (i)

R (k) = 0 whenever
k ≥ ρsupZ [HX ]. �

Lemma 4.1. For any k ≥ 0 and v ≥ 0, the pointwise smallest f ∈ C(2) satisfying f(v) ≥ v − k
is f(x) = min{(x− k)+, `}, where ` = (v − k)+.

Proof. Let us first consider the case 0 ≤ k < v: the smallest value f(v) satisfying f(v) ≥ v − k
then is f(v) = v − k. For any f ∈ C(2), we have

0 ≤ f(x)− f(y) ≤ x− y, for all y ≤ x,

which can be partitioned into

(16) 0 ≤ f(v)− f(x) ≤ v − x, for x ∈ [0, v),

and

(17) 0 ≤ f(x)− f(v) ≤ x− v, for x ∈ [v,∞).

With f(v) = v − k, inequalities (16) and (17) become

x− k ≤ f(x) ≤ v − k, for x ∈ [0, v),

and

v − k ≤ f(x) ≤ x− k, for x ∈ [v,∞),

from what we deduce that the pointwise smallest f ∈ C(2) satisfying f(v) ≥ v − k is

(18)
f(x) =


0 , for x < k,

x− k , for k ≤ x < v,

v − k , for x ≥ v,

= min{(x− k)+, v − k}.

For the case 0 ≤ v ≤ k, we have v − k ≤ 0, which means that the pointwise smallest f ∈ C(2)
satisfying f(v) ≥ v − k is

(19) f(x) = 0, for all x.

Finally, if we let ` = (v − k)+, reassembling (18) and (19) establishes the result. �
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4.2. Optimal Contingent Reinsurance Cover. In the following theorem, we derive the optimal
reinsurance cover when contingent covers are allowed.

Theorem 4.1. Let π be a monotone premium principle and k the maximal acceptable level
of riskiness satisfying k ≥ k

(1)
inf = inf

{
k : h−1supZ

(
k;P

(1)
D (k)

)
≥ 0

}
. Then f

(1)
Z ( · ; k) =

f cbslZ

(
· ; dZ(k), `Z(k)

)
, i.e. a contingent bounded stop-loss cover is optimal, with contingent

deductible dZ(k) = h−1Z
(
k;P

(1)
D (k)

)
and contingent limit `Z(k) =

(
ρZ [X]− dZ(k)

)
+

.

Proof. By Proposition 4.2, we know that for k ≥ k
(1)
inf , the solution f (1)Z ( · ; k) is defined and thus

belongs to ∈ C(1)(k), meaning that

(20) ρz[H
(1)
D (k)] ≤ k, for all z.

but also

(21) 0 ≤ f (1)z (x; k) ≤ x, for all z,

and

(22) f (1)z (x; k) and x− f (1)z (x; k) are increasing functions, for all z.

From (3) and (4), each inequality ρz[H
(1)
D (k)] ≤ k can be rewritten as

ρz[X − f (1)z (X; k)] ≤ h−1z
(
k;P

(1)
D (k)

)
,

which, since (3) and (22) yield ρz[X − f (1)z (X; k)] = ρz[X]− f (1)z (ρz[X]; k), means that (20) is
equivalent to

(23) f (1)z (ρz[X]; k) ≥ ρz[X]− h−1z
(
k;P

(1)
D (k)

)
, for all z.

By reassembling (21) for x = ρz[X] with (23), we obtain

ρz[X] ≥ f (1)z (ρz[X]; k) ≥ ρz[X]− h−1z
(
k;P

(1)
D (k)

)
, for all z,

from what we deduce that since f (1)Z ( · ; k) is defined, we have

(24) h−1z
(
k;P

(1)
D (k)

)
≥ 0, for all z.

Given (6), for the inequalities in (24) to be satisfied, it is necessary and sufficient that

(25) h−1supZ
(
k;P

(1)
D (k)

)
≥ 0.

Moreover, from (4), (5) and Proposition 4.2, we have that

(26) h−1supZ
(
k;P

(i)
D (k)

)
is strictly increasing in k, for i = 1, 2,

and therefore (25) is equivalent to k ≥ inf
{
k : h−1supZ

(
k;P

(1)
D (k)

)
≥ 0
}

, which proves that

k
(1)
inf = inf

{
k : h−1supZ

(
k;P

(1)
D (k)

)
≥ 0
}
.

Subsequently, since X is a positive random variable, we have

(27) ρz[X] ≥ 0, for all z.

If we now define f cbslz

(
x; dz(k), `z(k)

)
= min

{(
x−dz(k)

)
+
, `z(k)

}
, where dz(k) = h−1z

(
k;P

(1)
D (k)

)
and `z(k) =

(
ρz[X] − dz(k)

)
+

, then from Lemma 4.1 and given (24) and (27), we have that
f cbslz

(
· ; dz(k), `z(k)

)
is, for all z, the pointwise smallest fz satisfying (21), (22) and (23). As a

result,
f cbslZ

(
· ; dZ(k), `Z(k)

)
=
∑
z∈Z

f cbslz

(
· ; dz(k), `z(k)

)
· 1{Z = z}
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is the pointwise smallest contingent ceded loss function in C(1)(k), which, from Property 3.1 and
since π is a monotone premium principle, proves that f (1)Z ( · ; k) = f cbslZ

(
· ; dZ(k), `Z(k)

)
for

k ≥ k(1)inf . �

Several observations concerning the optimal contingent ceded loss function are in order. Firstly,
for each scenario z, the deductible dz(k) corresponds to the threshold amount at which the insur-
ance loss X yields a retained risk of k for the insurer. Since dz(k) = h−1z (k;P

(1)
D (k)), from (4)

we have dz(k) ≤ k for all z. Moreover, if k ≤ P
(1)
D (k), or if for a particular scenario z there

is no financial distress cost (gz(x) = 0 for all x), then we have dz(k) = k. Subsequently, if
dz(k) < ρz[X], then the related limit `z(k) is strictly positive (`z(k) > 0), whereas whenever
dz(k) ≥ ρz[X] one has no risk transfer for the scenario z (`z(k) = 0).

Secondly, given property (6), the deductible dz(k) decreases in z, and thus, as ρz[X] is assumed
to increase in z, the limit `z(k) also increases in z. From this we get

(28) f (1)z ( · ; k) � f (1)z̃ ( · ; k), whenever z ≤ z̃,

meaning that the worse the relative performance of the insurer is, the more extended his optimal
reinsurance cover will be.

Thirdly, under f (1)Z ( · ; k), the retained risk of the insurer has, for each scenario z, the conditional
distribution

F
H

(1)
D (k)|Z=z(x) = P

(
H

(1)
D (k) ≤ x

∣∣ Z = z
)

= P
(
X − f (1)z (X; k) ≤ h−1z

(
x;P

(1)
D (k)

) ∣∣∣ Z = z
)

=


FX|Z=z

(
h−1z

(
x;P

(1)
D (k)

))
, if x < k,

FX|Z=z

(
h−1z

(
x;P

(1)
D (k)

)
+ `z(k)

)
, otherwise.

At x = k, this conditional distribution amounts to

(29)

F
H

(1)
D (k)|Z=z(k) = FX|Z=z

(
h−1z

(
k;P

(1)
D (k)

)
+ `z(k)

)
= FX|Z=z

(
dz(k) + `z(k)

)
= FX|Z=z

(
dz(k) +

(
ρz[X]− dz(k)

)
+

)
= 1− α , if `z(k) > 0,

≥ 1− α , otherwise,

and has the probability mass

FX|Z=z
(
dz(k) + `z(k)

)
− FX|Z=z

(
dz(k)

)
.

The unconditional distribution function of the retained risk of the insurer is then

F
H

(1)
D (k)

(x) = P
(
H

(1)
D (k) ≤ x

)
=
∑
z∈Z

F
H

(1)
D (k)|Z=z(x) · P(Z = z),
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which, at x = k, amounts to

F
H

(1)
D (k)

(k)

{
= 1− α , if `z(k) > 0 for all z,
≥ 1− α , otherwise

and has the probability mass∑
z∈Z

(
FX|Z=z

(
dz(k) + `z(k)

)
− FX|Z=z

(
dz(k)

))
· P(Z = z).

Finally regarding the conditional risk measures, from (29) we have

ρz[H
(1)
D (k)]

{
= k , if `z(k) > 0,

≤ k , otherwise.

Hence, for each scenario z for which reinsurance is required (`z(k) > 0), the optimal contingent
bounded stop-loss only just satisfies the related constraint on the conditional risk (ρz[H

(1)
D (k)] =

k).

4.3. Optimal Benchmark Traditional Reinsurance Cover. In the following theorem, we derive
the optimal reinsurance cover when contingent covers are not allowed.

Theorem 4.2. Let π be a monotone premium principle and k be the maximal acceptable level
of riskiness satisfying k ≥ k

(2)
inf = inf

{
k : h−1supZ

(
k;P

(2)
D (k)

)
≥ 0

}
. Then f (2)( · ; k) =

f tbsl
(
· ; d(k), `(k)

)
, i.e. a traditional bounded stop-loss cover is optimal among all traditional

covers, with deductible d(k) = h−1supZ
(
k;P

(2)
D (k)

)
and limit `(k) =

(
ρsupZ [X]− d(k)

)
+

.

Proof. By Proposition 4.2, we know that for k ≥ k
(2)
inf , the solution f (2)( · ; k) is defined and thus

belongs to ∈ C(2)(k), so that

(30) ρz[H
(2)
D (k)] ≤ k, for all z,

but also

(31) 0 ≤ f (2)(x; k) ≤ x,
and

(32) f (2)(x; k) and x− f (2)(x; k) are increasing functions.

Following the same steps as in the proof of Theorem 4.1, we obtain that ρz[H
(2)
D (k)] ≤ k can be

rewritten as
ρz[X]− f (2)(ρz[X]) ≤ h−1z

(
k;P

(2)
D (k)

)
.

On the one hand, given (A2) and (32), the left-hand side of that last inequality increases in z. On
the other hand, from (6) its right-hand side decreases in z. As a result, in order to fulfil (30), it is
necessary and sufficient that f (2)( · ; k) satisfies

(33) f (2)(ρsupZ [X]) ≥ ρsupZ [X]− h−1supZ
(
k;P

(2)
D (k)

)
.

By reassembling (31) for x = ρsupZ [X] and z = supZ with (33), we obtain

ρsupZ [X] ≥ f (2)(ρsupZ [X]; k) ≥ ρsupZ [X]− h−1supZ
(
k;P

(2)
D (k)

)
,

from which we deduce

(34) h−1supZ
(
k;P

(2)
D (k)

)
≥ 0.

With this, by applying the same reasoning as in the proof of Theorem 4.1, we can prove that

(35) k
(2)
inf = inf

{
k : h−1supZ

(
k;P

(2)
D (k)

)}
.
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If we now define f tbsl
(
x; d(k), `(k)

)
= min

{(
x−d(k)

)
+
, `(k)

}
, where d(k) = h−1supZ

(
k;P

(2)
D (k)

)
and `(k) =

(
ρsupZ [X] − d(k)

)
+

, then from Lemma 4.1 and given (27) and (34), we have that
f tbsl

(
· ; d(k), `(k)

)
is the pointwise smallest f satisfying (31), (32) and (33), and hence it is the

pointwise smallest ceded loss function in C(2)(k), which by Property 3.1 for a monotone premium
principle proves the result. �

Remark 4.1. In their Theorem 3.2, Chi and Tan [8] proved the traditional bounded stop-loss
to solve the problem of minimizing VaRβ[X − f(X)] + π[f(X)], when the set of admissible
ceded loss functions is C(2) and reinsurance is priced according to the expected value premium
principle. As outlined in Remark 3.4, that problem is similar in spirit to both Problems (1) and (2)
of the present paper, and the appearance of bounded stop-loss structures in our optimal solutions
is therefore intuitive.

We conclude this section with the following observations concerning the optimal benchmark
cover:
Firstly, the deductible d(k) corresponds to the amount at which the insurance loss X yields a
retained risk of k for the insurer, given that he has the relative performance Z = supZ . Since
d(k) = h−1supZ(k;P

(2)
D (k)), from (4) we have d(k) ≤ k, and if k ≤ P

(2)
D (k), or if there is no

financial distress cost (gz(x) = 0 for all x and z), then we have d(k) = k. Subsequently, if the
deductible d(k) satisfies d(k) < ρsupZ [X], then the limit `(k) is strictly positive (`(k) > 0). On
the other hand, if d(k) ≥ ρsupZ [X], then the benchmark traditional bounded stop-loss implies no
risk transfer (`(k) = 0).

Secondly, under f (2)( · ; k), the retained risk of the insurer has, for each scenario z, the condi-
tional distribution

F
H

(2)
D (k)|Z=z(x) = P

(
H

(2)
D (k) ≤ x | Z = z

)
= P

(
X − f (2)(X; k) ≤ h−1z

(
x;P

(2)
D (k)

) ∣∣ Z = z
)

=


FX|Z=z

(
h−1z

(
x;P

(2)
D (k)

))
, if x < hz

(
d(k);P

(2)
D (k)

)
,

FX|Z=z

(
h−1z

(
x;P

(2)
D (k)

)
+ `(k)

)
, if x ≥ hz

(
d(k);P

(2)
D (k)

)
,

where hsupZ
(
d(k);P

(2)
D (k)

)
= k and hence

hz
(
d(k);P

(2)
D (k)

)
≤ hz̃

(
d(k);P

(2)
D (k)

)
≤ k, whenever z ≤ z̃ ≤ supZ,

from (6).

At x = hz
(
d(k);P

(2)
D (k)

)
, this conditional distribution amounts to

(36)

F
H

(2)
D (k)|Z=z

(
hz
(
d(k);P

(2)
D (k)

))
= FX|Z=z

(
d(k) + `(k)

)
= FX|Z=z

(
d(k) +

(
ρz[X]− d(k)

)
+

)
{

= 1− α , if `(k) > 0 and z = supZ,

≥ 1− α , otherwise,

and has the probability mass

FX|Z=z
(
d(k) + `(k)

)
− FX|Z=z

(
d(k)

)
.
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The unconditional distribution function of the retained risk of the insurer is then

F
H

(2)
D (k)

(x) = P
(
H

(2)
D (k) ≤ x

)
=
∑
z∈Z

F
H

(2)
D (k)|Z(x|z) · P(Z = z),

and has, at each
x ∈

{
hz
(
d(k);P

(2)
D (k)

)
, z ∈ Z

}
,

the probability masses of at least{(
FX|Z=z

(
d(k) + `(k)

)
− FX|Z=z

(
d(k)

))
· P(Z = z), z ∈ Z

}
.

Finally regarding the conditional risk measures, from (36) we have

(37) ρz[H
(2)
D (k)]

= k , if `(k) > 0 and z = supZ,

≤ k , otherwise,

meaning that when reinsurance is required (`(k) > 0), the benchmark cover only just satisfies the
constraint on the conditional risk measure for the worst-case scenario (ρsupZ [H

(2)
D (k)] = k).

4.4. Comparison. We now compare the optimal contingent bounded stop-loss and its bench-
mark, when the same monotone premium principle π and maximal acceptable level of riskiness k
apply. We assume the latter to be such that the solutions f (1)Z ( · ; k) and f (2)( · ; k) are both defined.

We start by showing that an optimal contingent cover always leads to a smaller reinsurance pre-
mium than an optimal traditional cover:

Proposition 4.3. Let π be a monotone premium principle and k the maximal acceptable level of
riskiness. Then k(1)inf ≤ k

(2)
inf and for all k ≥ k(2)inf

(38) P
(1)
R (k) ≤ P (2)

R (k).

Proof. By Proposition 4.2, problems (1) and (2) both admit a solution for k ≥ max{k(1)min, k
(2)
min}.

As C(2)(k) ⊆ C(1)(k), problem (2) is hence just a constrained version of problem (1), so that

(39) P
(1)
R (k) ≤ P (2)

R (k), for k ≥ max{k(1)inf , k
(2)
inf }.

To complete the proof, it only remains to show that k(1)inf ≤ k
(2)
inf . By the definitions of k(1)inf and k(2)inf

and from (26), we have
h−1supZ

(
k;P

(1)
D (k)

)
≥ 0, for k ≥ k(1)inf ,

and
h−1supZ

(
k;P

(2)
D (k)

)
≥ 0, for k ≥ k(2)inf ,

and hence (5) and (39) yield

(40) h−1supZ
(
k;P

(1)
D (k)

)
≥ h−1supZ

(
k;P

(2)
D (k)

)
≥ 0, for k ≥ max{k(1)inf , k

(2)
inf }.

Let us now assume that k(1)inf > k
(2)
inf . In that case, since

hsupZ
(
k
(1)
inf ;P

(1)
D (k

(1)
inf )
)

= 0 and hsupZ
(
k
(2)
inf ;P

(2)
D (k

(2)
inf )
)

= 0,

from (26) and (40) we would have

0 ≥ hsupZ
(
k
(1)
inf ;P

(2)
D (k

(1)
inf )
)
> 0,

which is not possible, so that necessarily k(1)inf ≤ k
(2)
inf . �



16 L. VINCENT, H. ALBRECHER, AND Y. KRVAVYCH

Remark 4.2. Proposition 4.3 proves that for any given maximal acceptable level of riskiness
k ≥ k

(2)
inf , the optimal contingent bounded stop-loss is worth a smaller reinsurance premium than

its benchmark, which yields a larger retained premium and hence a greater risk bearing capacity
for the insurer. Under the optimal contingent bounded stop-loss, the insurer can thus typically
afford to choose a larger maximal acceptable level of riskiness, which, according to Proposition
4.2, will make that reinsurance cover even cheaper than its benchmark. However, since the choice
of the maximal acceptable level of riskiness is not dealt with in this paper (cf. Remark 3.1), we
will pursue our analysis by comparing the optimal contingent cover and its benchmark under the
same k.

With this result, we are now able to compare in more detail f (1)Z ( · ; k) and f (2)( · ; k). Indeed, since
(38) yields P (1)

D (k) ≥ P
(2)
D (k), given (5) we have dsupZ(k) ≥ d(k) and thus `supZ(k) ≤ `(k),

which results in

(41) f
(1)
supZ( · ; k) � f (2)( · ; k)

and hence

(42) f
(1)
Z ( · ; k) � f (2)( · ; k),

from (28). That last relationship implies by definition

(43) f
(1)
Z (X; k) ≤ f (2)(X; k), for any realization of X and Z,

which can be seen as the counterpart of (38). That is, while the optimal contingent bounded
stop-loss is cheaper than its benchmark, it also yields a smaller ceded loss.

Remark 4.3. We can distinguish two factors responsible for the difference between P (1)
R (k) and

P
(2)
R (k). On the one hand, by definition the optimal contingent bounded stop-loss varies with Z,

which makes it being adapted to the need of the insurer (in terms of reduction of the conditional
risk measures) for each scenario. In contrast, the benchmark cover cannot vary with Z and, as
shown by (37), it fits the need of the insurer only for the worst-case scenario, leaving him over-
reinsured for the other scenarios, which contributes to a higher premium. On the other hand, the
optimal contingent bounded stop-loss cover results in a larger retained premium than its bench-
mark, which for the worst-case scenario yields a smaller financial distress cost. As a result, while
one could expect the ceded loss functions f (1)supZ( · ; k) and f (2)( · ; k) to be equal (they both
serve the insurer’s need under the worst-case scenario), their order relationship is given by (41),
and the latter contributes to making the benchmark cover being more expensive than the optimal
contingent bounded stop-loss.

At this point, it is interesting to note that whereas (43) results in

X − f (1)Z (X; k) ≥ X − f (2)(X; k), for any realization of X and Z,

the optimal contingent bounded stop-loss does not necessarily yield a larger retained risk for the
insurer. Indeed, due to (38), it can happen that the financial distress cost

Y
(2)
D (k) = gZ

((
X − f (2)(X; k)− P (2)

D (k)
)
+

)
exceeds

Y
(1)
D (k) = gZ

((
X − f (1)Z (X; k)− P (1)

D (k)
)
+

)
,

for some X and Z, in which case the difference Y (2)
D (k)− Y (1)

D (k) may be large enough to result
in H(1)

D (k) < H
(2)
D (k). However, when that happens, the difference H(2)

D (k) − H(1)
D (k) will be

non-negligible only if the retained risk of the insurer is dominated by the financial distress cost.
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In any case, by the design of problems (1) and (2), the optimal contingent bounded stop-loss
and its benchmark both bring all the conditional risk measures to at most the maximal acceptable
level of riskiness k and hence, from this viewpoint, they mitigate the risk equivalently. However,
the contingent cover does it for a smaller reinsurance premium and thus leaves more potential
profits for the insurer. In Section 5, we will quantify the difference between P (1)

R (k) and P (2)
R (k)

in a concrete example.

Remark 4.4. In the light of Remark 4.3, it is intuitive that the main factors determining how small
P

(1)
R (k) will be relative to P (2)

R (k) are, on the one hand, how over-reinsured the insurer will be
for the scenarios different from supZ , and on the other hand, how much weight is given to these
scenarios. If reinsurance is priced according to the expected value premium principle (as it will
be in the concrete example from Section 5), the difference between P (2)

R (k) and P (1)
R (k) can be

expressed as

P
(2)
R (k)− P (1)

R (k) = (1 + θ) ·
∑
z∈Z

∆z(k),

where ∆z(k) =
(
E[f (2)(X; k)|Z = z] − E[f

(1)
z (X; k)|Z = z]

)
· P(Z = z). Correspondingly,

this difference will be substantial if ∆z(k) is large for some z (which occurs when ρz[X] is sig-
nificantly smaller than ρsupZ [X], as that increases the difference between `z(k) and `(k) and
subsequently between f (1)z ( · ; k) and f (2)( · ; k)) and at the same time P(Z = z) is large.

Finally, from the reinsurer’s perspective, while (38) means that offering f (1)Z ( · ; k) instead of
f (2)( · ; k) yields less potential profits, it also yields less risk, cf. (43). Whether selling contingent
covers instead of traditional ones will improve the risk-to-profit of the reinsurer will hence depend
on the concrete situation, particularly on the degree of negative dependence between the relative
performance of each insurer. However, we will show in the next section that in several realistic
cases, selling contingent covers can indeed improve the risk-to-profit of the reinsurer.

Remark 4.5. Note that in the absence of financial distress costs (gz(x) = 0 and hz(x; p) =
h−1z (x; p) = x for all p, x and z), there is in fact no need for Z to still model the relative perfor-
mance of the insurer. Any other contingent cover based on an external (discrete) Z can then also
be considered, with the above results still being applicable, as long as one assures (A2) to hold.

5. NUMERICAL ILLUSTRATION

In this section we will consider a concrete numerical illustration in detail. We assume an insurance
market with n = 3 (and later n = 5) insurers. They are all assumed to be identical in distribution.

5.1. Concrete Model Specifications. For the marginal distribution of Xi (i = 1, . . . , n) repre-
senting the aggregate loss of insurer i, we consider the following composite (splicing) model (see
e.g. Scollnik [24]) with density function

b(x) = λ · ϕ(x;µ, σ, s) + (1− λ) · ν(x;α, s),

where

ϕ(x;µ, σ, s) =

1
x · exp

(
− 1

2 ·
(
lnx−µ
σ

)2)
∫ s
0

1
y · exp

(
− 1

2 ·
(
ln y−µ
σ

)2)
dy

· 1{0 < x ≤ s},

is the density function of a Log-Normal(µ, σ) random variable, upper-truncated at s > 0, and

ν(x;α, s) = α · sα

xα+1
· 1{x > s},
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FIGURE 1. Random samples of the random vector (U1, U2), with Uniform[0, 1]
marginals and F-Clayton(τ) copula, for τ = 0, 0.5, 1. On these plots, each ran-
dom sample contains 104 realizations.

the density function of a Pareto(α,s) random variable. This density function b allows to model
the loss with a Log-Normal bulk of the distribution and a Pareto tail, which is often considered
to be realistic. For the parameters, we set α = 2.2 and s = 1′800, and then choose λ, µ and σ
so that E[Xi] = 1′000 and b is continuous and differentiable at x = s, which yields λ ≈ 0.9009,
µ ≈ 6.5728 and σ ≈ 0.6476. The resulting standard deviation is

√
Var[Xi] ≈ 1′780.

The dependence structure of the random vector (X1, X2, ..., Xn) is modelled according to an
Archimedean survival copula with generator φ(t) = t−1/τ−1, which is an n-dimensional Flipped-
Clayton (or F-Clayton, for short) copula with parameter τ (see e.g. Nelsen [23]). In addition to
interpolate between independence (τ = 0) and comonotonicity (τ = ∞), this copula allows for
right-tail dependence and is therefore appropriate to our context, since it is not rare for reinsurers
to face tail dependence when reinsuring losses. In the following applications, we will consider
three dependence scenarios: mutual independence (τ = 0), medium tail dependence (τ = 0.5)
and strong tail dependence (τ = 1). Figure 1 illustrates random samples drawn from a bivariate
F-Clayton(τ) copula for these three cases.

As the above specifications do not allow an explicit expression of the joint distribution function
of (X1, ..., Xn), we will consider the respective empirical joint distribution based on 107 sample
points instead for all calculations.

For simplicity of notation, we now re-identify X1 with X . The total premium PX and the rein-
surance premium PR are both assumed to be computed according to the expected value principle
(with safety loading θX = 0.2 and θR = 0.5, respectively). The total premium is thus PX = 1′200
and the retained premium after reinsurance amounts to

PD = 1′200− 1.5 · E[R].

As mentioned in Section 3.2, the expected value principle is monotone and hence f cbslZ

(
· ; dZ(k), `Z(k)

)
and f tbsl

(
· ; d(k), `(k)

)
are indeed the solutions to problems (1) and (2), respectively.

In practice, a conditional distribution FX|Z=z and a financial distress cost function gz must be
estimated for all z ∈ Z . If too many risk scenarios are considered in Z, this can be a difficult task
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and may significantly increase model risk. For this reason, we consider here the simple case of the
binary measure of relative performance

Z = 1{V > 1.5 · n

0.5 + n
· V n} = 1{V > 1.5 · V n−1},

where Vi = Xi/PXi is the loss ratio of insurer i (and hence V = X/PX ), V n = 1
n ·
∑n

i=1 Vi the
average loss ratio of the market and V n−1 = 1

n−1 ·
∑n

i=2 Vi the average loss ratio of the insurer’s
n−1 competitors. The insurer is thus viewed as realizing a notably bad relative performance if his
loss ratio is greater than 1.5 times the average loss ratio of his competitors. The resulting domain
of Z is correspondingly Z = {0, 1}. Notice that, since the insurers are assumed to be identical,
they all receive the same total premium and hence the relative performance simplifies to

Z = 1{X > 1.5 ·Xn−1},

where Xn−1 = 1
n−1 ·

∑n
i=2Xi.

For the financial distress cost, we assume

YD = 0.5 · Z · (D − PD)+.

Therefore, if both a bad relative performance occur (Z = 1) and the retained loss exceeds the
retained premium, then each two additional monetary units of retained loss result in one monetary
unit of financial distress cost. The resulting financial distress cost function gz(x) = 0.5 · z · x is
continuous in x and increasing in both x and z with gz(0) = 0, in accordance with assumptions
(A1) and (A3). Also, we have hz(x; p) = x + 0.5 · z · (x − p)+, which yields that the optimal
contingent bounded stop-loss has deductibles

dz(k) =

{
k , for z = 0,
2
3 · k + 1

3 ·min{k, P (1)
D (k)} , for z = 1,

and limits

`z(k) =

{(
ρ0[X]− d0(k)

)
+

, for z = 0,(
ρ1[X]− d1(k)

)
+

, for z = 1,

while the benchmark has deductible

d(k) =
2

3
· k +

1

3
·min{k, P (2)

D (k)},

and limit
`(k) =

(
ρ1[X]− d(k)

)
+
,

cf. Section 4. For the operators ρ0 and ρ1, we set β = 0.995.

In order to illustrate the model described above, we show in Table 1 the values of the condi-
tional risk measures ρ0[HX ] and ρ1[HX ], together with the probability P(Z = 1), for n = 3, 5
and τ = 0, 0.5, 1. Note that in all cases ρz[HX ] increases in z, in accordance with assumption
(A2).

Figure 2 depicts the plots of the conditional distribution functions FHX |Z=0 and FHX |Z=1, as
well as the unconditional distribution function FHX

for each choice of n and τ . We observe from
Table 1 and Figure 2 that there is a significant difference between the conditional distributions
FHX |Z=0 and FHX |Z=1 (and hence between their 99.5%-quantile ρ0[HX ] and ρ1[HX ]), with the
unconditional FHX

being in between. The significant difference between FHX |Z=0 and FHX |Z=1

indicates that the measure Z of the relative performance distinguishes two risk scenarios in which
the risk faced by the insurer (and hence his need for reinsurance) is clearly distinct, which makes
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n = 3 n = 5

τ 0 0.5 1 0 0.5 1

P(Z = 1) 0.2713 0.2440 0.2103 0.2253 0.2066 0.1749

ρ0[HX ] 2′238 4′339 5′814 2′092 4′227 5′782

ρ1[HX ] 18′351 16′932 14′475 19′962 18′529 15′780

TABLE 1. Conditional risk measures ρ0[HX ] and ρ1[HX ] resulting from the
model inputs, together with the the probability that the insurer incurs a bad rela-
tive performance P(Z = 1), for n = 3, 5 and τ = 0, 0.5, 1.

τ = 0 τ = 0.5 τ = 1

n
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3
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=
5
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FHX | Z=1(x)

FIGURE 2. Conditional distribution functions FHX |Z=0 and FHX |Z=1, together
with the unconditional distribution function FHX

, for n = 3, 5 and τ = 0, 0.5, 1.

Z being an appropriate candidate to be used in a contingent reinsurance cover. The distance be-
tween the curves naturally decreases with τ and increases with n: The parameter τ models the
strength of the right-tail dependence between the Xi’s. For larger τ , the realizations of the Xi’s
will be closer to each other and hence less information on X will be carried by the events Z = 0
and Z = 1. At the same time, increasing the market size n lowers the variance ofXn−1 and hence
allows for potentially larger deviations of X from 1.5 · Xn−1, which explains that the distance
between FHX |Z=1 and FHX

increases with n.

The same effects also drive the probability to experience a bad relative performance P(Z = 1) as
given in Table 1. That probability decreases in both τ and n. For larger τ the realizations of the
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FIGURE 3. Reinsurance premiums, for n = 3, 5 and τ = 0, 0.5, 1.

Xi’s will be closer to each other, making the exceedance of X over 1.5 ·Xn−1 less likely. Since
increasing n lowers the variance of Xn−1, that also makes it less likely that Z = 1 occurs caused
by a small realization of Xn−1.

5.2. The insurer’s viewpoint. In this section, we analyse the position of the insurer, when he
purchases either the optimal contingent bounded stop-loss or its benchmark. The quantities to
follow turn out to vary considerably with the given maximal acceptable level of riskiness. For
the clarity of the plots, we thus consider the intermediate range of maximal acceptable levels of
riskiness k ∈ [1′200, 10′000]. For n = 3, 5 and τ = 0, 0.5, 1, the lower bound is greater than both
k
(1)
inf and k(2)inf , which ensures that both f (1)Z ( · ; k) and f (2)( · ; k) are defined.

In Figure 3, we plot the reinsurance premiums P (1)
R (k) and P (2)

R (k) for n = 3, 5 and τ = 0, 0.5, 1.
In accordance with Proposition 4.3, it shows that for all the considered maximal acceptable levels
of riskiness, the reinsurance premium for the optimal contingent bounded stop-loss is smaller than
the one for its benchmark. If we then compare the difference between P (1)

R (k) and P (2)
R (k) for the

various values of τ and n, we notice that it notably increases with τ . The reason for this is the fol-
lowing: By (28) and (43), for any given monotone premium principle π and maximal acceptable
level of riskiness k we have

(44) f
(1)
0 ( · ; k) � f (1)1 ( · ; k) � f (2)( · ; k),

and the only difference between f (1)1 ( · ; k) and f (2)( · ; k) is the retained premium involved in
the related parameters d1(k), `1(k), d(k) and `(k). In the present example, for all the considered
maximal acceptable levels of riskiness the distance between f (1)1 ( · ; k) and f (2)( · ; k) is very
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FIGURE 4. Relative difference of the reinsurance premiums, for n = 3, 5 and τ = 0, 0.5, 1.

small, and hence so is ∆1(k). As a result, given that here P (2)
R (k) − P (1)

R (k) = 1.5 ·
(
∆0(k) +

∆1(k)
)
, what prevails in the latter difference is

∆0(k) =
(
E[f (2)(X; k)|Z = 0]− E[f

(1)
0 (X; k)|Z = 0]

)︸ ︷︷ ︸
(a)

·P(Z = 0)︸ ︷︷ ︸
(b)

.

where (a) quantifies how much the benchmark makes the insurer being over-reinsured with re-
spect to the contingent cover and (b) is the related weight. As shown in Table 1, the difference
between ρ0[X] and ρ1[X] decreases in τ , which leads to (a) being decreasing in τ (cf. Remark
4.4). On the other hand, the probability P(Z = 0) = 1 − P(Z = 1) increases in τ (see Table 1
and the respective discussion above). While these two effects are conflicting, it turns out that the
increase in τ of (b) dominates, which leads P (2)

R (k)− P (1)
R (k) to increase with τ .

Since in absolute terms, the above curves are quite close to each other, it may be more instructive
to consider the relative difference P (1)

R (k)/P
(2)
R (k) − 1 instead, which is plotted in Figure 4 for

n = 3, 5 and τ = 0, 0.5, 1. The bend appearing in each plot occurs at k = ρ0[X] , and its presence
can be understood as follows. While the deductibles d0(k), d1(k) and d(k) are all increasing in
k, the limits `0(k), `1(k) and `(k) are all decreasing in k, which makes the reinsurance premiums
P

(1)
R (k) and P (2)

R (k) both to be decreasing in k, as shown by Figure 3 and in accordance with
Proposition 4.2. However, whereas for k < ρ0[X], the limits `0(k), `1(k) and `(k) are all strictly
decreasing in k, for k ∈ [ρ0[X], ρ1[HX ]), the limit `0(k) is constant at 0 and hence only `1(k) and
`(k) remain strictly decreasing. As a result, for k ∈ [ρ0[X], ρ1[HX ]) the reinsurance premium
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FIGURE 5. Standard-deviation of the reinsurer’s loss ratio, for n = 3, 5 and τ = 0, 0.5, 1.

P
(1)
R (k) decreases less in k than P (2)

R (k) does, resulting in that particular bend in the relative dif-
ference curve P (1)

R (k)/P
(2)
R (k)− 1 at k = ρ0[X].

Finally, Figure 3 already showed that the more likely it is for the worst-case scenario not to occur,
the cheaper (and hence the more advantageous for the insurer) the optimal contingent bounded
stop-loss will be in comparison to its benchmark. Figure 4 confirms it, showing that the relative
difference can be about −25% for τ = 0.5 and −55% for τ = 1. That is, an increased degree
of dependence among insurers is in fact advantageous for the performance of this cover. Also,
we would like to emphasize that similar results could be obtained using other measures of relative
performance, as long as they imply one or more large ∆z(k) (cf. Remark 4.4).

5.3. The reinsurer’s viewpoint. In order to assess whether selling contingent covers instead of
traditional ones improves the risk-to-profit measure of the reinsurer or not, we will consider his loss
ratio in two distinct (extreme) situations: either the reinsurance covers he sells are all of optimal
contingent bounded stop-loss type, or they are all benchmark covers. The resulting reinsurer’s loss
ratios are then

W (1)
m:n(k) =

∑m
i=1 f

(1)
Zi

(Xi; k)∑m
i=1 P

(1)
Ri

(k)
and W (2)

m:n(k) =

∑m
i=1 f

(2)
Zi

(Xi; k)∑m
i=1 P

(2)
Ri

(k)
,

where m ∈ {1, ..., n} is the number of insurers that the reinsurer sold covers to and Zi is the
relative performance of the ith insurer.

At t = 0, these two loss ratios are random variables which have, for any m and k ≥ k
(2)
inf the
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common expectation

(45) E[W (1)
m:n(k)] = E[W (2)

m:n(k)] = 2/3.

In order to characterise the difference between W (1)
m:n(k) and W (2)

m:n(k), we will thus focus on their
standard-deviation, denoted by

Q(1)
m:n(k) =

√
Var[W (1)

m:n(k)] and Q(2)
m:n(k) =

√
Var[W (2)

m:n(k)].

Remark 5.1. Since reinsurance is priced according to the expected value principle with a unique
risk margin of 0.5, the standard deviations of the reinsurer’s loss ratio Q(1)

m:n(k) and Q(2)
m:n(k) can

alternatively be expressed as

(46) Q(1)
m:n(k) =

√
Var
[∑m

i=1 f
(1)
Zi

(Xi; k)
]

1.5 · E
[∑m

i=1 f
(1)
Zi

(Xi; k)
] and Q(2)

m:n(k) =

√
Var
[∑m

i=1 f
(2)(Xi; k)

]
1.5 · E

[∑m
i=1 f

(2)(Xi; k)
] ,

meaning that Q(1)
m:n(k) and Q(2)

m:n(k) are just the scaled (by a factor 2/3) coefficients of variation
of the total reinsurance claims

∑m
i=1 f

(1)
Zi

(Xi; k) and
∑m

i=1 f
(2)(Xi; k), respectively.

In Figure 5, we plot Q(1)
m:n(k) and Q(2)

m:n(k) for n = 3, 5 and τ = 0, 0.5, 1. We firstly observe that
for all n and τ , Q(1)

m:n(k) and Q(2)
m:n(k) are both decreasing in m, which reveals and quantifies the

diversification effect of pooling risks for the reinsurer. We notice that for all n and τ , Q(1)
m:n(k) and

Q
(2)
m:n(k) are both increasing in k. The reason for this is the following: As k increases, the part

of the Xi’s that is transferred to the reinsurer decreases (`0(k), `1(k) and `(k) are all decreasing
in k) and is shifted to the right tail (d0(k), d1(k) and d(k) are all increasing in k), which reduces
proportionally more the expectations of

∑m
i=1 f

(1)
Zi

(Xi; k) and
∑m

i=1 f
(2)(Xi; k) than their stan-

dard deviations and hence makes Q(1)
m:n(k) and Q(2)

m:n(k) both increase in k, from (46).

In Figure 6 we consider the relative difference Q(1)
m:n(k)/Q

(2)
m:n(k) − 1 for n = 3, 5 and τ =

0, 0.5, 1, which like for the premium differences before may be more instructive to study. We
firstly notice that, as for P (1)

R (k)/P
(2)
R (k) − 1, the curves Q(1)

m:n(k)/Q
(2)
m:n(k) − 1 all contain a

bend, which occurs at k = ρ0[X] in every case. The reason for this is the following: For the
considered maximal acceptable levels of riskiness, the limit `0(k) decreases faster than `1(k) in
k when k < ρ0[X], and slower when k ≥ ρ0[X]. The difference between `0(k) and `1(k) thus
increases in k for k < ρ0[X], and decreases for k ≥ ρ0[X]. Then, given that for all i the potential
difference between f (1)0 (Xi; k) and f (1)1 (Xi; k) depends directly and positively on the one between
`0(k) and `1(k), increasing k when k < ρ0[X] will add some variability to each f (1)Zi

(Xi; k) and

hence also to
∑m

i=1 f
(1)
Zi

(Xi; k), while for k ≥ ρ0[X] it will remove some. As a result, Q(1)
m:n(k)

tends to increase in k faster for k < ρ0[X] than it does for k ≥ ρ0[X], which results in the notable
bend that occurs in the relative difference Q(1)

m:n(k)/Q
(2)
m:n(k)− 1 at k = ρ0[X].

We observe that for a single reinsurance deal (m = 1), this relative difference is always posi-
tive, meaning that the loss ratio of each optimal contingent bounded stop-loss cover has a greater
standard deviation than the one of the benchmark. This comes from the fact the optimal contin-
gent bounded stop-loss inherits from its property of varying with the relative performance some
variability that the benchmark does not have. As a result, while on the one hand the contin-
gent bounded stop-loss reduces the expectation of the ceded loss over the one of the bench-
mark, on the other hand it reduces proportionally less its standard deviation. The ceded loss
f
(1)
Z (X; k) therefore has a greater coefficient of variation than f (2)(X; k), which from (46) yields
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FIGURE 6. Relative difference of the standard-deviations of the reinsurer’s loss
ratio, for n = 3, 5 and τ = 0, 0.5, 1.

Q
(1)
1:n(k)/Q

(2)
1:n(k)− 1 > 0.

We note that Q(1)
m:n(k)/Q

(2)
m:n(k) − 1 decreases in m. The explanation for that is as follows: On

the one hand, by construction the Zi’s tend to be negatively correlated, which introduces some
degree of negative dependence between the ceded losses f (1)Zi

(Xi; k). On the other hand, since the
ceded loss function f (2)( · ; k) is increasing, the ceded losses f (2)(X; k), ..., f (2)(Xm; k) have the
same dependence structure as X , ..., Xm. Because of this, when the reinsurer sells reinsurance
covers to more insurers in the market (when m increases), if these covers are the optimal contin-
gent bounded stop-loss, then he benefits from a larger diversification effect than if they are the
benchmark ones. The standard deviationQ(1)

m:n(k) thus decreases faster thanQ(2)
m:n(k) inm, which

makes Q(1)
m:n(k)/Q

(2)
m:n(k)− 1 to be decreasing in m.

Finally, whenm approaches n, the relative differenceQ(1)
m:n(k)/Q

(2)
m:n(k)−1 turns negative. There-

fore, if the reinsurer has a large market share, then while keeping the same expectation of the loss
ratio (cf. (45)), in several cases selling contingent covers rather than the traditional benchmark
ones makes him benefit from a smaller standard deviation of his loss ratio. Figure 6 illustrates that
the improvement is substantial when the insurers’ losses are positively dependent. This is particu-
larly noteworthy, as in this case positive dependence has a favourable impact for both the insurers
and the reinsurer, which is rather uncommon in risk sharing constructions. Also, it suggests that
such a favourable effect for the reinsurer may still be obtained using another measure of relative
performance Z, as long as one ensures that it sufficiently introduce negative dependence among
the contingent covers.
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6. CONCLUSION

In this paper we studied the efficiency of contingent reinsurance covers as a particular example of
structured reinsurance deals. Since for insurers the performance relative to other market partici-
pants is quite important in terms of potential financial distress costs, we investigated a reinsurance
form that pays more in scenarios where the financial distress cost is increased. On the marginal
side of the insurer, this can lead to a performance improvement, and for a reinsurer offering similar
covers to several market participants there also can be a beneficial diversification effect. Under
certain assumptions on the performance and risk measures involved, we proved optimality results
of such a cover from the viewpoint of the insurer. We further illustrated the results in a detailed
numerical example, where we also showed the hedging effect for the reinsurer writing several si-
multaneous such contracts to market participants.
It was the purpose of this paper to propose a new perspective for the analysis and the intuitive
understanding of potential advantages of this structured reinsurance deal, which is why we de-
liberately chose a rather simple model that allowed to keep the calculations tractable and led to
explicit results. Naturally, there are various directions in which the present results can be extended.
Next to possibly different performance and risk measures than the ones considered in the paper, it
could also be interesting to generalize the analysis to other reinsurance premium principles, and to
reinsurance pricing techniques that are more specific to the individual reinsurer’s situation rather
than applying a general principle. Furthermore, it will be interesting to see to what extent the
results of this paper still hold in more heterogeneous (re)insurance markets.
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