
Published in final edited form as: Forensic Sci Int. 266 (2016) 527-533.
https://doi.org/10.1016/j.forsciint.2016.07.015 1

Probabilistic evaluation of n traces with no putative source: a

likelihood ratio based approach in an investigative framework

I. De March∗, E. Sironi, F. Taroni

University of Lausanne, School of Criminal Justice, 1015 Lausanne-Dorigny,
Switzerland

Abstract

Analysis of marks recovered from different crime scenes can be useful to detect
a linkage between criminal cases, even though a putative source for the recovered
traces is not available. This particular circumstance is often encountered in the early
stage of investigations and thus, the evaluation of evidence association may provide
useful information for the investigators. This association is evaluated here from a
probabilistic point of view: a likelihood ratio based approach is suggested in order to
quantify the strength of the evidence of trace association in the light of two mutually
exclusive propositions, namely that the n traces come from a common source or from
an unspecified number of sources. To deal with this kind of problem, probabilistic
graphical models are used, in form of Bayesian networks and object-oriented Bayesian
networks, allowing users to intuitively handle with uncertainty related to the inferential
problem.

Keywords: Evidence interpretation; Likelihood ratio; Bayesian networks; Object-
oriented Bayesian networks; Case linkage.

1 Introduction

In forensic practice, scientists are frequently asked to deal with cases in which several
traces of the same type are collected. These items of evidence can be found on a unique
crime scene or in different locations related to distinct criminal activities. If the scientific
comparative analysis performed on the recovered traces shows that there are some relevant
similarities between them, and if the traces are considered relevant to the criminal activity,
it can be assumed that a linkage may exist between the different cases because a unique
perpetrator could be the source of the traces [1, 2].
Moreover, if any putative source that could be at the origin of traces is known, it is crucial to
evaluate the strength of the potential link, due to the fact that this kind of information could
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allow investigators to treat the cases as a series. Therefore, this work aims to investigate
an inferential model to deal with such an investigative framework. A similar analysis was
performed by Taroni et al. [3] in a scenario considering two items of evidence recovered in
two locations. Here, the goal is to extend the reasoning to a scenario involving n traces
recovered on n different crime scenes. The likelihood ratio (LR) will be used as a measure
of the degree to which the evidence (in this case, the observed similarities between traces)
is capable of discriminating between two competing propositions, i.e. the traces come from
the same (unknown) source or from at least two different sources. Graphical models are
developed in order to qualitatively and quantitatively describe the problem of interest. The
advantages of the probabilistic graphical environment will be discussed, putting forward
its flexibility and dynamism. This work’s objective is to support a probabilistic use of
investigative information in order to provide a structured approach to assess scientific
elements issued from crime scene investigations for intelligence purposes.
The paper is structured as follows: Section 2 describes the scenario of interest and the
questions related to the management of uncertainty in our investigative setting. In Section 3
graphical models, such as Bayesian networks and object-oriented Bayesian networks, are
used to represent the proposed scenario and investigate the dependencies between the
variables of interest. Section 4 presents the development of the likelihood ratio formula
considering the two propositions previously defined. Finally Section 5 illustrates a practical
example with a fixed number of traces; the adjustment of the formula and the graphical
models will be described.

2 Scenario

A forensic scientist is asked to deal with n traces recovered at n separate crime scenes. All
the traces are of the same kind, and each trace is characterized by a single discrete attribute
A. For sake of illustration, consider n shoe marks found on n crime scenes, characterized by
their general pattern only, or n blood stains defined by their genetic DNA profile. Assume
the traces have the same degree of quality, and according to the scientific comparative
analysis, they present a relevant amount of similarities, so that it cannot be excluded that
they share a common origin. Finally, no suspect who could be at the origin of the traces is
known. Because of the absence of a suspect, the problem is treated under an investigative
point of view, and the main (source level) propositions of interest can be whether or not
the recovered traces come from the same source.

3 Graphical models

The recovered items of evidence should be evaluated in order to support investigators
in their inquiry. Should the investigators focus on a unique perpetrator (source) of the
recovered material or are more than one source involved in the cases? In order to perform
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the evaluation correctly, a graphical representation of the relevant variables for the problem
of interest may prove to be particularly convenient. Bayesian networks and object-oriented
Bayesian networks are probabilistic graphical models that have been used for decades to
study forensic problems [4, 5], and they are therefore used to analyze the proposed scenario.

3.1 Bayesian networks

Bayesian networks (BN) are probabilistic graphical tools based on elements of graph and
probability theory [6, 5] that allow one to deal with uncertainty in a coherent and rigorous
manner. BNs are directed acyclic graphs (DAG) composed by a set of variables, represented
by nodes, that model the entities of interest for the problem. The probabilistic relationships
between two nodes are represented by directed edges (arrows). A conditional probability
table is associated with each node, and shows the probabilities of the different states
of the node conditioned by the states of its parent nodes, i.e. the nodes on which they
directly depend. More formally, a BN illustrates the representation of the joint probability
distribution for all the variables of the structured model. Moreover, because a BN is a
complete model for all the variables of interest and their relationships, it can be used to
answer probabilistic queries about them. For example, the network can be used to obtain
updated knowledge of the states of a subset of variables when other variables are observed;
this aspect is called probabilistic inference.
In the similar but simpler scenario treated in [3], the authors developed a Bayesian network
for a case where n = 2 traces were involved; the qualitative part of the Bayesian network
was described by node H, accounting for the propositions of interest, nodes S1 and S2,
considering the type (A or Ā) of the true source of the first and second trace respectively,
and nodes E1 and E2, representing the features of the first and second trace.
In this work, the network is extended to cases involving n > 2 traces, and new nodes have
been introduced in order to take the increased complexity of the scenario into account.
The developed network is shown in Figure 1, and Table 1 shows a summary of the different
nodes and their definitions.
Here, node H represents again the two propositions of interest. Its states are H1 and H2,
formally defined as:

• H1: The n traces come from the same source;

• H2: The n traces come from at least two different sources,

where the number of possible different sources is not specified.
Node K depends directly on node H. It represents the number of possible sources at
the origin of the n traces, and its states are all the numbers from 1 to n. If proposition
H1 is true, only one source is at the origin of the traces, so Pr(K = 1|H1) = 1 and
Pr(K 6= 1|H1) = 0. If H2 is true, Pr(K = 1|H2) = 0 and Pr(K = k|H2), with k = 2 . . . n,
represents the probability that exactly k sources are involved knowing that the traces come
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Figure 1: Bayesian network for a scenario in which n traces are found. New nodes have
been introduced with respect to the network developed in [3], in particular the node K,
accounting for the number of possible different sources, nodes Di−1→i that consider the
dependency between the true sources of (i− 1)th and ith traces, and the constraint node C
that allows the network to consider only the logically possible configurations.
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Table 1: Table representing the names of different nodes (1st column) of the Bayesian
network (Figure 1), their definition (2nd column) and their states (3rd column).

Node Definition States

H Propositions H1, H2

K Number of potential sources k = 1 . . . n
C Allowed configurations on, off

Di−1→i Dependence |, ◦
S1 Type of Source 1 A, Ā
Si Type of Source i A, Ā
Ei Type of Trace i A, Ā
E Combination of nodes Ei A, Ā

from at least two different sources. This probability depends on the different configurations
in which many sources can be at the origin of the n traces. According to the considered
scenario, all the potential sources, being unknown, are indistinguishable from one another.
On the contrary, no assumption has been made on the crime scenes, which means that
non-scientific information could exist, allowing one to model a probability distribution
which considers the prior belief “two or more crime scenes are more related than others”,
which is the initial belief that the same source is at the origin of traces collected on two
or more particular crime scenes. According to this consideration, all the crime scenes
can be considered distinguishable and, for the sake of simplicity, they will be treated as
equiprobable in this work. The number of ways in which the n traces can come from exactly
k sources corresponds to the Stirling number of the second kind

{
n
k

}
[7, 8] which represents

the number of ways in which a n-elements group can be partitioned in exactly k subsets.
The total number of ways in which n traces can come from 2 to n sources is Bn − 1, where
Bn represents the nth Bell number 1 [7, 8]. Pr(K = k|H2) can therefore be written as
Pr(K = k|H2) = {nk}/Bn−1. The conditional probability table for node K is shown in Table
2.
Following the nodes’ definitions presented in [3], the type of each trace recovered and of
its true source are represented by nodes Ei and Si (i = 1 . . . n) respectively. The states of
these nodes are A and Ā, with A being the considered discrete attribute (for example a
given DNA profile). It is important to stress that the numbering of the traces (1 to n) and
of their actual sources (1 to n) is not related to information issued from investigations (for
example, the order of recovery). Numbers 1 to n are only useful to label the traces, not to
order them.

1The Stirling number of the second kind
{
n
k

}
indicates the number of partitions of an n-elements set into

k non-empty subsets. It can be calculated using its explicit formula
{
n
k

}
= 1

k!

∑k
j=0(−1)k−j

(
k
j

)
jn. The Bell

number counts the number of partitions of an n-elements set, regardless the number of subsets. Bell number
can be obtained as

∑n
k=0

{
n
k

}
.
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Table 2: Conditional probability table for node K.

H: H1 H2

K: 1 1 0

2 0 {n2}/Bn−1

. . . . . . . . .

k 0 {nk}/Bn−1

. . . . . . . . .

n 0 {nn}/Bn−1

Each node Ei (i = 1 . . . n) is dependent by the respective node Si, and, since it is sensible
to accept the assumption that if a source is of type A then the trace recovered on the crime
scene will be of the same type and assuming that no laboratory or manipulation errors
occurred, Pr(Ei = A|Si = A) = 1 and Pr(Ei = Ā|Si = A) = 0. Given the fact that the
presence of at least one source at the origin of the traces recovered is certain, the first
node of type S (S1) does not depend upon any other node. Pr(S1 = A) corresponds to the
probability that a source of the relevant population is of type A, which can be written as
γA. The conditional probability table for node S1 is shown in Table 3.

Table 3: Conditional probability table for node S1. γA represents the probability that a
source from the relevant population is of type A.

S1: A γA

Ā 1− γA

For a generic node Si with i 6= 1, the construction of the conditional probability table must
consider if the ith source is dependent (i.e. it is the same source) from one of the previous
sources, represented by nodes Si−1 . . . S1. As stressed before, the fact of numbering the
traces does not have any theoretical meaning, so it can be considered that all nodes Si
representing the same source can be placed one after another. In this way, a generic node Si
depends only on node Si−1 and no more on nodes Si−2 . . . S1. n− 1 nodes Di−1→i consider
the a priori probability that the (i− 1)th and the ith trace share a common source. The
states of these nodes are defined by the symbols | and ◦, the former meaning that the
sources of the (i− 1)th and ith traces are the same, and the latter that the two sources
are different. Note that investigative information such as modus operandi or eyewitness
evidence could play an important role in such probability assignments. Nevertheless, in the
present work, the two states are considered equiprobable.
Information from nodes Di−1→i and from node K, representing the number of potential

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/



Published in final edited form as: Forensic Sci Int. 266 (2016) 527-533.
https://doi.org/10.1016/j.forsciint.2016.07.015 7

sources, are combined into node C. Node C is a constraint node [9] 2 having two states, on
and off, that has been introduced in order to allow the network to separate the n nodes
representing the true sources into k groups, k clearly being one of the states of node K.
Node C is conditioned by node K and by all nodes Di−1→i, and for a given number of
traces n it can be built as follows: given k possible sources, a probability value of 1 to
the state called on must be assigned to one of the sequences of | and ◦ (states of nodes
D1→2 . . . Dn−1→n) including exactly k − 1 ◦. Note that any of the sequences respecting
this rule can be valid: in fact, they all represent a situation involving exactly k sources.
The difference between the sequences lies in the size of the groups, i.e. in the number of
traces coming from each source. Being this parameter not considered in this work, all the
sequences can be considered equivalent3.
Given k sources, there will be only k − 1 nodes Si that will be independent from node Si−1.
This corresponds to a separation of the potential sources at the origin of traces in exactly k
groups.
Node C has to be instantiated to its state on when using the Bayesian network. This has to
be done in order to avoid the separation of nodes Si into a number of groups not coherent
with the number of true sources fixed by node K. An example of the conditional probability
table for node C for a case of n = 4 traces is presented in Table 4, and the conditional
probability table for nodes Si is shown in Table 5.
This BN can be seen as a composition of two blocks: the first block consists of nodes K, D
and C and focuses on how different sources can be at the origin of the traces; it is specific
to every different n. The second block is formed by all couples of nodes Si and Ei and
considers the type of the recovered traces. According to this, the use of object-oriented
Bayesian networks is very reasonable in our case.

3.2 Object-oriented Bayesian networks

An object-oriented Bayesian network (OOBN) [10] can be seen as a hierarchically ordered
BN. OOBNs are composed of a master network that includes instance nodes along with
nodes as defined in the previous section. Instance nodes represent themselves a network
fragment on a lower hierarchical level, and can be connected by using so-called input and
output nodes, which allow the network to propagate the belief through different hierarchical
levels. Instance nodes can be reused multiple times in the same master network, so OOBNs
are particularly useful when dealing with problems that present a modular structure. With

2As stated in [9], it is possible to face a situation where a group of variables not directly dependent on each
other cannot assume simultaneously a certain configuration of their states. This constraint can be modeled
by using a constraint variable, which states reflect the legal and illegal configurations respectively. The
constraint is enforced by instantiating the variable to the state that represents the allowed configurations.

3For example, in the case of n = 4 traces and k = 2 sources the allowed sequences are ||◦, | ◦ | and ◦||. In
the first and third case, three traces come from a same source and one from the other, whilst in the second
case two traces come from one source and two traces from another. The size of the group of traces sharing a
common source changes, but always the same number of sources (in this case 2) is involved.
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Table 4: Example of the conditional probability table for node C for the case n = 4 traces.
In this case, given n = 4 a probability of 1 to the state on is assigned to sequences ||| for
k = 1, ||◦ for k = 2, | ◦ ◦ for k = 3 and ◦ ◦ ◦ for k = 4.

K: 1 2

D1→2: | ◦ | ◦
D2→3: | ◦ | ◦ | ◦ | ◦
D3→4: | ◦ | ◦ | ◦ | ◦ | ◦ | ◦ | ◦ | ◦

C: on 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
off 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

K: 3 4

D1→2: | ◦ | ◦
D2→3: | ◦ | ◦ | ◦ | ◦
D3→4: | ◦ | ◦ | ◦ | ◦ | ◦ | ◦ | ◦ | ◦

C: on 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
off 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0

Table 5: Conditional probability table for nodes Si. Given that node C must be instantiated
to its state on, only this part of the table is represented here.

C: on

Di−1→i: | ◦
Si−1: A Ā A Ā

Si: A 1 0 γA γA
Ā 0 1 1− γA 1− γA
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respect to the BN, the OOBN has many structural and practical advantages, in particular it
facilitates hierarchical construction, utilizing small modular networks (network fragments)
as building blocks. The use of object-oriented Bayesian networks is largely attested in
forensic science [5], in particular in problems dealing with DNA evidence [e.g., 11, 12, 13].
In the present scenario, it is possible to define a first instance node (n traces), representing
a network’s fragment composed by nodes K, Di−1→i and C (see Figure 2a), which is specific
to the number of traces n. Another instance node (Trace i) represents the part of the
network composed by couples of nodes Si and Ei (see Figure 2b), and a third instance node
(Trace 1) which, similarly to the previous one, is composed by nodes S1 and E1 (see Figure
2c). The latter is necessary because probabilities on states of node S1 do not depend upon
any other variable.
It is possible to reconstruct the original Bayesian network by using the composition of these
three instance nodes (Figure 3).

H

K

· · ·D1→2 · · · Dn−1→n

C

(a) Network’s fragment represented by in-
stance node n traces.

Di−1→i C

SiSi−1

Ei

(b) Network’s fragment represented by
instance node Trace i.

S1

E1

(c) Network’s fragment represented by instance
node Trace 1.

Figure 2: Bayesian network’s fragments corresponding to the three instance nodes used to
construct the object-oriented Bayesian network for the model. Input nodes are represented
by gray dotted contoured circles, whilst output nodes are represented by gray contoured
circles.

Irrespectively to the number of traces, the proper OOBN can be constructed combining the
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H

n traces

Trace 2Trace 1 Trace n

E

C

· · ·

Figure 3: Structure of the object-oriented Bayesian network for n traces. Instance nodes
are represented by squares. Node C, defined inside the instance node n traces, appears
also in the master network. In this way, all nodes that must be instantiated when running
the network are present on the master network.

three instance nodes previously defined.

4 Likelihood ratio formula

In order to obtain a verification of the results obtained through graphical models, it is
possible to develop an analytical formula for the likelihood ratio. It is important to stress
that both the graphical models and the formula are based on the same assumptions. For
this reason, the formula can be considered as a validation of the numerical results issued
from the graphical models.
Remind that the hypothesis of interest are:

• H1: The n traces come from the same source;

• H2: The n traces come from at least two different sources,

where the number of possible different sources is not specified.
The likelihood ratio can therefore be written as:

LR =
Pr(E1 = A,E2 = A, . . . , En = A|H1)

Pr(E1 = A,E2 = A, . . . , En = A|H2)
=
Pr(E|H1)

Pr(E|H2)
,
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where E represents the event that all traces Ei, with i = 1 . . . n, share the same discrete
characteristic A. In the following sections, the numerator and the denominator of the
likelihood ratio will be studied separately.

4.1 Numerator

The likelihood ratio’s numerator, Pr(E|H1) can be developed further by introducing a new
variable S, that considers the type of the sources at the origin of the n traces. The event
S = A corresponds to all the sources involved being of type A, and S = Ā is the event that
at least one of the sources involved is not of type A. Obviously, given H1 only one source is
involved.
Therefore, the numerator can be extended as follows:

Pr(E|H1) = Pr(E|S = A,H1)︸ ︷︷ ︸
1

Pr(S = A|H1)︸ ︷︷ ︸
γA

+Pr(E|S = Ā,H1)︸ ︷︷ ︸
0

Pr(S = Ā|H1) = γA.

In fact, under the proposition that the n traces come from the same source, the probability
of observing this kind of evidence knowing that the true source is of type A is 1, and the
probability to observe the same traces knowing that their true source is of type Ā is 0. The
factor Pr(S = A|H1) is equal to γA, which is again the probability that a source from the
relevant population is of type A [3].

4.2 Denominator

Similarly, the denominator can be written as

Pr(E|H2) = Pr(E|S = A,H2)︸ ︷︷ ︸
1

Pr(S = A|H2) + Pr(E|S = Ā,H2)︸ ︷︷ ︸
0

Pr(S = Ā|H2)

= Pr(S = A|H2)

The probability that the sources at the origin of the traces are all of type A, knowing
that the traces come from different sources, i.e. Pr(S = A|H2), depends on the number of
sources involved. The number of sources potentially at the origin of traces can vary between
1 and n, therefore
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Pr(S = A|H2) =
n∑
k=1

Pr(S = A|K = k,H2)Pr(K = k|H2)

= Pr(S = A|K = 1, H2)Pr(K = 1|H2)︸ ︷︷ ︸
0

+

n∑
k=2

Pr(S = A|K = k,H2)Pr(K = k|H2).

(1)

Pr(S = A|K = k,H2) denotes the probability that all the sources are of the same type A
knowing that exactly k sources are involved. If the k sources are assumed to be independent
to each other, this term is equal to γA

k.
Pr(K = k|H2) represents the probability that exactly k sources are involved knowing that
the traces come from different sources.
As explained in Section 3, this probability depends on the number of different configurations
in which k sources can be at the origin of n traces. Pr(K = k|H2) can therefore be written
as Pr(K = k|H2) = {nk}/Bn−1. Equation 1 becomes then:

n∑
k=2

Pr(S = A|K = k,H2)Pr(K = k|H2) =

n∑
k=2

γA
k

{
n
k

}
Bn − 1

,

and the likelihood ratio’s formula for the scenario considered is finally:

LR =
γA

1
Bn−1

∑n
k=2

{
n
k

}
γAk

. (2)

5 Model application

In order to illustrate how the n traces model works, a case involving n = 4 traces will be
described.
Assuming a probability γA = 0.2, the proper BN and OOBN are shown in Figure 4.
The same result can be obtained by using equation (2), that can be written as:

LR =
0.2

1
B4−1

∑4
k=2

{
4
k

}
0.2k

=
0.2

1
14 [7 · 0.22 + 6 · 0.23 + 1 · 0.24]

=
0.2

0.0235
= 8.5
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Figure 4: Bayesian networks (top) and object-oriented Bayesian networks (bottom) for
n = 4 traces. On the left, node H is instantiated to its state H1, and probability associated
to state A of node E corresponds to the likelihood ratio’s numerator. On the right, node H
is instantiated to its state H2, and so variable E’s state A corresponds to likelihood ratio’s
denominator.
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Simulations conducted using a number of traces varying between two and ten with a fixed
value of γA show that results obtained with the formula 2 coincide with those obtained
when using Bayesian networks and object-oriented Bayesian networks. Furthermore, results
obtained in [3] coincide with those obtained when using this model in the particular case of
n = 2 traces.
In Figure 5, the LR as a function of probability γA is represented in correspondence of an
increasing number of traces.
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Figure 5: Logarithm of likelihood ratio as a function of probability γA for n = 2, 4, 6, 8 and 10
traces

As expected, the LR decreases as values of γA increase regardless of the number of traces
recovered, but it always supports the proposition H1.
It can also be observed that the number of traces plays a minor role when probability γA is
high (i.e. when the considered characteristic A is common in the relevant population), whilst,
for lower values of γA, the number of traces has a strong impact on the LR’s magnitude.
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6 Discussion and conclusions

The evaluation of a comparative analysis of multiple pieces of evidence can be of high
interest from a forensic point of view, even though a putative source of the traces is not
available, notably in investigative settings. For example, this kind of approach can allow
the forensic scientist to provide some case linkage, which can be extremely helpful in both
an investigative and an evaluative framework [14]. Taroni et al. [3] already discussed
the problem in the case of two items of evidence, for both discrete and continuous trace
characteristics. Through this paper, the inferential model was extended in order to consider
a number of items of evidence possessing discrete attributes greater than two (n > 2).
Developments were performed based on graphical models, namely Bayesian networks and
object-oriented Bayesian networks. Additionally, an analytical formula for the LR was
developed, in order to verify the results issued from the graphical models.
Though the LR is usually applied to evaluate the weight of an item of evidence given two
competing propositions involving a putative source, its use in investigative frameworks
is widely attested [see, e.g. 15]. The current work further supports the use of LR as a
powerful statistical tool that can provide relevant information also in an early stage of the
investigations process.
The study shows that, besides the mathematical equations, the use of Bayesian networks
allows one to structure the inferential problem of interest in a rigorous manner by expressing
dependencies between the variables involved in the problem. Therefore, this probabilistic
tool facilitates the handling of uncertainty related to the problem in a logical and coherent
way, which does not request any particular expertise in statistics or mathematics. This is a
great advantage for the forensic practitioners and experts, since they could focus on the
evaluation procedure rather than on mathematical computation. The flexible nature of
Bayesian networks is highlighted when dealing with multiple items of evidence. The model
is extended taking advantage of repetitive sub-structures; in this respect, OOBN is adapted
in a particular way.
These results have to undoubtedly be interpreted in the light of the assumptions only. In
particular, one should not consider circumstantial and investigative information in the model,
even though it could provide substantial elements to interpret the case more accurately.
A further development of the model investigating the influence of non scientific elements
such as the modus operandi or location of the traces on the crime scenes can therefore be
envisaged.
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