Title: From nano to micrometer size particles - A characterization of airborne cement particles during construction activities.
Authors: Batsungnoen K, Riediker M, Suárez G, Hopf NB
Journal: Journal of hazardous materials
Year: 2020 May 23
Issue: 398
Pages: 122838
DOI: 10.1016/j.jhazmat.2020.122838
From nano to micrometer size particles – a characterization of airborne cement particles during construction activities

Kiattisak Batsungnoen¹², Michael Riediker³, Guillaume Suárez¹, Nancy B Hopf¹

1. Center for Primary Care and Public Health (Unisanté), University of Lausanne, Switzerland. (kiattisak.batsungnoen@unisante.ch, nancy.hopf@unisante.ch, guillaume.suarez@unisante.ch)

2. Institute of Public Health, Suranaree University of Technology, Thailand

3. Swiss Centre for Occupational and Environmental Health (SCOEH), Winterthur, Switzerland. (michael.riediker@alumni.ethz.ch)

Corresponding author: Nancy B Hopf, PhD

Keywords: Photocatalytic cement, Nano cement, Nano TiO₂, Photocatalytic cement exposure, Nano TiO₂ exposure, Cement particle exposure
Abstract

Although, photocatalytic cement contains nanosized TiO₂, a possibly carcinogen, no exposure assessments exist for construction workers. We characterized airborne nanoparticle exposures during construction activities simulated in an exposure chamber. We collected some construction site samples for regular cement in Switzerland and Thailand for comparison. Airborne nanoparticles were characterized using scanning mobility particle sizer (SMPS), portable aerosol spectrometer (PAS), diffusion size classifier (DiSCmini), transmission electron microscopy (TEM), scanning electron microscope energy dispersive X-ray spectroscopy (SEM-EDX), and X-ray diffraction. Bagged photocatalytic cement had 2.0 wt% (GSD±0.55) TiO₂, while TiO₂ in aerosols reached 16.5 wt% (GSD±1.72) during bag emptying and 9.7 wt% (GSD±1.36) after sweeping. The airborne photocatalytic cement particles were far smaller (approximately 50 nm) compared to regular cement. Cutting blocks made from photocatalytic cement or concrete, resulted in similar amounts of airborne nano TiO₂ (2.0 wt% GSD±0.57) particles as in bagged material. Both photocatalytic and regular cement had a geometric mean diameter (GMD) < 3.5 μm. Main exposures for Thai workers were during sweeping and Swiss workers during drilling and polishing cement blocks. Targeted nanoparticle exposure assessments are needed as a significantly greater exposure to nano TiO₂ were observed than what would have been predicted from the material's nano- TiO₂ contents.
1. Introduction

An increasing number of nanotechnology-based products are making its way into the construction sector (Zhu et al., 2004). One such product is photocatalytic cement made by adding nano-scaled (less than 100 nm in size) titanium dioxide (TiO₂) particles. This gives the cement self-cleaning properties (Lan, Lu, and Ren 2013; Paz et al. 1995). The increasing use of nanomaterials have led to an increased need for hazard and exposure information on these materials in order to anticipate, recognize, evaluate, and control factors in the workplace, which otherwise may cause impaired health among workers.

TiO₂ was classified as “possibly carcinogenic to humans” (class 2B) by the International Agency for Research on Cancer (IARC) (IARC, 2017; WHO, 2010). In the U.S., the National Institute for Occupational Safety and Health (NIOSH) provided a more nuanced assessment by classifying only ultrafine (nanoscale) TiO₂ as a potential carcinogen, while considering the data to be insufficient for making such a statement for fine (larger) TiO₂ (NIOSH, 2011). The hazard associated with exposures to nano-sized TiO₂ particles (nano TiO₂) has been reported by a series of studies (NIOSH, 2009). Nano TiO₂ was found to increase reactive oxygen species (ROS) production (Arenberg and Arai 2020; H. Ma, Brennan, and Diamond 2012; Sayes et al., 2006; Lee et al., 2010; Long et al., 2006), and induce DNA damage (Falek et al., 2009; Ghosh et al., 2010; WHO, 2010; Sha et al., 2015) and cell toxicity (C. Xue, Luo, and Yang 2015; Sha et al., 2015; Lee et al., 2010 Sayes et al., 2006). Furthermore, nano TiO₂ can be translocated to different organs and accumulate in the kidneys, lymph nodes, heart, liver, and brain (Wang et al., 2008; Kreyling et al., 2010; Geiser and Kreyling, 2010; Shi et al., 2013; Shinohara et al. 2015).
Nano TiO$_2$ particles are highly photoreactive. They react with organic and inorganic gases (Chen and Poon 2009; Lim et al. 2000; Dalton et al. 2002; Diesen and Jonsson 2014; Fujishima and Zhang 2006) and induce phototoxicity in microorganisms (Lan et al., 2013; Carp et al., 2004; Banerjee et al., 2015; Chen and Poon, 2009; Lee et al., 2010; Zhi Ge and Zhili Gao, 2008). This biocidal effect is one of the reasons why nano TiO$_2$ is an interesting additive because it renders building surfaces “self-cleaning” because it kills any organic growth.

Photocatalytic cement is mainly regular cement with TiO$_2$ nanoparticles and additives. Regular cement has been used since the Roman era to build strong structures by mixing cement with water, rock, and sand (Edwin G. Foulke, 2008). Only 2-3 wt% nano TiO$_2$ were added to cement to produce photocatalytic cement (Ma et al. 2015; Jimenez-Relinque et al., 2015; Batsungnoen et al., 2019). The particle size distributions of aerosolized photocatalytic cement generated during work activities are not known. Given that nano TiO$_2$ is not chemically bound to the cement particles, they might still behave like nanoparticles, and may easily be released (Aitken et al., 2004; Ostiguy et al., 2006; Friedlander and Pui, 2003; Ding et al., 2017).

The risk for work related diseases over a lifetime in a construction trade is 2–6 times greater compared to non-construction work. About 16% of construction workers develop chronic obstructive pulmonary disease (COPD) (Ringen et al., 2014). Cement dust exposures are one of the health concerns. They are generated during many construction activities (van Deurssen et al., 2014) such as abrasive blasting, bag emptying, cement mixing, concrete drilling, concrete block cutting, sawing, and sweeping. Inhalation is the most common route of entry for airborne cement as well as for nanoparticles. Inhaled cement dust can lead to multiple lung diseases such as chronic respiratory symptoms, lung function impairment, bronchitis, COPD, pneumoconiosis, silicosis, and lung cancer (Eom et al., 2017; Maciejewska and Bielichowska-
Cement also contains silicon dioxide (SiO_2). Crystalline silica, as quartz and cristobalite, are carcinogenic to humans (IARC, 2012; IARC, 2017; IARC, 1997). Moreover, crystalline silica causes chronic bronchitis, COPD, and silicosis (Kaewamatawong et al., 2005; Napierska et al., 2010; Soutar et al., 2000). Higher concentrations of amorphous silica might cause pneumoconiosis, granuloma formation, reversible inflammation, and emphysema (McLaughlin et al., 1997; Merget et al., 2002; Kaewamatawong et al., 2005). For crystalline silica, NIOSH recommends an exposure limit of 0.05 mg/m3 (OSHA, 2018), and for amorphous silica 6 mg/m3 (NIOSH, 2018).

The construction industry employs millions of workers. Many die or suffer from occupational diseases arising from accumulated exposure to hazardous substances (ILO, 2014). Managing hazardous exposures properly can reduce the burden of disease, but can only be done effectively if exposures have been characterized. Currently, there are no studies characterizing airborne nano TiO$_2$ in cement during work activities.

Our aim was to characterize airborne nano- and micrometer particle exposures during typical construction work activities for photocatalytic and regular cement. Our results can be directly used in developing risk management strategies among construction workers using photocatalytic cement. In addition, it will enhance our understanding of airborne nanoparticles and their size distributions, concentrations, and morphologies in mixtures with other particles.
2. Materials and methods

Materials

Portland cement type I (cement-clinker; CE number 266-043-4) was obtained from Jura cement (Wildegg, Switzerland). Photocatalytic cement was acquired as a sample from the manufacturer (TX-Active®, Italcementi group, Nazareth, US). Fine sand used to make concrete was bought from a general home improvement store in Switzerland.

Characterization of the two cement types

Airborne particles were characterized by assessing their size distribution, number and mass concentration, morphology, phase analysis, and elemental composition. The instruments and measurement techniques used are shown in Table 1. Airborne nanoparticle concentrations and size distributions were measured with three different devices: the size distribution in the range from 11 to 1,083 nm was measured with a scanning mobility particle sizer (SMPS; model SMPS+C model 5400, Grimm Aerosol Technik GmbH & Co. KG, Ainring, Germany); the size distributions in the range from 250 to 32,083 nm with a portable aerosol spectrometer (PAS; model 1.109, Grimm Aerosol Technik GmbH & Co. KG, Ainring, Germany); and the fast (1 Hz) particle number count concentration in the range from 10 to 700 nm with a diffusion size classifier (DiSCmini; Testo North America, West Chester, PA USA). Elemental composition was determined by scanning electron microscope energy dispersive X-ray spectroscopy (SEM-EDX) (SEM-EDX; PHENOM XL BSE detector at 15kV). The SEM-EDX analysis returns the atomic and weight concentrations. Composition of objects as small as 10 nm can be assessed with SEM-EDX analysis. We averaged the results of three randomly selected wide scanning surface zones (15x15 µm) to calculate the weight percent for each element (wt%). Bagged material was analyzed directly with the SEM-EDX. Nanoparticle morphology was determined by transmission electron microscopy (TEM) (TEM; CM-100, JEOL, USA at 80 kV). X-Ray
Diffraction was used to measure the bagged material phase analysis for both cement types using step width 0.0167° from 5° to 70° and time per step of 59.65s (Panalytical X’pert Pro MPD, Malvern Panalytical, Malvern, United Kingdom).

Table 1: Nanoparticles instruments and analytical techniques

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Technique</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scanning mobility particle sizer</td>
<td>SMPS</td>
<td>Charge particle</td>
</tr>
<tr>
<td>Portable aerosol spectrometer</td>
<td>PAS</td>
<td>Light scattering</td>
</tr>
<tr>
<td>DISC mini</td>
<td>DISC mini</td>
<td>Diffusion charge particle</td>
</tr>
<tr>
<td>Impactor</td>
<td>Marple</td>
<td>Gravimetric</td>
</tr>
<tr>
<td>Inhalable sampler</td>
<td>IOM</td>
<td>Gravimetric</td>
</tr>
<tr>
<td>Plastic cyclone (Higgins-Dewell)</td>
<td>Cyclone</td>
<td>Gravimetric</td>
</tr>
<tr>
<td>Transmission electron microscope</td>
<td>TEM</td>
<td>Transmission electron</td>
</tr>
<tr>
<td>Infrared absorption spectrophotometry</td>
<td>IR</td>
<td>Infrared absorption spectrophotometry</td>
</tr>
<tr>
<td>Scanning electron microscope</td>
<td>SEM-EDX</td>
<td>Scanning electron</td>
</tr>
<tr>
<td>X-ray diffraction</td>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
</tbody>
</table>

		11 to 1,083 nm
		250 to 32,000 nm
		10 to 700 nm
		0.52 to 21.3 µm
		50% Cut-point: 100 µm (Sampling flow rate 2.0 l/min)
		50% Cut-point: 4 µm (Sampling flow rate 2.2 l/min)
		< 1 nm
		Limit of detection (LOD) 5µg/sample
		± 1%
		± 0.1%
Characterization of the collected airborne particles

Aerodynamic mass particle size distributions from 0.52 to 21.30 µm were measured with an 8-stage cascade impactor (Marple; Thermo Fisher Scientific, Air Quality Instruments, Franklin, MA, USA.). Inhalable fraction (50% Cut-point: 100 µm) was measured with an IOM cassette fitted with a 25 mm PVC filter and a personal pump operating at a flowrate of 2 L/min (IOM and PVC filter; SKC Inc., Eighty Four, PA, USA). Respirable fraction (50% Cut-point: 4 µm) was measured with a plastic cyclone (Higgins-Dewell) (Casella US, Buffalo, NY, USA) operating at a flow rate of 2.2 L/min and equipped with a 37 mm PVC filter (PVC filter; SKC Inc., Eighty Four, PA, USA) as described in NIOSH method 0600 (NIOSH, 1998). Crystalline silica was determined using infrared absorption spectrophotometry (IR; IRAffinity-1S1, Shimadzu, Kyoto, Japan) as described in NIOSH method 7602 (NIOSH, 2003). SEM-EDX analyzes were performed after removing the airborne particles from the IOM filter. We extracted the deposited particles on the filter using carbon adhesive disc stickers (12 mm diameter, Plano GmbH, Wetzlar Germany). Airborne nanoparticles were collected onto the TEM grid (TEM grid; Quantifoil R1/4, Quantifoil Micro Tools GmbH, Germany) using a particle mini sampler (MPS) with a sampling flowrate of 0.3 L/min (MPS; Ecomesure, Sacly, France).

Airborne particle concentration calculations

Particle concentrations were calculated according to NIOSH method 0500 for gravimetric filters.

\[\text{Particle concentration (mg/m}^3\text{)} = \frac{[(W_2 - W_1) - (B_2 - B_1)] \times 10^3}{V} \]

Where:
- \(W_1 \): Pre-weight of sampling (mg)
- \(W_2 \): Post-weight of sampling (mg)
- \(B_1 \): Pre-weight of blank (mg)
- \(B_1 \): Post-weight of blank (mg)
- \(V \): Air volume sampling (l) or Sampling flowrate (l/min) x time (min)
Work activity simulation experiments

The work activities were simulated in an exposure chamber (2.2m x 2.2m x 2.2m) equipped with a controlled, HEPA-filtered ventilation (class H13 with efficiency 99.5 %, EN 1822) (Guillemin, 1975). Baseline airborne particle concentration in the chamber was sampled after running the ventilation for 2 hours prior to the experiment start. The workers simulating the activity wore a protective chemical suit, respiratory protection (N100, P3, or FFP3), nitrile gloves, goggles, and safety shoes (Figure 1). The ventilation was not operating during the work activity. Ventilation was turned back on and running while the measurements inside the exposure chamber continued for 2 hours after the work activity had finished.

Each of the three simulated activities; bag emptying, concrete cutting, and sweeping were performed in triplicates i.e., three different workers simulated the same task in separate experiments to address potential between-worker differences. **Bag emptying** was performed by cutting open a 25-kg cement bag, and then turning the bag upside-down to pour the cement into a vat on the floor. At the end, the bag was shaken until completely empty as shown in Figure 1A. We made blocks (size 25 x 36 x 6 cm) of concrete (cement and sand mixture) as well as cement blocks without sand. The **concrete block cutting** activity was performed with a circular saw (grinding disc diameter 230 mm and maximum rated speed 6,600 round per minute (RPM) (PWS 20-230 J, BOSCH, Leinfelden-Echterdingen, Germany). We used this saw to cut the blocks for 10 seconds in each experiment as shown in Figure 1B. The **sweeping** activity was performed after pouring one kilogram of cement on the floor, and then sweeping using an ordinary broom. The sweeping activity continued for 1 minute in each experiment as shown in Figure 1C.
Figure 1: **Experimental setting:** Three working activities such as bag emptying (1A), concrete cutting (1B) and sweeping (1C) in the chamber size: 2.2 x 2.2 x 2.2 meters. Workers wear whole body protection with personal protective equipment (PPE) as following; dust protection cloth, rubber gloves, goggles, safety shoes, and respirator.
Field sampling approach

Company description, Switzerland

In Switzerland, two construction companies and 15 workers were recruited. A convenience sampling approach was used by contacting companies using cement that had previously been sampled for other hazards. One company was housed in a two-story building partially open and no windows. In a large open hall (80 m x 25 m x 10 m), workers constructed large reinforced concrete walls (size ranged from 3 - 5m tall x 1- 3 m long x 0.3 - 0.7 m thick). A cement mixing truck filled an overhead concrete hopper connected to a crane. The crane operator moved the hopper to different workstations using a control panel. The wet concrete was poured into steel molds (Figure 2A). Workers in this area would wire steel rods, build and remove steel molds or wooden frames (Figure 2B). Once the concrete had dried, workers moved the blocks to the polishing station. The polishing workers used hand-held sanding machines on horizontally mounted walls standing on a ladder, or vertical walls laying on a bench (Figure 2C). These pre-manufactured reinforced concrete walls were then loaded onto a truck aimed for the construction site. We sampled workers at the second construction company during work at a building repair site. The workers worked indoors and in pairs. One worker drilled into the concrete wall to remove parts of it using a handheld hammer drill. The second worker held a vacuum cleaner nozzle close to the drill bit to remove dust particles as they were generated (Figure 2D).
Figure 2: Construction working activities in Switzerland
Personal air sampling, Switzerland

Each worker carried a personal sampling train equipped with an IOM inhalable particle sampler (n=15) and a cyclone (n=15), and a DiSCmini (n=15) while performing a specific work activity. Area air concentrations were sampled with SMPS, PAS, DiSCmini, and an impactor. Sampling times were about 2 hours.

Company description, Thailand

In Thailand, 40 workers were recruited from three construction companies. The companies and their workers were recruited while working on the Suranaree University of Technology campus. All companies constructed new buildings such as hospitals, laboratories, and dormitories. Cement mixing was manual (Figure 3A) and semi-automatic (Figure 3B). Workers loaded the vat or cement mixer by cutting open a 25-kg cement bag, pouring, and shaking it until empty. Workers added sand and water to the cement and in manual mixing, used a hoe to mix the wet concrete in the vat. At the end of the task, workers swept the spilled dry cement with a broom (Figure 3C). Sometimes the workers wet-sprayed the cement before sweeping to prevent dust-formation and sometimes they did not. Sweeping and cement mixing were performed inside and outside of the unfinished building. Small hand-held hammer drills were used inside the building to fit electrical wiring (Figure 3D).

Personal air sampling, Thailand

Each worker was equipped with three personal sampling trains: an IOM cassette (n=10), a cyclone (n=10) and an impactor (n=3). No stationary nano sampling instruments were readily available in Thailand, and we could not ship them from Switzerland as the SMPS has a radioactive source. Consequently, no direct-reading instruments were used during the Thai sampling campaigns. Sampling times were about 2 hours per worker.
Figure 3: Construction working activities in Thailand

3A: Manual cement mixing
3B: Semi-automatic mixing
3C: Sweeping
3D: Drilling
Statistical analysis

Descriptive statistical analyses such as geometric mean diameter (GMD) and geometric standard deviation (GSD) were calculated using Excel. Descriptive statistical analyses for particle number and mass concentration were mean and SD, and were calculated using the software integrated in the direct reading instruments.

3. Result

Cement bag emptying

Particle number concentrations during activity and post-activity were similar for the two cement types. For photocatalytic cement, bag emptying generated 3.7×10^3 particles per cubic centimeter (pt/cm3) giving a GMD of 322 nm and a GSD of 2.90; and 3.6×10^3 pt/cm3, GMD 227 nm and GSD 3.31 for regular cement. Figure 4A shows nanoparticle number concentrations and size distributions for both photocatalytic and regular cement during bag emptying measured with the SMPS. Cement bag emptying generated higher particle number concentrations for regular compared to photocatalytic cement in the size range from 11 to 241 nm. Above 241 nm, the number concentrations for photocatalytic cement were higher. Both cement types had a single peak at 692 nm: the modal values were 3.2×10^3 pt/cm3 for photocatalytic and 1.4×10^3 pt/cm3 for regular cement (Figure 4A).

Particles with sizes from 1,083 nm to 32,000 nm were measured with PAS (Figure 4B). Photocatalytic cement had a higher number concentration than regular cement across the entire size range. Irrespective of cement type, 99% of the cumulative airborne particle number during bag emptying was in the size range below 3.5 µm.
Figure 4: **Bag emptying**: nanoparticle mass and number size distributions and concentrations for photocatalytic cement (solid circles) and regular cement (solid triangle)
Peak concentrations during the bag emptying measured with DiSCmini was approximately \(1.0 \times 10^6\) pt/cm\(^3\) for photocatalytic cement and somewhat lower for regular cement (\(7.7 \times 10^5\) pt/cm\(^3\)) (Figure 4C). In the DiSCmini’s most accurate size range (10-300 nm), the photocatalytic cement GMD was 37 nm, while that of regular cement was 40 nm.

Figure 4D shows the particle mass fractions and concentrations during bag emptying. Inhalable dust mass concentration (measured as inhalable dust) was 15.16 (SD±3.12) mg/m\(^3\) and respirable dust (cyclone) was 13.34 (SD±1.36) mg/m\(^3\) for photocatalytic cement. Inhalable and respirable dust mass concentrations were \(~31\%\) and \(~49\%\) lower for regular cement, respectively during bag emptying with 10.74 (SD±3.70) mg/m\(^3\) for inhalable dust and 6.75 (SD±1.97) mg/m\(^3\) for respirable dust. Mass particles size distribution showed a peak concentration of 10.67 (SD±5.09) mg/m\(^3\) at 1.55 µm for photocatalytic cement. Regular cement had half the mass concentration (3.99 mg/m\(^3\) SD±1.70) compared to photocatalytic cement and at a smaller size (0.93 µm) as shown in figure 4D.

Airborne photocatalytic cement particles were both nanoparticles and fine particles as observed with the TEM images (Figure 5A and Figure 5B). Regular cement particles are shown in Figure 5C and Figure 5D. The particle boundary layer showed a much greater number of small particles (size around 50 nm) for photocatalytic cement (Figure 5A and Figure 5B) compared to regular cement (Figure 5C and Figure 5D). The presence of nano-sized spherical particles was only found in the photocatalytic cement and might be attributed to nano TiO\(_2\) (Figure 5B). Our measuring device did not have the spatial resolution to determine the elemental composition of the nanoscale particulates; however, we analyzed the chemical composition of the aerosol samples collected during cement working activities with SEM-EDX, and confirmed that these were indeed TiO\(_2\) nanoparticles. The regular cement contained mostly coarse
particles. Note that the SMPS reported a smaller GMD than what we observed in the TEM, which were mostly particles around 1 µm, as shown in figure 5C and figure 5D.

Figure 5: **Bag emptying**: particles morphology between photocatalytic and regular cement
Concrete block cutting

Mean particle number concentration during cutting concrete blocks made with photocatalytic cement was 1.0×10^4 pt/cm3, GMD of 287 nm and GSD of 2.22. Cutting blocks made with regular cement gave 1.9×10^4 pt/cm3, GMD 345 nm and GSD 1.96. Figure 6A shows the nanoparticle size distributions and concentrations for both photocatalytic and regular concrete block cutting measured with SMPS. The size distributions were similar; increasing at particle size 137.8 and fluctuating between 277.8 and 930.5 nm. The peak number concentration was about double for regular cement (1.2×10^4 pt/cm3) at 348.9 nm compared to the peak for photocatalytic cement (5.8×10^3 pt/cm3) at 271.8 nm.

The particle size number distributions measured with PAS were similar for both cement types, except for particle sizes between 300 and 500 nm where regular cement had a greater number concentration than photocatalytic cement. Irrespective of cement type, concrete cutting had 99% of cumulative airborne particle number in sizes below 3.5 µm (Figure 6B).

Figure 6C shows particle number concentrations measured with DiSCmini during concrete cutting. The particle counts were extremely high for both cement types. Photocatalytic cement had peak concentration around 9 million pt/cm3 while regular cement had a peak at 6 million pt/cm3. The corresponding GMDs reported by the DiSCmini were 31 nm and 42 nm, respectively.
Figure 6: **Concrete block cutting**: nanoparticle mass and number size distributions and concentrations for photocatalytic cement (solid circles) and regular cement (solid triangle).
Inhalable photocatalytic concrete dust mass concentrations during cutting were almost double (75.10 mg/m3, SD±7.92) compared to regular cement (40.95 mg/m3, SD± 4.16) with a ratio of photocatalytic to regular cement of 1.8. Respirable dust concentrations generated during concrete cutting were somewhat similar for photocatalytic cement (57.99 mg/m3, SD± 11.96) and regular cement (42.01 mg/m3, SD± 3.52) with a ratio of photocatalytic to regular cement of 1.4. Cutting photocatalytic and regular cement concrete had the same peak mass concentrations at 1.55 µm mean size and airborne concentrations of 19.90 (SD± 5.06) and 14.54 (SD±4.79) mg/m3, respectively (figure 6D).

Figure 7 displays particle morphology images for airborne photocatalytic (Figure 7A and Figure 7B) and regular (Figure 7C and Figure 7D) cement sampled with a TEM grid during cutting. The morphology for fine particles generated during concrete cutting was similar for the two cement types. The presence of nano TiO$_2$ spherical particles was not observed for photocatalytic cement concrete cutting.
Cement sweeping

Nanoparticle size number distributions and number concentrations measured during sweeping with SMPS showed photocatalytic cement mean particle number concentrations of 1.8×10^3 pt/cm3, GMD of 194 nm and GSD of 3. The same particle number concentrations (2.2×10^3 pt/cm3) was observed for regular cement but for larger particles (GMD 283 nm and GSD 3) (Figure 8A). Sweeping had a particles peak size of 692 nm with number concentrations double for photocatalytic (1.0×10^3 pt/cm3) compared to regular (5.1×10^2 pt/cm3) cement.
Figure 8B shows particle size number distributions and number concentrations for particles between 250 and 32,000 nm. Again, sweeping had a greater particle number concentration for photocatalytic cement compared to regular cement.

Photocatalytic cement had a peak concentration around 9.3×10^5 pt/cm3 while regular cement had a peak at 8.3×10^5 pt/cm3 (Figure 8C) measured with DiSCmini during cement sweeping.

Mass particle size distributions and concentrations for photocatalytic and regular cement during sweeping measured with three different personal air instruments (IOM filter cassette, cyclone and impactor) are shown in Figure 8D. Inhalable dust concentrations were 30% greater (15.19 (SD± 2.35) mg/m3 for photocatalytic compared to regular cement (10.53 (SD± 1.60) mg/m3). Respirable dust concentrations for photocatalytic cement were about double the concentration (9.52 (SD± 2.99) mg/m3) of regular cement (4.98 (SD± 1.98) mg/m3). Photocatalytic and regular cement during sweeping had the same peak at 1.55 µm with 5.26 (SD± 2.33) and 3.86 (SD±1.47) mg/m3, respectively.
Figure 8: **Sweeping**: nanoparticle mass and number size distributions and concentrations for photocatalytic cement (solid circles) and regular cement (solid triangle)
Airborne photocatalytic cement contained two distinct types of nanoparticles as well as coarse particles (Figure 9A and 9B). The presence of nano-ranged spherical particles was only observed for photocatalytic cement and we attribute this to the presence of nano TiO₂ (Figure 9A and 9B). The regular cement contained mostly coarse particles (particles size around 1 µm) as shown in figure 9C and 9D.

Figure 9: **Sweeping:** particles morphology between photocatalytic and regular cement
Elemental composition analysis

Elemental compositions were analyzed by SEM-EDX and the results for both cement types by working activities are shown in Figure 10. Calcium oxides (assumed to be CaO) and silicon dioxides (assumed to be SiO₂) were the elemental substances detected in greatest quantity. Photocatalytic cement (bag sample) contained around 2 wt% nano TiO₂. This assumes that the information from the photocatalytic cement manufacturer was true that they added nanoTiO₂ (percent nanoTiO₂ was not given). The components were then defined based on what is known about the various oxides expected in cement. As nanoscale particles contained Ti and O in the expected ratio of approximately 1:2, it is sound to assume that these are TiO₂ nanoparticles. Furthermore, the TEM image from the bag emptying showed the presence of nanosized particles for photocatalytic cement but not for regular cement, and finally, the SMPS measurements showed nanosized particle fraction for bag emptying at 17%. Regular cement (bag sample) contained no detectable nano TiO₂. Photocatalytic cement bag emptying and sweeping had the highest airborne nano TiO₂ concentration 16.5 wt% (GSD±1.72) and 9.7 wt% (GSD±1.36), respectively. Photocatalytic cement concrete cutting contained 2.0 wt % nano TiO₂, which was the same concentration found in the bag sample. None of the airborne aerosol samples collected during activities with regular cement contained nano TiO₂. The mass concentration of nano TiO₂ in photocatalytic cement was calculated from element composition and inhalable dust mass concentration (sampled on the filter). Our work activity simulation showed airborne TiO₂ mass concentrations for photocatalytic cement bag emptying 2.50 mg/m³, concrete cutting 1.53 mg/m³, and sweeping 1.48 mg/m³, respectively, for particles size >100 nm.
Figure 10: Elemental composition analysis from (SEM-EDX) given in percent for each substance from cement working activities

Cement powder samples were analyzed with X-ray diffraction and the phase analyses are shown in Table 2. Tricalcium silicate (Ca$_3$SiO$_5$) and dicalcium silicate (Ca$_2$SiO$_4$) were the most abundant elements in both cement types. Photocatalytic cement contained 2.6 wt% of nano TiO$_2$ in two different forms: anatase (1.8 wt%) and rutile (0.8 wt%).
Table 2: Cement powder phase analysis by X-ray diffraction

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Chemical formula</th>
<th>Bulk material (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Photocatalytic Cement</td>
</tr>
<tr>
<td>Tricalcium silicate (alite)</td>
<td>Ca$_3$SiO$_5$</td>
<td>61.4</td>
</tr>
<tr>
<td>Dicalcium silicate (belite)</td>
<td>Ca$_2$SiO$_4$</td>
<td>14.2</td>
</tr>
<tr>
<td>Tricalcium aluminate</td>
<td>Ca$_3$Al$_2$O$_4$</td>
<td>2.3</td>
</tr>
<tr>
<td>Tetracalcium aluminoferrite</td>
<td>Ca$_4$Al$_n$Fe$_2$-nO$_7$</td>
<td>3.4</td>
</tr>
<tr>
<td>Calcite</td>
<td>CaCO$_3$</td>
<td>10.1</td>
</tr>
<tr>
<td>Anhydrite</td>
<td>CaCO$_3$</td>
<td>2.5</td>
</tr>
<tr>
<td>Gypsum</td>
<td>CaSO$_4$. 2H$_2$O</td>
<td>1.4</td>
</tr>
<tr>
<td>Portlandite</td>
<td>Ca(OH)$_2$</td>
<td>1.3</td>
</tr>
<tr>
<td>Lime</td>
<td>CaO</td>
<td>0.5</td>
</tr>
<tr>
<td>Quartz</td>
<td>SiO$_2$</td>
<td>0.3</td>
</tr>
<tr>
<td>Titanium dioxide</td>
<td>TiO$_2$</td>
<td></td>
</tr>
<tr>
<td>• Anatase</td>
<td></td>
<td>1.80</td>
</tr>
<tr>
<td>• Rutile</td>
<td></td>
<td>0.80</td>
</tr>
</tbody>
</table>

We found crystalline silica only during concrete (cement + sand) cutting for photocatalytic and regular cement with the following concentrations 2.5 and 3.5 mg/m3, respectively. When only cement was used (no sand), the crystalline silica concentrations were always below the detection limit (LOD = 5 µg / sample).

Field sampling at the construction sites

During our study, we discovered that authorities in both Switzerland and Thailand discourage the use of photocatalytic cement due to the lack of information related to health effects associated with this exposure. The photocatalytic cement is already on the European and US market, but we were unable to find the amounts sold per year. We were thus not able to give an estimate for the number of workers potentially exposed, or to identify companies that use these
products. Consequently, we collected samples in the construction industry among workers using only regular cement.

We collected the Swiss samples from July to September. The temperatures ranged during collection from 20 °C to 25 °C, and relative humidity was 50-60%. We sampled the Thai workers from November to December, and the temperatures were between 30-35 °C, and the relative humidity was 60-70%.

GMs and GSDs for size number distributions and number concentrations obtained at the Swiss construction sites are shown in figure 11A and 11B. Mean airborne particle number concentrations over 2 hours was 46,000 pt/cm³, GMD was 49 nm and GSD was 2.4. Peak nanoparticle concentrations measured with the DiSCmini were for construction (n=5) 4.9 × 10⁵ pt/cm³. Polishing (n= 5) was double (9.9 × 10⁵ pt/cm³), and drilling activity (n=5) was slightly above (6.5 × 10⁵ pt/cm³). Figure 11C shows peak nanoparticle concentrations for the three activities separately in the same graph.

The mean mass concentration for inhalable dust was more than threefold greater for Switzerland (7.08 mg/m³, SD±3.02) compared to Thailand (2.22 mg/m³, SD±1.61) (Figure 11D). This was also true for respirable dust (Switzerland had 4.00 mg/m³, SD±2.31 and Thailand 1.19 mg/m³, SD±1.15).

Mass particle size distributions (Figure 11D) were quite different between the two country-specific construction sites. The Swiss construction site had a peak mass concentration of 2.22 mg/m³ (SD±0.61) at 1.55 µm, while in Thailand the peak was just a fraction of this (0.57 mg/m³ SD±0.46) and for smaller particles (0.93 µm).
Figure 11: **Construction sampling:** nanoparticle mass and number size distributions and concentrations in construction
4. Discussion

In experiments with photocatalytic cement, we observed much larger mass-fractions of airborne particle-bound TiO$_2$ during sweeping (9.7 wt%) and during bag emptying (16.5 wt%) than what we found in the bagged cement (2 wt%). This shows that nano TiO$_2$ was easily airborne during activities with cement powder. It is in agreement with our previous dustiness study conducted with the same cement type where we observed nano TiO$_2$ to become airborne far easier than the remainder of the cement powder (Batsungnoen et al., 2019). Both nano TiO$_2$ crystalline phases, anatase and rutile, were identified in the photocatalytic cement (Table 2). It is important to understand what proportion of the nanomaterial additive that is airborne when assessing workers’ exposures to nano cement. We analyzed the cement powder sampled directly from the bag shipped by the manufacturer with XRD. We characterized the composition of both the photocatalytic and the regular cement powders. These results are given in Table 2 and show that photocatalytic cement contained 2.6% TiO$_2$. XRD analysis need a minimum of 3 g of sample. Unfortunately, we cannot analyze the dust collected with air sampling with XRD because air samples contain far less than the required amount. Due to this limitation, we confirmed the chemical composition in a few aerosol samples collected during cement working activities with SEM-EDX. We focused on a single dot with a 300 nm diameter in the SEM-EDX images which showed this particle to be 82% TiO$_2$.

The work activity and the form in which the nano-additive is present also seem to play an important role. Notably, photocatalytic cement concrete cutting resulted in similar proportions of nano TiO$_2$ (2 wt%) in airborne nanoparticles as in bagged cement material. This suggests that the nano-additive was well bound to the matrix during the cutting, and consequently, the nano TiO$_2$ particles were released in the aerosol as a part of the concrete particles. We cannot visualize chemically bound particles, but rely on dispersion as a measure of the degree to which
particles clump together into agglomerates or aggregates. We measured dispersion as the particle size distribution and the width of a particle size distribution. We observed small particles on the boundary of larger particles on the TEM image obtained during bag emptying (Fig. 5) and sweeping (Fig. 9) photocatalytic cement. We did not observe these small particles in the TEM images obtained for the same activities with regular cement. Consequently, we conclude that these smaller particles are mainly TiO$_2$ nanoparticles as this was the only difference between photocatalytic and regular cement as well as the SEM-EDX analysis. The TiO$_2$ nanoparticles agglomerated to the larger particle and are held together by weak bonds (e.g., van der Waals forces or physical entanglement). TEM images obtained from air sampling during concrete cutting (Fig. 7) showed only 2% TiO$_2$. We observed that these particles were embedded in larger concrete particles resembling an aggregate, which are generally held together by covalent bonds. Covalent bonds between TiO$_2$ and SiO$_2$, CaCO$_3$ and SO$_3$, have previously been shown by FTIR analysis (Zouzelka and Rathousky, 2017; Yang et al., 2018). We hypothesize that the nano TiO$_2$ in the dry cement powder is not chemically bound as we could observe primary nanoparticles in the TEM image for bag-emptying (Figures 5A and 5A) and sweeping (9A and 9B). We believe that nanoparticles were bound to the concrete surface when water was added, as we observed no primary nanoparticles for cutting either for regular or photocatalytic cement (Figure 7).

Inhaling nano TiO$_2$ has been associated with respiratory problems in animals (Kwon et al., 2012). An association between photocatalytic cement and respiratory problems is not known as no such studies are available. We can hypothesize that an association between photocatalytic cement exposure and respiratory problems is possible given that nano TiO$_2$ is released from photocatalytic cement. The nano TiO$_2$ concentrations in our experiments were low (10^3 particles/cm3 range) compared to the respiratory study in rats that showed nano TiO$_2$ to be toxic
at particle number concentration in the 10^6 range (Kwon et al., 2012). The study exposed the rats to only nano TiO$_2$ therefore it is difficult to extrapolate to possible health effects from exposure to a mixture of cement and nano TiO$_2$ particles. Complexing the matter further, the lung injury induced by nano TiO$_2$ depended on dimension, size distribution, concentration, crystal phase, agglomeration, surface coating, chemical, and physical properties (Noël et al., 2012; Wang and Fan, 2014).

Both photocatalytic and regular cement had 99% of the airborne particles with sizes less than 3.5 µm in all working activities; and can thus be deposited and diffuse into the respiratory tract especially in the alveoli (Oberdörster et al., 2005; ICRP, 1994; Sha et al., 2015; Tedja et al., 2011). The mean size of airborne cement particles during simulated working activities was 200-350 nm, which were far greater than what we found at the construction sites (mean size was 49 nm). This was surprising, and possibly not related to the cement but rather to the diesel truck picking up the concrete walls, since diesel operated vehicles often emit particles in the 50 nm size range (Xue et al., 2015).

World-wide, only few occupational exposure limits (OELs) exist for nano TiO$_2$. The US Occupational Safety and Health Administration (OSHA) and NIOSH recommend a nano TiO$_2$ exposure limit for 8 hours to be (NIOSH, 2011; OSHA, 2013):

- particle size >100 nm OEL= 2.4 mg/m3
- particle size <100 nm OEL= 0.3 mg/m3

In addition, the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) recommends a toxicity reference value (TRV) for inhaled TiO$_2$ nanoparticles with particle sizes from 25 nm (P25) of 120 mg/m3 (ANSES, 2019).
Our work activity simulation showed airborne mass concentrations for photocatalytic cement bag emptying (2 min) of 15 mg/m3 thereof 16.5% TiO$_2$ (from the elemental composition analysis), which gave 2.5 mg/m3 TiO$_2$. Assuming different bag emptying work scenarios and that exposure increased linearly with 2.50 mg/m3 with each bag emptying. Emptying four consecutive bags would then give a total of 10 mg/m3 TiO$_2$ (2.5 mg/m3 TiO$_2$ x 4 bags). This averages out over 4 hours to be 2.50 mg/m3 (10 mg/m3 TiO$_2$ / 4 hours). We observed that workers emptied 2-4 bags during the morning as well as the afternoon shifts in Thailand. Thus, workers worked eight hours per day and emptied eight bags per day (four in the morning and four in the afternoon). Emptying eight bags will generate (2.5 TiO$_2$ mg/m3/bag x 8 bags) 20 mg/m3 TiO$_2$. Averaging this over the workday gives an upper range of 2.5 mg/m3 TiO$_2$ (20 mg/m3 TiO$_2$ / 8 hours/day). This time weighted average is just above the OEL for particle sizes >100 nm. We compared our results with this OEL since our GM particle size diameter was 322 nm. To reduce the airborne dust concentrations, we could recommend that workers should empty less than 8 bags during a shift, but that would not be cost effective. Another strategy would be to reduce the airborne particles that lingers in the air post-bag emptying as we observed in the simulations (Figure 4C). The workers would empty one bag, add water, and then mix, and repeat this procedure four times. This would bring the dust concentrations down to background within 15 min thus the average over the shift would not exceed 2.5 mg/m3 TiO$_2$. Consequently, the morning exposure would be 2.5 mg/m3 TiO$_2$ and same in the afternoon, which gives a total exposure of (2.5 mg/m3 TiO$_2$ + 2.5 mg/m3 TiO$_2$) 5 mg/m3 TiO$_2$ per day averaged over 8 hours would be 0.62 mg/m3 TiO$_2$ (5 mg/m3 TiO$_2$ / 8 hours). These values are based on our exposure chamber simulations and would of course be altered by worksite specific elements such as factors affecting the dispersion like wind and openness of the space as well as factors affecting release and agglomeration such as rain and humidity. In our simulation study, bag emptying generated the greatest amount of airborne nano TiO$_2$ thus this work
activity is of greatest concern. In Switzerland, cement arrived at the worksite already mixed with water thereby reducing this exposure among construction workers. Another approach would be that the producers develop a formula that would add nano TiO₂ as a liquid dispersion, thereby reducing the potential for aerosolizing these particles.

Cement dust is regulated in Thailand and Switzerland as particulates not otherwise regulated (PNOR). The Thai OEL for PNOR dust is 15 mg/m³ for inhalable and 5 mg/m³ for respirable dust. In Switzerland, the OELs are slightly lower; 10 mg/m³ and 3 mg/m³ for inhalable and respirable dust, respectively. Thai construction workers were not exposed above the Thai OELs, while the Swiss construction workers were exceeding the Swiss OEL for respirable dust. The jobs performed were similar among the Swiss and Thai construction workers, but the difference was that the Swiss construction workers used powerful machine tools, in particularly during concrete polishing and drilling, while the Thai construction workers worked with small hand-held hammer drills. Power tools have shown to generate more dust compared to manual tools such as drilling concrete, which generated the highest exposures for quartz and respirable dust among construction workers (Deurssen van et al., 2014). Moreover, Qi and colleagues (Qi, Echt, and Gressel, 2017) reported that concentrations of airborne particles during fiber cement cutting increased with the power of the tools used. The main factors associated with particle generation were number of blade teeth, blade rotating speed, and cutting feed rate (Qi, Echt, and Gressel, 2017). We found comparable result in our work activity simulation, where cutting concrete blocks using power tools generated high particle concentrations (Figure 6).

We confirmed that calcium dioxides made up 62 wt% of the airborne particles generated during work activity simulation; the same concentration as in cement (Meo, 2004). This was observed irrespective of cement type and working activities. If we assume 62% of the total particle concentration in the Swiss construction (GM 7.08 mg/m³) as CaO, we get 4.38 mg/m³ CaO
(7.08 mg/m³ CaO x 62%). This estimate was twice the Swiss OEL (2 mg/m³). The Thai OEL for CaO is more than double of the Swiss OEL, i.e., 5 mg/m³. Performing the same estimate for CaO concentration for the Thai workers (GM 2.22 mg/m³), gave 1.37 mg/m³ (2.22 mg/m³ CaO x 62%), which was below both Swiss and Thai OELs. Although, the Swiss construction workers were below the PNOR OEL, exposure reduction measures are still needed as they exceed the OEL for CaO. Although, both countries’ OELs were established to protect against upper respiratory tract inflammation produced by CaO’s alkaline properties (TOXNET, 2014; NJDHSS, 2003), the countries’ feasibility assessments for respecting the limit resulted in different values.

The second most abundant airborne particles were SiO₂. CaO and SiO₂ were chemically bound to tricalcium silicate (Ca₃SiO₅) and dicalcium silicate (Ca₂SiO₄) in the cement. Although, we quantified 0.2-0.3 wt% crystalline SiO₂ in cement (Table 2), only the respirable fraction of the airborne dust during concrete cutting was present as crystalline SiO₂. Thus, respiratory crystalline SiO₂ originated from the sand and not from the cement as previously reported by others (McLean et al., 2017). The levels of crystalline silica observed were very high, well above the 8-hour OEL levels, which suggests that for dusty work activities with concrete, the greatest risk comes from crystalline silica in sand rather than from nano-additives.

Sweeping with a broom generated inhalable and respirable dust greater than the Swiss and Thai OELs during simulation (Figure 1C, Figure 8) but not in the field (Figure 3C, Figure 11 includes sweeping with other job activities). The field samples were likely lower because the work place was generously ventilated (some jobs were performed outside) while the simulations were performed in an exposure chamber (10 m³) without ventilation. Although, the simulations were not able to generate field concentrations, it gave us a relative ranking of the
particle exposure that we observed in the field: very high exposure during cutting (41-75 mg/m³, Figure 6D), and much lower and similar concentrations for bag emptying (11-15 mg/m³, Figure 4D) and sweeping (11-15 mg/m³, Figure 8D). Other researchers have also found that sweeping cement is associated with higher airborne particle concentrations (GM 0.79-1.2 mg/m³) compared to other cement production jobs such as laboratory, foreman and administration (GM 0.42-0.45 mg/m³) (Noto et al., 2015). In Noto and colleagues’s very large study comprising 24 cement plants in eight countries, they found 63% of the variability to be explained by plant differences. This could also be true for the differences in airborne particle concentrations we observed between Switzerland and Thailand; however, due to the limited number of samples in our study, we cannot calculate this. One study specifically reported concentrations during cleaning using brooms at two cement plants in Ethiopia (Zeleke et al., 2011). They confirmed significantly greater exposures to total and respirable dust in these cleaners compared to other production worker at the same plants.

Sweeping photocatalytic cement produced 31% more inhalable airborne particles (Figure 8D) than regular cement. This increase in mass is probably not explained by the slight increase in airborne particles less than 5 µm as this would not significantly add mass. Rather particles around 15 µm would contribute to the increase in mass observed. Why we have a greater mass concentration in photocatalytic cement compared to regular cement, we can only speculate. Perhaps the addition of nano TiO₂ to the cement contributes to agglomeration of particles of smaller size than if absent, thus the particles generated will be airborne over a longer time. We have not found any scientific publications describing or refuting such a postulation.
Cleaning using other methods than a broom would reduce the cement exposures among Thai construction workers, while Swiss construction workers will need other protective measures to reduce exposures. Exposures to airborne cement particles in the construction industry also depends on duration, environment (temperature, humidity and wind), space (indoor, outdoor), workplace sizes, machine tool use, material type, control measures, and use of personal protective equipment (PPE). We observed that Thai construction workers did not use respiratory protective equipment (RPE) while Swiss construction workers did. Thai construction workers were not comfortable using RPE because it was both hot and humid. Control measures need to be implemented for the Swiss construction workers to not only comply with the Swiss OEL regulations, but to reduce the risk of developing COPD. Local exhaust ventilation (LEV) in construction were shown to be effective in reducing respirable dust in both the work and adjacent area (Kokkonen et al., 2019).

The protection measures needed for workers working with photocatalytic cement, especially during dry cement work, should be similar to recommendations made for nano TiO₂ exposures. Wet processes to reduce airborne dust exposures should be recommended if possible. Several international bodies have recommended ways to reduce nano particle exposures using engineering controls such as enclosed process chambers with negative pressure and local exhaust ventilation (LEV) installed with high-efficiency particulate air (HEPA) filters (NIOSH, 2011; NIOSH, 2012; NIOSH, 2013; OSHA, 2013; Goede et al., 2018). Where enclosure of the source is not possible other alternatives should be considered such as portable capture hood, wet or dry vacuum machine equipped with a HEPA filter. Administrative control strategies can also be implemented such as adjust work schedules, education, training, good general hygiene, good housekeeping, and medical surveillance (NIOSH, 2011; NIOSH, 2012; NIOSH, 2013; OSHA, 2013). More specifically, OSHA and NIOSH recommend using: RPE, protective
clothing, nitrile or chemically impervious gloves, and goggles. The RPE types recommended are N100, R100, and P100 for US (OSHA, 2013; OSHA, 2011; NIOSH, 2014) and P3 and filtering face piece (FFP3) for Europe (EN 143 and EN 149) (Goede et al., 2018; Rengasamy et al., 2009).

5. Conclusion
The airborne nano TiO₂ concentration was far greater than the labeled 2 wt% in the photocatalytic cement bag during simulation, increasing to 9.7 wt% during sweeping and 16.5 wt% during bag emptying. Work activities studied in the exposure chamber such as sweeping and bag emptying gave rise to nano TiO₂ air concentrations while concrete cutting did not. Thai and Swiss construction workers using regular cement had different exposure profiles. Thai workers were mostly exposed during sweeping and Swiss workers during drilling and polishing cement blocks. Both photocatalytic and regular cement had a GMD less than 3.5 μm thus will be able to penetrate into the lung. Emerging health risks associated with nano TiO₂ has yet to be assessed for construction workers using photocatalytic cement. We recommend workers using photocatalytic cement to use protection measures similar to recommendations made for nano TiO₂ exposures.

6. Conflict of interest
The authors declare no conflict of interest.
7. Acknowledgements

Funding was received from Center for Primary Care and Public Health (Unisanté), Department of Occupational and Environmental Health (formerly known as Institute for Work and Health, IST), Switzerland, the Royal Thai Government, and the Ministry of Science and Technology, Thailand. We greatly appreciate help from Dr. Nicolas Concha Lozano for the morphology, crystalline silica analysis, and elemental composition analysis. We would like to thank Ms. Nicole Charriere, Mr. Benoit Allaz, Mr. Nicolas Sambiagio, Mr. Timothée Ndarugendamwo, Mr. Elvar Oskarsson, Mr. Antoine Milon and Mr. Yannick Rodari for all practical laboratory and field support. We also thank the Laboratory of Construction Materials (LCM), at Swiss Federal Institute of Technology Lausanne (EPFL) for the x-ray diffraction characterization. We thank Italcementi group for sending us a free sample.
8. References

https://doi.org/10.1016/j.apcatb.2015.03.058.

https://doi.org/10.1016/j.progsolidstchem.2004.08.001.

Ghosh, Manosij, Maumita Bandyopadhyay, and Anita Mukherjee. 2010. “Genotoxicity of
https://doi.org/10.1016/j.chemosphere.2010.09.022.

https://doi.org/10.1093/annweh/wxy032.

http://monographs.iarc.fr/ENG/Monographs/vol68/.

https://monographs.iarc.fr/ENG/Monographs/vol100C/mono100C-14.pdf.

ILO. 2014. “Safety and Health in the Construction Sector- Overcoming the Challenges.”

Lan, Yucheng, Yalin Lu, and Zhifeng Ren. 2013. “Mini Review on Photocatalysis of

Pellet).” The National Institute for Occupational Safety and Health (NIOSH).

https://doi.org/10.1016/j.toxlet.2012.08.019.

Emerging Discipline Evolving from Studies of Ultrafine Particles.” Environmental Health Perspectives 113 (7): 823–39.

Administration in Rats.” Nanotoxicology 9 (8): 1050–58.

