Competition Effects in a Liberalized Railway Market Markus Lang · Marc Laperrouza · Matthias Finger Received: 20 May 2011 / Revised: 20 October 2011 / Accepted: 3 November 2011 © Springer Science+Business Media, LLC 2011 **Abstract** This paper presents a game-theoretic model of a liberalized railway market, in which train operation and ownership of infrastructure are vertically separated. We analyze how the regulatory agency will optimally set the charges that operators have to pay to the infrastructure manager for access to the tracks and how these charges change with increased competition in the railway market. Our analysis shows that an increased number of competitors in the freight and/or passenger segment reduces prices per kilometer and increases total output in train kilometers. The regulatory agency reacts to more competition with a reduction in access charges in Previous versions of this article were presented at the Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland and at the European Transport Conference 2010 in Glasgow, UK. We wish to acknowledge useful comments and suggestions by an anonymous referee and the co-editor Michael Peneder. We further would like to thank Helmut Dietl, Martin Grossmann, Matthieu Lapparent, Emile Quinet, Urs Trinkner, seminar participants at EPFL and conference participants at ETC. Financial assistance was provided by a grant of the Swiss National Science Foundation (Grant No. 100014-120503) and the Foundation for the Advancement of Young Scientists (FAN) of the Zürcher Universitätsverein (ZUNIV). The authors are solely responsible for the views expressed here and for any remaining errors. M. Lang (⋈) Department of Business Administration, University of Zurich, Plattenstrasse 14, 8032 Zurich, Switzerland e-mail: markus.lang@uzh.ch M. Laperrouza Faculty of Business and Economics, University of Lausanne, Internef, 1015 Lausanne, Switzerland e-mail: marc.laperrouza@unil.ch M. Finger Published online: 02 December 2011 Management of Network Industries (MIR), Swiss Federal Institute of Technology Lausanne (EPFL), Odyssea 215, Station 5, Lausanne 1015, Switzerland e-mail: matthias.finger@epfl.ch the corresponding segment. Consumers benefit through lower prices, while individual profits of each operator decrease through a higher number of competitors. We further show that the welfare effect of increased competition in the freight and/or passenger segment is ambiguous and depends on the level of competition. Finally, social welfare is higher under two-part tariffs than under one-part tariffs if raising public funds is costly to society. **Keywords** access charge · optimal pricing · railways · regulation · vertical integration JEL Classification D40 · L22 · L51 · L92 #### 1 Introduction The introduction of competition in the European railway market lies at the center of the reforms initiated by the European Commission. Competition was expected to play several roles: revitalize the sector, increase efficiency among the railway firms as well as have positive spillover effects on the European economy in general. As a general rule in Europe, one can observe more competition in freight than in the passenger segment. For instance, the Swiss incumbent operator SBB Cargo has lost more than 10% market share between 2006 and 2009 for transalpine rail freight passing through Switzerland (SBB 2010). In Romania, private freight firms have captured 25% of the total ton-kilometer, whereas the figure stands at 15% in Poland (Pittman et al. 2007). The situation is not identical in the passenger segment as only very few countries have witnessed the emergence of competition on the tracks (e.g., United Kingdom). Notwithstanding structural reasons this can be explained by an earlier mandated opening of the freight segment to competition. Except for the United Kingdom, which is characterized by an oligopoly of private train operating companies, long-distance passenger services are by-and-large dominated by the incumbent operators (Beckers et al. 2009). In addition, access to the rail infrastructure is a crucial component of the European railway liberalization process (Gibson et al. 2002; Crozet 2004; ECMT 2005; Nash 2005). For instance, the European Union legislation requires Member States to separate the rail infrastructure from operations and to calculate access charges for the use of the rail infrastructure on a transparent and non-discriminatory basis. The First Railway Package required Member States to separate the management of infrastructure, freight and passenger services into separate divisions with their own profit and loss accounts and balance sheets. While no particular organizational model was required by the EU Directives, one can identify three alternative models of railway restructuring: complete separation, the holding company and the separation of key powers (Nash 2008). Although the exact degree of separation between infrastructure ³The First Package comprised Directives 2001/12, 2001/13 and 2001/14. ¹Freight was fully opened to competition as of January 1st, 2007. International passenger services are open since January 1st, 2010. ²Directive 2001/14/EC of the European Parliament and of the Council of 26 February 2001 on the allocation of railway infrastructure capacity and the levying of charges for the use of railway infrastructure and safety certification. and operations differs across countries, complete separation is the most commonly used restructuring scheme in Europe. It has been adopted by Member States in northern and western Europe. Access charges to the rail infrastructure should be set in a way that encourages efficient use while avoiding discrimination among similar users (Thompson and Perkins 2006). In practice, one can observe large difference in access charges between freight and passenger transport and across European countries. Member States follow three broad models for infrastructure access charges (OECD 2005): (i) social marginal cost pricing, in which the state covers the difference between total financial costs and revenues, (ii) the full financial cost minus subsidies in which access charges are set to cover the difference between state transfers and the full financial cost and (iii) mark-ups to social marginal costs, which serves both efficiency goals and budgetary pressures. In addition, the structure of access charges can be divided into single and two-part tariffs. In the former case, prices are set in relation to the usage of the network (e.g., train-kilometer or gross-ton kilometer). In the latter case, operators pay a mixture of fixed and variable prices (Freebairn 1998). In short, access charges remain an important issue for the European railway policy in its attempt to ensure non-discriminatory access to the existing network. At the same time, they play an important role in determining the competitiveness of new railway lines (Sánchez-Borràs et al. 2010). It is therefore not surprising that access charges in railway economics have drawn significant interest at the theoretical level (Dodgson 1994; Bassanini and Poulet 2000; Nash and Sansom 2001; Quinet 2003; Link 2004; Erhan and Robert 2005). While the existing literature has focused largely on cost-allocation methods, empirical studies, and analytical studies of access charges in a vertically *integrated* railway market, this paper presents a game-theoretic model of a liberalized railway market, in which train operation and ownership of infrastructure is fully vertically *separated*. To the best of our knowledge, we are the first to model a vertically separated railway market. In particular, we apply non-cooperative game theory to model the interactions between decision-makers in the railway industry to determine their optimal behavior. Our model incorporates operators, consumers, the regulatory agency and the infrastructure manager. We further differentiate two segments in the railway market: the passenger segment and the freight segment. Moreover, our analysis features a two-stage setup: in the first stage, the regulatory agency sets access charges to maximize social welfare and in the second stage, the operators simultaneously maximize their profits. Besides the contribution to the literature on railways, we contribute to the literature on access pricing. Existing studies mainly concern situations in which infrastructure and service provision are integrated in an incumbent firm, which then provides access to the essential facility to its competitor(s) on the service market, and/or the price to final consumers is regulated (e.g., Vickers 1995; Armstrong and Vickers 1998; Armstrong et al. 1996; Cave and Vogelsang 2003; Armstrong 2008). Our paper looks at a novel case that is becoming increasingly important in practice, after the recent adoption of vertical-separation and price-deregulation policies. The objective of this paper is to analyze how a regulatory agency will optimally set access charges to the infrastructure in a vertically separated railway market and ⁴The decision to invest in new high-speed lines rests in part on their potential profitability. how this price-setting behavior changes with increased competition in this market. Moreover, we explicitly assess the effect of increased competition on the price per kilometer, the outputs and profits of the operators, consumer surplus, and finally, we assess the welfare implications. The paper is of interest to operators, infrastructure managers, regulators and policy makers in the railway industry because recommendations can be derived on how to optimally set access charges from a social welfare perspective. The remainder of the paper is structured as follows. Section 2 presents the model framework of a separated railway market and introduces its main actors. In Section 3, we solve the maximization problems of the operators and the regulatory agency. In Section 4, we analyze the effects of more competition. Section 5 extends the model to two-part tariffs and discusses different objective functions of the regulatory agency. Finally, Section 6 discusses the main findings and concludes the paper. ## 2 A model of a vertically separated railway market We present a simple model of a railway market in which train operation and infrastructure management are fully vertically separated. As noted above, this scenario represents the situation most often encountered in Europe. In the following subsections, we introduce the main actors in the railway market, i.e., operators, consumers, the infrastructure manager, and the regulatory agency. # 2.1 Operators We consider two segments: the freight segment and the passenger segment. In segment $k \in \{f, p\}$ there are $n_k \in \mathbb{N}^+$ symmetric operators active.⁵ Following the literature of railway economics, we model the competition in segment k as Cournot competition (e.g., Baumol 1983; Quinet and Vickerman 2004; Friebel and Gonzalez 2005). The demand function in segment k is defined as: $$Q_k = \theta_k - p_k,\tag{1}$$ where $Q_k = \sum_{i=1}^{n_k} q_{ik} \in \mathbb{R}_0^+$ is the total output in train kilometers in segment k and $q_{ik} \in \mathbb{R}_0^+$ is the individual output in train kilometers of operator $i \in \{1, ..., n_k\}$ in segment k. The parameter $\theta_k \in \mathbb{R}^+$ denotes the market volume, and $p_k \in \mathbb{R}_0^+$ is the price that consumers have to pay for rail services per kilometer in segment $k \in \{f, p\}$. The inverse demand function is thus given by $p_k = \theta_k - \sum_{i=1}^{n_k} q_{ik}$. It should be noted that we abstract from capacity problems on the railway network and that we do not analyze the choice of service frequency and optimal train size. Moreover, our model posits that mixed traffic (i.e., both passenger and freight) is allowed on the network. Operators have to pay a charge to the infrastructure manager for access to the infrastructure (tracks). We assume that the infrastructure manager charges operators and that the regulatory agency sets linear access charges $(a_f, a_p) \in \mathbb{R}_0^+$ per train ⁵Note that the number of operators is exogenously given. Moreover, if not otherwise stated, the parameter k denotes the segment with $k \in \{f, p\}$. The subscript f stands for the freight segment, while p denotes the passenger segment. kilometer in the freight and passenger segments, respectively. Here, our assumption is that the regulatory agency is entrusted with balancing the transport budget and maximizing the overall social welfare. The results are qualitatively unchanged for the case that the infrastructure manager prices access and the charges are then reviewed by the regulatory agency. Operator i in segment k realizes profits π_{ik} according to the following profit function: $$\pi_{ik} = (p_k - a_k)q_{ik} - (c_{ik}(q_{ik}) + f_{ik}). \tag{2}$$ The revenues of an operator in segment k are given by the difference between the price p_k charged to its consumers minus the access charge a_k paid to the infrastructure manager, times the output q_{ik} in train kilometers. Furthermore, each operator faces two types of costs through the operation of its trains: fixed costs $f_{ik} \in \mathbb{R}^+$ and (convex) variable costs c_{ik} (q_{ik}), which depend on the train kilometers. To make the model tractable, we assume that operators are characterized through asymmetric fixed costs but symmetric variable costs, i.e., $f_{ik} \neq f_{jk}$ and $c_{ik}(q_{ik}) = c_k(q_{ik}) \ \forall i, j \in \{1, ..., n_k\}$ and $i \neq j$. # 2.2 Infrastructure manager We assume that the infrastructure manager incurs costs through the maintenance of the railroad network according to the following cost function (Kennedy 1997): $$C_{IM} = F + v_f \left(\sum_{i=1}^{n_f} q_{if} \right) + v_p \left(\sum_{j=1}^{n_p} q_{jp} \right),$$ (3) where $F \in \mathbb{R}^+$ denotes the fixed network costs, and $v_k(\cdot)$ is a cost function representing the unit-variable part of the infrastructure costs depending on the total output $Q_k = \sum_{i=1}^{n_k} q_{ik}$ in train kilometers of rail services in segment $k \in \{p, f\}$. To ensure tractability, we assume that the unit-variable costs for the infrastructure manager are given by $v(\cdot) = \sum_{i=1}^{n_k} vq_{ik}$. That is, the infrastructure manager incurs linear costs per train kilometer, which are equal for freight and passenger trains. $v(\cdot)$ ¹⁰Our results do not change qualitatively if we utilize a strictly convex cost function for the infrastructure manager. However, as correctly pointed out by an anonymous referee, our assumptions regarding the cost structure of the infrastructure manager are simplistic. Symmetric variable network costs do not reflect reality due to different firm sizes, economies or diseconomies of scale or different financing conditions. Moreover, asymmetric fixed network costs might be present in reality as it is the case, for example, in Germany where one big public infrastructure manager and many smaller infrastructure managers of different sizes are active. ⁶In Section 5.1, we extend our framework and analyze two-part tariffs which are composed of a variable and fixed part. ⁷As acknowledged in the empirical and the policy literature (e.g., Savignat and Nash 1999; Pittman 2003; Wills-Johnson 2006), above-the-rail operations tend to be characterized by economies of scale. ⁸As shown in Section 5.3, where we relax the assumption regarding symmetric variable costs, the analysis would become very cumbersome without adding any new insights. To streamline the exposition and to highlight the competition effects, we have therefore decided to focus our analysis on a setting in which operators differ with respect to their fixed costs only. ⁹The costs of the infrastructure manager can be referring to maintenance and operation costs but they can also encompass renewals or part of the investment needs (CER and EIM 2008). The profit function π_{IM} of the infrastructure manager is then given by: $$\pi_{IM} = T + \sum_{i=1}^{n_f} a_f q_{if} + \sum_{j=1}^{n_p} a_p q_{jp} - C_{IM}, \tag{4}$$ where $T \in \mathbb{R}_0^+$ denotes total transfers from the government to the infrastructure manager to guarantee that she/he breaks even. As mentioned above, the split of activities among infrastructure managers and operators varies across countries, depending on the type of organizational model. The different degrees of separation affect the responsibilities in terms of investment, timetabling, maintenance and renewal, train control and safety (Nash 2008). #### 2.3 Consumers Consumer surplus CS_k in segment $k \in \{p, f\}$ is given by the integral of the demand function from the equilibrium price \widehat{p}_k to the maximum price $p_k = \theta_k$ that consumers are willing to pay for rail services of operator i in segment k: $$CS_k = \int_{\widehat{p}_k}^{\theta_k} (\theta_k - p_k) \, dp_k. \tag{5}$$ ### 2.4 Regulatory agency The final actor in the model is the regulatory agency. Such regulatory bodies come in different forms and are entrusted with different powers throughout Europe. For instance, in the United Kingdom, the Office of Railway Regulation (ORR) has been operating independently for many years. In France, the railway authority (Autorité de régulation des activités ferroviaires or ARAF) was created at the end of 2009. In some cases the agencies are explicitly entrusted with the supervision of access charges (e.g., ORR). In other cases, their remit is defined much more loosely, such as the supervision of opening to competition. The regulatory agency sets access charges such that it maximizes social welfare under the constraint that the infrastructure manager realizes non-negative profits. Governments are concerned with ensuring that the infrastructure manager breaks even. Because the latter is usually not in a position to do so (ITS 2009), the regulatory agency has to find a financial equilibrium by mixing partial cost recovery (charged to the passenger and freight operators) and governmental transfers to the infrastructure manager. These lump sum transfers T to the infrastructure manager are costly to society because raising public funds is associated with deadweight losses, which are represented in our model by the parameter $\lambda \in \mathbb{R}_0^+$ (Kennedy 1997; Friebel and Gonzalez 2005). Social welfare is given by the sum of aggregate operator profits and consumer surpluses in the freight and passenger segments minus governmental transfers to the infrastructure manager: $$W = \Pi_p + \Pi_f + CS_f + CS_p - (1+\lambda)T, \tag{6}$$ where $\Pi_k = \sum_{i=1}^{n_k} \pi_{ik}$ denotes aggregate profits of the operators in segment $k \in \{p, f\}$. ### 3 Equilibrium analysis In this section, we solve the problem of the regulatory agency and the operators. The timing of the model features a two-stage structure. - The regulatory agency sets access charges to maximize social welfare under the constraint that the infrastructure manager breaks even. - Given access charges set by the regulatory agency in Stage 1, the operators in the passenger and freight segment maximize their profits simultaneously. Finally, payoffs are realized. We solve for the subgame-perfect equilibria in this two-stage game by applying backward induction. ### 3.1 Maximization problem of the operators First, we consider the Stage 2 maximization problem of the operators given that the regulatory agency has set access charges (a_f, a_p) in Stage 1. To streamline the exposition and to save on space, we will from now on assume that operator i in segment k faces quadratic variable costs, i.e., $c_k(q_{ik}) = \frac{c_k}{2}q_{ik}^2$ (where c_k is a constant).¹¹ In this case, the maximization problem of operator i becomes: $$\max_{q_{ik} \ge 0} \left\{ \pi_{ik} = \left[\left(\theta_k - \sum_{i=1}^{n_k} q_{ik} \right) - a_k \right] q_{ik} - \frac{c_k}{2} q_{ik}^2 - f_{ik} \right\}.$$ The first-order conditions are then computed as:¹² $$\frac{\partial \pi_{ik}}{\partial q_{ik}} = (\theta_k - a_k) - \sum_{i=1, i \neq i}^{n_k} q_{jk} - q_{ik}(2 + c_k) = 0, \tag{7}$$ yielding the reaction function of operator i as: $$R_{ik}(q_{jk}) = \frac{(\theta_k - a_k) - \sum_{j=1, j \neq i}^{n_k} q_{jk}}{2 + c_k}.$$ (8) The output by operator i decreases with a higher parameter c_k for their own variable costs and higher access charges a_k . Similarly, the output also decreases with a higher aggregate output $\sum_{j=1, j\neq i}^{n_k} q_{jk}$ by the other competitors. Solving the system of reaction functions (8) leads to Lemma 1. **Lemma 1** Given an access charge of $a_k \in \mathbb{R}_0^+$ set by the regulatory agency in the first stage, Stage 2 equilibrium prices and outputs of operator $i \in \{1, ..., n_k\}$ in segment $k \in$ { *f*, *p*} *yield*: $$\widehat{p}_k = \frac{n_k a_k + \theta_k (1 + c_k)}{n_k + 1 + c_k} \quad and \quad \widehat{q}_{ik} = \frac{\theta_k - a_k}{n_k + 1 + c_k}.$$ (9) ¹²It can easily be verified that the second-order conditions for a maximum are satisfied. ¹¹Note that our results hold for a larger set of cost function. For example, the results do not change qualitatively if we assume that marginal variable costs are constant. *Proof* It is straightforward to derive \widehat{q}_{ik} by solving the system of reaction functions (8). Plugging \widehat{q}_{ik} into the demand function (1) yields \widehat{p}_k . To guarantee that each operator has a non-negative equilibrium output, we assume that $\theta_k \ge a_k$. The lemma shows that higher access charges a_k in segment k are carried over to the consumers in the form of higher prices \widehat{p}_k for train services in segment k. The operators increase prices for the consumers less than the access charge increases, i.e., $\partial \widehat{p}_k/\partial a_k < 1$: an increase in the access charge of one-unit translates into an increase of consumer prices of less than one. However, with more competition, the increase in prices through a one-unit increase in access charges augments and, in the limit, would converge to one. Moreover, each operator lowers its output \widehat{q}_{ik} in train kilometers in response to higher access charges. By substituting Eq. 9 in the profit function (2), we compute Stage 2 equilibrium profits of operator i in segment k as: $$\widehat{\pi}_{ik} = \frac{(\theta_k - a_k)^2 (2 + c_k)}{2 (n_k + 1 + c_k)^2} - f_{ik}.$$ (10) Individual profits $\widehat{\pi}_{ik}$ of the operators and thus also aggregate profits in segment k, decrease with higher access charges (albeit with a decreasing rate). The reason is that the decrease in costs through a lower output cannot compensate for lower revenues through a lower markup $\widehat{p}_k - a_k$. Total consumer surplus in segment k is computed from Eq. 5 as: $$\widehat{CS}_k = n_k \left[\theta_k p_k - \frac{1}{2} p_k^2 \right]_{\widehat{p}_k}^{\theta_k} = \frac{n_k^3}{2} \left(\frac{(\theta_k - a_k)}{(n_k + 1 + c_k)} \right)^2.$$ (11) We derive that the consumer surplus decreases with higher access charges (albeit with a decreasing rate) because prices \hat{p}_k per kilometer increase. #### 3.2 Maximization problem of the regulatory agency In Stage 1, the regulatory agency maximizes social welfare W by anticipating the optimal behavior of the operators in Stage 2. The maximization problem of the regulatory agency is then given by (see, e.g., Armstrong et al. 1996; Laffont and Tirole 1994): $$\max_{(a_f,a_p)\geq 0} \left\{ W = \Pi_p + \Pi_f + CS_f + CS_p - (1+\lambda)T \right\} \text{ subject to}$$ (i) $$\pi_{IM} = T + (a_f - v) \sum_{i=1}^{n_f} q_{if} + (a_p - v) \sum_{j=1}^{n_p} q_{jp} - F \ge 0$$ and (ii) $T \ge 0$. Constraint (i) is the break-even condition for the infrastructure manager, while constraint (ii) imposes that governmental transfers have to be non-negative. The solution to the maximization problem is derived in the following lemma. **Lemma 2** In Stage 1, the regulatory agency will set access charges in segment $k \in \{f, p\}$ as: $$a_k^* = \frac{(n_k + 1 + c_k)(v(1 + \lambda) + \lambda \theta_k) - \theta_k(1 + n_k(n_k - 1))}{n_k(2 - n_k) + 2\lambda(n_k + 1 + c_k) + c_k}.$$ (12) *Proof* See Appendix A.1. Lemma 2 shows that the regulatory agency will set access charges according to Eq. 12. Notice that the break-even condition for the infrastructure manager is satisfied with equality because increasing governmental transfers above the break-even level is costly to society. We further derive that access charges a_k^* increase with higher costs λ for raising public funds: to finance the higher costs for the governmental transfers to the infrastructure manager, the regulatory agency sets higher access charges. Similarly, access charges also increase with higher costs c_k for the operators and higher costs v for the infrastructure manager. By substituting Eq. 12 in Eq. 9, we compute Stage 1 equilibrium outputs and prices as: $$q_{ik}^* = \frac{(\theta_k - v)(1 + \lambda)}{n_k(2 - n_k) + 2\lambda(n_k + 1 + c_k) + c_k} \equiv q_k^* \text{ and } p_k^* = \theta_k - n_k q_k^*.$$ (13) Suppose that the passenger and the freight segments have an equal number of competitors and the same market volume, i.e., $n_f = n_p$ and $\theta_f = \theta_p$. In this scenario, equilibrium prices p_k^* and access charges a_k^* are higher in the segment that is characterized by higher variable costs of its operators, while the opposite holds true regarding total equilibrium outputs $Q_k^* = \sum_{i=1}^{n_k} q_{ik}^*$. Formally, $(p_\mu^* > p_\nu^*, a_\mu^* > a_\nu^*)$ and $Q_\mu^* < Q_\nu^*$ $\Leftrightarrow c_\mu > c_\nu$ for $\mu, \nu \in \{f, p\}, \mu \neq \nu$. In the next section, we analyze the effects of an increased number of competitors in the freight and/or passenger segment. #### 4 The effects of increased competition As noted, the European Commission pushed for the introduction of competition in the railway sector. Although it initially faced strong resistance from Member States, the railway markets are evolving towards increasing competition in both the passenger and freight segments. This transformation is nonetheless still in its initial stage in most Member States and most railway stakeholders, including the government, will have to adjust to the new landscape and its implications. The separation of infrastructure management from operations, coupled with the arrival of new entrants, changes the economics of the sector by splitting the financial burden of operating a railway network. Our paper makes a contribution towards this new allocation. We start by analyzing the effect of increased competition on the access charges set by the regulatory agency: **Proposition 1** (Access charges) The regulatory agency reacts to an increased number of competitors n_k in segment $k \in \{f, p\}$ with a reduction of the access charges a_k^* in the corresponding sector. # Proof See Appendix A.2. To observe the intuition behind the result of Proposition 1, recall that the breakeven condition for the infrastructure manager is satisfied with equality, that is, $T^* = F + (v - a_f^*)Q_f^* + (v - a_p^*)Q_p^*$ with $Q_k^* = \sum_{i=1}^{n_k} q_{ik}^*$. It follows that higher access charges help to reduce governmental transfers to the infrastructure manager, but higher access charges in segment k also decrease profits of the operators and the consumer surplus in this segment. A higher number of competitors in segment k increases the positive effect of higher access charges on social welfare through lower governmental transfers T^* , but at the same time, the negative effect through lower operator profits and consumer surplus $(\pi_k^* + CS_k^*)$ increases as well. If access charges are relatively high, then the negative effect of increased competition on social welfare dominates the positive effect. Thus, to balance both effects in equilibrium, the regulatory agency must set lower access charges if the number of competitors increases. If Next, we analyze the effect of a higher number of competitors on prices, outputs and profits of the operators. # Proposition 2 (Prices, outputs and profits) - (i) More competition in segment k reduces the price p_k^* per kilometer and increases total output Q_k^* in train kilometers. The effect on individual output q_{ik}^* of operator i is negative if the number of competitors in segment k is sufficiently small with $n_k < n_k'$. - (ii) Individual profits π_{ik}^* of operator i in segment k decrease with a higher number of competitors until the minimum is reached for $n_k = n'_k$. # *Proof* See Appendix A.3 Part (i) of the proposition shows that if a segment is characterized by a relatively low number of competitors, i.e., $n_k < n_k' \equiv 1 + \lambda$, an additional competitor induces the incumbent operators to decrease their individual outputs in train kilometers. The intuition is as follows: from the first-order conditions (7), we deduce that marginal revenue $(\theta_k - a_k)$ of an additional competitors in segment k increases because access charges decrease. Note that access charges decrease with an increasing rate with a higher number of competitors, i.e., $\partial^2 a_k^*/\partial n_k^2 < 0$. On the other hand, marginal cost $q_k(n_k + 1 + c_k)$ increases linearly with a higher number of competitors. Thus, if competition is low in segment k, then marginal revenue increases less than marginal cost and operator i reacts with a lower output in train kilometers. Total output in segment k will increase because the output of an additional competitors always compensates for a decrease in individual output of the incumbent operators. It ¹⁴To guarantee that access charges a_k^* do not fall below marginal costs v, we assume that $n_k < n_k^v \equiv 1/2 \left(1 + \lambda + (\lambda(\lambda + 6 + 4c_k) - 3)^{1/2}\right)$. ¹³Formally, the cross derivatives are given by $\partial(\partial\pi_k^*/\partial a_k + \partial CS_k^*/\partial a_k)/\partial n_k < 0$ and $\partial(\partial T^*/\partial a_k)/\partial n_k < 0$. Recall that lower transfers have a positive effect on social welfare. follows that due to higher total outputs, the equilibrium price per kilometer in segment k decreases.¹⁵ Part (ii) of the proposition states that individual profits of operator i given by $\pi_{ik}^* = (1 + c_k/2) \left(q_{ik}^*\right)^2 - f_{ik}$ decreases through more competition in segment k until the minimum is reached for $n_k = n_k'$. On the one hand, the difference between prices and access charges $p_k^* - a_k^*$ decreases with a higher number of competitors as long as $n_k < n_k'$. On the other hand, individual output of operator i in sector k decreases if $n_k < n_k'$ yielding lower variable costs. We derive that the lower costs cannot compensate for the lower revenues such that operator profits decrease. In a next step, we analyze how a higher number of competitors affects consumer surplus and governmental transfers. Proposition 3 summarizes the results. # **Proposition 3** (Governmental transfers and consumer surplus) - (i) Governmental transfers to the infrastructure manager follow a u-shaped pattern. That is, transfers initially decrease through a higher number of competitors in segment k until their minimum is reached for $n = n_k^T$ and then they increase for a higher number of competitors. - (ii) The consumer surplus $CS_k^* = n_k^3/2 \left(q_{ik}^*\right)^2$ in segment k always increases through a higher number of competitors. # Proof See Appendix A.4 Part (i) of the proposition shows that increased competition can reduce governmental transfers to the infrastructure manager and that there exists an optimal number of competitors n_k^T , such that transfers can be minimized, i.e., $n_k^{\hat{T}} =$ $arg min_{n_k} T$. If competition in segment k increases above this level, governmental transfers increase. To observe the intuition behind this result, note that the partial derivative of governmental transfers with respect to n_k is given by $\partial T^*/\partial n_k = (v - v)$ a_k^*) $(\partial Q_k^*/\partial n_k) - (\partial a_k^*/\partial n_k) Q_k^*$. We know that increased competition increases total output Q_k^* and decreases access charges a_k^* but access charges do not fall below marginal infrastructure costs v. It follows that the term $(v - a_k^*) \left(\partial Q_k^* / \partial n_k \right)$ is negative and the term $-\left(\partial a_k^*/\partial n_k\right)Q_k^*$ is positive. The sign of $\partial T^*/\partial n_k$ thus depends on the level of competition. If the number of competitors is relatively low, i.e., $n_k < n_k^T$, then higher total output compensates for lower access charges such that governmental transfers T^* decrease until the number of competitors is given by $n_k = n_k^T$. If $n_k > n_k^T$, the opposite holds true. Part (ii) of the proposition shows that consumers in segment k benefit from a higher number of competitors because the price per kilometer decreases and thus consumers are better off. Finally, we determine the welfare effect of a higher number of competitors in the next proposition. ¹⁵It should be noted that the results in part (i) rest on the assumption that no congestion exists on the railroad network. **Proposition 4** (Social welfare) The effect of more competition in the passenger segment and/or freight segment on social welfare is ambiguous and depends on the level of competition. The proposition posits that the welfare effect of a higher number of competitors in segment k is ambiguous. Remember that social welfare is given by the sum of aggregate consumer surpluses and operator profits minus governmental transfers to the infrastructure manager. From Propositions 2 and 3, we know that consumers always benefit from more competition through lower prices, while the effect on operator profits and governmental transfers is ambiguous. If fixed costs f_{ik} of the train operators are sufficiently high, then social welfare will always decrease through more competition in the passenger segment and/or freight segment. In this case, lower aggregate operator profits always outweigh higher consumer surplus and (eventually) lower governmental transfers. Hence, a necessary condition for social welfare to increase are sufficiently low fixed costs of the train operators. Suppose these fixed costs are sufficiently low, then social welfare initially decreases with more competition in segment k until it reaches a minimum for $n = n_k^W$. Increasing the number of competitors above this level increases social welfare. The intuition for this result is as follows. If the number of competitors in segment k is relatively low with $n_k < n_k^W$, then the positive effect (following an increase in n_k) from higher consumer surplus and (eventually) lower governmental transfers cannot compensate for lower aggregate operator profits yielding a decrease in welfare. Because aggregate operator profits decrease in n_k with a decreasing rate, their negative effect on social welfare diminishes through more competition. It follows that the higher consumer surplus can outweigh lower profits and (eventually) higher governmental transfers such that social welfare increases for $n_k > n_k^W$. #### 5 Model extensions #### 5.1 Two-part tariffs In this section, we extend our initial model by analyzing a situation in which the regulatory agency sets two-part tariffs. That is, in addition to the linear access charge a_k , the regulatory agency imposes a lump sum fee T_{ik} for operator i in segment k. Two-part tariffs are found in Great Britain, Italy, France, Bulgaria, Hungary, Lithuania and Romania. As can be expected, one can find variations in the charging mechanisms, driven by the level of sophistication desired. For instance, in France, a fixed access charge applies to all traffic in the same way. It is supplemented by a train path reservation fee (per path-kilometer reserved) and a variable charge per train-km). Further charges are levied on the passenger operations (e.g., stops at stations) or freight operations (e.g., by speed of train). The profit function of operator i in segment k is then given by: $$\pi_{ik} = (p_k - a_k)q_{ik} - \left(\frac{c_k}{2}q_{ik}^2 + f_{ik}\right) - T_{ik}.$$ (14) The lump sum fee T_{ik} goes directly to the infrastructure manager to help him/her to break even, such that the profit function of the infrastructure manager yields: $$\pi_{IM} = T + \sum_{i=1}^{n_f} (T_{if} + a_f q_{if}) + \sum_{i=1}^{n_p} (T_{jp} + a_p q_{jp}) - C_{IM},$$ where the costs C_{IM} of the infrastructure manager are given by Eq. 3. The maximization problem of the operators in Stage 2 in segment k, given that the regulatory agency has set linear access charges a_k in Stage 1, is similar to above. Thus, we obtain the same Stage 2 equilibrium prices and outputs (Eq. 9), whereas the profits of operator i in segment k are now given by $$\pi_{ik}^* = \frac{(\theta_k - a_k)^2 (c_k + 1)}{(n_k + c_k + 1)^2} - f_{ik} - T_{ik}.$$ Similar to above, the regulatory agency maximizes social welfare in Stage 1 by anticipating the behavior of the operators in Stage 2. The maximization problem of the regulatory agency becomes: $$\max_{(a_f,a_p)\geq 0} \left\{ \Pi_f + \Pi_p + CS_f + CS_p - (1+\lambda)T \right\} \text{ subject to}$$ (i) $\pi_{IM} = T + \sum_{i=1}^{n_f} \{T_{if} + (a_f - v)q_{if}\} + \sum_{i=1}^{n_p} \{T_{jp} + (a_p - v)q_{jp}\} - F \geq 0 \text{ and (iii) } T, T_{ik} \geq 0.$ Again, the break-even condition (i) for the infrastructure manager will be satisfied with equality. As opposed to the case with single tariffs, the infrastructure manager receives a lump sum fee T_{ik} from operator i in segment k in addition to governmental transfers T. The constraints (ii) impose that governmental transfers and lump sum fees have to be non-negative. Because the regulatory agency has no incentives to leave rents to the operators, it will set the lump sum fees (T_{if}, T_{ip}) , such that operator i in segment k realizes zero profits, i.e., $T_{ik} = (p_k - a_k)q_{ik} - (1/2c_kq_{ik}^2 + f_{ik})$. Substituting this last equality in constraint (i) and recalling that this constraint will be binding with equality, the maximization problem can be rewritten as: $$\max_{(a_f, a_p)} \left\{ CS_f + CS_p - (1 + \lambda) \left[F + Q_f \left(v - p_{i, f} + \frac{c_f}{2} q_{i f} \right) + F_f + Q_p \left(v - p_{i p} + \frac{c_p}{2} q_{i p} \right) + F_p \right] \right\}, \quad (15)$$ where $F_f = \sum_{i=1}^{n_f} f_{if}$ and $F_p = \sum_{i=1}^{n_p} f_{ip}$. By solving the system of first-order conditions derived from the profit-maximization problem, we can show that the regulatory agency will set access charges and the lump sum fee in segment k according to:¹⁶ $$a_k^{**} = \frac{v(1+\lambda)(n_k+1+c_k) - \theta_k \left(1+\lambda + n_k^2 - n_k(1+\lambda)\right)}{n_k(2-n_k) + \lambda(2n_k+c_k) + c_k} \text{ and}$$ $$T_{ik}^{**} = \frac{(2+c_k)(\theta_k-v)^2(1+\lambda)^2}{2\left[n_k(2-n_k) + \lambda(2n_k+c_k) + c_k\right]^2} - f_{ik}.$$ ¹⁶The derivation of the optimal access charges is analogous to Lemma 2. A formal proof is available from the corresponding author upon request. П with $k \in \{f, p\}$. In addition to the linear access charges a_k^{**} , the regulatory agency demands a lump sum fee T_{ik}^{**} from the operators. From the maximization problem (15), we know that this lump sum fee T_{ik}^{**} is set such that operators realize zero profits. We omit the comparative statics because they are similar to the scenario with linear access charges analyzed above. Comparison of the scenario under linear access charges with the one under two-part tariffs leads to Proposition 5. **Proposition 5** (Two-part tariffs) If raising public funds is costly ($\lambda > 0$), access charges in the scenario with two-part tariffs are always lower than in the scenario with single tariffs, yielding a higher level of social welfare under two-part tariffs. If raising public funds is not costly ($\lambda = 0$) access charges and social welfare coincide in both scenarios # Proof See Appendix A.6 If raising public funds is costly, the regulatory agency can set lower access charges under two-part tariffs than under single tariffs because the operators contribute to subsidize the infrastructure manager with their lump sum fees. Due to the lower access charges, the infrastructure manager realizes lower revenues, but the lump sum fees paid by the operators always compensate for the lower access charges. As a result, costly governmental transfers to the infrastructure manager can be reduced. The consumers benefit through lower prices, but the operators are worse off because all of their rent is extracted to subsidize the infrastructure manager. It follows that social welfare increases because higher consumer surplus and lower governmental transfers outweigh the lower operator profits. Thus, two-part tariffs enable the regulatory agency to shift the variable component of the access charge to the fixed component, contributing to reduce costly governmental transfers. From a social point of view, it is preferable that the operators subsidize the infrastructure manager through their lump sum fees instead of the government, if raising public funds is costly. If, however, raising public funds is not costly to society, it does not matter from a welfare perspective who subsidizes the infrastructure manager: the operators or the government. In this case, access charges and social welfare do not differ between both scenarios. ## 5.2 Different objective functions of the regulatory agency In this section, we analyze the effect of integrating profits of only certain operators in the objective function of the regulatory agency. For this purpose, we consider a scenario in which there is only one monopolistic operator in the passenger segment and duopoly competition in the freight segment. We choose this setup because this resembles the situation in many EU countries. In the freight segment, a substantial level of entry has occurred since 2000. While new entrants initially failed to capture large marker shares (SteerDaviesGleave 2005), this is now changing as freight is undergoing a certain level of concentration through mergers and acquisitions (Bozicnik 2009). For instance, there is now fierce competition on the North-South corridor through Switzerland between SBB Cargo and DB Schenker. As noted above, the situation is rather different in the long-distance passenger segment, where incumbent operators tend to dominate the market (Beckers et al. 2009). The timing is similar to the general case. Setting $n_p = 1$ and $n_f = 2$, we compute Stage 2 equilibrium prices and outputs with the help of Lemma 1 as: $$\widehat{p}_p = \frac{a_p + \theta_p(c_p + 1)}{2 + c_p} \text{ and } \widehat{q}_p = \frac{\theta_p - a_p}{2 + c_p} \text{ (passenger segment)}$$ $$\widehat{p}_{if} = \frac{2a_f + \theta_f(c_f + 1)}{3 + c_f} \equiv \widehat{p}_f \text{ and } \widehat{q}_{if} = \frac{\theta_f - a_f}{3 + c_f} \equiv \widehat{q}_f \text{ (freight segment)}$$ It is clear that prices are higher and total output is lower in the passenger segment with only one monopolistic operator than in the case of more than one competitor (see Lemma 1). We differentiate between two scenarios. In Regime A, the regulatory agency includes only profits $\pi_p = (p_p - a_p)q_p - 1/2c_pq_p^2 - f_p$ of the monopolistic passenger operator in its objective function RA and in Regime B it does not include operator profits neither of the passenger operator nor of the freight operators in its objective function RA. Regime A reflects a scenario in which the regulatory agency is not fully independent and privileges certain operators (e.g., the still state-owned passenger operator) by including their profits in its objective function. This scenario is contrasted with Regime B in which the regulatory agency treats all operators equally. The maximization problem of the regulatory agency in Stage 1 can thus be written as: $$\max_{(a_f, a_p) \ge 0} \left\{ RA = \beta \pi_p + CS_f + CS_p - (1 + \lambda)T \right\}$$ subject to (16) (i) $$\pi_{IM} = T + (a_p - v)q_p + 2(a_f - v)q_f - F \ge 0$$, (ii) $\pi_{if}, \pi_p \ge 0$ and (iii) $T \ge 0$. where $\beta=1$ characterizes the case where the regulatory agency includes profits (Regime A), and $\beta=0$ is the case where it does not include profits (Regime B) in its objective function. Nevertheless, social welfare W includes profits of all operators and is given by $W=\pi_p+\pi_{1f}+\pi_{2f}+CS_f+CS_p-(1+\lambda)T$. Comparison of Regimes A and B yields the following results. # **Proposition 6** - (i) Access charges in the passenger segment are higher in Regime B than in Regime A. - (ii) Governmental transfers are higher in Regime A than in Regime B. - (iii) Social welfare is higher in Regime A than in Regime B. *Proof* See Appendix A.7 Part (i) of the proposition shows that the regulatory agency sets lower access charges for the monopolistic operator in the passenger segment if its profits are included in the objective function of the regulatory agency. It is not surprising that the regulatory privileges the monopolistic operator by lowering the access charges for this operator. Moreover, note that the price-setting behavior of the regulatory agency in the freight segment is not affected by the introduction of profits in the passenger segment. Furthermore, lower access charges in the passenger segment induce lower prices per kilometer in this segment, yielding a higher surplus for consumers of passenger services. At the same time, the infrastructure manager profits will decrease as a consequence of lower access charges. To finance the infrastructure manager's higher deficit, the regulatory agency must raise public funds in Regime A according to part (ii). Nevertheless, according to part (iii), social welfare is higher compared to Regime B because higher governmental transfers are compensated for by a higher consumer surplus in the passenger segment and higher profits of the monopolistic operator. # 5.3 Operators with asymmetric variable costs In this section, we extend our model and consider operators that differ in addition to their fixed costs also with respect to their variable costs, i.e., $c_{ik} \neq c_{jk}$ with i, $j \in \{1, ..., n_k\}$ and $i \neq j$. In particular, we assume that in segment k, n_k^h operators have high variable costs given by $c_{ik}(q_{ik}) = c_k^h/2q_{ik}^2$ and n_k^l operators have low variable costs given by $c_{ik}(q_{ik}) = c_k^l/2q_{ik}^2$ with $c_k^h > c_k^l$ and $n_k^h + n_k^l = n_k$. The Stage 2 equilibrium outputs of the high-cost and low-cost operators in segment k can be computed from Eq. 8 as: $$\widehat{q}_{ik}^{h} = \frac{1}{\tau} \left(1 + c_k^l \right) (\theta_k - a_k) \equiv \widehat{q}_k^h \, \forall i \in I_k^h = \left\{ 1, ..., n_k^h \right\},$$ $$\widehat{q}_{ik}^{l} = \frac{1}{\tau} \left(1 + c_k^h \right) \left(\theta_k - a_k \right) \equiv \widehat{q}_k^l \; \forall i \in I_k^l = \left\{ 1, ..., n_k^l \right\},$$ where $\tau \equiv (n_k + 1) + c_k^l c_k^h + (n_k^l + 1) c_k^l + (n_k^h + 1) c_k^h$. The equilibrium price in segment k is then given by $\widehat{p}_k = \theta_k - (n_k^h \widehat{q}_k^h + n_k^l \widehat{q}_k^l)$. Equilibrium profits of operator *i* in segment *k* amount to: $$\widehat{\pi}_{k}^{h} = \frac{1}{2\tau^{2}}\left(1+c_{k}^{l}\right)\left(\theta_{k}-a_{k}\right)^{2}\left[c_{k}^{h}\left(1+c_{k}^{l}+2\left(n_{k}^{h}-n_{k}^{l}\right)\right)+2c_{k}^{l}\left(1+n_{k}^{l}-n_{k}^{h}\right)+2\right],$$ $$\widehat{\pi}_{k}^{l} = \frac{1}{2\tau^{2}} \left(1 + c_{k}^{h} \right) (\theta_{k} - a_{k})^{2} \left[c_{k}^{l} \left(1 + c_{k}^{h} + 2 \left(n_{k}^{l} - n_{k}^{h} \right) \right) + 2 c_{k}^{h} \left(1 + n_{k}^{h} - n_{k}^{l} \right) + 2 \right].$$ It is intuitive that due to their higher marginal costs, the high-cost operators will choose a lower output in train kilometers in equilibrium, i.e., $\widehat{q}_k^h < \widehat{q}_k^l \Leftrightarrow c_k^l < c_k^h$. It follows that the high-cost operators have a lower market share in equilibrium and also realize lower profits than the low-cost operators. From the equilibrium in Stage 2, the access charges for Stage 1 could be calculated as in Lemma 2. However, the subsequent analysis would be very cumbersome without adding any new insights. To keep the model tractable and to highlight the competition effects, we have therefore decided to focus our analysis on a setting in which operators differ with respect to their fixed costs only. #### **6 Conclusions** ### 6.1 Summary In this paper, we develop a game-theoretic model of a liberalized railway market, in which train operation and ownership of infrastructure are fully vertically separated. With our framework, we are able to derive the equilibria for the operators, consumers, the regulatory agency and the infrastructure manager. In particular, our analysis shows that an increased number of competitors in the freight and/or passenger segment reduces the price per kilometer and increases total output in train kilometers. The effect on individual output per operator is negative if a segment is characterized by a relatively low number of competitors. Moreover, the prices per kilometer are higher in the segment that is characterized by higher variable costs of its operators, while the opposite holds true regarding total output in train kilometers (under the assumption that both segments have equal market size and the same number of competitors). The regulatory agency reacts to more competition with a reduction in access charges in the corresponding segment. Consumers benefit through lower prices, while individual profits of each operator decrease through a higher number of competitors. Governmental transfers to the infrastructure manager initially decrease through a higher number of competitors until a minimum is reached for an intermediate level of competition. Increasing the number of competitors above this level, increases governmental transfers. We further show that the welfare effect of increased competition in the freight and/or passenger segment is ambiguous and depends on the level of competition. Moreover, we analyze a scenario in which the regulatory agency sets two-part tariffs: the operators have to pay a lump sum fee in addition to linear access charges per kilometer. We find that access charges under two-part tariffs are lower than under single tariffs, if raising public funds is costly to society because operators subsidize the infrastructure manager with their lump sum fees. Consumers benefit from lower prices, and governmental transfers can be reduced. Two-part tariffs thus are an effective instrument to extract rents from the operators without harming the consumers. As a result, the level of social welfare is higher under two-part tariffs than under single tariffs. If, however, raising public funds is not costly, access charges and social welfare coincide in both scenarios. Finally, we discuss the effects of integrating profits of only certain operators in the objective function of the regulatory agency. For this purpose, we consider a scenario with one monopolistic operator in the passenger segment and duopoly competition in the freight segment. We choose this setup because this resembles the situation in many EU countries. By comparing the scenario in which the regulatory agency does not integrate the profits of the passenger operator into the objective function (Regime A) with the scenario in which the regulatory agency includes profits of the passenger operator (Regime B), we derive that access charges for the passenger segment are higher in Regime A than in Regime B, while governmental transfers are higher in Regime B than in Regime A. Our analysis further shows that social welfare is always higher in Regime B than in Regime A. #### 6.2 Extensions and limitations Our model remains simple and limited.¹⁷ In reality, the pricing mechanisms devised by the various Member States are much more complex. For instance, in the United Kingdom, the Office of Railway Regulation (ORR) has put in place a very sophisticated pricing system. Moreover, it might be unrealistic to abstract from congestions on the railroad network. In reality, congestion plays an important role, especially for the freight segment in certain European corridors. Despite its limitations, our study can be seen as a first step to analyze the effects of more competition in a vertically separated railway market. We encourage further research in this area. For example, a promising avenue for further research is to endogenize the number of train operators in order to make market participation depend on the level and structure of the access charge. In such a setting, a two-part tariff with a low variable and a high fixed component of the access charge could considerably deter entry of smaller train operators. Moreover, it would be interesting to extend our model and analyze a setting in which the regulatory agency does not have perfect information. Another suggestion for future research is the integration of congestion charges into our model framework and the analysis of their effects on operator profits, consumer surplus and social welfare. # A Appendix #### A.1 Proof of Lemma 2 The break-even condition for the infrastructure manager will be satisfied with equality in equilibrium because increasing governmental transfers above the break-even level is costly to society. The maximization problem of the regulatory agency can thus be rewritten as: $$\max_{(a_f, a_p) \ge 0} \left\{ W' = \Pi_p + \Pi_f + CS_f + CS_p - (1 + \lambda) \left(F + (v - a_f) Q_f + (v - a_p) Q_p \right) \right\},$$ (17) with $Q_k = \sum_{i=1}^{n_k} q_{ik}$. The first-order conditions of the maximization problem (17) are derived as: $$\begin{split} \frac{\partial W'}{\partial a_k} &= n_k \left(-\frac{(\theta_k - a_k)^2 (2 + c_k)}{(n_k + 1 + c_k)^3} \right) + n_k \left(\frac{n_k \left(\theta_k - \frac{n_k (\theta_k - a_k)}{n_k + 1 + c_k} \right) - n_k \theta_k}{n_k + 1 + c_k} \right) \\ &- (1 + \lambda) \left(\frac{n_k (2a_k - (\theta_k + v)}{n_k + 1 + c_k} \right) = 0, \end{split}$$ with $k \in \{p, f\}$. Note that the second-order conditions for a maximum are satisfied if the number of competitors is sufficiently small with $$n_k < n_k^{SOC} \equiv 1 + \lambda + [1 + c_k + \lambda(4 + 2c_k + \lambda)]^{1/2}$$. ¹⁸See Pedersen (1994) for an analysis with private information about costs. ¹⁷We are grateful to an anonymous referee, who suggested promising avenues for future research. Solving the system of first-order conditions yields: $$a_k^* = \frac{1}{\varphi} \left[(n_k + 1 + c_k)(v(1+\lambda) + \lambda \theta_k) - \theta_k (1 + n_k(n_k - 1)) \right], \tag{18}$$ with $\varphi \equiv n_k(2 - n_k) + 2\lambda(n_k + 1 + c_k) + c_k$. To guarantee that access charges are not below marginal infrastructure costs v, we assume that the number of competitors is sufficiently small with $$n_k < n_k^v = \frac{1}{2} \left(1 + \lambda + [\lambda(\lambda + 6 + 4c_k) - 3]^{1/2} \right).$$ Thus, in the subsequent analysis, we assume that $n_k < n_{k,\text{max}} \equiv \min\{n_k^{SOC}, n_k^v\}$. Finally, to show that access charges increase with higher costs c_k , we compute $$\frac{\partial a_k^*}{\partial c_k} = \frac{1}{\varphi^2} \left[(1 + n_k(n_k - 1))(\theta_k - v)(1 + \lambda) \right].$$ By noting that $n_k \ge 1$ and $\theta_k > v$, we derive that $\frac{\partial a_k^*}{\partial c_k} > 0$. # A.2 Proof of Proposition 1 The partial derivatives of a_k^* with respect to n_k is given by: $$\frac{\partial a_k^*}{\partial n_k} = -\frac{[2(n_k - 1) + n_k + c_k(2n_k - 1)](1 + \lambda)(\theta_k - v)}{[n_k(2 - n_k) + 2\lambda(n_k + 1 + c_k) + c_k]^2}.$$ By noting that $n_k \ge 1$ and $\theta_k > v$, we derive that $\frac{\partial a_k^*}{\partial n_k} < 0$. ### A.3 Proof of Proposition 2 Part (i) Let $\varphi \equiv n_k(2-n_k) + 2\lambda(n_k+1+c_k) + c_k$. To prove that more competition in segment k reduces the price p_k^* per kilometer and increases total output Q_k^* in train kilometers, we derive the partial derivatives with respect to n_k as: $$\frac{\partial p_k^*}{\partial n_k} = -\frac{1}{\varphi^2} (\theta_k - v)(1+\lambda) \left(c_k + n_k^2 + 2\lambda(1+c_k) \right) < 0,$$ $$\frac{\partial Q_k^*}{\partial n_k} = \frac{1}{\varphi^2} (\theta_k - v)(1+\lambda) \left(c_k + n_k^2 + 2\lambda(1+c_k) \right) > 0.$$ Furthermore, we compute: $$\frac{\partial q_{ik}^*}{\partial n_k} = \frac{2}{\varphi^2} (\theta_k - v)(1 + \lambda)(n_k - (1 + \lambda)) < 0 \Leftrightarrow n_k < n_k'$$ Thus, the effect of increased competition on individual output q_{ik}^* of operator i is negative if $n_k < n'_k$. ¹⁹The market volume θ_k in segment k must be larger than marginal infrastructure costs v because otherwise the demand function would not be defined. Part (ii) To prove the claim, we substitute equilibrium access charges a_k^* in the operator's profit function (10) and derive that $\pi_{ik}^* = (1 + c_k/2) \left(q_{ik}^*\right)^2 - f_{ik}$, where q_{ik}^* are the Stage 1 equilibrium outputs (Eq. 13) of operator i in segment k. From Proposition 2, we know that $\frac{\partial q_{ik}^*}{\partial n_k} < 0$ if $n_k < n_k' \equiv 1 + \lambda$. Thus, $\frac{\partial \pi_{ik}^*}{\partial n_k} < 0$ if $n_k < n_k'$. We deduce that individual profits π_{ik}^* of operator i in segment k decrease with a higher number of competitors, until the minimum is reached for $n_k = n_k'$. # A.4 Proof of Proposition 3 Part (i) To prove the claim, we have to show that $\frac{\partial T^*}{\partial n_k} < 0 \Leftrightarrow n_k < n_k^T$ and $\frac{\partial T^*}{\partial n_k} > 0 \Leftrightarrow n_k > n_k^T$. Remember that $T^* = F + (v - a_f^*)Q_f^* + (v - a_p^*)Q_p^*$. We derive: $$\frac{\partial T^*}{\partial n_k} = \underbrace{(v - a_k^*)}_{<0} \underbrace{\frac{\partial Q_k^*}{\partial n_k}}_{>0} - \underbrace{\frac{\partial a_k^*}{\partial n_k}}_{<0} \underbrace{Q_k^*}_{>0}$$ We define $z(n_k) := \frac{\partial T}{\partial n_k}$ and note that $z(n_k)$ is a continuous function in the range of feasible n_k . From the discussion of Proposition 2, we know that $a_k^* \ge v \Leftrightarrow n_k \le n_k^v$. Thus, $z(n_k^v) > 0$. It follows that $n_k < n_k^v$ is a necessary condition for $z(n_k) = 0$. We compute: $$z(0) = \frac{(\theta_k - v)^2 (1 + \lambda)(1 - \lambda(1 + c_k))}{[c_k + 2\lambda(1 + c_k)]^2} < 0 \Leftrightarrow \lambda > \lambda' \equiv \frac{1}{1 + c_k}.$$ - (a) Suppose that $\lambda > \lambda'$. According to the intermediate value theorem, there exists a number of competitors $n_k^T < n_k^v$, such that $z(n_k^T) = 0$. This proves the claim because T is a convex function in n_k . - (b) Suppose that $\lambda < \lambda'$. In this case, it holds that z(0) > 0. It follows that there does not exist a number of competitors $n_k^T \in (0, n_k^v)$, such that $z(n_k^T) = 0$. Thus, $z(n_k) > 0$ for all feasible n_k . This completes the proof of part (i). - Part (ii) To prove the claim, we substitute equilibrium access charges a_k^* in consumer surplus (Eq. 11) and derive that $CS_k^* = n_k^3/2 \left(q_{ik}^*\right)^2$. We compute the partial derivative of CS_k^* with respect to n_k as: $$\frac{\partial CS_k^*}{\partial n_k} = \frac{2n_k^2}{\varphi^3} (\theta_k - v)^2 (1 + \lambda)^2 \left[n_k (2 + n_k) + 2\lambda (3 + n_k) + 3c_k (1 + 2\lambda) \right]$$ with $\varphi \equiv n_k(2-n_k) + 2\lambda(n_k+1+c_k) + c_k$. Thus, $\frac{\partial CS_k^*}{\partial n_k} > 0$ because φ is always positive for all $n_k < \min\{n'_{k,\max}, n''_{k,\max}\}$. This proves the claim that consumer surplus always increases with a higher number of competitors. ### A.5 Proof of Proposition 4 Let $\varphi \equiv n_k(2 - n_k) + 2\lambda(n_k + 1 + c_k) + c_k$. To prove the claim, we substitute equilibrium access charges a_k^* in the welfare function (6) and derive the partial derivative of social welfare with respect to n_k as: $$\frac{\partial W}{\partial n_k} = \frac{\partial \Pi_k^*}{\partial n_k} + \frac{\partial CS_k^*}{\partial n_k} - (1+\lambda)\frac{\partial T^*}{\partial n_k} = \frac{1}{2\varphi^2}(\theta_k - v)^2(1+\lambda)^2(c_k(1+2\lambda) + n_k + 2\lambda) - f_{ik}.$$ (19) From Eq. 19, we derive that in a scenario without fixed costs, i.e., $f_{ik} = 0$, social welfare would always increase with a higher number of competitors. However, in a scenario with fixed costs, i.e., $f_{ik} > 0$, the effect on social welfare is ambiguous. To prove this claim, we define $\mu(n_k) := \frac{\partial W}{\partial n_k}$ and note that $\mu(n_k)$ is a continuous function in the range of feasible n_k . We compute $\mu(0) = \frac{(\theta_k - v)^2(1 + \lambda)^2}{2c_k + 4(1 + c_k)\lambda} - f_{ik} < 0 \Leftrightarrow f_{ik} > f_{ik}^* \equiv \frac{(\theta_k - v)^2(1 + \lambda)^2}{2c_k + 4(1 + c_k)\lambda}$. Moreover, we derive that $\lim_{n \to n_k^{SOC}} \mu(n_k) = \infty$. According to the intermediate value theorem, there exists a number of competitors $n_k^W < n_k^{SOC}$, such that $w(n_k^W) = 0$. However, it is not guaranteed that $n_k^W < n_{k,\max}$. We conclude that social welfare always decreases through more competition in segment k if $n_k^W > n_{k,\max}$. This is the case if the fixed costs f_{ik} of the train operators are sufficiently high because n_k^W is an increasing function in f_{ik} . On the other hand, if the fixed costs of the train operators are sufficiently low then $n_k^W < n_{k,\max}$. In this case, social welfare initially decreases through more competition in segment k and reaches its minimum for $n_k = n_k^W$. For $n_k > n_k^W$, welfare increases through more competition in segment k. ### A.6 Proof of Proposition 5 To prove that access charges under two-part tariffs a_k^{**} are lower than access charges a_k^* under single tariffs if $\lambda > 0$, we compute: $$a_k^* - a_k^{**} = \frac{\lambda(1+\lambda)(\theta_k - v)(2 + c_k)(n_k + 1 + c_k)}{\varphi \cdot \tau}$$ with $\varphi = n_k(2 - n_k) + 2\lambda(n_k + 1 + c_k) + c_k$ and $\tau = n_k(2 - n_k) + \lambda(2n_k + c_k) + c_k$. It follows that $a_k^* > a_k^{**}$ if $\lambda > 0$, while $a_k^* = a_k^{**}$ if $\lambda = 0$. In the next step, we compare social welfare under single tariffs with social welfare under two-part tariffs. From the maximization problems (17) and (15), we know that social welfare under single tariffs is given by: $$W^* = \Pi_f^* + \Pi_p^* + CS_f^* + CS_p^* - (1 + \lambda) \left[F + \left(v - a_f^* \right) Q_f^* + \left(v - a_p^* \right) Q_p^* \right],$$ while social welfare under two-part tariffs yields:²⁰ $$\begin{split} W^{**} &= CS_f^{**} + CS_p^{**} - (1+\lambda) \left[F - \left(T_f^{**} + T_p^{**} \right) + \left(v - a_f^{**} \right) Q_f^{**} + \left(v - a_p^{**} \right) Q_p^{**} \right] \\ &= (1+\lambda) \left(T_f^{**} + T_p^{**} \right) + CS_f^{**} + CS_p^{**} - (1+\lambda) \left[F + \left(v - a_f^{**} \right) Q_f^{**} + \left(v - a_p^{**} \right) Q_p^{**} \right], \end{split}$$ with $T_k^{**} = \sum_{i=1}^{n_k} T_{ik}^{**}$. Suppose that $\lambda > 0$: because $a_k^* > a_k^{**}$, we derive that $CS_k^{**} > CS_k^*$, $Q_k^{**} > Q_k^*$ and $T_k^{**} > \Pi_k^*$. One can show that the higher consumer surplus and operators' lump sum fees under two-part tariffs compensate for the (eventually) higher value of F + (v - v) $a_f^{**}Q_f^{**} + (v - a_p^{**})Q_p^{**}$, such that $W^{**} > W^*$ always holds. Suppose that $\lambda = 0$: because $a_k^* = a_k^{**}$, we derive that $CS_k^{**} = CS_k^*$, $Q_k^{**} = Q_k^*$ and $T_{\iota}^{**} = \Pi_{\iota}^{*}$. It follows that $W^{*} = \tilde{W}^{**}$. ### A.7 Proof of Proposition 6 By computing the first-order conditions of the maximization problem (16) and solving the resulting equations systems, we derive the access charges in the passenger segment as: $$a_p^A = \frac{2v(1+\lambda)(1+c_p/2) + \theta_p(2\lambda(1+c_p/2)-1)}{c_p(1+2\lambda) + 4\lambda + 1}$$ (Regime A), $$a_p^B = \frac{v+\theta_p}{2} + \frac{v-\theta_p}{2(c_p(1+\lambda) + 4\lambda + 3)}$$ (Regime B). The access charges in the freight segment are given in both regimes by: $$a_f^{A,B} = \frac{v + \theta_f}{2} + \frac{v - \theta_f}{c_f(1 + \lambda) + 3\lambda + 1}$$ (Regimes A and B). Let $$\varphi = (c_p(1+2\lambda) + 4\lambda + 1)(c_p(1+\lambda) + 4\lambda + 3)$$. - ad (i) We compute $a_p^A a_p^B = -\frac{1}{\varphi}(2+c_p)^2(1+\lambda)(\theta_p-v) < 0$. Thus, access charges are higher in Regime B than in A. - Note that governmental transfers are given by $T^s = F + (v a_p)\widehat{q}_p + 2(v a_p)\widehat{q}_p$ ad (ii) $a_f)\widehat{q}_f$ in Regime $s\in\{A,B\}$. Substituting equilibrium access charges from Regimes A and B in T^s , we compute $T^A-T^B=\frac{1}{\varphi^2}(2+c_p)(1+\lambda)(\theta_p-1)$ $(v)^2 [5 + 8\lambda + c_p (5 + c_p + \lambda (6 + c_p))] > 0$. Thus, governmental transfers are higher in Regime A than in Regime B. - Substituting equilibrium access charges from Regimes A and B in the ad (iii) welfare function, we compute $W^A - W^B = \frac{1}{2\varphi^2}(2+c_p)^2(1+\lambda)^2(\theta_p-v)^2 > 0$. Thus, social welfare is higher in Regime A than in B. ²⁰Remember that operator i in segment k realizes zero profits because $T_{ik} = (p_k - a_k)q_{ik} - 1/q_{ik}$ $2c_kq_{ik}^2-f_{ik}.$ #### References - Armstrong M (2008) Access pricing, bypass and universal service in post. Rev Network Econ 7(2):1 Armstrong M, Doyle C, Vickers J (1996) The access pricing problem: a synthesis. J Ind Econ 44(2):131–150 - Armstrong M, Vickers J (1998) The access pricing problem with deregulation: a note. J Ind Econ 46(1):115–121 - Bassanini A, Poulet J (2000) Access pricing for interconnected vertically separated industries. In: Nash C, Niskanen E (eds) Helsinki workshop on infrastructure charging on railways. VATT, Helsinki - Baumol W (1983) Some subtle pricing issues in railroad deregulation. Int J Transport Econ 10:341–355 - Beckers T, von Hirschhausen C, Haunerland F, Walter M (2010) Long-distance passenger rail services in Europe: market access models and implications for Germany. In: The future for interurban passenger transport: bringing citizens closer together. OECD Publishing, pp. 287–310 - Bozicnik S (2009) Opening of the market in the rail freight sector. Built Environ 35(1):87–106 - Cave M, Vogelsang I (2003) How access pricing and entry interact. Telecommun Policy 27(10–11):17–727 - CER, EIM (2008) Rail charging and accounting schemes in Europe—case studies from six countries. Technical report, Community of European Railways and European Rail Infrastructure Managers - Crozet Y (2004) European railway infrastructure: towards a convergence of infrastructure charging? Int J Transp Manag (1):5–15 - Dodgson J (1994) Access pricing in the railway system. Util Policy 4(3):205–213 - ECMT (2005) Railway reform and charges for the use of infrastructure. OECD Transport 200:1–134 Erhan K, Robert B (2005) A railway capacity determination model and rail access charging methodologies. Transp Plan Technol 28:27–45 - Freebairn J (1998) Access prices for rail infrastructure. Econ Rec 74(226):286–296 - Friebel G, Gonzalez A (2005) Vertical integration, competition and efficiency. Technical report, IDEI Report Nr. 10 Rail Transport - Gibson S, Cooper G, Ball B (2002) The evolution of capacity charges on the UK rail network. J Transp Econ Policy 2:341–354 - ITS (2009) European transport policy—progress and prospects. Technical report, Institute of Transport Studies - Kennedy D (1997) Regulating access to the railway network. Util Policy 6(1):57–65 - Laffont J, Tirole J (1994) Access pricing and competition. Eur Econ Rev 38:1673–1710 - Link H (2004) Rail infrastructure charging and on-track competition in germany. Int J Transp Manag 2(1):17-27 - Nash C (2005) Rail infrastructure charges in Europe. J Transp Econ Policy 39(3):259–278 - Nash C (2008) Passenger railway reform in the last 20 years-European experience reconsidered. Res Transp Econ 22(1):61–70 - Nash C, and Sansom T (2001) Pricing European transport systems: recent developments and evidence from case studies. J Transp Econ Policy 35(3):363–380 - OECD (2005) Railway reform and charges for the use of infrastructure. Technical report, OECD - Pedersen P (1994) Regulating a transport company with private information about costs. J Transp Econ Policy 28(3):307–318 - Pittman R (2003) Vertical restructuring (or not) of the infrastructure sectors of transition economies. J Ind Compet Trade 3(1):5–26 - Pittman R, Diaconu O, Sip E, Tomova A, Wronka J (2007) Competition in freight railways: 'above-the-rail' operators in Central Europe and Russia. J Compet L & Econ 3(4):673 - Quinet E (2003) Short term adjustments in rail activity: the limited role of infrastructure charges. Transp Policy 10:3–79 - Quinet E, Vickerman R (2004) Principles of transport economics. Edward Elgar, Cheltenham; Northampton, MA - Sanchez-Borras M, Nash C, Abrantes P, Lopez-Pita A (2010) Rail access charges and the competitiveness of high speed trains. Transp Policy 17(2):102–109 - Savignat M, Nash C (1999) The case for rail reform in Europe: evidence from studies of production characteristics of the rail industry. Int J Transport Econ 26(2):201–217 - SBB (2010) Annual report 2009. Technical report, SBB Bern, Switzerland SteerDaviesGleave (2005) Implementation of EU Directives 2001/12/EC, 2001/13/EC and 2001/14/EC. Technical report, Report for the European Commission Thompson L, Perkins S (2006) Mixed signals on access charges. Railw Gaz Int 62(1):27–29 Vickers J (1995) Competition and regulation in vertically related markets. Rev Econ Stud 2(1):1 Wills-Johnson N (2006) Competition in rail: a likely proposition? Planning and Transport PATREC Working Paper, p 5