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1  |  INTRODUC TION

Inbreeding is defined as mating between relatives and has 
been observed across many taxa including humans (Bittles & 

Black,  2010; Ceballos et al.,  2018), livestock (Forutan, Ansari 
Mahyari, et al.,  2018; Kim et al.,  2013; Peripolli et al.,  2017, 
2018), wild animal populations (Åkesson et al.,  2016; Huisman 
et al.,  2016; Kardos et al.,  2018; Keller & Waller,  2002) and 
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Abstract
Genomic measures of inbreeding based on identical-by-descent (IBD) segments are 
increasingly used to measure inbreeding and mostly estimated on SNP arrays and 
whole-genome sequencing (WGS) data. However, some softwares recurrently used 
for their estimation assume that genomic positions which have not been genotyped 
are nonvariant. This might be true for WGS data, but not for reduced genomic repre-
sentations and can lead to spurious IBD segments estimation. In this project, we simu-
lated the outputs of WGS, two SNP arrays of different sizes and RAD-sequencing for 
three populations with different sizes and histories. We compare the results of IBD 
segments estimation with two softwares: runs of homozygosity (ROHs) estimated 
with PLINK and homozygous-by-descent (HBD) segments estimated with RZooRoH. 
We demonstrate that to obtain meaningful estimates of inbreeding, RZooRoH re-
quires a SNPs density 11 times smaller compared to PLINK: ranks of inbreeding coef-
ficients were conserved among individuals above 22 SNPs/Mb for PLINK and 2 SNPs/
Mb for RZooRoH. We also show that in populations with simple demographic histo-
ries, distribution of ROHs and HBD segments are correctly estimated with both SNP 
arrays and WGS. PLINK correctly estimated distribution of ROHs with SNP densities 
above 22 SNPs/Mb, while RZooRoH correctly estimated distribution of HBD seg-
ments with SNPs densities above 11 SNPs/Mb. However, in a population with a more 
complex demographic history, RZooRoH resulted in better distribution of IBD seg-
ments estimation compared to PLINK even with WGS data. Consequently, we advise 
researchers to use either methods relying on excess homozygosity averaged across 
SNPs or model-based HBD segments calling methods for inbreeding estimations.

K E Y W O R D S
homozygous-by-descent, identical-by-descent, inbreeding, reduced genomic representations, 
runs of homozygosity
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2  |    LAVANCHY and GOUDET

plants (Kariyat & Stephenson, 2019; Keller & Waller, 2002; Zhang 
et al., 2019). Its quantification and the understanding of its dele-
terious consequences – called inbreeding depression – are central 
in many areas of biology, from human genetics to conservation 
biology (Keller & Waller, 2002). Indeed, increase in genome auto-
zygosity has been associated with diseases, such as schizophre-
nia (Keller et al., 2012; Lencz et al., 2007) and Alzheimer's disease 
(Ghani et al.,  2015; Nalls et al.,  2009) as well as fitness costs in 
animals (Åkesson et al.,  2016; Huisman et al.,  2016) and plants 
(Menges, 1991; Zhang et al., 2019).

Individual levels of inbreeding are quantified with inbreeding 
coefficients (F). Traditionally, inbreeding was measured by count-
ing the size and number of loops in pedigrees (FPED) (Wright, 1922) 
a method with several downsides: (i) it estimates the expected in-
dividual coefficient which can differ from the realized individual 
coefficient due to recombination stochasticity and Mendelian seg-
regation (Carothers et al., 2006; Franklin, 1977; Hill & Weir, 2011); 
(ii) it assumes founders of the pedigree are unrelated and nonin-
bred; (iii) pedigrees must be correctly recorded which is extremely 
difficult in wild populations, although genetic data might be used 
to (re)construct links (Huisman,  2017; Jones & Wang,  2010). 
With the advancements in high throughput sequencing tech-
nologies it became possible to estimate with sufficient accuracy 
genomic-based F, and several studies have shown molecular esti-
mates to be more accurate than pedigree-based estimates (Alemu 
et al., 2020; Kardos et al., 2015; Keller et al., 2011; Wang, 2016). 
Many different genomic-based F have been proposed, such as 
FHOM (Chang et al., 2015), FAS (Weir & Goudet, 2017), FUNI and FGRM 
(both described in Yang et al., 2011) but there is still no consen-
sus on which is the most accurate (Alemu et al., 2020; Caballero 
et al., 2020; Goudet et al., 2018; Nietlisbach et al., 2019; Yengo 
et al., 2017). These estimates quantify average excess single nucle-
otide polymorphism (SNP) homozygosity or correlation between 
uniting gametes and treat all SNPs independently. However, par-
ents transmit DNA to their offspring in large chromosomal seg-
ments rather than each base independently. Consequently, it has 
been suggested that measures of inbreeding should be based 
on identical-by-descent (IBD) segments rather than individual 
SNPs (McQuillan et al., 2008). Hence, a new F was proposed by 
McQuillan et al.,  (2008). This coefficient intends to quantify the 
proportion of IBD segments in the genome. From this point on-
ward, we will call the true fraction of genome within IBD seg-
ments: FIBD and its estimations (i) FROH when estimated from runs 
of homozygosity (ROHs) with observational-based approaches 
and (ii) FHBD when estimated from homozygous-by-descent (HBD) 
segments from model-based approaches.

McQuillan et al.  (2008) proposed to use ROHs, long consec-
utive homozygous segments, as a proxy for these IBD segments. 
ROHs were first described by (Broman & Weber,  1999) and 
shown to be ubiquitous in humans (Ceballos et al., 2018; Gibson 
et al.,  2006; Pemberton et al.,  2012) and across many different 
taxa (Kardos et al., 2018; Liu et al., 2020; Saremi et al., 2019). FROH 
is calculated as the proportion of the genome within ROHs and 

several studies demonstrated that it was a reliable estimator of 
inbreeding (Alemu et al., 2020; Caballero et al., 2020; Nietlisbach 
et al., 2019). In addition to quantifying inbreeding, distribution of 
IBD segments (i.e., lengths and numbers) can inform about a pop-
ulation's past demography and history (Ceballos et al., 2018; Kirin 
et al., 2010; Pemberton et al., 2012): long segments reflect recent 
coalescence events while smaller segments indicate more distant 
coalescence and, if in high proportion, a history of small effective 
population size. Finally, IBD segments can be used for identify-
ing rare deleterious recessive variants responsible for deleterious 
phenotypes by homozygosity mapping, which in short compares 
islands of IBD segments between affected and unaffected individ-
uals (Alkuraya, 2013; Hildebrandt et al., 2009; Stoffel et al., 2021; 
Wang et al., 2009).

Two different methods for IBD segments detection are re-
currently used in the literature: observation and model-based 
approaches (Ceballos et al.,  2018). The most common method 
is a fast observation-based method (Ceballos et al.,  2018) im-
plemented in PLINK (Chang et al.,  2015; Purcell et al.,  2007). It 
makes use of a sliding window to identify continuous homozy-
gous stretches, with a minimum size defined by the user, used 
as proxy for IBD segments. The other family of methods is 
model-based, and has been implemented in RZooRoH (Bertrand 
et al., 2019; Druet & Gautier, 2017, 2022), BEAGLE (Browning & 
Browning, 2010) and BCFTools (Narasimhan et al., 2016). It relies 
on hidden Markov models (HMM) and directly infers HBD seg-
ments from the genotypes by considering the distance between 
two markers, the mutation rate and even the recombination map 
if available. Consequently, these methods do not require a min-
imum threshold on segment length. HMM methods are compu-
tationally demanding (Ceballos et al., 2018) and a previous study 
suggested that PLINK outperformed HMM methods both in terms 
computation time and ROHs detection accuracy with simulated 
whole-genome-sequencing (WGS) data (Howrigan et al.,  2011). 
However, few HMM methods were available at that time and the 
authors did not investigate the robustness of PLINK to genotyp-
ing errors. Observation-based approaches were designed for WGS 
data and assume that the region between two SNPs are entirely 
homozygous. However, many studies performing ROHs analyses 
with PLINK used reduced genomic representation techniques: 
often SNP arrays (Bjelland et al., 2013; Bosse et al., 2012; de Jong 
et al., 2020; Forutan, Mahyari, et al., 2018) where specific SNPs, 
chosen based on their position, effect on phenotype or minor al-
lele frequency (MAF), are targeted and genotyped. ROHs have 
also been called with restriction-site associated DNA sequencing 
(RAD-sequencing) data, by cutting the genome near enzymes cut-
ting sites and selecting and sequencing fragments based on their 
size. With both SNP arrays and RAD sequencing, only a fraction 
of the genome is sequenced resulting in a partial representation of 
the total polymorphism. Since PLINK assumes that genomic posi-
tions not included in the SNPs set are nonvariant, we expect that it 
will falsely consider nonsequenced heterozygous loci as homozy-
gous which can lead to spurious ROHs detection. On the contrary, 
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    |  3LAVANCHY and GOUDET

the HMM approach from Leutenegger et al.  (2003), which mod-
els the genome as a mosaic of HBD and non-HBD segments and 
from which most current model-based approaches follow, was 
initially developed for SNP arrays. These models do not treat 
nonsequenced genomic regions as homozygous but as missing 
data. However, model-based approaches are rarely used for de-
tecting IBD segments with reduced genomic data (but see Alemu 
et al., 2020; Duntsch et al., 2021; Sole et al., 2017). In addition, no 
precise benchmarking with large sample size has been performed 
on comparing how the different methods behave with these re-
duced genomic data compared to WGS data and precise guidelines 
such as which method is suitable with which data are missing.

In addition to the fraction of genome captured, we hypothe-
size that the effective size and level of polymorphism in a pop-
ulation might also affect the capacity of the different methods 
to accurately detect IBD segments. Small and inbred populations 
tend to harbour higher numbers of long such segments easier to 
accurately detect with reduced representations as the missing po-
sitions are more likely to be homozygous. Larger populations will 
tend to harbour many small IBD segments (Ceballos et al., 2018; 
Kirin et al.,  2010) harder to detect when only a fraction of the 
polymorphism is available since these small segments require lots 
of nearby SNPs to reach the minimum density threshold for an 
accurate detection (Kardos et al.,  2015; Sole et al.,  2017; Zhang 
et al.,  2015). On the other hand, larger populations will harbour 
higher levels of polymorphism and thus higher numbers of SNPs 
resulting in an increased SNPs density for the same fraction of 
genome sequenced with RAD-sequencing.

Here, we use simulated data to compare the performance of 
PLINK and RZooRoH with two reduced genomic representations – 
SNP arrays and RAD-sequencing – and WGS. We compare both soft-
wares output to the true IBD segments extracted from the simulated 
data. We hypothesize that the quality of detection depends on SNP 
density. In addition, since model-based approaches take into account 
the distance between each SNP, we predict that they will perform 
better when dealing with sparse data (Druet & Gautier, 2017). We 
show that both detection methods can be used to correctly estimate 
IBD segments with SNP arrays and RAD-sequencing providing that 
a sufficient proportion of the genome has been sequenced. This pro-
portion varied between IBD segments detection methods and pop-
ulation sizes: the model-based method implemented in RZooRoH as 
well as the large population require a substantially smaller fraction 
of the genome to obtain correct inbreeding and distribution of IBD 
segments estimates.

2  |  MATERIAL S AND METHODS

All scripts used in this project are available on GitHub: https://github.
com/Eleon​oreLa​vanch​y/ROHsR​educe​dRep. A general workflow of 
the study can be found in Figure 1 and additional details about the 
simulations and analyses performed can be found in the Supporting 
Information.

2.1  |  Simulations

We simulated two hermaphroditic populations (N  =  1000 and 
N = 10,000) using SLiM3, a forward-in-time individual-based simula-
tion software (Haller & Messer, 2019). We used a “non-Wright-Fisher” 
model with nonfixed population sizes and overlapping generations 
(Haller & Messer, 2019). Population size was regulated via a patch 
carrying capacity where individuals were removed based on their 
overall fitness at the end of each simulation cycle. Individuals' fitness 
decreased with age which varied between 0 and 3: older individuals 
had higher probabilities to die. Individuals were able to reproduce 
from the age of 1 and selfing was not allowed. For each individual, 
its mate was chosen among the other individuals based on their age 
(with older individuals less likely to be chosen) and on their pedigree-
based coancestry with the focal individual (related individuals had 
higher chances to be chosen). This resulted in a population mostly 
practicing random mating but ensured that some inbreeding would 
occur at each generation. We simulated 10 replicates for both popu-
lation sizes and each simulation lasted for 1000 reproductive cycles. 
We used a human-like genetic map with a nonhomogenous recom-
bination rate simulated with FREGENE as described in Chadeau-
Hyam et al. (2008). This resulted in genomes of 3000 centimorgans 
(cM). Individuals from both populations carried 30 chromosomes 
each 100 Mb long. The burnin were performed via recapitation in 
msprime (Kelleher et al., 2016). All mutations were added at the end 
of the simulation (after the burnin) based on a human-like mutation 
rate of 2.5 x 10−8 per site per generation (Nachman & Crowell, 2000).

At the end of the entire simulation process, we performed a ran-
dom stratified sampling to ensure that the individuals used in sub-
sequent analyses would cover the entire range of inbreeding. We 
are aware that this scheme is rare and hard to apply empirically but 
it allowed us to investigate whether the entire spectra of inbreed-
ing was correctly estimated. Whenever possible, we subsampled 
20 individuals with FPED between 0 and 0.1, 20 individuals with FPED 
between 0.1 and 0.2, 20 individuals with FPED between 0.2 and 0.3, 
20 individuals with FPED between 0.3 and 0.4 and 20 individuals with 
FPED between 0.4 and 0.5. The average (±SD) number of sampled 
individuals per replicate were 87.3 ± 5.03 for the small population 
and 67.40 ± 4.09 for the large population. The lower number of indi-
viduals subsampled in the large populations are because they con-
tained fewer individuals with high F. At the very end, the mean (±SD) 
number of SNPs per simulated population was 1.6 x 106 ± 2.0 x 104 
SNPs for the small populations and 1.6 x 107 ± 1.7 x 105 SNPs for the 
large populations.

2.2  |  SNPs subsampling

In order to investigate the effect of reduced genomic representa-
tions on identical-by-descent (IBD) segments estimation, we mim-
icked different sequencing techniques by subsampling SNPs from 
whole-genome data. We simulated both RAD-sequencing and two 
SNP arrays of different sizes.
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4  |    LAVANCHY and GOUDET

RAD-sequencing uses restriction enzymes to digest the genome 
in small fragments, which are then selected on size and sequenced 
(Andrews et al., 2016). Consequently, these fragments are not ho-
mogenously distributed along the genome. For this purpose, we ran-
domly selected 500 base-pair (bp) fragments (Andrews et al., 2016) 
using bedtools version 2.29 (Quinlan,  2014). Afterwards, SNPs 
within these windows were subsampled using --bed function from 
VCFTools (Danecek et al., 2011). Given that the proportion of the 
genome sequenced with RAD-sequencing varies greatly depending 
on the organism and on the restriction enzymes used, we varied this 
number of fragments so that they covered between 0.05% and 10% 
of the genome, and between 0.002% and 1%, for the small and the 

large populations respectively. We did so because these percent-
ages resulted in similar SNPs densities between the small and large 
populations and because SNPs density is an accurate indicator for 
the accuracy of runs of homozygosity (ROHs) or homozygous-by-
descent (HBD) segments detection (see results). In addition, we sub-
sampled different percentages of genome (resulting in different SNP 
densities) between PLINK and RZooRoH. This is because RZooRoH 
requires smaller SNP densities compared to PLINK to reach the same 
accuracy of IBD segments estimation. We performed 100 replicates 
for each RAD-sequencing subsampling percentage.

To simulate SNP array sequencing, we mimicked two arrays ini-
tially developed for cattle and widely used for ROHs analyses: the 

F I G U R E  1  General workflow of the study. Simulations were first performed in SLiM3. Within one population, each chromosome shared 
the same pedigree. Burnin, recapitation and mutation overlay were then performed in msprime. Single nucleotide polymorphism (SNP) 
subsampling was performed with bedtools for RAD-sequencing and homemade python script for both arrays. Runs of homozygosity 
(ROHs) were called with PLINK and homozygous-by-descent (HBD) segments with RZooRoH. For distribution of ROHs and HBD segments, 
segments were divided into six length classes. The true identical-by-descent (IBD) segments were extracted from simulated TreeSequences. 
Fractions of genomes correctly and incorrectly assigned within and outside IBD segments were then estimated as the overlap between 
ROHs or HBD segments and these true IBD segments
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    |  5LAVANCHY and GOUDET

Illumina BovineSNP 50 beadchip (~50,000 SNPs) hereafter “small 
array” - and the Illumina BovineHD BeadChip – (~777,000 SNPs) 
hereafter “large array”. Common features of both arrays are the ho-
mogenous distances between SNPs and the focus on common SNPs, 
hence, we first filtered our WGS data on MAF 5%. We then selected 
windows with size corresponding to the median distances between 
SNPs in the real arrays – 40 kb for the small array and 3 kb for the 
large array – and selected the SNP with higher MAF within each 
window (if at least one SNP was present). We use the term “small 
array” for what is usually considered as a medium-density array in 
the literature.

2.3  |  IBD segments estimation: ROHs And 
HBD segments

We compared two methods for IBD segments detection to inves-
tigate whether we observe a difference in their capacity to han-
dle reduced genomic data. We chose one observational-based 
approach – the --homozyg method, implemented in PLINK (Chang 
et al.,  2015) – and one model-based approach – the RZooRoH 
method, implemented as a R package (Bertrand et al., 2019; Druet 
& Gautier,  2017, 2022). PLINK makes use of a sliding window to 
identify homozygous segments, used as a proxy for IBD segments. 
Consequently, PLINK results will be called ROHs. On the contrary, 
RZooRoH models autozygous segments directly from the genotypes 
and its results will be referred to as HBD segments.

For ROHs detection with PLINK, we varied parameters accord-
ing to the SNP density in the reduced data set as proposed by Kardos 
et al.  (2015) and performed by Duntsch et al.  (2021). In particular, 
we varied the window size (--homozyg-window-snps) as well as the 
minimum SNP density (--homozyg-density) and number of SNPs 
(--homozyg-snps) required for a homozygous segment to be called 
a ROH. We required lower numbers of SNPs for low SNPs densi-
ties data sets. We also varied the maximum number of heterozygous 
SNPs allowed in a ROH (--homozyg-het). On the contrary, we fixed 
some parameters: we authorized 1 heterozygous SNPs per window 
(--homozyg-window-het = 1), maximum 1 Mb in between two ad-
jacent SNPs (--homozyg-gap = 1000) and a minimum ROH size of 
100 kb (--homozyg-kb = 100). These parameters were consistent for 
every replicate per subsampling method. A more precise description 
and justification of how each parameter value was chosen accord-
ing to the SNP density can be found in the Supporting Information 
(pages 3 to 5; Table S1 and Table S2; Figure S8 and Figure S9).

We called HBD segments with the RZooRoH package version 
0.3.1 with a four HBD classes model with rates (R) equals 10, 100, 
1000 and 10,000 for the HBD classes and 10,000 for the non-HBD 
class. These HBD classes correspond to different coalescence event 
ages: the rate corresponds to the expected number of generations 
since the coalescence event divided by 2 (i.e., 5, 50, 500 and 5000 
generations ago, respectively). For each of these classes, the ex-
pected length of the HBD segments are defined as 1/R [in M]: 10 cM, 
1 cM, 0.1 cM and 0.01 cM. Even though we chose a model with few 

HBD classes, we expect that these classes cover all IBD segments 
length as the variances associated to these average lengths are ex-
tremely large (Speed & Balding, 2015). We used a value of 5 x 10−5 
for genotype uncertainty, which represents the probability that any 
allele mutated in one of the ancestors in the last 1000 reproductive 
events: #meiosis x mutation rate = 1000 x 2 x 2.5 x 10

−8.

2.4  |  SNPs-independent measures of 
inbreeding: FHOM

To test the performance of a SNPs-independent based F, we esti-
mated FHOM, implemented in the --het method from PLINK for all 
SNPs densities presented for RAD-sequencing in this manuscript 
and for WGS. FHOM, FROH and FHBD have different definitions and 
different assumptions about the ‘base-population’. FHOM aims at 
identifying excess homozygosity relative to a random-mating popu-
lation. FROH aims at identifying IBD segments relative to an ancient 
“base-population” and the minimum length threshold chosen will set 
how far this base-population is (in coalescence time) compared to 
our current population. Finally, FHBD does not use a minimum size 
threshold but identifies IBD SNPs by including the allelic frequencies 
into the emission probabilities of the HMM.

2.5  |  True IBD segments

We compared the estimations obtained from both softwares and 
all fractions of genome subsampled to the true fraction of genome 
within IBD segments. We choose to consider a segment IBD if both 
haplotypes coalesced less than 100 reproductive cycles ago (inde-
pendently of their length). Since we have overlapping generations 
and four age classes in our model, these 100 time-steps correspond 
to 25 generations. In supplementary material, we also benchmark 
PLINK and RZooRoH results with IBD segments coalescing less 
than 1000 time-steps (i.e., 250 generations) ago to account for more 
ancient coalescence events. This was done with the tmrca method 
from the tskit module in python.

2.6  |  Statistical analysis

For PLINK, we estimated individual ROHs-based inbreeding co-
efficient (FROH) as the proportion of the genome within ROHs: 

FROH =
∑

LengthROH

genome length
 (McQuillan et al.,  2008). For RZooRoH, we esti-

mated FHBD as the average of posterior HBD probabilities across all 
markers in the data set (the @realized) as suggested in the RZooRoH 
documentation. We then compared these to the true fraction of ge-
nome within IBD segments (FIBD).

Since distribution of IBD segments can inform about the popu-
lation history (Ceballos et al., 2018), we divided these segments into 
six length classes following Kirin et al. (2010): (i) between 100 kb and 
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6  |    LAVANCHY and GOUDET

2 Mb (i.e., between 0.1 cM and 2 cM), (ii) between 2 Mb and 4 Mb (i.e., 
between 2 cM and 4 cM), (iii) between 4 Mb and 6 Mb (i.e., between 
4 cM and 6 cM), (iv) between 6 Mb and 10 Mb (i.e., between 6 cM 
and 10 cM), (v) between 10 Mb and 16 Mb (i.e. between 10 cM and 
16 cM) and (vi) larger than 16 Mb (i.e., larger than 16 cM). Distribution 
of IBD segments are represented as the mean total length per indi-
vidual among simulation and subsampling replicates. For the sake of 
comparison and because we can benchmark these with the true dis-
tributions of IBD segments, we used these length classes with both 
softwares even if they are traditionally used with PLINK as RZooRoH 
models and partitions HBD segments according to the rates chosen 
when constructing the model. Consequently, with RZooRoH we used 
the “most probable” distribution of HBD segments detected with the 
Viterbi algorithm rather than the average SNP probabilities of belong-
ing to any length class. We then compared these distributions to the 
distribution of true IBD segments extracted from the tree sequences.

We use four metrics to evaluate the accuracy of ROHs detection 
for each subsampling technique: (i) the fraction of genome correctly 
assigned within IBD segments (true-IBD), that is, ROHs or HBD seg-
ments which were detected and which were IBD; (ii) the fraction 
of genome correctly assigned outside IBD segments (true-non-IBD), 
that is, genomic regions which were not classified as ROHs nor HBD 
segments with neither softwares and were not IBD segments; (iii) 
the fraction of genome inappropriately assigned within IBD seg-
ments (false-IBD), that is, genomic regions which were classified 
as ROHs or HDB segments but were not IBD; (iv) the fraction of 
genome inappropriately assigned outside IBD segments (false-non-
IBD), that is, IBD segments which were not assigned as ROHs nor 
HBD segments. We compared ROHs and HBD segment estimation 
to the true IBD segments for every individual in every replicate, 
subsampling method and simulation. We then averaged individual's 
fractions among simulation and subsampling replicates to obtain one 
measure per subsampling event.

2.7  |  Additional simulations

We performed an additional batch of simulations based on a real, 
57 years deep, cattle pedigree from Walloon beef cattle. We used 
a genetic map estimated from male Holstein cattle by Qanbari 
and Wittenburg  (2020). In the simulation, a domestic population 
(Ne = 1500) got separated from a large wild population (Ne = 50,000) 
10,000 generations ago with a migration rate of 3 x 10−5 (Frantz 
et al., 2020). To mimic the strong selective pressure which occurred 
during breed formation 200 generations ago and which resulted in 
high levels of inbreeding (Frantz et al., 2020), 200 individuals were 
randomly selected from the domestic population and used as found-
ers for the rest of the simulation. The remaining 200 generations 
were then simulated in SLiM3 from these 200 founders. As the real 
pedigree was only covering the last 57 years, a first round of simula-
tions was run to obtain 200 generations-deep simulated pedigree, 
which was then used to complete the real pedigree by assigning a 
genealogy from the simulated pedigree to each founder from the 

real pedigree. At the end, only the individuals from the real pedigree 
were kept for the analyses.

Since we showed with the first batch of simulations that the ac-
curacy of ROHs detection with RAD-sequencing depends on the 
proportion of genome subsampled, we only mimicked SNP arrays-
like subsampling for these simulations. We did so as previously de-
scribed. At the end of the sliding windows process, we obtained a 
lower number of SNPs than expected as some windows did not con-
tain any SNPs. Additional SNPs were chosen randomly (but still with 
MAF >0.05) to account for empty windows and to reach the same 
number of SNPs as in real arrays.

Concerning IBD segments detection, we used the same pa-
rameters as we did for the small and large populations with PLINK 
and both SNP arrays. However, with WGS data we increased the 
maximum number of heterozygous SNPs authorized in a ROH 
(--homozyg-het) to 64 to optimize distribution of ROHs estimation. 
Concerning RZooRoH, we used the exact same model as before. For 
this cattle-like population, we compare the estimations obtained 
from both softwares to IBD segments coalescing less than 1000 
(rather than 100) time-steps ago (independently of their length). This 
is because in this population, a large part of the inbreeding comes 
from old coalescence events: we show in Figure S10 than there is 
poor concordance between both softwares estimation and IBD seg-
ments coalescing less than 100 reproductive cycles ago.

2.8  |  SNP density

We calculated SNP densities with VCFtools (Danecek et al., 2011) 
method: --SNPdensity as the number of SNPs per each windows of 
1 Mb. We then estimated the mean SNP density of each replicate as 
the mean density among the windows.

3  |  RESULTS

3.1  |  FROH and FHBD

We used simulated genomes to investigate the influence of differ-
ent sequencing techniques, IBD calling methods and population 
size on IBD segments detection. Figure 2 shows the correlation (r2) 
between FIBD (the true fraction of genome within IBD segments 
coalescing less than 100 reproductive cycles ago and calculated 
from simulated data) and its estimations: FROH (estimated with 
PLINK, Figure 2a,c) or FHBD (estimated with RZooRoH, Figure 2b,d) 
according to SNP density as well as the absolute difference be-
tween the estimated FROH or HBD and FIBD according to the same SNP 
density. Figure 2 shows FROH and FHBD can be correctly estimated 
with reduced genomic representations providing that a sufficient 
fraction of the genetic variation is captured. To retain conserved 
ranking among individual F (represented by a correlation of one 
between FROH or HBD and FIBD), PLINK (Figure  2a,c; Table  S3) re-
quired a SNP density of 22 SNPs/Mb, 11 times higher compared to 
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    |  7LAVANCHY and GOUDET

RZooRoH (Figure 2b,d; Table S3) which only required two SNPs/
Mb. Interestingly, these minimum SNP densities were similar be-
tween the two population sizes suggesting that SNP density might 
be a key metric for assessing the accuracy of FIBD. With a SNP 
density below 20 SNPs/MB, PLINK resulted in negative correla-
tions between FROH and FIBD in the small population (Figure  2a). 
On the other hand, correlations were always higher than 0.5 with 
RZooRoH (Figure 2b,d). We should stress that the conservation of 
inbreeding ranks does not imply a correct estimation of the “abso-
lute” value of the inbreeding coefficient. Indeed, with both soft-
wares and populations, FROH and FHBD are constantly slightly above 
FIBD (estimated with segments coalescing less then 100 time-steps 
ago) even when the SNP density increases (Figure  2a–d). PLINK 
did not detect ROHs with SNP densities below 10 SNPs/Mb, re-
sulting in FROH of zero for all individuals (Figure  S1a). RZooRoH 
always detected HBD segments, independently of the SNP den-
sity we tested. The variance among subsampling replicates was 
large and the rank of individuals' inbreeding was poorly conserved 
for SNP densities below 1 SNPs/Mb (Figure  2b,d; Figure  S1b). 
We show in the Supporting Information that FHOM, an estimator 
of inbreeding coefficient relying on the difference between the 

observed and expected heterozygosity under Hardy–Weinberg 
yielded similar results to RZooRoH for the same SNPs densities 
(Figure S2; Table S3).

Concerning medium and high SNP densities (both SNP arrays and 
WGS), we see little effect of the sequencing method or the software 
used on FROH or FHBD estimation: inbreeding coefficients estimates 
were always consistent with FIBD (Figure 3, r2 > 0.97). All sequencing 
methods resulted in slightly higher inbreeding coefficients, espe-
cially both arrays, but the rank of inbreeding was always conserved 
among individuals (Figure 3; Table S3). Interestingly, with PLINK and 
at similar densities a homogeneous spacing between SNPs (the SNP 
arrays) resulted in better correlations with FIBD compared to RAD-
sequencing in the small population (Figure 3a,c; Table S3).

3.2 | Distribution of ROHs and HBD segments

Figure  4 shows distribution of ROHs and HBD segments among 
the different length classes as the mean per individual (among 
simulation and subsampling replicates) total ROHs or HBD 
segments length falling within each length class. Horizontal black 

F I G U R E  2  Correlation (r2) and 
difference between FIBD and FROH (panels 
a and c) or FHBD (b and d) estimated with 
RAD-sequencing data according to 
single nucleotide polymorphism (SNP) 
density in the reduced data set for both 
the small (a and b) and large (c and d) 
populations. Pearson's correlations were 
estimated per simulation and subsampling 
replicate. The difference was calculated 
by subtracting FIBD from FROH or FHBD per 
simulation and subsampling replicate. (a) 
Small population; runs of homozygosity 
(ROH) have been called with PLINK. (b) 
Small population; homozygous-by-descent 
(HBD) segments have been called with 
RZooRoH. (c) Large population; ROHs 
have been called with PLINK. (d) Large 
population; HBD segments have been 
called with RZooRoH.
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8  |    LAVANCHY and GOUDET

lines represent our gold standard: the true mean (among simulation 
replicate) individual total IBD segment lengths estimated from 
simulated data for each length class. Bar plots represent the mean 
(among simulation and subsampling replicate) difference between 
the estimated distributions (ROHs or HBD segments) and the truth 
(IBD segments). Thus, bar plots above the horizontal black segment 
indicate an overestimation while bar plots below the segment an 
underestimation. In addition, the y-axis starts at 0 indicating than 
no IBD segments of the particular length class has been detected 
if the bar reaches the bottom of this axis. Compared to the true 
distribution of IBD segments (relative to a reference population 
from 100 reproductive cycles ago), almost all sequencing methods 
and both softwares resulted in higher mean length of ROHs or HBD 
segments falling into the smaller length class (Figure 4). At similar 
SNPs densities (i.e. with both SNP arrays), this overestimation was 
stronger for RZooRoH compared to PLINK, especially in the small 
population. However, there is no such overestimation in the small 

population when we compare these distributions to older true IBD 
segments which coalesced less than 1000 reproductive cycles ago 
suggesting that these segments are not wrongly identified, they 
simply come from older coalescence events (Figure S3).

With WGS, we can correctly estimate distribution of ROHs and 
HBD segments larger than 2 Mb (Figure 4). In addition, both SNP 
arrays, allowed correct estimation of total lengths of ROHs and 
HBD segments larger than 4 Mb in the small populations and larger 
than 2 Mb in the large population (Figure 4). These results suggest 
that medium and high SNPs density datasets can be confidently 
used for ROHs and HBD segments detection with both PLINK and 
RZooRoH.

Concerning RAD-sequencing, PLINK allowed the correct estima-
tion of distribution of ROHs with a SNP density around 22 SNPs/
Mb (Figure  4a,c). On the other hand, RZooRoH yielded accurate 
distribution of HBD segments with a SNP density of 11 SNPs/Mb 
and seven SNPs/Mb in the small and large populations, respectively 

F I G U R E  3  Comparison between runs of homozygosity (ROH) or homozygous-by-descent (HBD) estimated with different sequencing 
methods on the y-axis and identical-by-descent (IBD) segments (the true fraction of genome within IBD segments coalescing less than 100 
time-steps ago) on the x-axis. Each point represents one individual (for one subsampling replicate within one simulation replicate). The black 
line represents the equality line (x = y). Blue points represent individuals from the small population and orange from the large population. 
Within these two colour categories, a change in shade represents an increase in single nucleotide polymorphism (SNP) density (fraction of 
genome subsampled indicated between the parentheses for RAD-sequencing). (a) Small population; ROHs were called with PLINK. Please 
note than points for the small array and whole-genome sequencing (WGS) perfectly overlap. (b) Small population; HBD segments were called 
with RZooRoH. Please note than points for both arrays perfectly overlap. (c) Large population; ROHs were called with PLINK. Please note 
than points for the large array and WGS (almost) perfectly overlap. (d) Large population; HBD segments were called with RZooRoH.
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    |  9LAVANCHY and GOUDET

(Figure 4b,d). For lower SNP densities, RZooRoH tended to merge 
small adjacent HBD segments into larger ones (Figure 4d).

We also investigated ROHs calling accuracy with PLINK and the 
default parameters for all reduced genomic representations. We 
show in the Supporting Information that similarly to what was ob-
served in Figure 2, FROH can be correctly estimated with SNP densi-
ties higher than 22 SNPs/Mb (Figure S4 and Figure S5). However, the 
distribution of ROHs are always biased with a large overestimation 
of small IBD segments and underestimation of large IBD segments 
even with both SNP arrays (Figure S6). These results emphasize the 
importance of fine-tuning PLINK parameters when working with re-
duced genomic representations.

3.3  |  Fraction of genome assigned within and 
outside IBD segments

Figure 5 shows the mean fraction of genome which has been cor-
rectly (true-non-IBD and true-IBD) and incorrectly (false-non-IBD 
and false-IBD) assigned to ROHs or HBD segments. Concerning 
RAD-sequencing, PLINK resulted in high fractions of genome incor-
rectly assigned to ROHs (false-IBD) (Figure  5a,c, left column). On 
the other hand, RZooRoH resulted in 90 and 95% of the genome 
correctly assigned within our outside IBD segments with 2% (SNP 
density = 11 SNPs/Mb) and 0.125% (SNP density = 7 SNPs/Mb) of 

the genome sequenced in the small and large populations respec-
tively (Figure 5b,d, right column). Concerning SNP arrays and WGS, 
the “incorrectly” assigned ROHs and HBD segments were mostly 
false positive (false-IBD). However, we show in Figure S7 that these 
false positive become true positive when compared to IBD seg-
ments which coalesced less than 1000 reproductive cycles ago. This 
indicates that these fragments come from coalescence events older 
than 100 reproductive cycles ago. In the large population, RZooRoH 
still resulted in a few false-positive when compared to distribution 
of IBD segments from less than 1000 reproductive cycles ago, with 
both the large array and WGS (Figure S7d).

3.4  |  Cattle simulations

Figure  6 shows the comparison of FROH and FHBD estimates, dis-
tribution of ROHs and HBD segments and fractions of genome 
correctly assigned within and outside IBD segments (coalesc-
ing less than 1000 reproductive cycles ago) for WGS and both 
SNP arrays in the cattle population. For this population, we con-
sider IBD segments coalescing less than 1000 reproductive cy-
cles ago because the major part of inbreeding comes from ancient 
coalescence events and both softwares resulted in poor IBD seg-
ments estimation when compared to segments coalescing less 
than 100 reproductive cycles ago (Figure  S10). In this population, 

F I G U R E  4  Comparison of distribution of runs of homozygosity (ROHs) (a and c) and homozygous-by-descent (HBD) segments (b and d) 
between the different sequencing methods and the true distributions of identical-by-descent (IBD) segments (defined as segments which 
coalesced less than 100 reproductive cycles ago). Black horizontal lines correspond to the total length of IBD segments per individual 
(y-axis) falling into the different length classes (x-axis). Bar plots show the mean (± SD) difference between the mean total length of IBD 
segment and their estimation (ROHs and HBD segments) for each sequencing method. Bar plots below the horizontal black line indicate an 
underestimation while bar plots above the horizontal black line indicate an overestimation of the total length of segments. Mean (± SD) are 
among individuals, simulation and subsampling replicates. (a) Distribution of ROHs from the small population; ROHs were called with PLINK. 
(b) Distribution of HBD segments from the small population; HBD segments were called with RZooRoH. (c) Distribution of ROHs from the 
large population; ROHs were called with PLINK. (d) Distribution of HBD segments from the large population; HBD segments were called 
with RZooRoH

< 2 2 − 4 4 − 6 6 − 10 10 − 16 > 16
0

100
200
300
400
500
600

M
ea

n 
M

b 
± 

SD
 (a

m
on

g 
in

di
vi

du
al

s)

ROHs Length Classes [Mb]

(a)
PLINK

< 2 2 − 4 4 − 6 6 − 10 10 − 16 > 16
0

100
200
300
400
500
600

M
ea

n 
M

b 
± 

SD
 (a

m
on

g 
in

di
vi

du
al

s)

HBD Length Classes [Mb]

(b)
RZooRoH

< 2 2 − 4 4 − 6 6 − 10 10 − 16 > 16
0

100
200
300
400
500
600

M
ea

n 
M

b 
± 

SD
 (a

m
on

g 
in

di
vi

du
al

s)

ROHs Length Classes [Mb]

(c)
PLINK

< 2 2 − 4 4 − 6 6 − 10 10 − 16 > 16
0

100
200
300
400
500
600

M
ea

n 
M

b 
± 

SD
 (a

m
on

g 
in

di
vi

du
al

s)

HBD Length Classes [Mb]

(d)
RZooRoH

RAD-Sequencing (3%)
SNP Density = 16 SNPs / Mb

SMALL ARRAY
SNP Density = 22 SNPs / Mb

RAD-Sequencing (4%)
SNP Density = 21 SNPs / Mb

RAD-Sequencing (10%)
SNP Density = 50 SNPs / Mb

LARGE ARRAY
SNP Density = 161 SNPs / Mb

WGS
SNP Density = 540 SNPs / Mb

RAD-Sequencing (0.25%)
SNP Density = 14 SNPs / Mb

SMALL ARRAY
SNP Density = 22 SNPs / Mb

RAD-Sequencing (0.4%)
SNP Density = 23 SNPs / Mb

RAD-Sequencing (1%)
SNP Density = 55 SNPs / Mb

LARGE ARRAY
SNP Density = 331SNPs / Mb

WGS
SNP Density = 5554 SNPs / Mb

RAD-Sequencing (0.05%)
SNP Density = 0.3 SNPs / Mb

SMALL ARRAY
SNP Density = 22 SNPs / Mb

RAD-Sequencing (0.15%)
SNP Density = 2.2 SNPs / Mb

RAD-Sequencing (2%)
SNP Density = 11 SNPs / Mb

LARGE ARRAY
SNP Density = 161 SNPs / Mb

WGS
SNP Density = 540 SNPs / Mb

RAD-Sequencing (0.004%)
SNP Density = 0.2 SNPs / Mb

SMALL ARRAY
SNP Density = 22 SNPs / Mb

RAD-Sequencing (0.008%)
SNP Density = 0.5 SNPs / Mb

RAD-Sequencing (0.125%)
SNP Density = 7 SNPs / Mb

LARGE ARRAY
SNP Density = 331SNPs / Mb

WGS
SNP Density = 5554 SNPs / Mb

 17550998, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13755 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [28/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10  |    LAVANCHY and GOUDET

PLINK resulted in perfect estimation of the inbreeding coefficient 
(Figure 6a; r2(FROH WGS,FIBD) = 0.999; r2(FROH LARGE ARRAY,FIBD) = 0.993; 
r2(FROH SMALL ARRAY,FIBD) = 0.996) but biased distribution of ROHs even 
with WGS (Figure 6c). Compared to the true distribution of IBD seg-
ments (coalescing less than 1000 reproductive cycles ago), PLINK 
identified higher numbers of ROHs smaller than 16 Mb (bar plots 
above the horizontal line) and fewer ROHs larger than 16 Mb (bar 
plots below the horizontal line) (Figure 6c). On the other hand with 
RZooRoH the correlation between FHBD and FIBD were slightly lower 
(Figure 6d: r2 (FHBD WGS,FIBD) = 0.937, r2(FHBD LARGE ARRAY,FIBD) = 0.983; 
r2(FHBD SMALL ARRAY,FIBD)  =  0.955) but distribution of HBD segments 
were closer to the true distribution of IBD segments (Figure  6f). 
Similar to previous observations, RZooRoH detected fewer small 
HBD segments (<2 Mb) with the small and to a lesser extend the 
large SNP array. Finally, concerning the fraction of genome correctly 
and incorrectly assigned to IBD segments, 83, 88 and 91% of the 
genome were correctly assigned within or outside ROHs with PLINK 
using the small array, large array and WGS, respectively (Figure 6b). 
With RZooRoH, 84, 87 and 85% of the genome were correctly as-
signed within or outside HBD segments with the small array, the 
large array and WGS (Figure 6e). With both arrays and softwares, 
the wrongly assigned fraction of genome was mainly false-negative 
(false-non-IBD) but both softwares resulted in a few false-positive 
(false-IBD) with WGS data (Figure 6b,e).

4  |  DISCUSSION

4.1  |  Summary

We investigated the capacity of WGS, SNP arrays and RAD-
sequencing to perform IBD segments analyses using either the 
observational-based runs of homozygosity (ROHs) calling approach 
implemented in PLINK (Chang et al.,  2015) or the model-based 
homozygous-by-descent (HBD) segments calling approach imple-
mented in RZooRoH (Bertrand et al., 2019; Druet & Gautier, 2017).
We show that both methods can be used with medium to high SNPs 
density data sets in simulations with constant population sizes and 
proportion of inbreeding. However, for RAD-sequencing, PLINK 
required a SNP density above 22 SNPs/Mb to keep the ranking 
among individuals FROH and correct estimates of distribution of 
ROHs. On the other hand, RZooRoH only required a SNP density 
of 11 SNPs/Mb to obtain correct distribution of HBD segments 
and the rank of individual inbreeding coefficients FHBD was con-
served when the SNP density was above 2 SNPs/Mb. We also show 
that in the cattle population, PLINK did not estimate distribution 
of IBD segments as accurately as RZooRoH even with WGS data. 
Finally, we show in Supporting Information that FHOM, a non-IBD 
segments-based estimate of individual F, is as accurate as FHBD es-
timated with the model-based approach for the same SNP density.

F I G U R E  5  For each sequencing method, fraction of genome correctly assigned outside identical-by-descent (IBD) segments (true-non-
IBD), correctly assigned within IBD segments (true-IBD), incorrectly assigned outside IBD segments (false-non-IBD) and incorrectly assigned 
within IBD segments (false-IBD) are represented. Values are averaged among individuals as well as both simulation and subsampling 
replicates. (a) Small population; runs of homozygosity (ROHs) were called with PLINK. (b) Small population; HBD segments were called with 
RZooRoH. (c) Large population; ROHs were called with PLINK. (d) Large population; homozygous-by-descent (HBD) segments were called 
with RZooRoH
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4.2  |  PLINK vs. RZooRoH

With WGS and in the small and large populations, the two soft-
wares yielded similar results concordant with the true IBD seg-
ments (extracted from simulated data as IBD segments which 
coalesced less than 100 reproductive cycles ago) for all segments 
larger than 2 Mb. We showed that both methods, but especially 
RZooRoH, identify a larger number of small IBD segments (<2 Mb) 
than the truth. However, we also show that these segments 
come from more ancient coalescence events. It makes sense that 
RZooRoH identifies a higher number of smaller HBD segments 

compared to PLINK since it has no constraint on HBD minimum 
segments size. From the formula presented in Thompson  (2013), 
the length of the IDB segment in centimorgans (cM) l is a simple 
function of the number of generations g since the coalescence 
event:l = 100∕2g, our PLINK threshold corresponds to 0.1 cM 
(100 kb) in humans and thus coalescence events 500 reproduc-
tion events ago on average (with a very large variance [Speed & 
Balding, 2015]).

It is important to remember that even with WGS, IBD segment 
detection is still challenging. Beside the IBD segments detection 
method, many parameters can influence the result of IBD segments 

F I G U R E  6  Comparison of runs of homozygosity (ROHs) and homozygous-by-descent (HBD) segment detection with whole-genome 
sequencing (WGS) and both single nucleotide polymorphism (SNP) arrays in the cattle population and for both identical-by-descent (IBD) 
segment detection methods. (a) Comparison of FROH estimated with PLINK on WGS data and both SNPs arrays with regard to the true 
fraction of genome within IBD segments (coalescing less than 1000 reproductive cycles ago): FIBD. (b) Fraction of genome correctly assigned 
outside IBD segments (true-non-IBD), correctly assigned within IBD segments (true-IBD), incorrectly assigned outside IBD segments 
(false-non-IBD) and incorrectly assigned within IBD segments (false-IBD) for WGS and both SNP arrays. ROHs were called with PLINK. (c) 
Comparison of distribution of ROHs with WGS and both arrays with regard to the true distribution of IBD segments (coalescing less than 
1000 generations ago). Horizontal black lines represent the true mean (among simulation replicates) individual total length of IBD segments 
estimated from simulated data for each length class. Bar plots represent the mean (among simulation and subsampling replicate) difference 
between the estimated distributions (ROHs) and the truth (IBD segments). ROHs were called with PLINK. (d) Comparison of FHBD estimated 
with RZooRoH on WGS data and both SNP arrays with regard to the true fraction of genome within IBD segments (coalescing less than 
1000 generations ago): FIBD. (e) Fraction of genome correctly assigned outside IBD segments (true-non-IBD), correctly assigned within IBD 
segments (true-IBD), incorrectly assigned outside IBD segments (false-non-IBD) and incorrectly assigned within IBD segments (false-IBD) 
for WGS and both arrays. HBD segments were called with RZooRoH. (f) Comparison of distribution of HBD segments with WGS and both 
arrays with regard to the true distribution of IBD segments (coalescing less than 1000 generations ago). Horizontal black lines represent the 
true mean (among simulation replicate) individual total length of IBD segments estimated from simulated data for each length class. Bar plots 
represent the mean (among simulation and subsampling replicate) difference between the estimated distributions (HBD segments) and the 
truth (IBD segments). HBD segments were detected with RZooRoH
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calling. For instance, a minimum size threshold can be chosen. 
However, it has been shown with simulations that small segments can 
also result from recent coalescence events (Speed & Balding, 2015), 
thus neglecting smaller regions might lead to an underestimation of 
the inbreeding status of the individual or the population. Another 
important parameter is whether mutations (and sequencing errors) 
should be considered by allowing heterozygous SNPs in IBD seg-
ments and how many heterozygous markers are to be allowed can 
greatly differ among studies. To summarize, no consensus exist now-
adays on which method and parameters are the best and further 
investigation is needed.

In this project, we used the true IBD values for parameter op-
timization with PLINK, not available with empirical data. We note 
that previous studies used WGS as the “gold-standard” and/or high 
coverage assembly data for parameters optimization (Duntsch 
et al., 2021; Meyermans et al., 2020; Mueller et al., 2022). Mueller 
et al., (2022) showed adapting parameters allow to get similar re-
sults between WGS and reduced genomic representations with 
smaller fractions of genomes: the authors used PLINK to call 
ROHs with RAD-sequencing, then tested ROHs calling with sev-
eral different settings for three individuals for which they also 
had WGS data and extracted the settings which best conserved 
the rank of inbreeding found with WGS. We want to stress that 
WGS data might not be available or might not result in accurate 
IBD segments detection as observed with our cattle population. 
Finally, varying settings need to be done with caution: different 
settings can increase the number of ROHs detected but also the 
likelihood of noncorrect calls and maybe bias the individuals in-
breeding ranking (Meyermans et al., 2020).

4.3  |  Estimation of FROH and FHBD

With WGS, both arrays and when a large portion of the genome is 
sequenced with RAD-sequencing, ranks of inbreeding were always 
conserved among individuals. Our results are consistent with Kardos 
et al. (2018) who showed (see Supporting Information) that FHBD es-
timated with 10,000 loci, and a home-made script based on a likeli-
hood ratio method (adapted from Pemberton et al., 2012), are similar 
to FHBD estimated with WGS in an inbred wild wolf population.

With RAD-sequencing, accurate results of the fraction of ge-
nome within IBD segments depends on the fraction of genome 
sequenced, which drastically differ between both softwares. 
RZooRoH required a fraction of the genome 11 times smaller com-
pared to PLINK for conserved ranking of inbreeding estimates 
among individuals. It is expected that model-based approaches 
perform better with low SNPs-densities as the distances between 
SNPs are taken into account in the model (Bertrand et al.,  2019). 
Hence, we strongly recommend RZooRoH when working with re-
duced genomic data. Nevertheless, when the SNPs density is suffi-
cient, the conservation of inbreeding ranks was observed with both 
softwares and is consistent with other studies: Duntsch et al. (2021) 
compared ROHs and HBD segments estimates from PLINK and 

RZooRoH with RAD-sequencing, a custom-made array and WGS 
in few hihi (Notiomystis cincta; a nonmodel bird species) individuals. 
They found conserved individual inbreeding ranks with all reduced 
representations.

In the cattle population and with both SNP arrays, FROH and FHBD 
estimates were lower than FIBD. The missing portion of inbreeding 
was coming from small IBD segments with more ancient coalescence 
events. Indeed, recent inbreeding is easier to capture: with lower 
marker density you are not able to capture small segments (Druet & 
Gautier, 2017). This is supported by Sole et al. (2017) who compared 
SNP arrays of different sizes in cattle and showed that all arrays cap-
ture the same levels of recent inbreeding but higher densities allow 
older inbreeding to be captured.

Inbreeding coefficients are used for inbreeding depression stud-
ies, which are key for understanding the evolution of populations 
and for conservation managements in endangered species (Lynch & 
Walsh, 1998). If the rank of individuals' F is conserved, it ensures that 
the direction of the correlation between inbreeding estimates and 
phenotypes (the sign of the regression slope), and thus the general 
effect of inbreeding on the trait, is correctly estimated. However, 
underestimating the inbreeding coefficients can lead to an overes-
timation of the magnitude of inbreeding depression (the regression 
slope absolute value will be steeper). We showed in Supporting 
Information that FHOM performed as well as model-based RZooRoH 
approach with similar SNPs densities. This last result is consistent 
with another study which showed that 5000 markers are suffi-
cient to obtain genomic kinship values similar to pedigree estimates 
(Goudet et al., 2018). Hence, we strongly advise to use SNP inde-
pendent measures (i.e., not based on IBD segments) or model-based 
HBD segments approaches for inbreeding studies when SNP density 
is low. However, it is important to keep in mind that FHOM can only 
be used if the number of individuals is large enough to allow correct 
estimation of the allelic frequencies.

4.4  |  Distribution of ROHs and HBD segments

Distribution of IBD segments are used to describe the demographic 
history of the populations (Ceballos et al., 2018; Kirin et al., 2010) 
as it is possible to link the length of an IBD segment to the number 
of generations back to the common ancestor (Thompson, 2013). 
Our study suggests that with both WGS and SNP arrays, length 
of ROHs and HBD segments values are correctly estimated. On 
the contrary, with RAD-sequencing, length of ROHs and HBD seg-
ments should not be trusted at low SNP densities, meaning that 
age estimation for these segments is currently impossible. In the 
cattle population and with WGS data, RZooRoH resulted in more 
accurate distribution of HBD segments compared to PLINK. This 
was not the case in the constant sizes population simulations. This 
difference is due to the more complex demographic history of the 
cattle population which underwent both a strong bottleneck and 
intense selective pressures. We hypothesize that the difference 
observed between both softwares is due to the way they handle 
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    |  13LAVANCHY and GOUDET

heterozygous SNPs. RZooRoH uses the probability of observing 
a heterozygous SNP in an HBD segment per base-pair, automati-
cally adapting the number of heterozygous SNPs allowed in an 
HBD segments to its size. This is not the case with PLINK. Hence, 
manually increasing the maximum number of heterozygous SNPs 
allowed in a ROH will merge small adjacent ROHs belonging to the 
same IBD segment into a larger one; but might also increase the 
number of false positives. Consequently, we advise researchers to 
use model-based approaches when working with populations with 
complex demographic history.

As we expect all the bias mentioned above to be similar among 
populations, relative comparisons between populations genotyped 
with the same sequencing method lead to reliable results as shown by 
Kirin et al. (2010): these authors used the HGDP data set genotypes 
(from 2009) with Illumina 650Y product and PLINK and compared 
distribution of ROHs among various human populations. The popu-
lations undergoing contemporaneous inbreeding such as West and 
South Asians and Oceanians harboured a higher fraction of genome 
within long ROHs while populations from central America harboured 
lower numbers of large ROHs but higher numbers of small ROHs, 
consistent with an history of ancient small effective population size. 
Similarly, Mastrangelo et al.  (2016) compared distribution of ROHs 
estimated with PLINK from three dairy cattle breeds genotyped with 
the “small array” (Illumina BovineSNP 50 beadchip) to compare the 
different breeds and to assess their inbreeding status. The authors 
found that Italian Holstein individuals harboured a high number of 
short ROHs suggesting that inbreeding in this breed is mostly caused 
by ancient relatedness within the population rather than recent mat-
ing between relatives. Individuals from two local breeds Modicana 
and Cinisara harboured a high number of large ROHs, suggesting re-
cent mating events between relatives. The authors concluded that 
the implementation of a monitored breeding programme aimed at 
reduced consanguinity was necessary in these local breeds.

With WGS, both SNP arrays and high SNPs density RAD-
sequencing, we obtained correct assignment of the genome within 
and outside IBD segments above 90%. The remaining incorrectly 
assigned regions correspond mostly to IBD segments with older 
coalescence times or segments in between adjacent IBD segments. 
This trend indicates that IBD regions are correctly detected with 
medium to high densities and thus suggests that they can be confi-
dently used for homozygosity mapping studies.

4.5  |  Effect of population size

Population size influenced the minimum proportion of genome re-
quired: the larger population required a smaller fraction of genome 
to obtain accurate IBD estimation. However, the larger popula-
tion harboured higher genetic variation and thus a higher number 
of SNPs. Consequently, we were more likely to have SNPs in the 
subsampled regions with RAD-sequencing. Since the simulations 
scheme forced mating between related individuals and since we 
performed a random stratified individual sampling independently 

of the effective size of the population, we do not expect distribu-
tion of IBD segments to reflect both populations “true” distributions. 
Consequently, in this study we cannot quantify the true effect of 
population size (other than the number of SNPs) on IBD segments 
detection. To disentangle these effects, one could vary the mutation 
rate so that both populations have similar SNP densities.

4.6  |  Limitations

We want to stress that the fractions of the genome sequenced 
used in the present study are indicative and do not correspond to 
“true” proportion of genome sequenced needed to obtain meaning-
ful results. They come from simulated data and this fraction will be 
lower after quality filtering with empirical data, especially for RAD-
sequencing and WGS where genotyping rates are lower. In addition, 
we did not include the effect of allele dropout when we simulated 
RAD-sequencing, which could influence the accuracy of IBD seg-
ments detection. Indeed, individuals heterozygous at restriction 
sites might appear homozygous which can bias further popula-
tion genetic inferences, especially in large populations (Arnold 
et al., 2013; Gautier et al., 2013). Finally, we did not include in this 
project the method for IBD segments detection based on the odds 
ratio comparison of the likelihood of the genotype if autozygous or 
allozygous (Broman & Weber, 1999; Pemberton et al., 2012) but we 
expect that this method can handle reduced genomic representa-
tions since it takes linkage disequilibrium into account.

4.7  |  Conclusion

Using simulated data, we compared FROH and FHBD estimates as well 
as distribution of ROHs and HBD segments to the true IBD (from 
simulated data and calculated as segments which coalesced less 
than 100 reproductive cycles ago). FROH and FHBD can be correctly 
estimated with all sequencing methods when the SNP density is 
above 22 SNPs per Mb with PLINK and above two SNPs per Mb 
with RZooRoH. With lower SNPs densities, FHOM, a genomic esti-
mate of inbreeding coefficients not based on ROHs, is as accurate 
as the model-based estimate, for a fraction of the computing time. 
We would therefore recommend using independent SNPs-based 
genomic estimates such as FHOM for inbreeding quantification with 
reduced genomic representation, unless the number of individuals 
analysed is too small to allow a correct estimation of the popula-
tion alleles frequency or mean coancestry. Regarding distribution 
of ROHs and HBD segments, even though the majority of the ge-
nome is correctly assigned within and outside IBD segments, both 
softwares failed to capture IBD segments with older coalescence 
times at low densities. This still allows comparing populations 
analysed with the same methodology but prevents comparing dis-
tribution of ROHs or HBD segments from studies using different 
reduced genomic methods. In addition, in a population with a more 
complex demographic history, only RZooRoH resulted in accurate 
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14  |    LAVANCHY and GOUDET

distribution of HBD segments with WGS data. To conclude, we 
find little advantages in using IBD segments-based estimates of 
inbreeding at low SNPs densities and show that only model-based 
approaches can be used for distribution of HBD segments quanti-
fication at such low SNP densities and in populations with complex 
demographic histories.
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