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Abstract 22 

The methylation status of the O(6)-methylguanine-DNA methyltransferase (MGMT) gene is 23 

an important predictive biomarker for benefit from alkylating agent therapy in glioblastoma. 24 

Our model MGMT-STP27 allows prediction of the methylation status of the MGMT promoter 25 

using data from the HumanMethylationBeadChip (Illumina, HM-27K and HM-450K) that is 26 

publically available for many cancer datasets. Here we present investigations addressing the 27 

impact of the context of genetic and epigenetic alterations and tumor type on the 28 

classification, report on technical aspects, such as robustness of cut-off definition and 29 

preprocessing of the data. The association between gene copy number variation (CNV), 30 

predicted MGMT methylation and MGMT expression revealed a gene dosage effect on 31 

MGMT expression in lower grade glioma (WHO grade II/III) that in contrast to glioblastoma 32 

usually carry two copies of chromosome 10 on which MGMT resides (10q26.3). This implies 33 

some MGMT expression, potentially conferring residual repair function blunting the 34 

therapeutic effect of alkylating agents. A sensitivity analyses corroborated the performance of 35 

the original cut-off for various optimization criteria and for most data preprocessing methods. 36 

Finally, we propose a R package mgmtstp27 that allows prediction of the methylation status 37 

of the MGMT promoter and calculation of appropriate confidence and/or prediction intervals. 38 

Overall the MGMT-STP27 is a robust model for MGMT classification that is independent of 39 

tumor type, and is adapted for single sample prediction. 40 

 41 

 42 

  43 
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Introduction 44 

Large scale analyses of the methylome of gliomas have provided relevant insights into tumor 45 

biology and cell of origin that has important implications for tumor classification and choice 46 

of therapy 1, 2. The DNA methylation status of the promoter of the O(6)-methylguanine-DNA 47 

methyltransferase (MGMT) gene that encodes a DNA repair protein is the most important 48 

predictive factor for benefit from alkylating agents such as temozolomide in glioblastoma 49 

(GBM) 3-6. However, in anaplastic and low grade glioma a prognostic versus a predictive 50 

value is more controversial 6-9. A principle difference between GBM and lower grade glioma 51 

(WHO grade II and III) is the high frequency of mutations in the isocitrate dehydrogenase 52 

(IDH) genes 1 or 2 in lower grade glioma that is mechanistically linked with the development 53 

of a CpG island methylator phenotype (CIMP+) 10. In glioma CIMP is almost invariably 54 

associated with MGMT promoter methylation regardless of tumor grade as we have reported 55 

previously 11. This raises the question whether the mechanistic underpinnings of CIMP may 56 

lead to functionally relevant differences in the methylation pattern affecting epigenetic 57 

silencing of the MGMT gene. It has been shown that DNA hypermethylation in CIMP results 58 

from inhibition of α-ketoglutarate-dependent dioxygenases such as the epigenetic modifier 59 

TET2, by high concentrations of the oncometabolite 2-hydroxyglutarate produced by the 60 

neomorphic enzymatic function of the IDH1 and 2 mutants 10, 12, 13. Furthermore, loss of 1 61 

copy of chromosome 10, home of MGMT (10q26), is a hallmark of primary GBM (>80%), 62 

while it is a rare event in lower grade glioma. Hence in MGMT methylated lower grade 63 

gliomas MGMT could be transcribed from the second potentially intact strand. 64 

Genome-wide DNA methylation data on human methylation 27K (HM-27K) or 450K (HM-65 

450K) BeadChips have become publically available for large datasets of glioma. This data 66 

can be used to determine the MGMT methylation status using our previously developed 67 

logistic regression model, MGMT-STP27 11. The input into the model are measures of 2 key 68 
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CpG probes located in the MGMT promoter that we identified to be functionally highly 69 

relevant and which are available on both versions of the chip. The model was trained with a 70 

dataset of 63 GBM from homogenously treated patients, for which the MGMT methylation 71 

status was previously shown to be predictive for outcome, based on classification by 72 

methylation-specific PCR (MSP). The MGMT-STP27 model provided good classification 73 

properties and prognostic value (kappa=0.85; logrank p<0.001), and has been successfully 74 

validated in independent datasets including clinical trials, by us and other groups 2, 9, 11, 14, 15. 75 

The original preprocessing procedure was based on the conversion of the Red/Green channel 76 

from the Illumina methylation array into the methylation signal, without using any 77 

normalization. However, the rising interest into epigenetics has stimulated development of 78 

methods to analyze DNA methylation data including numerous procedures for normalization 79 

and bias correction 16-19. Triche et al. 17 listed no fewer than seven methods to correct 80 

background such as substraction of fifth percentile of negative control distribution (Illumina 81 

procedure) and normal-exponential deconvolution (Noob). The use of one of these new 82 

procedures may modify the estimation of signal intensities in ways that affect the suitability 83 

of the parameters in the current MGMT-STP27 model thereby impacting classification. 84 

The aim of the present study was to determine the impact of methodological/computational 85 

procedures, sample type (frozen versus formalin fixed paraffin embedded, FFPE), and 86 

biological context [CIMP, gene copy number alterations (CNA), tumor type] on the 87 

evaluation of the MGMT status using the MGMT-STP27 method. The functional validity of 88 

the classification model, including the previously established cut-off, is tested across tumor 89 

grades, CIMP-status, and extended to non-brain tumor entities. This includes the investigation 90 

of the spatial correlations of CpG-methylation and MGMT expression that informs on the 91 

functionality of the methylation to actually impact MGMT expression and thereby indicating 92 

the potential of the tumor cells for DNA repair. The simultaneous effects of CIMP, promoter 93 

4 
 



Bady et al. J Mol Diagn 18, 350-61, 2016 

methylation and gene dosage on MGMT expression are evaluated. To complete the sensitivity 94 

analysis for the model MGMT-STP27, we investigate how our classifier can be affected by 95 

different background and normalization procedures for data from the HM-27K and HM-450K 96 

platforms. Finally, we provide a R package called “mgmtstp27” 97 

(https://github.com/badozor/mgmtstp27) that allows easy computation of MGMT-STP27 98 

classification for individual samples, and includes new features such as the calculation of the 99 

confidence intervals of the MGMT methylation scores (MGMT methylation probability), 100 

comparison of the score distribution of external datasets with the training set, and quality 101 

control.  102 

 103 

Materials and methods 104 

Datasets 105 

Clinical information and DNA methylation data (HM-27K and 450K) from 7 publically 106 

available glioma data-sets (761 individuals, 119 WHO grade II, 258 WHO grade III and 384 107 

GBM) were used for this study. The first, originally used as the training set, contained DNA 108 

methylation profiles and expression data for 63 GBM tissues from 59 patients treated within 109 

clinical trials and five non-tumoral brain tissues (epilepsy surgery) (M-GBM) 11, 20, 21. The 110 

external datasets used are VB-Glioma-III, from patients treated within a clinical trial (n= 110 111 

glioma grade III) 9; T-Glioma-II/III (29 WHO grade II, 42 grade III) 10; and the following 112 

datasets from The Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov; https://tcga-113 

data.nci.nih.gov/tcga/): TCGA-GBM-27, TCGA-GBM-450 (n= 321 GBM) and TCGA-114 

Glioma-II/III (n=197; 90 WHO grade II, 106 WHO grade III, n=1, unspecified grade; website 115 

http://cancergenome.nih.gov/) 22-24. Three additional TCGA datasets for non-brain tumors 116 

comprise colon adenocarcinoma (TCGA-COAD, n= 227), breast cancer (TCGA-BRCA, n= 117 
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305, randomly selected from a set of 642 samples), head and neck squamous cell carcinoma 118 

(TCGA-HNSC, n=442), and lung squamous cell carcinoma (TCGA-LUSC, n=328). The 119 

dbGaP accession number to the specific version of the TCGA data set is phs000178.v9.p8. 120 

The datasets and their accession numbers, including their corresponding expression datasets, 121 

are described in detail in the Supplemental Table S1. The clinical and molecular baseline 122 

description for the glioma datasets is summarized in Supplemental Table S2. 123 

 124 

Procedures for preprocessing and MGMT promoter methylation prediction 125 

The pipeline for computation of the MGMT classification is summarized in Supplemental 126 

Figure S1. The prediction of the DNA methylation status of MGMT promoter requires the 127 

conversion of the Red/Green channel information derived from the Illumina methylation array 128 

into signals for methylated and unmethylated, respectively, without normalization. .The M-129 

values 25 (log2-ratio of methylated and unmethylated intensities corrected by an offset equal 130 

to 1,) for the methylation probes of interest located in the MGMT promoter, cg12434587 and 131 

cg12981137 (location see Figure 1) were used as input into the logistic regression model 132 

(MGMT-STP27) to predict the methylation status of the MGMT gene 11. The calculation of 133 

the confidence intervals for the logistic regression model is described 26. The MGMT score 134 

was obtained by logit-transformation of the probability that the MGMT promoter is 135 

methylated to obtain a quasi-normal score. The predicted values (probabilities and MGMT 136 

score), confidence intervals, and MGMT classification can be directly obtained by the 137 

function MGMTpredict from the R package mgmtstp27 138 

(https://github.com/badozor/mgmtstp27). 139 

The effect of normalization and preprocessing of the HM-450K data on the prediction of the 140 

MGMT status was tested for five additional procedures and compared to the original (raw) 141 
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preprocessing used for developing the method 11: control normalization which requires the 142 

selection of a reference array (Genome Studio), preprocessing including only background 143 

correction, quantile normalization of the separated unmethylated and methylated signals, 144 

Subset-quantile within array normalization (SWAN) procedure 16 and Noob normalization, 145 

including background correction based on normal-exponential deconvolution with dye-bias 146 

correction 17. 147 

 148 

Preprocessing for determination of gene copy number alterations from HM-450K and 149 

HM-27K  150 

Gene copy number alterations (CNA) were calculated basically according to the procedure 151 

described by Feber et al 19 and adapted for the HM-27k platform and Genome Studio output. 152 

As proposed for Illumina Infinium Whole-genome SNP data 27, the quantile normalization 153 

was performed individually for each sample using intensity for unmethylated and methylated 154 

signals. The combined intensities for methylated and unmethylated (total intensity, T) was 155 

calculated from the normalized intensities. Because matched reference samples were not 156 

available, the value log2(R) was defined as the difference of intensity between samples and a 157 

synthetic reference corresponding to the median profile from a reference dataset containing 158 

eight non-tumor brain samples from the TCGA database and M-GBM 11.  159 

𝑙𝑜𝑔2(𝑅) =  𝑙𝑜𝑔2�𝑇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 + 1� − 𝑙𝑜𝑔2(𝑇𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 + 1) 

An additional smoothing procedure was applied to remove the wave bias for more accurate 160 

breakpoint detection in profiles 28. The unmethylated and methylated intensities from 161 

chemistry II (see Illumina technical sheet; http://www.illumina.com/content/dam/illumina-162 

marketing/documents/products/datasheets/datasheet_humanmethylation450.pdf) were 163 
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corrected by a scaling factor method to reduce the chemistry type-bias before the computation 164 

of the total intensity. As indicated above, probes with non-significant p-values (typically 165 

>0.01) were excluded from our analysis when raw data served as input.  166 

 167 

Determination of gene copy alteration state 168 

For determination of CNA the R package CGHcall 29 was used that performs circular binary 169 

segmentation (CBS) 30 starting with normalized log2(R) values for each sample. Afterwards, 170 

each probe (CpG) was classified by a mixture model 29 into five classes: amplified, gained, 171 

normal, deleted and homozygously deleted. For genomic region (or gene), the CNA events 172 

were detected in using copy number probe means (CpGs) contained in the selected region 173 

(e.g. chromosomal arms 1p and 19q, region of 10q26.3).  174 

 175 

Statistical Analysis 176 

CIMP positive tumors were identified using unsupervised clustering methods (Ward’s 177 

algorithm with Euclidean distance) as previously reported 22. The relationships between 178 

categorical variables were assessed by Chi-squared tests with p values computed by Monte 179 

Carlo simulation, because cell counts were expected to be less than five 31. 180 

The classical two-way ANOVA is replaced by Monte-Carlo version to test the effects of CNA 181 

and DNA methylation on expression of MGMT based on F-statistics (two-way ANOVA-like 182 

approach) 32, 33, this method is more robust for the unbalanced data and non-normal 183 

assumption for the distribution of the data.  184 
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Evaluation of cut-off robustness, including determination of optimal values and performances 185 

was tested for six criteria (cost functions) using the training dataset (M-GBM) for which 186 

classification by MSP is also available, which served as gold standard 11: maximization of 187 

sensitivity and specificity, MaxSpSE 34; maximization of the product of sensitivity and 188 

specificity, MaxProdSpSe 35; equality (balance) of sensitivity and specificity, SpEqualSe 36; 189 

maximization of the Youden’s index 37;maximization of the accuracy, MaxEfficiency 38; and 190 

maximization of the Kappa index, MaxKappa 39. The optimal values and performances were 191 

provided by the R packages OptimalCutpoints 40 and epiR. The statistical tests, analyses and 192 

graphical representations were performed using R-3.2.0. 193 

 194 

Results  195 

Epigenetic context of MGMT promoter methylation and expression of MGMT  196 

The fact that almost all CIMP+ glioma are predicted to have a methylated MGMT status using 197 

the MGMT-STP27 model 9, 11, 15 raised the question whether the functional correlation of the 198 

pattern of MGMT promoter methylation and MGMT expression is similar between CIMP+ 199 

and CIMP- glioma and thus the prediction model remains valid. The spatial pattern of the 200 

correlations between methylation of the 19 individual CpGs (7 for 27K) interrogated in the 201 

MGMT promoter region and MGMT expression is displayed separately for CIMP+ and CIMP- 202 

gliomas across tumor grades (WHO II, III, IV) (Figure 1). It was similar between CIMP+ and 203 

CIMP- gliomas, and across tumor grades. As previously observed, CpG methylation close to 204 

the initiation start site (ISS) displayed little correlation with expression. Methylation at the 205 

two CpGs (cg12434587 and cg12981137) comprised in the MGMT-STP27 model 206 

consistently exhibited substantial negative correlation with expression of MGMT, with 207 

maximal values close to -0.5, regardless of glioma subtype, CIMP-status, and tumor grade 208 
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(Figure 1). The pattern was also very similar in colon adenocarcinoma (TCGA-COAD), head 209 

and neck cancer (TCGA-HNSC), and lung squamous cell carcinoma (TCGA-LUSC), but not 210 

in breast cancer (TCGA-BRCA) (Supplemental Figure S2). In the latter, correlation between 211 

expression and methylation is very weak. However MGMT methylation is rare (see below).  212 

The distribution of the MGMT score (logit-transformed probability of methylation) revealed 213 

bimodal distributions for all glioma subtypes clearly separating methylated from 214 

unmethylated (Figure 2, CIMP+ and CIMP- cases are visualized separately) and were almost 215 

superimposable onto the original GBM training set (M-GBM). Similar bimodal distributions 216 

were obtained for TCGA-COAD, TCGA-HNSC and TCGA-LUSC, while TCGA-BRCA 217 

basically only displays a peak for MGMT unmethylated tumors (Figure 3). The original cut-218 

off, based on the maximized sum of sensitivity and specificity of the training cohort (M-219 

GBM) was located at the nadir (lowest point between two populations) of the density plots in 220 

all glioma subpopulations, and including other tumor types, hence efficiently differentiating 221 

MGMT unmethylated and methylated (Figure 2 & 3). The majority of CIMP+ samples were 222 

MGMT methylated across all glioma datasets (Figure 2). Of note, samples with codeletion of 223 

1p/19q were without exception MGMT methylated and displayed a high MGMT score 224 

confirmed in other datasets by other groups using MGMT-STP27 14, 15. The calculated 225 

proportions of MGMT methylation were 36.6% in TCGA-COAD, 31.2% for TCGA-HNSC, 226 

16.2% in TCGA-LUSC, and 4.3 % in the TCGA-BRCA population (Figure 3) in line with the 227 

literature 41. A meta-analysis based on 13 colon cancer studies using different technologies 228 

and comprising 2772 cases 42-53 revealed 37% (Supplemental Figure S3) that is in good 229 

agreement with the MGMT methylation proportion detected by MGMT-STP27 model in 230 

TCGA-COAD. 231 

  232 
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Robustness of the cut-off to varying optimization criteria  233 

The assessment of cut-off robustness was conducted to determine how the definition of cut-234 

off points would influence the dichotomization into unmethylated and methylated subgroups 235 

using the M-GBM dataset for which MGMT classification based on MSP is available. Six 236 

criteria (cost functions, see methods) were used to determine the optimal cut-off. Four yielded 237 

the same cut-off as obtained originally for the MGMT-STP27 model (0.358, Table 1). A 238 

different cut-off of 0.405 was obtained by two of the procedures (Table 1) that balance the 239 

errors among false positives (FP) and false negatives (FN) (as previously defined based on 240 

MSP) 11. The use of this cut-off value reduced the sensitivity by 6%, but only slightly 241 

improved the specificity (<2%), while it had minor impact on the rate of good classification 242 

accuracy (Table 1). When testing the second cut-off (0.405) on the 788 glioma samples, we 243 

only identified five discrepancies, two for the training dataset (M-GBM), two for the TCGA-244 

Glioma-II/III dataset and one for the T-Glioma-II/III dataset. No discrepancy was observed 245 

for TCGA-GBM-27, TCGA-GBM-450, and VB-Glioma-III datasets.  246 

 247 

Association of CNA at the MGMT Locus and CIMP status on Expression of MGMT 248 

Loss of the chromosomal region comprising the MGMT gene (10q26) is common in GBM 249 

(>80%) as opposed to lower grade glioma. We assessed, whether there is a statistical relation 250 

(an “effect”) between gene dosage, methylation, and expression of the MGMT gene using an 251 

additive model. Promoter methylation significantly affected MGMT expression in all glioma 252 

subtypes and grades (Table 2). Loss of 10q26 had a significant effect on expression in the 253 

lower grade glioma populations (p-value=0.003, T-Glioma-II/III; p-value=0.001, TCGA-254 

Glioma-II/III; Table 2), while the effect was not significant in GBM (p-value=0.692, TCGA-255 

GBM-450; p-value=0.848, TCGA-GBM-27; p-value=0.544, M-GBM; Table 2, Figure 4). In 256 
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the other cancer types, we observed that promoter methylation was significantly associated 257 

with MGMT expression (p-value=0.001, TCGA-COAD; p-value=0.001, TCGA-HNSC; p-258 

value=0.001 TCGA-LUSC; Table 2, Supplemental Figure S4). No significant associations 259 

were detected between 10q26.3 deletion and MGMT expression, but such deletion events 260 

were rare in TCGA-LUSC (4%), TCGA-COAD (2%) and TCGA-HNSC (2%) datasets that 261 

can affect the robustness of the statistical tests (Table 2). 262 

The interaction between deletion and methylation was not significant (p=0.196, Monte-Carlo 263 

ANOVA with 999 permutations) in the TCGA-Glioma-II/III dataset, suggesting an additive 264 

effect. The other datasets could not be analyzed because the distributions of patients in each 265 

cross-category were highly unbalanced, in particular due to the high frequency of loss of one 266 

copy of chromosome 10 in GBM that harbors MGMT (10q26) that can reduce the power of 267 

the statistical tests. Further, the CIMP status did not significantly affect the expression of the 268 

MGMT gene (Supplemental Table S3 and Supplemental Figure S5) in the LGG populations 269 

and it was not reasonably testable in the GBM populations considering the very low 270 

frequency of this event (7%, Supplemental Table S2).  271 

 272 

Effect of tumor matrix (frozen versus FFPE) 273 

The beadchip platform can be used for frozen and with the addition of a restoration step also 274 

for formalin fixed paraffin embedded (FFPE) samples. Here we tested whether datasets 275 

originating from different sample matrices can be combined. The VB-Glioma-III dataset, 276 

containing 51 frozen samples and 59 FFPE samples, was analyzed (Supplemental Table S1). 277 

The distributions of the MGMT scores calculated for FFPE and frozen samples, respectively, 278 

were not significantly different (p=0.253, Kolmogorov-Smirnov test, Supplemental Figure 279 

S6). Furthermore, the original cut-off of 0.3582 efficiently differentiated the unmethylated 280 

12 
 



Bady et al. J Mol Diagn 18, 350-61, 2016 

and methylated MGMT promoters for FFPE tissues. Hence, the two datasets were combined 281 

for the present study. 282 

 283 

Effect of data preprocessing 284 

The datasets M-GBM and TCGA-GBM-450 were used to compare five normalization and 285 

preprocessing procedures for HM-450K with the original (raw) preprocessing used to build 286 

the model MGMT-STP27 (Figure 5, Supplemental Figure S7, Supplemental Table S4). The 287 

control normalization and preprocessing including only background correction lead to a slight 288 

underestimation of the methylation probabilities compared to the standard procedure. 289 

However, we only observed three (2.5%) differently reclassified samples for TCGA-GBM-290 

450 (Figure S7) and four (5.9 %) for the training dataset, M-GBM (Figure 5). The background 291 

correction based on normal-exponential deconvolution (Noob) (Supplemental Table S4) 292 

similarly underestimated the methylation probabilities. Five and four samples were 293 

misclassified for TCGA-GBM-450 and M-GBM, respectively. In contrast, the SWAN 294 

normalization resulted in a slight overestimation of the methylation probabilities. Five (4.1%) 295 

and one (1.5%) reclassified samples were detected for TCGA-GBM-450 and M-GBM, 296 

respectively (Supplemental Table S4). In contrast, the concordance between the initial 297 

classification and outputs resulting from a procedure using quantile normalization separately 298 

on each signal was extremely low (Figure 5C and Supplemental Figure S7C), indicating 299 

incompatibility between this procedure and the current MGMT-STP27 default parameters. 300 

For the HM-27K platform, we investigated the cohort of 241 TCGA GBM samples (TCGA-301 

GBM-27) and compared the MGMT scores obtained with raw data (TCGA level 1) and 302 

already preprocessed data including Noob background correction (Level 2, preprocessed data) 303 

(Supplemental Figure S7F and G, Supplemental Table S4). The methylation probabilities 304 
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trended to be underestimated for data from Level 2 (Supplemental Figure S7G), with 9 (3.7%) 305 

misclassified samples in comparison with the original results 11. The use of Level 1 (raw) data 306 

provided similar predictions as originally determined.  307 

In spite of a moderate bias for probability estimation, the final MGMT classification was 308 

robust for both Infinium platforms, except for quantile normalization. The effect of data 309 

preprocessing on classification was limited. The strong bimodal distribution of the MGMT 310 

scores and the low proportion of samples contained in the intermediate probability range [0.3; 311 

0.7] favor this robust behavior. 312 

 313 

Discussion 314 

In the present study we tested the robustness of the MGMT-STP27 model to predict the 315 

MGMT methylation status. Considerations included biological effects, such as the context of 316 

pathogenetic and epigenetic alterations of the tumors analyzed. On the other hand we 317 

investigated technical issues, ranging from impact of tissue matrix to preprocessing of the 318 

data and cut-off definitions.  319 

First, we demonstrated that the functional relationship, corresponding to the pattern of the 320 

spatial correlation between methylation and expression was preserved across glioma subtypes, 321 

WHO grade and CIMP-status, and was also valid in other tumor types. The probes of the two 322 

CpGs used in the MGMT-STP27 model displayed a strong negative correlation between 323 

methylation and expression in all datasets. Clear bimodal distributions of the MGMT scores 324 

allowing classification into methylated and unmethylated samples was conserved across all 325 

datasets. The original cut-off used for dichotomization was located at the nadir of the 326 

distributions in all datasets analyzed including the non-glioma tumor cohorts. The robustness 327 
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of the original cut-off was further confirmed by comparing different procedures of cut-off 328 

optimization that had little effect on classification. 329 

An essential issue for any model is the estimation of the uncertainty related to the prediction. 330 

The computation of the confidence intervals as proposed in the new R package mgmtstp27 331 

permits evaluation of the pertinence and quality of the classification for a new sample as we 332 

have reported previously 11. The implemented quality control procedures allow visualization 333 

of multiple or single sample predictions in comparison to the training set (Figure 6). The 334 

confidence intervals on the methylation status probability are important to assess the 335 

confidence in the classification, particularly useful when the prediction is close to the cut-off. 336 

This is clinically relevant in particular when deciding not to give TMZ, e.g in clinical trials 337 

where patients are selected according to their MGMT status 54, or to use TMZ as mono-338 

therapy, as recommended for elderly patients whose GBM is MGMT methylated 4, 55. In other 339 

tumor types, like metastatic colon cancer, alkylating agents may be a treatment option among 340 

others 56, and only patients with a higher MGMT score may be considered.  341 

A significant effect of gene dosage on MGMT expression was observed in LGG that usually 342 

have two gene copies in contrast to GBM. This may indicate that not both copies are 343 

methylated, which cannot be distinguished by the assay, potentially yielding some expression 344 

conferring residual repair function in these tumors. In other words, residual MGMT-related 345 

resistance to TMZ may not be excluded in LGG, even when they are classified methylated. In 346 

GBM the effect of gene dosage was not statistically evaluable due to the characteristic high 347 

frequency of loss of one copy of chromosome 10, home of MGMT. In contrast, no effect on 348 

expression was observed for CIMP in LGG, while it was not testable in GBM. However, it is 349 

of note that the MGMT status in LGG is not independent of CIMP due to the nested 350 

relationship. 351 
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The effect of preprocessing on the classification was relatively moderate for the tested 352 

scenarios, except for quantile normalization that is clearly not suitable. For the other methods, 353 

the effect on classification was minor due to the strong bimodal distribution with few samples 354 

close to the cut-off. Additionally, the classification robustness can be explained by the limited 355 

difference of the probe specific bias in M-values among background correction methods for 356 

Infinium chemistry type I probes 17. This corroborates our previous results 11 showing that the 357 

M-value distributions of the two selected probes from the training dataset (M-GBM) and 358 

TCGA-GBM-27 were not significantly different.  359 

A major constraint for direct inter-study prediction are normalization procedures, such as 360 

quantile methods, as they can be affected by biological differences in the sample populations 361 

across studies and by study design (e.g. presence or absences of control or non-tumor 362 

samples, overrepresentation of subgroups). Testing of five preprocessing/normalizing 363 

procedures revealed that quantile normalization was clearly not compatible with MGMT-364 

STP27, while for the other four only moderate differences were observed. Unless the 365 

compatibility is tested, we recommend to use the raw data (format IDAT), and convert the 366 

Red/Green channel from the Illumina methylation array into methylation signal, without using 367 

any normalization. This avoids potential dataset dependent biases associated with 368 

normalization procedures and allows for single sample prediction that is an essential 369 

requirement for clinical utility 57. In practice, functions such as preprocessRaw or 370 

methylumIDAT from the R packages minfi 58 and methylumi 59 offer appropriate solutions to 371 

import and to preprocess the raw HM-450K and HM-27K data.  372 

Overall the MGMT-STP27 is a robust model for classification of samples into MGMT 373 

methylated and unmethylated that is independent on glioma subtype, is adapted for single 374 

sample prediction, and is also valid in other tumor types. 375 
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Note Added in Proof 376 

The new Infinium MethylationEPIC BeadChip (850K) proposed by Illumina contains both 377 

probes used in the model MGMT-STP27. The annotations (eg, chemistry type and probe 378 

location) suggest that our model can be extended to this new platform. 379 
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Table 1. Sensitivity analysis of the cut-offs associated with the model MGMT-STP27 579 

compared to classification based on MSP (M-GBM dataset).  580 

*Criterion cutoff FP FN opt criterion prev meth sens spec diag acc Youden 

†Youden 37 0.3582 4 1 0.8576 0.5147 0.9688 0.8889 0.9265 0.8576 

MaxEfficiency 38 0.3582 4 1 0.9265 0.5147 0.9688 0.8889 0.9265 0.8576 

MaxKappa 39 0.3582 4 1 0.8532 0.5147 0.9688 0.8889 0.9265 0.8576 

MaxProdSpSe35 0.3582 4 1 0.8611 0.5147 0.9688 0.8889 0.9265 0.8576 

SpEqualSe 36 0.4055 3 3 0.0104 0.4706 0.9063 0.9167 0.9118 0.8229 

MaxSpSe 34 0.4055 3 3 0.9063 0.4706 0.9063 0.9167 0.9118 0.8229 

*See methods for explication of Criterion: Youden, maximization of Youden’s index; 581 

MaxEfficiency, maximization of accuracy; MaxKappa, maximization of Kappa index; 582 

MaxProdSpSe, maximization of product of sensitivity and specificity; SpEqualSe, equality 583 

(balance) of sensitivity and specificity; MaxSpSE: maximization of sensitivity and specificty 584 

†The maximization of the sum of specificity and sensitivity used for developing MGMT-585 

STP27 11 was identical to the maximization of Youden’s index. 586 

Abbreviations: FP, false positives; FN, false negatives; prev meth, prevalence of methylation; 587 

sens, sensitivity; spec, specificity; diag acc; diagnostic accuracy; Youden, Youden index 588 

589 
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Table 2 Effects of CNA and DNA methylation on expression of MGMT in Glioma and Non-590 

Glioma tumors.  591 

Tumor Dataset (N) Type Variables % (N) F-statistic ‡Pvalue 

      
GLIOMA 

     

 
M-GBM (59) GBM MGMTmeth 55.93 (33) 10.966 0.003 

   
*10q26.3 loss 93.22 (55) 0.402 0.544 

 
TCGA-GBM-27 (212) GBM MGMTmeth 50.94 (108) 139.656 0.001 

   
*10q26.3 loss 86.32 (183) 0.04 0.848 

 
TCGA-GBM-450 (67) GBM MGMTmeth 43.28 (29) 8.058 0.007 

   
*10q26.3 loss 73.13 (49) 0.175 0.692 

 
TCGA-Glioma-II/III (195) LGG MGMTmeth 84.62 (165) 20.63 0.001 

   
10q26.3 loss 21.54 (42) 15.232 0.001 

 
T-Glioma-II/III (48) LGG MGMTmeth 85.42 (41) 11.153 0.005 

   
10q26.3 loss 18.75 (9) 8.541 0.003 

NON-GLIOMA 
     

       

 
TCGA-COAD (212) COAD MGMT meth 37.26 (79) 91.4629 0.001 

   

†10q26.3 loss 1.89 (4) 0.0005 0.982 

 
TCGA-HNSC (393) HNSC MGMT meth 32.06 (126) 64.3487 0.001 

   

†10q26.3 loss 1.53 (6) 2.5321 0.089 

 
TCGA-LUSC (288) LUSC MGMT meth 16.32 (47) 53.5159 0.001 

   
†10q26.3 loss 4.17 (12) 3.6662 0.051 

*CNA 10q26.3 very common event, unbalanced data! 592 

†10q26.3 loss very rare event, unbalanced data! 593 

‡ simulated p-values estimated by Monte-Carlo procedures (999 permutations); significant p-594 

values are indicated in bold.  595 

  596 
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 597 

Figure Legends 598 

Figure 1. Spatial correlation between MGMT expression and CpG methylation in the MGMT 599 

promoter. The correlation between the Infinium probes, in the MGMT promoter (genome 600 

assemble 37, hg19) present on the 450K and the 27K, respectively, and expression of MGMT 601 

is displayed for 5 glioma datasets (AFFYmetrix probe, ; RNA sequencing for TCGA-Glioma 602 

II/III). The black, green and red line correspond to the correlation for all samples, CIMP- and 603 

CIMP+ populations respectively. The CpG island located in the MGMT promoter region is 604 

illustrated with a green bar, and the location of the two Inifinium HM-450K/27K probes used 605 

in the model MGMT-STP27 are indicated with dark blue marks, and the transcription start 606 

site (TSS) with an arrow. 607 

 608 

Figure 2. Distribution of the MGMT scores in glioma grade II-IV stratified by CIMP-status. 609 

The density plots of the MGMT scores, corresponding to the logit-transformed probabilities 610 

(MGMT score) that the MGMT promoter is methylated, are shown for the LGG (grade II and 611 

III) and GBM (grade IV) populations. The smoothened lines are provided by kernel density 612 

estimate, and indicate in green grade IV (GBM), in red grade III, and in blue for grade II 613 

glioma. The vertical dotted lines identify the position of the cut-off used to classify in into 614 

methylated and unmethylated MGMT promoter status. 615 

 616 

Figure 3. Distribution of MGMT score for non-Glioma datasets from TCGA. The score 617 

corresponds to the logit-transformed probabilities that MGMT promoter is methylated. The 618 

black smoothened line is provided by kernel density estimate. The vertical dotted line 619 

identifies the position of the cut-off used to determinate the MGMT promoter state 11. The 620 
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proportion of MGMT methylation for head and neck cancer (TCGA-HNSC) is 138/442 621 

(31.2%, 95% confidence interval [CI, 26.9-35.8%]), 53/328 (16% [CI, 12.3-20.6%]) for lung 622 

squamous cell carcinoma (TCGA-LUSC), 13/305 (4.3% [CI, 2.3-7.2%]) for breast carcinoma 623 

(TCGA-BRCA), and 83/227 (36.6% [CI, 3.0-4.3]) for colon adenocarcinoma (TCGA-624 

COAD).  625 

 626 

Figure 4. Boxplot representation of MGMT expression in function of CNA and MGMT 627 

methylation status in glioma grade II to IV. For each dataset the number of samples for each 628 

subpopulation is provided next to the box. Subpopulations with deletions at 10q26.3 (del) are 629 

indicated in white, the ones with normal copy number (no-del) in black. MGMT methylated, 630 

M; MGMT unmethylated, U. 631 

 632 

Figure 5. Effect of data preprocessing procedures on MGMT classification. Paired 633 

comparisons of the probabilities of MGMT promoter methylation (MGMT-STP27) between 634 

preprocessing procedures for the M-GBM dataset. Five preprocessing procedures for the HM-635 

450K platform were compared with the initial procedure used to build the model MGMT-636 

STP27. The outputs from recommended preprocessing were compared with (A) outputs from 637 

the Illumina-like procedure based on control normalization (a reference sample was used 638 

during the normalization step), (B) preprocessing with Illumina-like background correction 639 

only, (C) quantile normalization, (D) SWAN normalization, and (E) Noob normalization. 640 

Each dataset contained exactly the same samples. The grey dashed lines identify the original 641 

cut-off of 0.3582. The straight, dashed black line corresponds to the equation y=x and the 642 

grey line to the loess regression, respectively. The proportions of good classification 643 

(diagnostic accuracy, DA) are provided for the original cut-off on each panel. 644 
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 645 

Figure 6. Quality control visualization for multi-sample and single sample predictions from R 646 

package mgmtstp27. The M-values of the two probes cg12434587 and cg12981137 are 647 

illustrated in (A) for multi-sample predictions and (D) for single sample prediction. The 648 

inertia ellipses identify the training dataset and the dots correspond to the location of the new 649 

sample prediction. The red and blue colors visualize methylated and unmethylated status, 650 

respectively. (B) illustrates the comparison of the MGMT score distribution of a new multi-651 

sample dataset (black curve) with the training dataset (M-GBM, green curve, histogram). For 652 

single sample prediction, the new sample is indicated by the black vertical line (E). The multi-653 

sample predictions (MGMT score and Probabilities) for the dataset TCGA-GBM-27 (black 654 

points and lines) associated with their prediction intervals (grey polygons) are shown in (C). 655 

The prediction for the sample TCGA-02-0057 from the dataset TCGA-GBM-27 is indicated 656 

in (F) associated with the prediction interval. As reference, the green curve and grey polygons 657 

correspond to the prediction and confidence intervals for the training dataset (M-GBM).  658 

 659 

 660 

 661 
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Legends Supplementary Figures  

 

Figure S1. Pipeline for computation of MGMT classification using the R package mgmtstp27. 

The R package minfi and methylumi can be used to import and to preprocess raw data. The 

prediction of the DNA methylations status of MGMT promoter requires preprocessed 

intensities for the signals for unmethylated and methylated as initially proposed for HM-27k 

in Illumina Genome Studio software in 2009-2011 and originally used in TCGA database. For 

raw HM-450K data, this operation was performed by the function preprocessRaw from R 

package minfi. When the raw IDAT format was not available, we assumed an adequate 

normalization procedure. 

 

Figure S2. Spatial correlation between MGMT expression and CpG methylation in the 

MGMT promoter for Non-Glioma Tumors from TCGA. The correlation between expression 

and DNA methylation for the Infinium HM-450K probes in MGMT promoter (genome 

assemble 37, hg19) is given for TCGA-COAD, TCGA-BRCA, TCGA-HNSC and TCGA-

LUSC datasets. The green rectangle corresponds to the CpG island located in the MGMT 

promoter region and the two dark blue rectangles identify the location of the two Inifinium 

HM-450K/27K probes used in the model MGMT-STP27. 

 

Figure S3. Forest plot of the meta-analysis for the proportion of MGMT methylation in colon 

cancer. The calculation of an overall proportion of MGMT methylation from 13 studies (2779 

patients). This analysis used logit transformation and inverse variance method. DerSimonian-

Laird estimate was used in the random effects model and Clopper-Pearson intervals were 

given for MGMT proportion in each study ('exact' binomial interval). 

1 
 



 

 

Figure S4. Boxplot representation of MGMT expression in function of CNA and MGMT 

methylation status in non-Glioma datasets from TCGA (TCGA-COAD, TCGA-

BRCA,TCGA-HNSC and TCGA-LUSC). For each dataset the number of samples for each 

subpopulation is provided next to the box. Subpopulations with deletions at 10q26.3, del; 

subpopulations with normal copy number, no-del; MGMT methylated, M; MGMT 

unmethylated, U. 

 

Figure S5. Boxplot representation of MGMT expression in function of CIMP status and MGMT 

methylation status in glioma grade II to IV. The number of samples for each subpopulation is 

provided next to the box for each dataset. The combined effect of the two variables CIMP status and 

MGMT methylation status on the expression of MGMT was not efficiently testable because the data 

was strongly unbalanced. Presence of CIMP, CIMP+; absence of CIMP, CIMP-; MGMT methylated, 

M; MGMT unmethylated, U. 

 

 

Figure S6. Comparison of MGMT score distributions (logit-transformed probability) among FFPE 

and Frozen Tissues from VB-Glioma-III dataset. The MGMT score distributions were represented by 

histogram for frozen tissue (A, n=51), for FFPE tissue (B, n=59) and for aggregated data (C, n=110). 

The dotted, dashed and solid red curves correspond to kernel density estimates for frozen tissues, 

FFPE tissues and all samples. The vertical dashed black line identifies the position of the cut-

off used to determinate the MGMT promoter state (0.3582). The QQ-plot representation (D) 

compares the MGMT score distributions from Frozen and FFPE data (VB-Glioma-II/III). The 

distributions were compared by Smirnov-Kolmogorov tests (D=0.187, p-value=0.253). The 

solid red line corresponds to line of equation y=x. 
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Figure S7. Effect of preprocessing procedures on MGMT classification. Paired comparison of 

the probabilities that MGMT promoter was methylated to evaluate the effect of preprocessing 

procedure for TCGA datasets (TCGA-GBM-450, TCGA-Glioma-II/III). Five preprocessing 

procedures for the HM-450K platform were compared with the initial procedure used to build 

the model MGMT-STP27. The outputs from recommended preprocessing were compared 

with outputs from (A) Illumina-like procedure based on control normalization (a reference 

sample was used during the normalization step), (B) preprocessing with Illumina-like 

background correction only, (C) quantile normalization, (D) SWAN normalization and (E) 

Noob normalization. Each dataset contained exactly the same samples. The predictions from 

the level 1 (F) and level 2 (G) for HM-27k data from TCGA GBM database were compared 

with outputs of the originally calculated probabilities 11. The grey dashed lines identify the 

original cut-off of 0.3582. The straight, dashed black line corresponds to the equation y=x and 

the grey line to the loess regression, respectively. The proportions of good classification 

(diagnostic accuracy, DA) are provided for the original cut-off on each figure. 
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Study (year)

Fixed effect model
Random effects model
Heterogeneity: I−squared=81.3%, tau−squared=0.0974, p<0.0001

Alonso 2015
Azuara 2010
Farzanehfar 2013
Shima 2010
Esteller 2000
Lee 2001
CoppedŠ 2014
Kim 2010
Chen 2009
Krtolica 2007
Nagasaka 2003
Nagasaka 2008
TCGA−COAD 2015

MGMT test

MSP
MSP

q−MSP
q−MSP

MSP
MSP

MS−HRM
pyro−seq

MSP
MSP
MSP
MSP

HM−450K

Events

 85
 88
 11
325
103
 38
 36
 57
 71
 24
 26
 84
 83

Total

2772

 224
 250
  29
 855
 244
 112
  80
 264
 117
  47
  90
 233
 227

0.2 0.3 0.4 0.5 0.6
MGMT methylation proportion

Proportion

0.37
0.38

0.38
0.35
0.38
0.38
0.42
0.34
0.45
0.22
0.61
0.51
0.29
0.36
0.37

95%−CI

[0.36; 0.39]
[0.34; 0.43]

[0.32; 0.45]
[0.29; 0.41]
[0.21; 0.58]
[0.35; 0.41]
[0.36; 0.49]
[0.25; 0.43]
[0.34; 0.57]
[0.17; 0.27]
[0.51; 0.70]
[0.36; 0.66]
[0.20; 0.39]
[0.30; 0.43]
[0.30; 0.43]

W(fixed)

100%
−−

 8.3%
 9.0%
 1.1%
31.9%
 9.4%
 4.0%
 3.1%
 7.1%
 4.4%
 1.9%
 2.9%
 8.5%
 8.3%

W(random)

−−
100%

8.7%
8.8%
4.1%
9.9%
8.8%
7.4%
6.8%
8.4%
7.6%
5.5%
6.7%
8.7%
8.7%

Meta-analysis for MGMT methylation proportion in colon cancer
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Table S1. Description of datasets 
Dataset No 

samples 
Trial DNA 

methylation 
platform 

†Acc No Expression 
platform 

†Acc No Tissue 
type 

References 

GLIOMA datasets        

M-GBM 63 yes HM-450K GSE60274 Affy U133plus2 GSE7696 Frozen 21, 20 

TCGA- 
GBM-27 217 no HM-27K TCGA Affy U133A TCGA Frozen 22, 23, 2 

TCGA- 
GBM-450 104 no HM-450K TCGA Affy U133A TCGA Frozen 22, 23, 2 

VB-Glioma-
III 51 yes HM-27K GSE48460   Frozen 7

 

 59 yes HM-450K GSE48461   FFPE 9 

Turcan-
Glioma-II/III 71 no HM-450K GSE30338 Affy U133plus2 GSE30336 Frozen 10

 

TCGA-
Glioma-II/III 197 no HM-450K TCGA RNA-seq (level 3) TCGA Frozen 24

 

NON-Glioma datasets       

TCGA-
COAD 227 no HM-450K TCGA RNA-seq (level 3) TCGA Frozen TCGA Consortium 

TCGA-
HNSC 442 no HM-450K TCGA RNA-seq (level 3) TCGA Frozen TCGA Consortium 

*TCGA-
BRCA 

305 no HM-450K TCGA RNA-seq (level 3) TCGA Frozen TCGA Consortium 

TCGA-
LUSC 328 no HM-450K TCGA RNA-seq (level 3) TCGA Frozen TCGA Consortium 

* Randomly selected 
†Accession number: Gene Expression Omnibus, www.ncbi.nlm.nih.gov/geo/ ;The Cancer 

Genome Atlas (TCGA), https://tcga-data.nci.nih.gov/tcga/  

http://www.ncbi.nlm.nih.gov/geo/
https://tcga-data.nci.nih.gov/tcga/
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Table S2. Description of the main clinical and molecular variables of the Glioma datasets (WHO grade II, III and IV). 

Study Variable Modality n Proportion * Lower * Upper
M-GBM (63) Gender F 15 0.2381 0.1398 0.3621

M 48 0.7619 0.6379 0.8602
MGMT meth U 28 0.4444 0.3192 0.5751

M 35 0.5556 0.4249 0.6808
Grade II 0 0.0000 0.0000 0.0569

III 0 0.0000 0.0000 0.0569
IV 63 1.0000 0.9431 1.0000

hCIMP CIMP- 59 0.9365 0.8453 0.9824
CIMP+ 4 0.0635 0.0176 0.1547

CD-CIMP none 59 0.9365 0.8453 0.9824
cimp 3 0.0476 0.0099 0.1329
cdcimp 1 0.0159 0.0004 0.0853

MGMT CNA none 6 0.0952 0.0358 0.1959
del 57 0.9048 0.8041 0.9642

Codel 1p19q cd 1 0.0159 0.0004 0.0853
n 62 0.9841 0.9147 0.9996

† Age middle 42 0.6667 0.5366 0.7805
old 11 0.1746 0.0905 0.2910
young 9 0.1429 0.0675 0.2539

TCGA-GBM450 (104) Gender F 47 0.4519 0.3541 0.5526
M 57 0.5481 0.4474 0.6459

MGMT meth U 58 0.5577 0.4570 0.6550
M 46 0.4423 0.3450 0.5430

Grade II 0 0.0000 0.0000 0.0348
III 0 0.0000 0.0000 0.0348
IV 104 1.0000 0.9652 1.0000

hCIMP CIMP- 99 0.9519 0.8914 0.9842
CIMP+ 5 0.0481 0.0158 0.1086

CD-CIMP none 99 0.9519 0.8914 0.9842
cimp 5 0.0481 0.0158 0.1086
cdcimp 0 0.0000 0.0000 0.0348

MGMT CNA none 22 0.2115 0.1376 0.3026
del 82 0.7885 0.6974 0.8624

Codel 1p19q cd 0 0.0000 0.0000 0.0348
n 104 1.0000 0.9652 1.0000

† Age middle 49 0.4712 0.3725 0.5715
old 52 0.5000 0.4003 0.5997
young 3 0.0288 0.0060 0.0820

TCGA-GBM27 (217) Gender F 83 0.3825 0.3175 0.4507
M 134 0.6175 0.5493 0.6825

MGMT meth U 109 0.5023 0.4338 0.5707
M 108 0.4977 0.4293 0.5662

Grade II 0 0.0000 0.0000 0.0169
III 0 0.0000 0.0000 0.0169
IV 217 1.0000 0.9831 1.0000

hCIMP CIMP- 200 0.9217 0.8775 0.9537
CIMP+ 17 0.0783 0.0463 0.1225

CD-CIMP none 191 0.8802 0.8294 0.9202
cimp 16 0.0737 0.0427 0.1170
cdcimp 1 0.0046 0.0001 0.0254

MGMT CNA none 30 0.1382 0.0953 0.1914
del 187 0.8618 0.8086 0.9047

Codel 1p19q cd 10 0.0461 0.0223 0.0831
n 207 0.9539 0.9169 0.9777

† Age middle 83 0.3825 0.3175 0.4507
old 106 0.4885 0.4202 0.5571
young 28 0.1290 0.0875 0.1811
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TCGA-Glioma-II/III (197) Gender F 86 0.4365 0.3662 0.5089
M 111 0.5635 0.4911 0.6338

MGMT meth U 31 0.1574 0.1095 0.2159
M 166 0.8426 0.7841 0.8905

‡ Grade II 90 0.4569 0.3859 0.5291
III 106 0.5381 0.4658 0.6092
IV 0 0.0000 0.0000 0.0186

hCIMP CIMP- 37 0.1878 0.1358 0.2495
CIMP+ 160 0.8122 0.7505 0.8642

CD-CIMP none 37 0.1878 0.1358 0.2495
cimp 110 0.5584 0.4861 0.6289
cdcimp 50 0.2538 0.1946 0.3206

MGMT CNA none 154 0.7817 0.7175 0.8373
del 43 0.2183 0.1627 0.2825

Codel 1p19q cd 50 0.2538 0.1946 0.3206
n 147 0.7462 0.6794 0.8054

† Age middle 76 0.3858 0.3175 0.4576
old 22 0.1117 0.0713 0.1642
young 99 0.5025 0.4306 0.5744

VB-Glioma-III (110) Gender F 40 0.3636 0.2740 0.4608
M 70 0.6364 0.5392 0.7260

MGMT meth U 25 0.2273 0.1528 0.3170
M 85 0.7727 0.6830 0.8472

Grade II 0 0.0000 0.0000 0.0330
III 110 1.0000 0.9670 1.0000
IV 0 0.0000 0.0000 0.0330

hCIMP CIMP- 51 0.4636 0.3680 0.5612
CIMP+ 59 0.5364 0.4388 0.6320

CD-CIMP none 48 0.4364 0.3420 0.5342
cimp 26 0.2364 0.1606 0.3268
cdcimp 33 0.3000 0.2163 0.3948

MGMT CNA none 65 0.5909 0.4931 0.6837
del 45 0.4091 0.3163 0.5069

Codel 1p19q cd 36 0.3273 0.2408 0.4233
n 74 0.6727 0.5767 0.7592

† Age middle 67 0.6091 0.5114 0.7007
old 10 0.0909 0.0445 0.1608
young 33 0.3000 0.2163 0.3948

Turcan-Glioma-II/III (71) Gender F 26 0.3662 0.2550 0.4890
M 45 0.6338 0.5110 0.7450

MGMT meth U 14 0.1972 0.1122 0.3086
M 57 0.8028 0.6914 0.8878

Grade II 29 0.4085 0.2932 0.5316
III 42 0.5915 0.4684 0.7068
IV 0 0.0000 0.0000 0.0506

hCIMP CIMP- 22 0.3099 0.2054 0.4308
CIMP+ 49 0.6901 0.5692 0.7946

CD-CIMP none 22 0.3099 0.2054 0.4308
cimp 24 0.3380 0.2300 0.4601
cdcimp 25 0.3521 0.2424 0.4746

MGMT CNA none 60 0.8451 0.7397 0.9200
del 11 0.1549 0.0800 0.2603

Codel 1p19q cd 25 0.3521 0.2424 0.4746
n 46 0.6479 0.5254 0.7576

† Age middle 36 0.5070 0.3856 0.6278
old 13 0.1831 0.1013 0.2927
young 22 0.3099 0.2054 0.4308

*  The proportions were associated with their exact binomial confidence intervals at 95%. 
† The age was encoded in three categories: young for age ≤ 40 , middle for age > 40 and ≤ 60 and for age > 60.
‡ one missing value
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Table S3. Effects of CIMP and DNA methylation status on expression of MGMT.  

Dataset (N) Type Variables % (N) F-statistic †Pvalue 
M-GBM (59) GBM MGMT meth 55.93 (33) 10.933 0.003 
  *CIMP+ 6.78 (4) 0.232 0.627 
TCGA-GBM-27 (212) GBM MGMT meth 50.94 (108) 141.068 0.001 
  *CIMP+ 8.02 (17) 2.154 0.145 
TCGA-GBM-450 (67) GBM MGMT meth 43.28 (29) 8.103 0.008 
  *CIMP+ 5.97 (4) 0.529 0.46 
TCGA-Glioma-II/III (195) LGG MGMT meth 84.62 (165) 19.114 0.001 
  CIMP+ 81.54 (159) 0.002 0.97 
T-Glioma-II/III (48) LGG MGMT meth 85.42 (41) 9.374 0.005 
    CIMP+ 75 (36) 0.002 0.97 
* CIMP+ very rare event, unbalanced data! 
† simulated p-values estimated by Monte-Carlo procedures (999 permutations)  
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Table S4. Description of preprocessing and normalization procedures for HM-27K and HM-450K.  

 
Platform Preprocessing Descrition TCGA-GBM 

Missclassified (%) 
M-GBM 
Missclassified (%) 

R Function R Packages Reference 

HM-27K Raw Preprocessing used initially to preprocess HM-27K 1 (0.4)  methylumIDAT methylumi 58
 

 Noob backgournd correction based on normal-exponential 
deconvolution (TCGA level2 in 2014) 

9 (3.7)  methylumi.bgcorr methylumi 58 

        

HM-450K Raw Preprocessing initially designed for HM-27K - - methylumIDAT 
preprocessRaw 

methylumi 
minfi 

58, 25 

 Illumina Control normalization and  background correction 
(subtraction of the fifth percentile from background 
intensity distribution) 

3 (2.5) 4 (5.9) preprocessIllumina minfi 25
 

 Background only background correction based on the subtraction of 
the fifth percentile from background intensity 
distribution 

3 (2.5) 4 (5.9) preprocessIllumina minfi 25
 

 Noob background correction based on normal-exponential 
deconvolution with dye-bias correction 

5 (4.1) 4 (5.9) preprocessNoob, minfi 25,17 

 Quantile separate quantile normalization of unmethylated and 
methylated signals 

53 (43.4) 18 (26.7) preprocessQuantile minfi 25
 

 SWAN Subset-quantile Within Array Normalisation for 
Illumina Infinium 
HumanMethylation450 BeadChips 

5 (4.1) 1 (1.5) preprocessSWAN minfi 16
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