
As if Time Had Stopped – Checking Memory Dumps for
Quasi-Instantaneous Consistency
Jenny Ottmanna,∗, Üsame Cengiza, Frank Breitingerb and Felix Freilinga,∗

aDepartment of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
bSchool of Criminal Justice, University of Lausanne, 1015 Lausanne, Switzerland

A R T I C L E I N F O
Keywords:
Memory acquisition
Consistency
Quasi-instantaneous consistency
Instantaneous snapshot
Experiment
Live system memory capture

A B S T R A C T
Memory dumps that are acquired while the system is running often contain inconsistencies like page
smearing which hamper the analysis. One possibility to avoid inconsistencies is to pause the system
during the acquisition and take an instantaneous memory dump. While this is possible for virtual
machines, most systems cannot be frozen and thus the ideal dump can only be quasi-instantaneous,
i.e., consistent despite the system running. In this article, we introduce a method allowing us to
measure quasi-instantaneous consistency and show both, theoretically, and practically, that our method
is valid but that in reality, dumps can be but usually are not quasi-instantaneously consistent. For the
assessment, we run a pivot program enabling the evaluation of quasi-instantaneous consistency for its
heap and allowing us to pinpoint where exactly inconsistencies occurred.

1. Introduction
The acquisition and analysis of main memory are com-

mon tasks for forensic investigators, e.g., to find encryp-
tion keys for storage or analyze malware that only runs in
memory. A common acquisition procedure is to perform
live memory acquisition, i.e., to utilize the software on the
system under investigation to access and dump memory.
However, as the system is running and memory contents are
continuously updated by concurrent processes, the quality
of such snapshots is (at best) unclear. A symptom of bad
memory snapshots, that is commonly observed, is page
smearing which is defined as “an inconsistency that occurs
in memory captures when the acquired page tables reference
physical pages whose contents changed during the acquisi-
tion process” (Case and Richard III, 2017). It is well-known
that established tools like Volatility have difficulties parsing
low-quality memory snapshots, resulting in cases where
snapshots cannot be analyzed at all. But what, actually, is
a “good” memory snapshot?

In practice, it is commonly accepted that freezing a
system, i.e., stopping concurrent system activity before tak-
ing a memory snapshot, produces the highest quality. Such
snapshots are often referred to as instantaneous snapshots.
Methods to create instantaneous snapshots either have strong
assumptions, e.g., assume that the analyzed system runs as a
virtual machine (Martignoni, Fattori, Paleari and Cavallaro,
2010; Yu, Qi, Lin, Zhong, Li and Guan, 2012; Kiperberg,
Leon, Resh, Algawi and Zaidenberg, 2019), or are cumber-
some to execute, like cold boot attacks (Halderman, Schoen,
Heninger, Clarkson, Paul, Calandrino, Feldman, Appelbaum

∗Corresponding authors.
Email addresses: jenny.ottmann@fau.de (J. Ottmann);

uesame.cengiz@fau.de (Ü. Cengiz); frank.breitinger@unil.ch (F.
Breitinger); felix.freiling@fau.de (F. Freiling)

URL: https://FBreitinger.de (F. Breitinger)
ORCID(s): 0000-0003-1090-0566 (J. Ottmann); 0009-0004-4092-7668

(Ü. Cengiz); 0000-0001-5261-4600 (F. Breitinger); 0000-0002-8279-8401 (F.
Freiling)

and Felten, 2009; Bauer, Gruhn and Freiling, 2016). There-
fore, in many practical situations memory acquisition is
necessarily performed live and the resulting snapshots are
not instantaneous. But in what sense can non-instantaneous
snapshots be compared regarding quality?

It has been observed (Pagani, Fedorov and Balzarotti,
2019; Ottmann, Breitinger and Freiling, 2022) that certain
snapshots acquired live cannot be distinguished from instan-
taneous snapshots. Such snapshots are called time-consistent
(Pagani et al., 2019) or quasi-instantaneous (Ottmann et al.,
2022). By definition quasi-instantaneous snapshots avoid
the many hassles associated with live memory acquisition,
but unless the memory acquisition method itself provides
consistency guarantees, it was not known how memory
snapshots can be tested for quasi-instantaneous consistency.
Clearly, such methods must rely on some form of consistency
indicators within the image. How these may look like to
precisely determine the consistency of a snapshot was so
far unclear. In this article, we describe a method to measure
quasi-instantaneous consistency of memory snapshots based
on well-defined consistency indicators.
1.1. Related work

After multiple works about the quality of memory dumps
(Inoue, Adelstein and Joyce, 2011; Lempereur, Merabti and
Shi, 2012; Campbell, 2013), three formal criteria for the
assessment of a memory dump’s quality were defined by
Vömel and Freiling (2012): correctness, atomicity, and in-
tegrity. Correctness is fulfilled if the contents of the memory
dump are an exact copy of the memory contents at the
time of their acquisition. Atomicity addresses the causal
consistency of the memory dump. It depends on the cause-
effect relationships between memory accesses by different
processes. The last criterion, integrity, is assessed in relation
to a point in time shortly before the memory acquisition
is started. Memory contents that change after this point in
time and before they were copied by the memory acquisition
program lower the degree of integrity of the memory dump.

Proceedings of the Digital Forensics Research Conference USA (DFRWS USA), 2023 Page 1 of 11

https://FBreitinger.de

Ottmann et al. / As if Time Had Stopped

Two applications of the criteria for practical evaluations of
memory acquisition methods followed: one with a white-box
testing method (Vömel and Stüttgen, 2013), and one with a
black-box testing method (Gruhn and Freiling, 2016).

In contrast to abstract measures such as atomicity, Pagani
et al. (2019) took a content-based approach to assess the
consistency of a memory dump. A memory dump is time-
consistent if there “exists a hypothetical atomic acquisition
process that could have returned the same result”. One
method they applied in their evaluation to assess the consis-
tency of a memory dump is the number of virtual memory
areas (VMAs) that are attributed to a task by different
sources. If the numbers differ an inconsistency in a memory
dump has been spotted.

Based on the idea of time consistency, Ottmann et al.
(2022) introduced two formal criteria, instantaneous consis-
tency, and quasi-instantaneous consistency. While the for-
mer criterion portrays the ideal case for memory acquisition,
pausing the system’s execution and copying all memory
contents at the same time, the latter can be fulfilled even if
the system cannot be paused. It requires that the contents
of the memory dump could have also been acquired with
a hypothetical instantaneous snapshot. Or in other words,
there was a time at which the dump’s contents were coexis-
tent in memory. Therefore, a memory dump that fulfills the
latter criterion is as consistent as an instantaneous snapshot.
So while quasi-instantaneous consistency is as good as in-
stantaneous consistency, Ottmann et al. (2022) fail to give a
method to check or observe it. Such a method would allow
testing snapshots of benchmark acquisition methods to gain
trust in data and methods.
1.2. Contributions

In this paper, we devise a method with which (under
certain assumptions) it is possible to find out whether a
portion of a snapshot is quasi-instantaneously consistent.
Assumptions are the existence of consistency indicators in
memory. These represent information on the last event that
happened in a particular memory region and that potentially
changed the content of that region. This extends the content-
based approach of Pagani et al. (2019). Given such indica-
tors, we show how it is possible to test whether a snapshot is
quasi-instantaneously consistent. Furthermore, if a memory
dump is not quasi-instantaneously consistent, we can use the
output of the method to assess the degree of inconsistency.

We present a formalization of the method and prove its
correctness. We also show how the necessary data structure
for storing consistency indicators can be implemented with
increasingly efficient storage requirements. In a practical
evaluation, we apply the method to frozen and live snap-
shots. As expected, snapshots of frozen systems are always
quasi-instantaneously consistent, those taken of live systems
not necessarily. In summary, the contributions of this paper
are threefold: We provide

• a method to observe quasi-instantaneous consistency,
• a proof that it works theoretically, and

• a proof-of-concept implementation that allows mea-
suring consistency indicators in practice.

While we focus on main memory, our approach can
naturally be applied to situations in which other forms of
storage (like persistent disk storage) are acquired in a live
fashion.
1.3. Outline

We first revisit the system model and previous consis-
tency definitions in Section 2. Our new method to observe
and check quasi-instantaneous snapshots is presented in
Sections 3 and 4. Ways to improve the memory efficiency
of our method are discussed in Section 5. We provide the
results of our practical evaluation in Section 6 and discuss
the results in Section 7. We conclude in Section 8.

2. Consistency of Snapshots
The consistency of a snapshot can be assessed from

different perspectives. One is the causal perspective which
takes into account the active processes in the system and
their causal relationships (Vömel and Freiling, 2012). The
basic idea of causal consistency is that the snapshot contains
the cause for every effect. If the actions of malware can be
observed in the snapshot, all causally preceding events must
also be contained in the snapshot (e.g. the malware infec-
tion). This definition is very generic and does not reference
any notion of real-time. As long as cause-effect relations are
respected, the system does not need to be frozen to acquire
a snapshot that is causally consistent.

The perspective we take in this article is more restrictive.
We accept snapshots as consistent only if their contents were
coexistent in memory at a previous point in time. This con-
sistency criterion is called quasi-instantaneous consistency
(Ottmann et al., 2022). To approach the formal definition of
quasi-instantaneous consistency, we need to introduce some
basic aspects of the system model we assume.
2.1. Model

Based on Vömel and Freiling (2012), we define memory,
events (modifying operations on memory), and snapshots.
Memory We observe accesses to the set 𝑅 = {𝑟1,… , 𝑟𝑛}of 𝑛 memory regions. Intuitively, a memory region can be
regarded as that part of memory that can be acquired in
one atomic action. Depending on the real system, memory
regions can consist of a single byte or a full memory page.
Memory regions have values 𝑣 at specific points in time. The
sets of all possible values and points in time are denoted 𝑉
and 𝑇 , respectively. Memory can therefore be expressed by
the function 𝑚 ∶ 𝑅 × 𝑇 → 𝑉 .
Events When a process performs an operation on a memory
region this results in an event 𝑒. We denote by 𝐸 the set
of all such events. For any event 𝑒 ∈ 𝐸, 𝑒.𝑟 denotes the
memory region on which 𝑒 happened. An execution of the
system is defined by a sequence of events 𝜂 ∶= [𝑒1,…]. As
time between two events is of no concern to our model, we

Proceedings of the Digital Forensics Research Conference USA (DFRWS USA), 2023 Page 2 of 11

Ottmann et al. / As if Time Had Stopped

r1

r2
e1

e2

e3r3

e4s1 s2

Figure 1: With space/time diagrams the events that take place
on memory regions over time can be visualized. Each region is
represented by an individual timeline (time passes from left to
right), events are denoted as black dots and the acquisition of
a memory region in a snapshot as rectangle.

define 𝑇 to be the set of natural numbers ℕ. We assume that
events generally change memory contents. So if no event
happens on a region 𝑟 between times 𝑡 and 𝑡 + 𝑛, then the
corresponding values in the memory are identical. Formally:
∀𝑟 ∈ 𝑅,∀𝑡, 𝑛 ∈ ℕ ∶ 𝑚(𝑟, 𝑡) = 𝑚(𝑟, 𝑡 + 𝑛) ⇔ ∀𝑘, 𝑡 < 𝑘 ≤
𝑡 + 𝑛 ∶ 𝑒𝑘.𝑟 ≠ 𝑟.
Snapshot We formalize a snapshot as a function 𝑠 ∶ 𝑅 →
𝑉 × 𝑇 , i.e., for every memory region we store the value
and the time at which it was copied. We denote by 𝑠(𝑟).𝑣
the value stored for region 𝑟 in snapshot 𝑠 and by 𝑠(𝑟).𝑡
the corresponding time. Note, as established above, the
time 𝑡 advances whenever an event is executed. The vector
containing all values in all regions of the snapshot is denoted
𝑉𝑠 ∶= [𝑠(𝑟1).𝑣,… , 𝑠(𝑟𝑛).𝑣], the vector containing all times
𝑇𝑠 ∶= [𝑠(𝑟1).𝑡,… , 𝑠(𝑟𝑛).𝑡].The model can be visualized using space/time diagrams
(Mattern, 1989). An example for a system with three mem-
ory regions, 𝑟1, 𝑟2, and 𝑟3 is shown in Fig. 1. The arrows
represent the memory regions over time, events, 𝑒1, 𝑒2, 𝑒3,
and 𝑒4 in the example, are denoted by black dots. The time
at which a memory region is copied in a snapshot is denoted
with a rectangle. The rectangles belonging to one snapshot
are connected to each other. In the example two snapshots,
𝑠1 and 𝑠2, can be seen.
2.2. Quasi-instantaneous consistency

Ottmann et al. (2022) defined the following notions of
consistency. The ideal case for a snapshot is that it is taken
instantaneously. In a snapshot that satisfies instantaneous
consistency every memory region was copied at the same
time.
Definition 1 (instantaneous consistency). A snapshot 𝑠 sat-
isfies instantaneous consistency iff all memory regions in 𝑠
were acquired at the same point in time. Formally:

∀𝑟, 𝑟′ ∈ 𝑅 ∶ 𝑠(𝑟).𝑡 = 𝑠(𝑟′).𝑡

If s satisfies instantaneous consistency we call s instanta-
neous.

When a system cannot be frozen it might still be possible
to acquire a snapshot with the same contents as if it had been
taken instantaneously. In this case the content is identical

to an instantaneous snapshot (although not taken instanta-
neously) and we call such a snapshot quasi-instantaneously
consistent.
Definition 2 (quasi-instantaneous consistency). A snapshot
𝑠 satisfies quasi-instantaneous consistency iff the values in
the snapshot could have also been acquired with an instan-
taneous snapshot 𝑠′. Formally:

∃𝑠′ ∶ 𝑠′is instantaneous ∧ (𝑉𝑠′ = 𝑉𝑠)

If s satisfies quasi-instantaneous consistency we call s quasi-
instantaneous.

Two example snapshots are shown in Fig. 1. Snapshot
𝑠1 is quasi-instantaneous since an instantaneous snapshot
can be found that would have had the same contents. Such
an instantaneous snapshot could have been taken right after
event 𝑒2 took place and is indicated by a dashed vertical
line. For the second snapshot, 𝑠2, on the other hand, it is
not possible to construct an instantaneous snapshot with the
same contents. The reason is that event 𝑒3 happened before
𝑒4 but in the snapshot the changes made by 𝑒3 cannot be seen
while those made by 𝑒4 are included. Thus, snapshot 𝑠2 is not
quasi-instantaneous.

3. Observing Quasi-Instantaneous
Consistency
Our approach to observe quasi-instantaneous consis-

tency is based on the observation of consistency indicators
within the snapshot. Oftentimes, such indicators already
exist as part of the running system. For example, kernel data
structures that save redundant information can serve as indi-
cators (Pagani et al., 2019). However, artificial consistency
indicators can also be deployed as part of general forensic
readiness procedures or within the memory management of
individual processes.
3.1. Current time and time of last event

If we want to know exactly in which memory regions
inconsistent contents are located, knowledge about previous
states of the memory contents is necessary. An example is
shown in Fig. 2 where events happen in real-time and the
timestamps of events are recorded in a table shown below the
space/time diagram. Note, such a data structure of all event
timestamps enumerates all possible instantaneous snapshots
since memory contents only change through events. For ex-
ample, the instantaneous snapshot taken right after the event
at 13:08, 𝑠3 in the figure, would contain data as changed by
the events at 13:05 (on region 𝑟1), 13:08 (on region 𝑟2) and
13:06 (on region 𝑟3).

To identify if a snapshot is quasi-instantaneous, we need
to find the “matching” instantaneous snapshot in the list of
all instantaneous snapshots described above. To do this, we
can either “scan” the data structure from beginning to end, or
search in the vicinity of the timestamps that are stored in the
snapshot. For a more specific search, the ability to determine
the time of the last event on each memory region relative to

Proceedings of the Digital Forensics Research Conference USA (DFRWS USA), 2023 Page 3 of 11

Ottmann et al. / As if Time Had Stopped

r1

r2

r3

13:01

Known
states

-

13:01

-

13:05

13:01

13:05

-

13:06

13:06

13:01

13:05

13:08

13:09

13:05

13:06

13:09

13:08

13:06

13:08

s1 s2

s3

Figure 2: Knowledge about the times at which events occurred
on memory regions allows to determine if a snapshot is quasi-
instantaneous. Given a snapshot, a vector of the times at which
the last event relative to the snapshot occurred can be formed.
If this vector matches one of the known sates, the snapshot is
quasi-instantaneous.

the time at which the snapshot was taken on that region is
helpful. For example, for snapshot 𝑠1, the time of the most
recent event on 𝑟1 is 13:05. If the vector of these time stamps
matches one of the possible instantaneous snapshots listed
in the data structure, the snapshot is quasi-instantaneously
consistent.

To illustrate the idea, Fig. 2 depicts two snapshots 𝑠1and 𝑠2; 𝑠1 is quasi-instantaneous since the vector of the last
events matches the known state added at time 13:05. For 𝑠2the searched vector is {13:09, 13:01, 13:06}. Since this state
is not contained in the known state array, the snapshot is not
quasi-instantaneous.
3.2. Two-dimensional global counter array

We formalize this idea based on state information stored
in unique counters saved at each memory region access
in a global structure, the global counter array, and the
region itself. The global counter array can be implemented
in different variations. We introduce the general idea first,
followed by a variant of the global counter array that carries
redundant information helpful for visualization.
Global counter array The global counter array𝐺 is a two-
dimensional array 𝑅 × 𝑇 . As defined in section 2.1 𝑇 = ℕ.
It contains a row for each 𝑟 ∈ 𝑅. Its rows and columns are
initialized with zero. Since 𝑇 is infinite, theoretically, 𝐺 is
also an infinite data structure. However, at any finite point in
time 𝐺 is also finite.

The current column to write to in 𝐺 is identified using
the current logical time 𝑡 ∈ ℕ. It is initialized with zero.
Algorithm 1 shows the sequence of actions triggered by an
event 𝑒 on 𝑟𝑖. When a memory region 𝑟𝑖 is accessed the time
𝑡 is incremented by one and a value 𝑥 written to 𝐺 at the
index 𝑡: 𝐺[𝑟𝑖][𝑡] ∶= 𝑥. The value 𝑥 is dependent on the
implementation variant chosen for the global counter array
as we will see later. The time 𝑡 is saved in the memory region
𝑟𝑖 on which the event occurred.

Algorithm 1 Sequence of actions triggered by an event 𝑒 on
memory region 𝑟𝑖

Upon Event 𝑒 on 𝑟𝑖
𝑡 ∶= 𝑡 + 1
𝐺[𝑟𝑖][𝑡] ∶= 𝑥
Save 𝑡 in 𝑟𝑖

1

0

0

r1

r2

e1

e2 e3

r3
e4

e5

0

0

0

1

2

0

1

3

0

1

3

4

1

5

4

0 1 2 3 4 5t:

G

Figure 3: Each time an event happens on a memory region 𝑟𝑖,
𝑡 is increased by one and its value written to the appropriate
row 𝑟𝑖 in the global counter array 𝐺.

Current time We denote the vector 𝐺𝑡 which contains the
index of the last visible status update for each 𝑟 in the global
counter array 𝐺 at a logical point in time 𝑡 the current time
of 𝑡. The value in the vector at index 𝑖 is returned by 𝐺𝑡[𝑖].
3.3. Carry along global counter array

One possibility for keeping track of coexistent states is
to save the value of 𝑡 for each event on a region 𝑟 in 𝐺
and carrying along the last visible counter updates for all
other regions. Obviously, this representation is also a direct
representation of all possible instantaneous snapshots with
logical time.

When an event 𝑒 occurs on memory region 𝑟𝑖, the se-
quence of actions shown in Algorithm 1 is followed: First,
the time 𝑡 is incremented by one. The value 𝑥 is written to 𝐺
at the index 𝑡, i.e., 𝑡: 𝐺[𝑟𝑖][𝑡] ∶= 𝑡. Then the time 𝑡 is saved
in 𝑟𝑖 as well. Additionally, for all other 𝑟, the value at index
𝑡 − 1 is written to 𝐺, thereby carrying along the values of
previous updates: 𝐺[𝑟𝑖][𝑡] ∶= 𝐺[𝑟𝑖][𝑡−1],∀𝑟 ∈ 𝑅 ∶ 𝑟 ≠ 𝑒.𝑟.
An example of how 𝐺 is updated for each event is shown in
Fig. 3.
Current time The current time for a logical point in time 𝑡
is reconstructed from the values for each row in 𝐺 at index 𝑡:
𝐺𝑡 ∶= 𝐺[𝑟1][𝑡],… , 𝐺[𝑟𝑛][𝑡]. For example, the current time
in Fig. 3 at time 𝑡 = 5 is 𝐺𝑡 = (1, 5, 4). This time can be
used to check for quasi-instantaneous consistency, as we now
explain.

Proceedings of the Digital Forensics Research Conference USA (DFRWS USA), 2023 Page 4 of 11

Ottmann et al. / As if Time Had Stopped

r1

r2

r3

sN(s)

Figure 4: Given a snapshot 𝑠, its normalized form 𝑁(𝑠) contains
the same time stamps as a snapshot which copied each memory
region at the moment the last event from the perspective of 𝑠
had happened on it.

4. Checking Quasi-Instantaneous Consistency
The question is how to verify if a snapshot is quasi-

instantaneously consistent. For this purpose, it needs to be
determined if a point in time exists at which the same
contents were coexistent in memory as in the snapshot.
Comparing the last point in time saved in each memory
region to the states saved in the global counter array allows
us to do this.

Given that the value of each memory region 𝑟 in the
snapshot 𝑠 is defined by the last event that occurred on the
region, each 𝑠 is equivalent in its values to the normalized
snapshot 𝑁(𝑠), which is taken right after the occurrence of
the last event for each memory region 𝑟 from the point of
view of 𝑠. Fig. 4 shows an example of a snapshot and its
normalized form.
Definition 3 (Normalized snapshot 𝑁(𝑠)). For 𝑟 ∈ 𝑅, we
define 𝑡′𝑟 as the point in time at which the last event relative
to a snapshot 𝑠 was executed on 𝑟: 𝑡′𝑟 ∶= max({0} ∪ {𝑖 ≤
𝑠(𝑟).𝑡 | 𝑒𝑖.𝑟 = 𝑟}). For each memory region 𝑟 the snapshot
𝑁(𝑠) contains the appropriate point in time 𝑡′𝑟 and the value
saved in the memory region at point in time 𝑡′𝑟: 𝑁(𝑠)(𝑟) ∶=
(𝑡′𝑟, 𝑚(𝑟, 𝑡

′
𝑟)).

Proposition 4. The values of 𝑁(𝑠) and 𝑠 are equivalent:
𝑉𝑁(𝑠) = 𝑉𝑠

Proof. We want to show that ∀𝑟 ∈ 𝑅 ∶ 𝑁(𝑠)(𝑟).𝑣 = 𝑠(𝑟).𝑣.
Fix an 𝑟 ∈ 𝑅 and let 𝑡 ∶= 𝑠(𝑟).𝑡. The case 𝑡′𝑟 = 𝑡 is

trivial, since then 𝑚(𝑟, 𝑡′𝑟) = 𝑚(𝑟, 𝑡) by assumption. As such,
𝑉𝑁(𝑠) = 𝑉𝑠.Consider 𝑡′𝑟 < 𝑡. If we assume 𝑚(𝑟, 𝑡′𝑟) ≠ 𝑚(𝑟, 𝑡), an event
𝑒𝑧 occurs after 𝑡′𝑟 at time 𝑧: 𝑒𝑧.𝑟 = 𝑟 and 𝑡′𝑟 < 𝑧 ≤ 𝑡. It follows
that 𝑧 ∈ {𝑖 ≤ 𝑠(𝑟).𝑡 | 𝑒𝑖.𝑟 = 𝑟}, but then 𝑡′𝑟 is not the time at
which the last event happened on region 𝑟, since 𝑧 > 𝑡′𝑟. This
contradicts the definition of 𝑁(𝑠). Hence, 𝑚(𝑟, 𝑡′𝑟) = 𝑚(𝑟, 𝑡)
and 𝑉𝑁(𝑠) = 𝑉𝑠 accordingly.

Thus, when looking at a snapshot 𝑠, it is equivalent to
look at 𝑁(𝑠) instead. When comparing two snapshots, 𝑠1and 𝑠2, they can be substituted with 𝑁(𝑠1) and 𝑁(𝑠2), re-
spectively. This makes comparisons easier, since the values
stored in the normalized snapshots are equal iff the times are
equal.

r1

r2

r3

ss

Figure 5: The associated instantaneous snapshot 𝑠̂ of a
snapshot 𝑠 is the instantaneous snapshot taken at the highest
time of its normalized snapshot 𝑁(𝑠).

Proposition 5. For two snapshots 𝑠1 and 𝑠2: 𝑇𝑁(𝑠1) =
𝑇𝑁(𝑠2) ⇔ 𝑉𝑁(𝑠1) = 𝑉𝑁(𝑠2)

Proof. (⇒) Let 𝑇𝑁(𝑠1) be equal to 𝑇𝑁(𝑠2): If for both 𝑁(𝑠1)and 𝑁(𝑠2) the time at which the last event which occurred on
a region 𝑟 ∈ 𝑅 is equal, 𝑡 ∶= 𝑁(𝑠1)(𝑟).𝑡 = 𝑁(𝑠2)(𝑟).𝑡, then
we know that 𝑚(𝑟,𝑁(𝑠1)(𝑟).𝑡) = 𝑚(𝑟, 𝑡) = 𝑚(𝑟,𝑁(𝑠2)(𝑟).𝑡).As such, 𝑉𝑁(𝑠1) = 𝑉𝑁(𝑠2).(⇐) Let 𝑉𝑁(𝑠1) be equal to 𝑉𝑁(𝑠2): According to Proposition
4, given an 𝑟 ∈ 𝑅, we have 𝑁(𝑠1)(𝑟).𝑣 = 𝑠1(𝑟).𝑣 = 𝑠2(𝑟).𝑣 =
𝑁(𝑠2)(𝑟).𝑣. We need to show 𝑁(𝑠1)(𝑟).𝑡 = 𝑁(𝑠2)(𝑟).𝑡.If the values of 𝑠1 and 𝑠2 are equal, 𝑠1(𝑟).𝑣 = 𝑠2(𝑟).𝑣,
this means 𝑚(𝑟, 𝑠1(𝑟).𝑡) = 𝑚(𝑟, 𝑠2(𝑟).𝑡). Let 𝑡1 ∶= 𝑠1(𝑟).𝑡,
𝑡2 ∶= 𝑠2(𝑟).𝑡. W.l.o.g. 𝑡1 < 𝑡2. Then an 𝑛 ∈ ℕ exists for
which 𝑡2 = 𝑡1 + 𝑛. Since 𝑚(𝑟, 𝑡1) = 𝑚(𝑟, 𝑡2), there has been
no 𝑒𝑘 where 𝑡1 < 𝑘 ≤ 𝑡1 + 𝑛 with 𝑒𝑘.𝑟 = 𝑟.

Then the sets {𝑖 ≤ 𝑡1 | 𝑒𝑖.𝑟 = 𝑟} and {𝑖 ≤ 𝑡1+𝑛 | 𝑒𝑖.𝑟 = 𝑟}
are equal, the latter of course being {𝑖 ≤ 𝑡2 | 𝑒𝑖.𝑟 = 𝑟}.
Now 𝑁(𝑠1)(𝑟).𝑡 = 𝑚𝑎𝑥{{0} ∪ {𝑖 ≤ 𝑡1 | 𝑒𝑖.𝑟 = 𝑟}} =
𝑚𝑎𝑥{{0} ∪ {𝑖 ≤ 𝑡2 | 𝑒𝑖.𝑟 = 𝑟}} = 𝑁(𝑠2)(𝑟).𝑡, which
completes the proof.

Now that we know that for two normalized snapshots,
their values are only equal iff their times are equal, the
question remains how we can use this to check snapshot 𝑠
for quasi-instantaneous consistency. The missing piece to
perform the check is the associated instantaneous snapshot
of 𝑠, denoted 𝑠̂. Fig. 5 shows a snapshot 𝑠 and its associated
instantaneous snapshot 𝑠̂ taken at the highest time found in
the normalized snapshot 𝑁(𝑠).
Definition 6 (Associated instantaneous snapshot of 𝑠). For
a snapshot 𝑠, we denote by 𝑠̂ the instantaneous snapshot
at 𝑡𝑠 which we call the associated instantaneous snapshot
of 𝑠, where 𝑡𝑠 ∶= 𝗆𝖺𝗑({𝑁(𝑠)(𝑟).𝑡 | 𝑟 ∈ 𝑅}). Note that
𝑇𝑁(𝑠̂) = 𝐺𝑡𝑠 .

If a snapshot is equal in its values to its associated instan-
taneous snapshot it is quasi-instantaneously consistent. As
we have established that two normalized snapshots will be
equal in their values iff their times are equal, we can perform
the comparison based solely on the times of the normalized
snapshot of 𝑠, 𝑁(𝑠), and the normalized snapshot of its
associated instantaneous snapshot, 𝑁(𝑠̂).
Theorem 7. A snapshot 𝑠 is quasi-instantaneously consis-
tent iff 𝑇𝑁(𝑠) = 𝑇𝑁(𝑠̂).

Proceedings of the Digital Forensics Research Conference USA (DFRWS USA), 2023 Page 5 of 11

Ottmann et al. / As if Time Had Stopped

Proof. (⇒) Given an instantaneous snapshot 𝑠′ for which
𝑉𝑠′ = 𝑉𝑠 , we show that 𝑇𝑁(𝑠) = 𝑇𝑁(𝑠̂).Since 𝑉𝑠′ = 𝑉𝑠, according to Proposition 4 we can use
the normalized snapshots instead: 𝑉𝑁(𝑠′) = 𝑉𝑁(𝑠). It follows
that 𝑇𝑁(𝑠′) = 𝑇𝑁(𝑠) according to Proposition 5. Therefore
𝑡𝑠′ = 𝑡𝑠. Since there is only one instantaneous snapshot at
any given time 𝑡, 𝑠′ = 𝑠′ = 𝑠̂. Thus, when we substitute 𝑠′
by 𝑠̂, 𝑇𝑁(𝑠) = 𝑇𝑁(𝑠̂).(⇐) Given 𝑇𝑁(𝑠) = 𝑇𝑁(𝑠̂) we show that a snapshot 𝑠′ exists
which is instantaneous and for which 𝑉𝑠′ = 𝑉𝑠.Let 𝑠′ ∶= 𝑠̂. By definition 𝑠̂ is instantaneous. According
to Proposition 5, 𝑇𝑁(𝑠) = 𝑇𝑁(𝑠̂) ⇒ 𝑉𝑁(𝑠) = 𝑉𝑁(𝑠̂). Therefore,
according to Proposition 4, 𝑉𝑠 = 𝑉𝑠̂.

With this theorem, we have shown that we can use
the normalized snapshot instead of the original snapshot to
evaluate if the snapshot is quasi-instantaneously consistent
or not. It also becomes apparent that comparing the time
is sufficient to establish if the values of the snapshot were
coexistent in memory at some point in time. Since 𝑇𝑁(𝑠̂) =
𝐺𝑡𝑠 it also shows how the states saved in the global counter
array are used to determine existent states. Algorithm 2
summarizes how the check is performed.
Algorithm 2 Checking for quasi-instantaneous consistency

Compute 𝑁(𝑠) ⊳ Extract time 𝑡 saved in each region
𝑡𝑠 ∶= 𝗆𝖺𝗑({𝑁(𝑠)(𝑟).𝑡 | 𝑟 ∈ 𝑅})
Compute 𝐺𝑡𝑠 ⊳ See Algorithm 3
𝑇𝑁𝑠̂

∶= 𝐺𝑡
if 𝑇𝑁𝑠̂

= 𝑇𝑁(𝑠) then
𝑠 is quasi-instantaneously consistent

else
𝑠 is not quasi-instantaneously consistent

end if

5. Improving Memory Efficiency
The implementation of the global counter array as shown

in Section 3.2 is inefficient both computationally and regard-
ing memory usage. In the following, we first show a more
efficient two-dimensional implementation. As it becomes
apparent that one dimension is enough to carry the necessary
information, we then present a one-dimensional variant we
used for implementing the global counter array.
5.1. Simplified global counter array

Looking at Fig. 3 it becomes apparent that a lot of
redundant information is saved in the global counter array
𝐺 because the index at which 𝑡 is written and its value are
identical. Additionally, from a practical perspective, it is
more efficient to not carry along previous values of 𝑡. Instead,
when an update of 𝑡 occurs a 1 is written at index 𝑡 for
the appropriate 𝑟. For all other 𝑟 the initial value, 0, is not
changed.

For the simplified version, an event on memory region 𝑟𝑖triggers the sequence of actions shown in Algorithm 1: First,

1

0

0

t:

r1

r2
e2 e3

r3
e4

e5

0

0

0

0

1

0

0

1

0

0

0

1

0

1

0

0 1 2 3 4 5

G

e1

Figure 6: Each time an event happens on a memory region 𝑟𝑖,
𝑡 is increased by one and 1 written to the according row in the
global counter array 𝐺.

the time 𝑡 is incremented by one. Then, a value 𝑥 is written
to 𝐺 at the index 𝑡, for the simplified global counter array 𝑥
is always 1: 𝐺[𝑟𝑖][𝑡] ∶= 1. Lastly, the value of 𝑡 is saved in
𝑟𝑖. Here, no additional steps are necessary. Fig. 6 shows the
same sequence of events as in Fig. 3 but with the adapted
implementation of 𝐺.
Current time Because the last updates are not carried
along, reconstructing 𝐺𝑡 requires to find the last update
for all memory regions 𝑟 except the one at which a 1 can
be found in 𝐺 for time 𝑡. This can be done as shown in
Algorithm 3.
Algorithm 3 Computing the current time 𝐺𝑡 for the logical
time 𝑡

Initialize vector 𝐺𝑡 with −1
𝑡𝑖 ∶= 𝑡
while ∃𝑖 ∶ 𝐺𝑡[𝑖] = −1 do

Find row 𝑟ℎ where (𝐺[𝑟ℎ][𝑡𝑖] = 1) ∧ (𝐺𝑡[𝑟ℎ] = −1)
𝐺𝑡[𝑟ℎ] ∶= 𝑡𝑖
𝑡𝑖 ∶= 𝑡𝑖 − 1
if 𝑡𝑖 = 0 then

for all 𝐺𝑡[𝑖] for which 𝐺𝑡[𝑖] = −1 do
𝐺𝑡[𝑖] ∶= 0

end for
end if

end while

5.2. One-dimensional global counter array
The implementation variant of 𝐺 shown in Fig. 6 uses

more memory than necessary to carry the needed infor-
mation. Although at each logical point in time 𝑡 only one
memory region is updated, for all other regions memory
is reserved with only zeros entered. Since we only need to
save information for exactly one region per logical point in
time, we can save the known states in a list instead of a
two-dimensional array. Since no second dimension exists

Proceedings of the Digital Forensics Research Conference USA (DFRWS USA), 2023 Page 6 of 11

Ottmann et al. / As if Time Had Stopped

1

t:

r1

r2

e1

e2 e3

r3
e4

e5

0 2 2 3 2

0 1 2 3 4 5

G

Figure 7: Each time an event happens on a memory region 𝑟𝑖,
𝑡 is increased by one and the number of the region, 𝑖, written
to the global counter array 𝐺.

to indicate the region at which the event occurred, this
information needs to be saved in the list.

The index to write to in the one-dimensional global
counter array 𝐺 remains the time 𝑡. When a memory region
𝑟𝑖 is accessed, 𝑡 is incremented and 𝑖 saved in 𝐺 at index
𝑡: 𝐺[𝑡] ∶= 𝑖. The value of 𝑡 is saved in 𝑟𝑖. An example of
the adapted global counter array with the same sequence of
events as in the previous two examples is shown in Fig. 7.
Reconstructing a specific current time To reconstruct
the coexistent values at a logical point in time 𝑡, entries for
each memory region in 𝐺 at or before 𝑡 need to be searched.
If no entry for a memory region can be found no events
occurred yet which means the saved value in the region
equals zero. Algorithm 4 shows the detailed procedure.
Algorithm 4 Computing the current time 𝐺𝑡 for the logical
time 𝑡 based on the one-dimensional global counter array

Initialize vector 𝐺𝑡 with −1
𝑡𝑖 ∶= 𝑡
while ∃𝑖 ∶ 𝐺𝑡[𝑖] = −1 do

𝑟 ∶= 𝐺[𝑡𝑖]
if 𝐺𝑡[𝑟] = −1 then

𝐺𝑡[𝑟] ∶= 𝑡𝑖
end if
𝑡𝑖 ∶= 𝑡𝑖 − 1
if 𝑡𝑖 = 0 then

for all 𝐺𝑡[𝑖] for which 𝐺𝑡[𝑖] = −1 do
𝐺𝑡[𝑖] ∶= 0

end for
end if

end while

6. Evaluation
Now that we have shown that, given proper consistency

indicators, theoretically quasi-instantaneous consistency can
be observed, we present a practical proof-of-concept appli-
cation of the method. It allows observing the quasi-instan-
taneous consistency of memory regions in one process. We
consider two main system states for the evaluation, frozen

and running. We expect that memory dumps taken of frozen
systems satisfy quasi-instantaneous consistency, while those
taken concurrently to the running system are expected to not
(necessarily) be consistent. The evaluation is performed with
a semi-automated procedure, described subsequently, which
mainly differs in the method chosen to create the memory
dump depending on the system state.
6.1. Procedure

For the evaluation of memory dumps taken in both sys-
tem states, we use a virtual machine running Ubuntu 18.04
with 4 GB of RAM and 4 CPUs. Quasi-instantaneous con-
sistency is observed in a specifically crafted pivot program.
It meets the requirements to apply the method practically:

1. The ability to observe accesses to memory regions
2. The ability to write counter values to memory regions
3. Enough memory for the global counter array.

In the pivot program memory regions are represented by
list elements and changes on them are tracked in a one-
dimensional global counter array. The array is allocated with
a fixed size that is sufficient to capture the events taking place
during the intended runtime of the program. The changes on
the list elements are performed by one or more threads. The
threads randomly choose a list element to remove from the
synchronized list and after a short wait reinsert the element
at the beginning of the list. Each update (insertion/removal)
of a list element causes an update of the time of the last event
in the list element and the global counter array. The number
of list elements and threads is set at the program start.

Memory dumps of the live system are taken for two
different levels of activity, low and high. When creating
memory dumps for the low activity level only the pivot
program is executed. In comparison, the high activity level
executes several other programs in parallel. This level of
activity is also generated for the frozen system snapshots.
Memory dumps taken in the frozen and the live system state
with high activity can be summarized as follows (manually
performed actions are labeled with numbers, automated
actions with letters):

1. Start VM
(a) Start pivot program
(b) Mount shared folder
(c) Start grep: timeout 2m grep -r "libc" / &

(d) Retrieve meta info of pivot program (pid, heap
range)

(e) Move meta info to shared folder
2. Open Firefox
3. Open YouTube, click on video
4. Open LibreOffice Writer, continuously write text

(f) Take memory dump
Proceedings of the Digital Forensics Research Conference USA (DFRWS USA), 2023 Page 7 of 11

Ottmann et al. / As if Time Had Stopped

(g) Dump pivot program’s heap contents
The memory dump is taken approximately one minute

after the grep command was executed. For all memory
dumps taken without freezing the system, as a last step the
heap contents of the pivot program are dumped using gdb.

Using this procedure, 30 memory dumps were created
in total. Ten for the frozen system state with high activity,
ten for the live system state with high activity, and ten for
the live system state with low activity (details of how these
memory dumps were acquired are given below). All memory
dumps and analysis results, as well as the scripts used for
their analyis and the source code of the pivot program are
publicly available1. The number of active threads in the pivot
program is set to eight for high activity. The memory dumps
of a live system with low activity are taken with the same
timing as those with high activity but without steps (c), (2),
(3), and (4), and the number of active threads in the pivot
program is set to one instead of eight.
6.2. Analysis

In the analysis two types of inconsistencies are evaluated,
quasi-instantaneous inconsistencies in the pivot program’s
heap, and inconsistencies between numbers of virtual mem-
ory areas (VMAs) saved for each process by the kernel.
Quasi-instantaneous inconsistencies When searching
for quasi-instantaneous inconsistencies in the pivot pro-
gram’s process address space, first its heap is extracted from
the memory dump using the Volatility plugin linux_dump_map.
Next, the list elements and the time of the last event on them
as well as the global counter array are retrieved from the
heap pages using a python script. In the case of the memory
dumps taken without freezing the system, the global counter
array is instead retrieved from the heap dump taken with gdb.
This is necessary as, while in the virtual process memory
the global counter array is located after the list elements
and their counters, in the physical memory they might be
jumbled. If the global counter array is acquired before the
list elements, its contents could be not up to date with the
last changes made on the list elements.

To check for violations of quasi-instantaneous consis-
tency, we follow the steps of Algorithm 2: The time of the
last event for each region is saved in a vector which is equiv-
alent to the normalized snapshot 𝑁(𝑠). Then, the maximal
time stamp in this vector 𝑡 is identified, upon which the
current time 𝐺𝑡 is computed from the global counter array.
Lastly, the normalized snapshot and the current time, i.e., the
snapshot’s associated instantaneous snapshot, are compared.
Should they differ in one or more values, a violation of quasi-
instantaneous consistency has been identified.
VMA inconsistencies To gain insight into inconsistencies
in kernel data structures, we use a method suggested by
Pagani et al. (2019). The number of VMAs assigned to each
process can be retrieved from different sources, a linked

1https://zenodo.org/record/8089517

list of VMAs managed for each process, a red-black tree
of the VMAs, and the counter of assigned VMAs saved
for each process in its task_struct structure. The Volatility
plugin linux_validate_vmas2 retrieves the number of VMAs
from the three sources and compares them. If a mismatch
is detected, the name of the corresponding process and the
different values are returned. The total number of processes
with inconsistent VMA numbers is gathered for each dump.
6.3. Frozen system

To take a memory dump of the frozen system, we use
virsh dump with option --memory-only. As this command
has to be performed by the host, a script is started on the
host once the shared folder has been mounted that executes
the command after one minute. In the ten created mem-
ory dumps, as expected, no quasi-instantaneous or VMA
inconsistencies were found. All ten snapshots were quasi-
instantaneously consistent.
6.4. Running system

We use LiME with option format=lime to take memory
dumps of running systems. This is done from within the
VM and integrated into the same script that performs the
other automated tasks. For each activity (low and high), ten
memory dumps were taken. The observed inconsistencies
are summarized in Table 1.

For low system activity, fewer inconsistencies occurred
than for high system activity. The number of memory dumps
affected by quasi-instantaneous inconsistencies is higher
than the number of dumps in which VMA inconsistencies
were found.

With higher activity, the number of inconsistencies rises
distinctly. Seven out of ten memory dumps contain quasi-
instantaneous inconsistencies. Out of them one only con-
tained two inconsistencies, the others 15 or more. The three
memory dumps that contain no quasi-instantaneous incon-
sistencies, and the one with only two are noteworthy com-
pared to the average number of found inconsistencies. For
VMA inconsistencies a similar observation can be made.
The nine memory dumps that could be analyzed regard-
ing VMA inconsistencies, contained them. They are at-
tributed to processes related to the web browser, audio,
and gnome-shell. One memory dump had to be excluded
from the VMA inconsistency check as during the check
for VMA inconsistencies in this dump, the function used
in the linux_validate_vmas Volatility plugin to traverse the
red black tree did not return and the plugin’s execution had
to be stopped. Memory dumps for which the plugin did
not terminate were also observed by Pagani et al. (2019).
While this is probably one symptom of inconsistencies in
the memory dump, no statement about the number of VMA
inconsistencies for this memory dump can be made.

2Published by the authors at https://github.com/pagabuc/atomicity_

tops.

Proceedings of the Digital Forensics Research Conference USA (DFRWS USA), 2023 Page 8 of 11

https://zenodo.org/record/8089517
https://github.com/pagabuc/atomicity_tops
https://github.com/pagabuc/atomicity_tops

Ottmann et al. / As if Time Had Stopped

System state Inconsistency type Activity Min Max Average Affected dumps

Frozen Quasi-instantaneous High 0 0 0 0/10
VMA 0 0 0 0/10

Live
Quasi-instantaneous Low 0 3 0.8 5/10

High 0 37 13.8 7/10

VMA Low 0 1 0.1 1/10
High 3 7 4.9 9/9

Table 1
The table shows the minimum, maximum and average number of quasi-instantaneous and VMA inconsistencies found in the 30
memory dumps created for the evaluation. Out of the memory dumps taken with high system load one could not be analyzed
regarding VMA inconsistencies. Therefore the average number of inconsistencies is calculated for nine instead of ten dumps.

7. Discussion
As expected most of the memory dumps taken on the live

system with high activity are not quasi-instantaneously con-
sistent. But the numbers vary noticeably and three memory
dumps did not have inconsistencies. Using the information
available through the check for quasi-instantaneous consis-
tency, we can perform some further examinations. Given
the small number of memory dumps, we do not claim that
these results can be generalized to any memory acquisition
but they show the advantages of using our method when
investigating the reasons for inconsistencies in a memory
dump.
Reconstruction of physical addresses: While checking
the heap of the pivot program for inconsistencies, the virtual
addresses of the list elements and the global counter array
were gathered. They are ordered sequentially on adjacent
pages in the virtual memory but their mappings to physical
pages do not have to be in the same order or address range.
Therefore, we reconstructed to which physical pages they
were mapped using Volatility’s linux_memmap plugin. From
these mappings, we could reconstruct the range of physical
addresses in which the list elements and the global counter
array were located. This allows us to calculate the distance
of each address to the nearest next address (i.e, the nearest
list element). Table 2 summarizes the findings per memory
dump ordered by the number of found quasi-instantaneous
inconsistencies in them. Range (in pages) is the size of the
physical address range in which the list elements and global
counter array are located, displayed as number of pages. It
is calculated by subtracting the lowest found address from
the highest. The distances columns include the number of
list elements that were within a 10 pages radius or directly
neighbors, respectively. The largest found distance between
two elements is given by Max distance. All distances are
given as the number of pages (the page size is 4096 bytes).
Spread is bad: The table supports the intuition that a
longer range in which the addresses are distributed will
likely lead to more inconsistencies. Or vice-versa, in mem-
ory dumps with fewer inconsistencies, more contents of
interest are located on adjacent pages than in those with more
inconsistencies.

Details - dump #1: It has the highest number of incon-
sistencies but a relatively high number of adjacent physi-
cal addresses and not the largest range of addresses. The
maximal distance between two list elements is however the
largest one in the evaluated memory dumps. Taking a look
at the location of the list element for which the current time
was calculated reveals that it is located towards the end of
the memory range and is separated by the observed largest
distance from the previous 93 list elements. Thus, it is likely
that there was a longer time frame during the acquisition
between copying the previous elements and the last ones.
Combining this with the earlier acquisition of most of the list
elements, it becomes likely that updates on them are missed.
Details - dump #6: Here, the range is the third smallest,
and 85 of 101 addresses have a distance between one and
ten pages but still 15 inconsistencies occurred. A closer look
at the list of elements for which inconsistencies occurred in
this memory dump provides a possible explanation. They
are located more in the beginning of the address range
with mostly smaller distances between them while the list
element with the highest time stamp, i.e. the one for which
the current time was identified, is located more towards the
end. A big gap, 72 745 pages (the largest distance plus some
smaller gaps afterward), lies between the last list element
with an inconsistency and the one with the highest time
stamp. Therefore, similarly to dump #1, it becomes more
likely that changes on the earlier list elements occur before
this list element is acquired. From the difference between the
counters of the list elements for which inconsistencies were
detected and their values in the current time we can also see
that many updates occurred on them, the smallest number of
missed updates is 42, the largest 367.
Pivot program - pros and cons: The examples show how
checking for quasi-instantaneous consistency allows gaining
more insights into where content mismatches occur and how
many changes on the memory regions were missed. This
is currently limited to the pivot program. But the usage of
the pivot program also has benefits, since its size can be
chosen (for example by changing the number of list elements
or their size) and the degree of activity can be manipulated
by the number of threads and the frequency at which they
access the list elements. As the pivot program is started as

Proceedings of the Digital Forensics Research Conference USA (DFRWS USA), 2023 Page 9 of 11

Ottmann et al. / As if Time Had Stopped

Inconsistencies Range (in pages) Distances <= 10 pages ⊃ Distances = 1 page Max distance

1 37 224 575 61 43 103 122
2 30 423 245 47 26 79 613
3 21 141 591 20 5 54 774
4 17 150 635 33 5 53 319
5 16 267 028 44 23 82 596
6 15 79 296 85 42 71 215
7 2 99 921 81 45 55 761
8 0 82 526 76 40 62 653
9 0 12 132 75 57 3 170
10 0 4 431 97 26 2 665

Table 2
The table shows the number of quasi-instantaneous inconsistencies found in the ten memory dumps taken of the live system with
high activity. For each dump the range in which the physical addresses of the 100 list elements and the global counter array are
contained is given in pages. Additionally, the number of distances between the list elements and global counter array that are
smaller than 11 pages and the subset of these distances that is equal to one page are shown. The last column shows the maximal
observed distance between two list elements in the memory dump.

a user process, it also allows us to gather insights into the
influence memory allocation strategies and fragmentation
have on the process address space layout at the physical level.
The different ranges and distances shown in Table 2 show
that even when starting the program at approximately the
same time after booting the layout varies distinctly. Should
it be the goal to observe the consistency when the physical
pages are located in specific page ranges, it would also
be possible to remap the process’s heap pages to different
physical addresses using, for example, a kernel module.

VMA inconsistencies could also be analyzed more thor-
oughly. For example, it would be possible to determine
the addresses of the elements of the red-black tree, the
elements of the VMA list, and the counter for VMAs, and
judging from their relative locations it would be possible to
estimate where the inconsistency could stem from, e.g., is
the counter outdated or the number of elements in the list.
But identifying where exactly information is missing would
require more effort and may be impossible. It would also be
more difficult or impossible to find out how many updates
were missed exactly. The observed memory range is also
limited when looking only at VMA inconsistencies.

To cover a bigger memory range having multiple indica-
tors for content mismatches at hand would be convenient,
searching for them might be eased by understanding the
structures used by the operating system and their connec-
tions with each other better (Pagani and Balzarotti, 2019).

8. Conclusions and Future Work
So, finally, how can we obtain a good memory snap-

shot? While this is trivial for systems that can be paused
(instantaneous snapshot), the situation is more complex for
running ones. We, therefore, looked into the notion of quasi-
instantaneous consistency which is a similar property but
also works for active systems.

In this paper, we showcased a method to observe quasi-
instantaneous consistency, validated it theoretically, and also
demonstrated it in a case study. Our method allows assessing

a portion of a memory dump for quasi-instantaneous incon-
sistencies based on a single memory dump. This includes
locating the memory regions with inconsistencies and eval-
uating how many events on them were missed. A property
that is useful when searching for improvements in existing
memory acquisition methods. For example, identifying al-
ternative orders of memory acquisition, comparable to the
adaptations to LiME suggested by Pagani et al. (2019). Our
tests then confirmed that instantaneous snapshots (frozen
systems) are indeed perfect and are the method of first resort.
Furthermore, for live systems, we were able to show that a
high system load results in more inconsistencies. More tests
are needed here, but this could potentially mean that it may
be wise to close (non-relevant) applications before obtaining
a snapshot on a running system.

Moving forward, the method could be used to evaluate
different memory acquisition tools. Thereby, a broader data
base could be built to investigate our preliminary observa-
tions further. The method for observing quasi-instantaneous
consistency could also be moved to different memory ranges
than the pivot program. Concerning the main memory, it
would be possible to integrate it at the hypervisor level. From
there the address ranges that contain contents of interest
could be identified and observed. For example, the mem-
ory ranges containing structures that are necessary for the
analysis, like page tables and process structures. A second
consideration is alienating this method to live acquisition of
hard disk contents where it could be possible to integrate it
into the file system or block device drivers.

Our implementation also suffers some shortages which
require attention. For instance, the pivot program utilizes
a fixed-size global counter array which is not practical for
larger memory regions or longer observation times. One
possibility would be to implement it as a ring buffer, i.e.,
restarting at the beginning once the last entry has been
written. This would require an overflow detection in the
implementation, and in the analysis, with the latter being the
more difficult task.

Proceedings of the Digital Forensics Research Conference USA (DFRWS USA), 2023 Page 10 of 11

Ottmann et al. / As if Time Had Stopped

Acknowledgments
Work was supported by Deutsche Forschungsgemein-

schaft (DFG, German Research Foundation) as part of the
Research and Training Group 2475 “Cybercrime and Foren-
sic Computing” (grant number 393541319/GRK2475/1-
2019).

CRediT authorship contribution statement
Jenny Ottmann: Conceptualization, Methodology, In-

vestigation, Software, Writing - Original Draft, Writing -
Review and Editing. Üsame Cengiz: Methodology, Inves-
tigation, Writing - Review and Editing. Frank Breitinger:
Conceptualization, Writing - Original Draft, Writing - Re-
view and Editing, Supervision. Felix Freiling: Conceptu-
alization, Writing - Original Draft, Writing - Review and
Editing, Supervision.

References
Bauer, J., Gruhn, M., Freiling, F.C., 2016. Lest we forget: Cold-boot attacks

on scrambled DDR3 memory. Digit. Investig. 16 Supplement, S65–
S74. URL: https://doi.org/10.1016/j.diin.2016.01.009, doi:10.1016/
j.diin.2016.01.009.

Campbell, W., 2013. Volatile memory acquisition tools – A comparison
across taint and correctness, in: Proc. 11th Australian Digital Forensics
Conference.

Case, A., Richard III, G.G., 2017. Memory forensics: The path forward.
Digital Investigation 20, 23–33.

Gruhn, M., Freiling, F.C., 2016. Evaluating atomicity, and integrity of
correct memory acquisition methods. Digital Investigation 16, S1–S10.

Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W.,
Calandrino, J.A., Feldman, A.J., Appelbaum, J., Felten, E.W., 2009. Lest
we remember: cold-boot attacks on encryption keys. Commun. ACM 52,
91–98. URL: https://doi.org/10.1145/1506409.1506429, doi:10.1145/
1506409.1506429.

Inoue, H., Adelstein, F., Joyce, R.A., 2011. Visualization in testing a volatile
memory forensic tool. Digital Investigation 8, S42–S51.

Kiperberg, M., Leon, R., Resh, A., Algawi, A., Zaidenberg, N., 2019.
Hypervisor-assisted atomic memory acquisition in modern systems, in:
International Conference on Information Systems Security and Privacy,
SCITEPRESS Science And Technology Publications.

Lempereur, B., Merabti, M., Shi, Q., 2012. Pypette: A platform for the
evaluation of live digital forensics. Int. Journal of Digital Crime and
Forensics 4, 31–46.

Martignoni, L., Fattori, A., Paleari, R., Cavallaro, L., 2010. Live and
trustworthy forensic analysis of commodity production systems, in:
International Workshop on Recent Advances in Intrusion Detection,
Springer. pp. 297–316.

Mattern, F., 1989. Virtual time and global states of distributed systems, in:
Proceedings of the International Workshop on Parallel and Distributed
Algorithms, pp. 215–226.

Ottmann, J., Breitinger, F., Freiling, F., 2022. Defining atomicity (and
integrity) for snapshots of storage in forensic computing, in: Proceedings
of the Digital Forensics Research Conference Europe (DFRWS EU),
Oxford.

Pagani, F., Balzarotti, D., 2019. Back to the whiteboard: a principled
approach for the assessment and design of memory forensic techniques,
in: USENIX Security Symposium, pp. 1751–1768.

Pagani, F., Fedorov, O., Balzarotti, D., 2019. Introducing the temporal
dimension to memory forensics. ACM Transactions on Privacy and
Security (TOPS) 22, 1–21.

Vömel, S., Freiling, F.C., 2012. Correctness, atomicity, and integrity:
defining criteria for forensically-sound memory acquisition. Digital
Investigation 9, 125–137.

Vömel, S., Stüttgen, J., 2013. An evaluation platform for forensic memory
acquisition software. Digital Investigation 10, S30–S40.

Yu, M., Qi, Z., Lin, Q., Zhong, X., Li, B., Guan, H., 2012. Vis: Virtu-
alization enhanced live forensics acquisition for native system. Digital
Investigation 9, 22–33.

Proceedings of the Digital Forensics Research Conference USA (DFRWS USA), 2023 Page 11 of 11

https://doi.org/10.1016/j.diin.2016.01.009
http://dx.doi.org/10.1016/j.diin.2016.01.009
http://dx.doi.org/10.1016/j.diin.2016.01.009
https://doi.org/10.1145/1506409.1506429
http://dx.doi.org/10.1145/1506409.1506429
http://dx.doi.org/10.1145/1506409.1506429

	Introduction
	Related work
	Contributions
	Outline

	Consistency of Snapshots
	Model
	Quasi-instantaneous consistency

	Observing Quasi-Instantaneous Consistency
	Current time and time of last event
	Two-dimensional global counter array
	Carry along global counter array

	Checking Quasi-Instantaneous Consistency
	Improving Memory Efficiency
	Simplified global counter array
	One-dimensional global counter array

	Evaluation
	Procedure
	Analysis
	Frozen system
	Running system

	Discussion
	Conclusions and Future Work

