
Preprint. Final version has appeared in Interdisciplinary Science Reviews 40(4): 393–408 (2015)

1

Software as theory: a case study in the domain of text analysis

Aris Xanthos

Department of Language and Information Sciences

University of Lausanne

Anthropole 3136

CH-1015 Lausanne

aris.xanthos@unil.ch

Abstract

This article proposes a reflection on a specific way of envisioning and valorising the scholarly contribution of

scientific software, namely by making explicit the model of data analysis that underlies it. It seeks to illustrate

this way of studying a software construct by applying it to a particular text analysis program. Fundamental

aspects of this program's design (input and output, data structures, process model, and user interface) are

reviewed and discussed from the point of view of their implications in terms of theoretical commitments to

a specific conception of text and text analysis. The conclusions of this case study notably emphasise the

central role of user modelling in the assessment of scientific software's epistemological contribution as well

as the necessity of extending the proposed approach to a broader range of software applications.

Keywords

Software, design, theory, model, text, analysis

Introduction

While the construction of digital artefacts, including software systems, is widely recognized as a key activity

in digital Humanities research, there is arguably a less clear-cut consensus as to how the scholarly

contribution of software development should be identified and interpreted. In their contribution to

the Debates in the Digital Humanities volume, Ramsay and Rockwell (2012) review and discuss several ways

in which the epistemological status of software products have been or can be envisioned. One of these

conceptions revolves around the idea, notably articulated by Willard McCarty, that the primary function of

computing in the Humanities is that of providing tools and methodologies for modelling, broadly construed

as "an iterative process of constructing and developing something like a computational 'knowledge

representation'" (McCarty 2002, 104). In this context, Ramsay and Rockwell ask, rhetorically, the question

"whether the manipulation of features, objects, and states of interest using the language of coding and

programming (however abstracted by graphical systems) constitutes theorizing" (83).

The present contribution relies on the assumption that at least in the case of scientific software, whose main

functionality is often to assist users in the analysis of some kind of data, software development necessarily

implies the conceptualisation of a formal model or theory of the considered type of data and its analysis. Part

of this model can be readily apprehended through the visual inspection of a program's interface and the user

interaction processes that it defines. Part of it, however, is bound to remain buried in the source code and

concealed from non-technical observers unless it is explicitly documented in some form of discursive fashion:

this is typically the case of the data structures and, to some extent, the algorithmic processes that underlie a

program's operation.

The purpose of this contribution, then, is to explore the consequences of embracing the conception of

programming as theorizing by examining a specific piece of scientific software, in particular text analysis

software, in the light of this analogy. I will endeavour to expose and review fundamental aspects of the

program's design, with the perspective of making explicit the theory of text and text analysis that is, in effect,

formalised by these elements. This is not to say that software cannot "stand for itself wholly without written

commentary and explanation" (McCarty 2008). Rather, it is an acknowledgement that although the potential

theoretical value of software can be of considerable interest to prospective or effective software users, a

sizable portion of is not, by itself, intelligible outside of the restricted circle of software programmers–in fact,

Preprint. Final version has appeared in Interdisciplinary Science Reviews 40(4): 393–408 (2015)

2

acquiring a basic understanding of a non-trivial program's theoretical underpinnings based on source code

only will usually require a fair amount of effort even from seasoned developers.

Arguably the most common discursive approach to the scholarly valorisation of scientific software is by

reporting on fruitful uses in specific research contexts. This corresponds to another way of envisioning the

theoretical status of computer programs (and more generally digital artefacts) discussed by Ramsay and

Rockwell, namely "to think of them as hermeneutical instruments through which other phenomena can be

interpreted" (79). That the present contribution does not engage in that type of discourse should not be

interpreted as a denial of its potential usefulness, but as a defence of the idea that theoretical discourse

about software can "stand for itself wholly" without being supported by empirical results. Furthermore, it is

my contention that the availability of such discourse may actually strengthen empirical assessments of a

program's hermeneutical value, to the extent that it contributes to a better and more widely accessible

understanding of its functionality.

The program that this contribution sets out to scrutinise, Orange Textable or simply Textable (Xanthos 2014),

has been developed by the present author in the context of a pedagogical innovation project funded by the

University of Lausanne in 2012, with the perspective of using it for teaching introductory courses on

computer-aided text analysis.1 It is packaged and distributed as an open source extension to the Orange

Canvas data mining environment (Demšar et al. 2004). In order to give a picture of the model of text analysis

that underlies Textable, the following sections will successively examine the type of data that it takes in input

and produces in output, the internal data structures on which it operates, the algorithmic processes it

executes, and the interface it presents to the user. The concluding Discussion will offer a synthesis of these

observations and reflect on what such a case study may teach us about the conception of software as theory

and ways in which it should be further developed.

Input and output

A coarse-grained overview of the model of text analysis embodied in Textable can be gained by examining

the nature of the data on which it operates and that of the data it produces as a result of its operation. This

specification, which directly relates to the question of interoperability in software development, is notably

useful for understanding the wider context in which the analytical activity is thus theoretically embedded.

The problem of characterising the "nature" of the data is less innocuous than it seems, because it can be and

sometimes needs to be done from several distinct point of views. For instance, merely stating that raw text

is the only type of data that Textable accepts as input may not be sufficient for all purposes; a fuller account

would include indications concerning the supported text encodings and formats. Because of the versatile

approach to text processing that the program seeks to implement (see Processes below), the latter kind of

information is not as easily specified as the former.2 Formally, Textable does not require its input to conform

to a particular text format and it can work with data in any format that can be expressed within the domain

of raw text. The only format for the exploitation of which it offers specific facilities is XML, but as we will see,

it has generic provisions for the manipulation of a variety of other formats. This mostly agnostic stance with

regard to the format of input data is a design choice intended to favour the program's interoperability, that

is, the diversity of analytical contexts in which it can be integrated: rather than setting specific expectations

on the internal structure of the data, it attempts to provide means of adapting to the widest array of possibly

unrecorded structures.

The main type of output that Textable produces are two-dimensional data tables. Whether these tables are

exported in text format or represented internally with ad hoc data structures3 matters little to the present

discussion. On the contrary, that the program is fundamentally designed to convert raw text sources into

tabular data is of particular relevance to the stated intent of this review. This is indeed the general framework

1 See http://langtech.ch/textable.
2 The program can deal with the entire range of encodings that are recognized by the underlying programming

language, namely Python v2.7–in particular it is fully Unicode-compliant.
3 The latter option is what makes it possible to further analyse the data produced by Textable using the tools and

methods implemented in Orange Canvas.

Preprint. Final version has appeared in Interdisciplinary Science Reviews 40(4): 393–408 (2015)

3

in which every text-analytic workflow is ultimately expressed in Textable. In particular, it delegates virtually

every operation bearing on tables (e.g. data clustering or visualization methods) to other software

components, on the grounds that such operations do not pertain to text analysis proper, but to data analysis

more generally.4 This is a crucial observation for understanding the theoretical conception of text analysis of

which Textable is a working model.

The second type of output produced by Textable are text data, typically resulting from the preprocessing,

recoding, and/or structural reorganization of input text sources. This is another feature whose main purpose

is to increase the program's interoperability. For the purpose of this discussion, we may say in summary that

Textable implements a model of text analysis according to which text sources are processed to create either

new text data or two-dimensional data tables. As we will see in section Processes below, the latter kind of

output actually covers a variety of distinct table types.

Data structures

In the framework of Textable, the conversion of text strings to data tables (or to other strings) is mediated

by a specific data architecture organised around the concept of segmentation. From a functional point of

view, a segmentation serves as a formal representation of an analysis of a string, whereby an arbitrary large

number of substrings are delineated, ordered, and possibly further qualified. These substrings, called

segments, are specified by two elements: (i) an address consisting of a reference to a given string along with

a start position and an end position (expressed in character offset relative to the string); (ii) a set of zero or

more annotations, usually in the form of arbitrary text strings (annotation values), each of which is itself

indexed by another arbitrary string (annotation key).

An illustration may be useful for making these notions more concrete. Consider the following strings:

(1) a simple example

(2) another example

In this context, the notation (1, 3, 8, {type: ADJ}) might be taken to conventionally denote the segment

running from the third to the eighth character of string (1) and annotated with key type and value ADJ. The

corresponding substring, simple, is called the segment's content. An example of segmentation, then, might

be the following ordered list of segments:

1. (1, 3, 8, {type: ADJ})

2. (2, 1, 7, {})

3. (1, 3, 16, {type: UNKNOWN, eval: redundant})

This illustration emphasizes several important properties of the chosen data architecture–properties that

ultimately define the range of possible analyses of a string or set of strings that Textable can formally

represent. A key property is the hypothesis of a two-level structure, where a container (segmentation) is

associated with a series of contained elements (segments), thus constituting what can be thought of as a

minimal instantiation of an ordered hierarchy of content objects (DeRose et al. 1990). In contrast to the full-

fledged OHCO model, however, there cannot be more (nor less) than two levels in this representation. This

is a severe limitation, which makes it impossible to properly represent a number of analyses that have proven

highly relevant for the description of text data, such as syntactic derivation trees or the hierarchical structure

of documents (with chapters consisting of sections, themselves consisting of subsections, and so on). As a

concrete consequence of this state of affairs, importing XML data in Textable can only be done at the cost of

flattening their structure, which implies a loss of information in general.

It should be noted, however, that the representation of text data in Textable is considerably more flexible

than what DeRose and colleagues call a stream of content objects, and for certain purposes, more flexible

than the OHCO model: indeed, in Textable, it is perfectly acceptable for any two segments of a given

segmentation to stand in a relation of containment,5 partially overlap, or even correspond exactly to the

4 Orange Canvas itself actually offers a large range of such algorithms.
5 In this context, segment x is said to be contained in segment y if and only if (i) they refer to the same string, (ii) the

start position of x is greater than or equal to the start position of y, and (iii) the end position of x is lesser than or equal

to the end position of y.

Preprint. Final version has appeared in Interdisciplinary Science Reviews 40(4): 393–408 (2015)

4

same area of a string.6 Furthermore, any number of distinct segmentations of a given string (or set of strings)

can co-exist at any time, which means that hierarchical levels of segmentations can actually be stored (albeit

independently of one another, i.e. without keeping track of hierarchical relationships between specific

segments)–a possibility that Textable's analytical algorithms attempt to consistently exploit, as will be

discussed in section Processes below. For the same reasons, the problem of multiple logical hierarchies

mentioned by Renear et al. (1996) is easily overcome within this framework.

In fact, the Textable data structure shares less similarities with the OCHO model and its SGML/XML

applications than with the Tipster architecture (Grishman 1997). The Textable representation can be

envisioned as a version of the Tipster model simplified in mainly two ways. First, Textable does not adopt the

elaborate typing system by which Tipster specifies annotation values: with very few exceptions, such values

can only be strings in Textable, while Tipster distinguishes between Booleans, strings, integers, reals,

collections, and so on. The rationale behind this simplification pertains to the program's expected user

profile, which is typically that of a non-programming student or scholar in the Humanities, for whom it is

common practice to annotate text with text. The Textable annotation model is thus intended to appear as a

natural metaphor to such users, while remaining powerful enough to satisfy a variety of operational needs.

Implementations of the Tipster model such as GATE (Cunningham et al. 1996) are clearly directed towards

more technical users, and can arguably not be fully exploited without some background in programming.

With regard to the objective of this contribution, this raises the question whether the idealized user type for

whom a given piece of scientific software is designed could or even should be construed as an integral part

of the underlying theoretical model, considering how significantly it may affect it. In this case, my inclination

would be to answer positively: that Textable has been designed mainly for non-technical users is relevant for

understanding the conception of text analysis that it embodies, and in particular how it differs from text

engineering.

The second important way in which Textable's data structures are a simplification of the Tipster architecture

is that in the former, a segment necessarily corresponds to a continuous area of a string. Consequently,

discontinuity can only be accounted for at the level of the segmentation, with the constraint that a given

segmentation should be used for representing either a single discontinuous unit or a sequence of continuous

units. The Tipster model, on the other hand, makes it possible to represent discontinuous units alongside and

on the same level as continuous ones. In this case, the design has not been guided by a theoretical

preconception as to the irrelevance of the ability to deal properly with discontinuous phenomena, which

would actually be very desirable. As a matter of fact, an attempt to create a prototype with this ability was

made at some point of Textable's development, but the negative impact on the program's performance (in

terms of calculation time) turned out to be prohibitive. The prototype was thus abandoned based on the

assumption that discontinuity is not a frequent enough condition in text analysis to justify the computational

penalty that the proper handling of discontinuity would imply for the far more typical processing of

continuous units–which in itself is indicative of certain preconceptions about the application domain and

their relation to the dynamic nature of user interactions that Textable's interface seeks to promote (see

Interface below).7

Processes

The process model adopted in Textable has several notable precursors, the earliest of which is the set of text

processing programs developed in the seventies and integrated in the Unix operating system (see e.g.

Dougherty and O'Reilly 1987). These well-known command-line tools constitute a canonical illustration of

the so-called "Unix philosophy" of programming that has been summarized by Douglas McIlroy (quoted in

Salus 1994) as "Write programs that do one thing and do it well. Write programs to work together. Write

programs that handle text streams, because that is a universal interface". At the core of this approach lie the

6 Note that even perfectly overlapping segments will be ordered in a given segmentation.
7 The same kind of reasoning holds for the fact that Textable is not able to represent zero length segments, i.e.

elements that have a well-defined position in a text but no actual content, such as page break indications for instance.

The possibility of safely assuming that every segment has a non-empty content (as opposed to explicitly testing it)

entails a considerable gain of computation time.

Preprint. Final version has appeared in Interdisciplinary Science Reviews 40(4): 393–408 (2015)

5

notions of modularity and interoperability, which are equally important to another early ancestor of Textable,

namely the TUebingen System of TExt processing Programs or TUSTEP (Ott 1979). The following

characterization of TUSTEP can be applied almost without any modification to Unix tools and Textable:

TUSTEP is a collection of relatively independent programs, each of which offers a well-defined subset of basic

operations for processing textual data. It is the task of the user to combine these basic functions in order to arrive

at the solution to a given problem (Ott 1994, 197).

This citation also emphasizes the active role of the user when working with software designed in this way:

rather than merely feeding predefined analytical processes with new data, she is expected and in fact

required to take part in the actual conception of processes. Providing her with a constellation of lower-level

interoperable software components rather than with a single, integrated higher-level program

simultaneously increases the diversity of analyses she may conduct and her degree of responsibility for the

specification of theses analyses, thus blurring in effect the line that separates user from developer. This idea

was explicitly thematised already in the mid-nineties in the context of a discussion on the notion of

"methodological primitives" in Humanities computing (and in particular text processing) that Willard McCarty

has been animating in the Humanist online discussion group:

It seems to me that the most broadly useful invention would be a set of components the "garden-variety"

humanist could assemble quickly into a process. Component-software is not a new idea, but it rests on a genuine

intellectual problem, namely to identify the computing primitives of text-processing. If a basic set of primitives

were suitably identified and component-packages implemented for them, then perhaps we could close the gap

between the person with the problem (conventionally, the scholar) and the one who writes or adapts the tools

to deal with this problem (the programmer). When the day arrives that these two can become one on a broad

scale, then I think we'll see an enormous leap in the scholarly use of computing (McCarty 1995).

Two decades later, this day has yet to come, but Textable does implement a set of computing primitives on

the basis of which a variety of text-analytic workflows may be assembled. There is a considerable degree of

overlap between the functionalities offered by these primitives and those defined in Unix and TUSTEP; for

instance, all three systems enable the user to view the context of occurrence of query terms in sets of text

files, or count the number of word tokens these files contain. The main difference is that Textable is primarily

designed to support a hermeneutic interaction with text data while the two others focus rather on text

manipulation as part of an edition and publication process.8

Another distinctive feature of Textable is its adoption of an object-oriented framework (inherited from

Orange Canvas). Thus rather than defining primitive components as programs that can be executed, as is the

case of the Unix and TUSTEP systems, they are conceived as classes (called widgets), each of which can give

rise to an arbitrary large number of objects (called instances) that the user connects to one another in order

to specify a particular workflow (more on this in section Interface below). Widgets take various types of data

in input and produce various types of data in output; they can be divided into three main categories based

on their input and output types: text import widgets, segmentation processing widgets, and table

construction widgets.9 These categories correspond to the main steps of most Textable workflows.

Text import widgets are responsible for importing text data from various sources: keyboard (Text Field

widget), files (Text Files), or web locations (URLs). Each instance of these widgets stores one or more strings

in memory and returns a segmentation (see Data structures above) where each segment corresponds to an

entire input string. It is worth stressing the somewhat counter-intuitive fact that when these instances are

connected with other instances, the data that are exchanged between them are segmentations, not the

8 In the case of TUSTEP, the preparation of scholarly editions is explicitly put forward as the system's main function;

although Dougherty and O'Reilly's overview of Unix text processing similarly focuses on "the preparation of written

documents, especially in the process of producing book-length documents" (1987, xi), the vocation of Unix tools is

more general-purpose, as witnessed by their frequent use for system administration.
9 A fourth, auxiliary category is characterized by the common purpose of its members, namely to facilitate conversion

between various data types (e.g. from a table in the internal format of Textable to a table in a format that can be

processed by the built-in widgets of Orange Canvas). A more detailed description of each widget can be found in the

Reference section of Textable's online documentation (https://orange-

textable.readthedocs.org/en/latest/reference.html).

Preprint. Final version has appeared in Interdisciplinary Science Reviews 40(4): 393–408 (2015)

6

imported strings themselves, contrary to what happens when two Unix programs are piped together for

instance; thus besides their common import function, widgets of this category produce initial analyses (in

the terms used in the previous section) of the imported data and make them available for further refinement

by other widgets.

Segmentation processing widgets take segmentations in input and return new segmentations. Two widgets

of this category additionally generate modified text data: Preprocess and Recode, whose respective purpose

is to apply standard preprocessing operations (e.g. reduce uppercase to lowercase or remove diacritic signs)

and to systematically replace text areas matching a given regular expression; instances of these widgets

actually create and store new strings, which the segmentations they return describe. The other widgets of

this category return segmentations that describe the same string(s) as their input segmentations with a

different set of segments. In some cases, the output segments have the same address as pre-existing input

segments: the Merge widget takes two or more segmentations in input and combines their segments into a

single segmentation that can be further processed in a unified way; Select takes a single segmentation in

input and filters part of its segments out based on different criteria (regular expression matching, frequency

threshold, or random sampling); finally Intersect takes two segmentations in input and retains from the first

only those segments whose content does (or does not) appear in the second, which is useful for emulating a

"stop list" functionality for instance. Two widgets of this category have the potential for creating new

segments, or more precisely segments with new addresses: Segment looks for areas matching a regular

expression in its input segments and create new output segments for each such area, thus offering a standard

way of dividing strings into lines, words, or letters for instance; Extract XML looks for occurrences of a given

XML element and creates a new segment for each of them (as well as converting its attributes to annotation

key–value pairs).10

In practice, segmentation processing widgets form the bulk of most Textable workflows, which indicates that

the computational primitives they implement are central to the conception of text analysis that underlies the

program's design. They account for most of the versatility mentioned in section Input and output above,

notably thanks to the frequent recourse to regular expressions (in widgets Recode, Select, and Segment):

indeed by combining instances of these widgets in various ways it is possible to exploit the structural

characteristics of a wide range of input text data–although it may require a certain degree of ingenuity on

the part the user. From that point of view, the need to formulate appropriate regular expressions for the

configuration of widget instances and to judiciously assemble those instances for handling particular input

data is arguably what sets the lower bound of technical expertise required for a fruitful application of the

program's model of text analysis.

There is however a common feature of segmentation processing widgets that may have a facilitating effect

on the construction of workflows: all of them rely on an implicit mechanism of iteration over input segments,

thus enabling the user to dispense with any such concern. For example, when an instance of Segment

performs a segmentation into words, it automatically processes each input segment successively, regardless

of their number. This way, the structure that has been postulated for the representation of text analyses is

being systematically taken advantage of for simplifying the conception of analytical workflows by the user.

The last category of widgets are those that take segmentations in input and produce two-dimensional data

tables–a functionality that probably constitutes Textable's main trademark when compared to Unix tools or

TUSTEP. Widgets belonging to this category usually operate either on a single input segmentation or on two

of them; in the latter case, one segmentation is used to specify the units of calculation while the other

provides the contexts in which calculations are performed, and the meaning attached to these terms presents

some degree of variation across widget types. Consider the example of widget Count, which serves to

produce frequency tables. On the basis of a single segmentation, it counts the number of occurrences of each

segment type in the data and report the result in a table with a single row and as many columns as there are

segment types. If a second segmentation is used to define contexts, separate counts are maintained for each

10 This category includes a slightly marginal widget type, namely Display, whose main functionality is to visualise the

details of a given segmentation (essentially the content, address, and annotations of segments). Moreover, it is this

widget that offers the possibility of exporting text data as mentioned in Input and output above.

Preprint. Final version has appeared in Interdisciplinary Science Reviews 40(4): 393–408 (2015)

7

context segment type, based on the containment relation mentioned in section Data structures above (see

note 5); thus the resulting table still contains as many columns as there are segment types in the unit

segmentation, but the number of rows is equal to the number of segment types in the context

segmentation.11

The variation in meaning of terms "units" and "contexts" may be illustrated by turning to the Context widget,

whose purpose is to build concordances and collocation tables. In this case, the unit segmentation serves to

identify occurrences of a segment of interest (typically a given word), while the context segmentation

specifies the left and right neighbourhoods with which each occurrence of the segment of interest is

presented to the user; thus the number of rows in the table is given by the number of unit segments and the

number of columns is basically set to 3 (left neighbourhood, key segment, right neighbourhood). As this

example demonstrates, understanding what counts as unit or context in a given widget is not always

straightforward. This remark also holds for the remaining widgets in this category, namely Length, which

serves to count the (average) number of items in segmentations, Variety, whose purpose is to evaluate the

diversity of segment types, and Category, which makes it possible to extract categorical information

associated with segments (typically based on their annotation values).

The flexibility of this model of "segmentation-to-table" conversion is increased by the possibility (very

systematically offered by table construction widgets) to substitute the content of segments with their value

for some annotation key. For example, given a segmentation of a set of texts into words annotated with their

part-of-speech tags, the Count widget can be configured to measure the frequency of part-of-speech tags

instead of word types. Furthermore, if the segments corresponding to the texts are also annotated, e.g. with

indications of author, genre, or period, these metadata can be used for the specification of contexts (i.e. rows

of the frequency table); thus if several texts correspond to the same annotation value, say {genre: prose},

then their word counts will be fused into a single row.

Overall, although the number of types of tables that can be produced with a Textable workflow is limited to

a dozen (frequency table, concordance, etc.), thanks to the interplay of segmentation processing widgets and

table construction widgets, along with the flexibility brought by regular expressions and the possibility of

replacing content with annotation, the number of different tables that can be built on the basis of a given set

of text data is virtually unlimited. With that said, the richness of possible outcomes which is specifically

promoted by the strongly modular conception of text analysis adopted in Textable comes at the cost of an

increased degree of involvement and technical expertise on the part of the user. As noted by John Bradley

(2000), "Any tool meant to support activities as diverse as those that turn up in humanities text-based

computing cannot possibly be trivial to learn or use".

Interface

At some point in the running online discussion about methodological primitives mentioned above, Willard

McCarty reflects about a possible user interface for building programs based on these components: "What if

we had a visually-orientated 'programming' environment of Lego-like primitives we could plug together?"

(2000). In fact, such a visual programming environment had already been implemented in the form of a

prototype named Eye-ConTact and described by Rockwell and Bradley (1998). Although I was not aware of

this work when the first version of Textable was released in 2012, the similarities between the two programs

are obvious and, I believe, indicative of a very close conception of text analysis.

From the point of view of interface, Eye-ConTact and Textable have in common the adoption of the so-called

dataflow paradigm. In this framework, the user constructs workflows that are represented visually as

directed graphs in which each node stands for a computational unit (a widget instance, in the Textable jargon,

see previous section) and the edges connecting the nodes determine the flow of data in the system. Figure

1 below gives an example of such a visual program, in this case a Textable program designed to replicate an

investigation conducted by Svensson (2009) regarding the frequency of expressions "Digital Humanities" and

"Humanities computing" over time in the online archives of the Humanist discussion group.

11 A typical example of such a table is the so-called "document–term matrix" used in information retrieval, which gives

the frequency distribution of each word across a number of texts (see e.g. Salton and McGill 1986).

Preprint. Final version has appeared in Interdisciplinary Science Reviews 40(4): 393–408 (2015)

8

Figure 1. A user-defined visual program in Textable (reproduced with permission from Textable's online

documentation).12

Each computational unit can and often must be further configured by displaying its individual interface. As

an illustration, Figure 2 below shows the configuration of the Recode instance in the program represented

on Figure 1, which essentially indicates that every occurrence of a line beginning with either a vertical bar (|)

or a "greater than" symbol (>) should be deleted (i.e. replaced with an empty string).

Figure 2. The interface for configuring an instance of the Recode widget in Textable (reproduced with

permission from Textable's online documentation).13

User interfaces such as those of Eye-ConTact or Textable are a solution to the following issues in scientific

software design:

We need tools that ensure that our computing work is clearly and completely logged while it is developing, so

that it can be accurately described and later recreated by others... what we need are research tools aimed, not

12 See https://orange-textable.readthedocs.org/en/latest/illustration.html. The Textable program in question is

available for download on that page.
13 Ibid.

Preprint. Final version has appeared in Interdisciplinary Science Reviews 40(4): 393–408 (2015)

9

at the researcher for his or her private exploration, but at the researcher's audience who wants to test the insight.

(Rockwell and Bradley 1998).

Dataflow programming interfaces simultaneously address both problems raised by Rockwell and Bradley.

Indeed, in this context, building a program is producing a visual record of an experiment, and sharing the

record with an external audience actually makes the program available to them. The investigation of the

Humanist archives reported by Svensson (2009) provides an useful example of this, and the reader may find

it interesting to compare the representation of the experiment that she can build by reading Svensson's

written account with the representation she can form by downloading and manipulating the visual program

replicating the experiment (see note 11).

Another important characteristic of dataflow interfaces is the dynamic model of user interaction that they

support. Visual programming environments can usually be configured (and sometimes are configured by

default) to automatically perform computations rendered necessary by each modification of the interface

(typically the creation/deletion of a processing unit or connection, or the modification of a processing unit's

parameters). With this configuration, the construction of an analytical workflow becomes a fundamentally

interactive process, where every action of the user is directly translated into a modification of the results of

the analysis. A high degree of interactivity is a crucial design feature if, as suggested by Rockwell (2003), we

are to engage users in a playful approach to text analysis:

Some possibilities are discarded; some experiments are interesting. The tools make possible a playful interaction.

Disciplined play privileges experimentation and modelling over hypothesis testing or concordance publishing.

Playful experimentation is a pragmatic approach of trying something, seeing if you obtain interesting results, and

if you do, then trying to theorize why those results are interesting rather than starting from articulated principles.

(214)

On a rather prosaic note, this vision of interactive computing can only be realized if the execution time of

computations does not exceed what is perceived by the user to be an acceptable delay for the task at hand:

the benefit of having a modification of the interface immediately trigger calculations is at best considerably

lessened and at worst irremediably lost if the result of said calculations is not made available in a sufficiently

short time. This is the kind of situation where a trade-off between conflicting desiderata must be sought (in

this case execution time versus data and/or process complexity), which is bound to have concrete

consequences on the model of text analysis that the program embodies.

Discussion

Having reviewed the main aspects of Textable's design, we are now in position to summarise the conception

of text analysis that underlies it. Text analysis is fundamentally construed here as an interactive and (playfully)

experimental process by which a researcher builds an analytic workflow that specifies how a set of raw text

sources should be processed. Executing such workflows typically results in the creation of various kinds of

two-dimensional tables (frequency tables, concordances, etc.) or possibly modified versions of their input

text data, which are then used in support of a hermeneutical approach of the sources. From this functional

point view, there is a clear difference between text analysis as it is envisioned here and other text-based

activities such as publishing or language engineering. It is also worth noting that in this conception,

subsequent applications of formal methods (such as clustering, classification, and so on) to the tables

resulting from workflow execution are, in effect, excluded from the field of text analysis proper, on the

grounds that they pertain to data analysis more generally.

Workflow construction is performed in a visual way, in the sense that it is a direct result of the production by

the researcher of a graphical representation of the workflow. Specifically, she creates instances of a

predefined set of computational unit types, configures the behaviour of each individual instance, and draws

connections between them to determine the flow of data. Each unit type corresponds to a basic text-analytic

process–a "methodological primitive" of sorts–which usually belongs to one of the following classes of

functionalities: text import, segmentation processing, and table construction. Segmentations are data of a

particular type, which serve to represent segmental analyses of strings (by outlining continuous areas within

strings and possibly linking them with arbitrary annotations) and which effectively mediate the transition

from text sources to tables. By judiciously combining segmentation processing units and configuring them

Preprint. Final version has appeared in Interdisciplinary Science Reviews 40(4): 393–408 (2015)

10

(which often involves writing regular expressions), the researcher can flexibly adapt the analysis to a great

variety of input data. Tables are then typically produced by relating two segmentations in a specific way, with

one of them defining the units of analysis and the other providing the contexts of analysis. The range of

possible analyses is made even wider by the systematic possibility of operating on annotation values

associated with segments rather than on their contents.

The overarching role of the user model has emerged as a crucial aspect of this review of Textable. In a number

of instances, our reflections have led us to thematise in an explicit fashion the role of an idealized user, the

skills she is expected to have at her disposal, the objectives she supposedly seeks to fulfil, and so on. From

this perspective, the case study points to the risk of understating the importance of user modelling in a

context of "theoretical software analysis", and suggests that there is ample room for improvement along this

line of research: in order to develop better models of what text and text analysis really are, we need to strive

for a better understanding of what a text researcher really is.

The analysis that has been conducted in this article is but the first step of a broader endeavour. Indeed,

applying this approach to a variety of software packages is desirable for at least two reasons. On the one

hand, while the selection of design features that has been used here is fairly standard and well adapted to

the classical software development paradigm, it could be profitably refined as a result of its application to

other software.14 On the other hand, disposing of comparative results is a precondition for abstracting away

from idiosyncrasies and moving to the more fundamental–and more interesting–level of the theory of text

analysis that underlies computerized text analysis in general (as opposed to any specific piece of software).

This extension to the "meta-theoretical" level should take into account not only programs that can be used

in place of one another, but also programs that can be used in combination with one another, in order for us

to develop a better understanding of the wider data-analytic context in which text analysis is embedded.

A lesson that can be drawn from this case study is that while the idealized division of software design aspects

that has been adopted here is a potentially useful structuring principle, many relevant observations can be

made about the interactions between these aspects. An example of this is the necessary trade-off between

execution time, which must be minimised in order to enhance user interaction, and complexity of data

structures and processes, which in some cases is a necessary condition for a model of data analysis to be

applicable to "real-sized" research questions. Such trade-offs usually result from the finiteness of certain

resources, and while the resources in question may not have a straightforward analogue outside the domain

of software development, the need to strike a balance between conflicting criteria is not a rare occurrence

in more traditional ways of expressing theoretical constructions. For example, a scholar writing a book on

literary theory might be similarly striving to find an optimal compromise between the desire (or constraint)

to keep the book shorter than a given number of pages and the need to provide a sufficient number of

examples of literary analyses. From that point of view, the gap between scientific software and scholarly

publication may not be as wide as it is sometimes believed to be.

Acknowledgments

The development of the software program being analysed in this case study has been financed by the

Teaching innovation fund, the Faculty of Arts, and the department of Language and Information Sciences at

the University of Lausanne. This article has benefited from useful comments and suggestions by Tara

Andrews and two anonymous reviewers.

References

Bradley, John. 2000. Re: 14.0258 methodological primitives? In Humanist 14.272

(26/09/00). http://www.dhhumanist.org/.

14 As noted by an anonymous reviewer, using a more complex set of design features would be necessary for this

approach to be extended to such models as genetic or adaptive programming, for instance.

Preprint. Final version has appeared in Interdisciplinary Science Reviews 40(4): 393–408 (2015)

11

Cunningham, Hamish, Wilks, Yorick, and Gaizauskas, Robert. 1996. GATE — a General Architecture for Text

Engineering. In Proceedings of the 16th Conference on Computational Linguistics (COLING-96),

Copenhagen, August 1996, 1057–1060.

Demšar, Janez, Zupan, Blaž, Leban, Gregor, and Curk, Tomaz. 2004. Orange: From Experimental Machine

Learning to Interactive Data Mining. In Knowledge Discovery in Databases: PKDD 2004. Lecture Notes in

Computer Science, 3202, ed. Jean-François Boulicaut, Floriana Esposito, Fosca Giannotti, and Dino

Pedreschi, 537–539. Berlin/Heidelberg: Springer.

DeRose, Steven, Durand, David, Mylonas, Elli, and Renear, Allen. 1990. What is Text, Really? Journal of

Computing in Higher Education 1(2): 3–26.

Dougherty, Dale, and O'Reilly, Tim, eds. 1987. UNIX Text Processing. Indianapolis: Hayden Books.

Grishman, Ralph. 1997. TIPSTER Architecture Design Document Version 2.3. Technical report, DARPA.

McCarty, Willard. 2008. Writing and pioneering. In Humanist 22.403

(24/12/08). http://www.dhhumanist.org/.

McCarty, Willard. 2002. Humanities computing: essential problems, experimental practice. Literary and

Linguistic Computing 17(1): 103–125.

McCarty, Willard. 2000. if only we could speak it easily? In Humanist 13.443

(25/02/00). http://www.dhhumanist.org/.

McCarty, Willard. 1995. Programming for the humanities. In Humanist 9.301

(18/11/95). http://www.dhhumanist.org/.

Ott, Wilhelm. 1994. Modularity, Professionality, Integration: A Conception Revisited. In ALLC-ACH 92,

Conference Abstracts and Programme, Oxford, 6-9 April 1992, 197–199.

Ott, Wilhelm. 1979. A Text Processing System for the Preparation of Critical Editions. Computers and the

Humanities 13(1): 29–35.

Ramsay, Stephen, and Rockwell, Geoffrey. 2012. Developing Things: Notes toward an Epistemology of

Building in the Digital Humanities. In Debates in the Digital Humanities, ed. Matthew K. Gold, 75–

84. Minneapolis: University of Minnesota Press.

Renear, Allen, Mylonas, Elli, and Durand, David. 1996. Refining Our Notion of What Text Really Is: The

Problem of Overlapping Hierarchies. In Susan Hockey and Nancy Ide (Eds.), Research in Humanities

Computing 4: Selected Papers from the ALLC/ACH Conference, Christ Church Oxford, April 1992, 263–

280. Oxford: Oxford University Press.

Rockwell, Geoffrey. 2003. What is text analysis, really? Literary and Linguistic Computing 18(2): 209–219.

Rockwell, Geoffrey, and Bradley, John. 1998. Eye-ConTact: Towards a New Design for Research Text Tools.

Computing in the Humanities Working Papers, A.4.

Salton, Gerard, and McGill, Michael. 1986. Introduction to Modern Information Retrieval. New York:

McGraw-Hill, Inc.

Salus, Peter. 1994. A quarter century of UNIX. New York: ACM Press/Addison-Wesley Publishing Co.

Svensson, Patrik. 2009. Humanities Computing as Digital Humanities. Digital Humanities Quarterly 3(3).

http://digitalhumanities.org/dhq/vol/3/3/000065/000065.html.

Xanthos, Aris. 2014. Textable: programmation visuelle pour l’analyse de données textuelles. In Actes des

12èmes Journées internationales d’analyse statistique des données textuelles (JADT 2014), Paris, June 3–

6, 2014, 691-703.

Preprint. Final version has appeared in Interdisciplinary Science Reviews 40(4): 393–408 (2015)

12

Biography

Aris Xanthos is a senior lecturer in Humanities computing at the department of Language and Information

Sciences at the University of Lausanne. His current research interests lie mainly in the study and development

of innovative methods and interfaces for the analysis of Arts and Humanities data, with a particular emphasis

on their textual and linguistic aspects. He is the author of several open source software products, notably the

Orange Textable visual programming environment for text analysis.

