SCIENTIFIC I A

REPg}RTS

SUBJECT AREAS:

PAIN

STATISTICS

STATISTICAL PHYSICS
BIOMEDICAL ENGINEERING

Received
30 January 2013

Accepted
30 May 2013

Published
19 June 2013

Correspondence and
requests for materials
should be addressed to
A.P.. (anisoara.
ionescu@epfl.ch)

Unraveling dynamics of human physical
activity patterns in chronic pain
conditions

Anisoara Paraschiv-lonescu’, Eric Buchser??® & Kamiar Aminian’
!

"Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland, 2Pain
Management Center, EHC, Hospital of Morges, Switzerland, ®Anesthesia Department, University Hospital, CHUV, Lausanne,
Switzerland.

Chronic pain is a complex disabling experience that negatively affects the cognitive, affective and physical
functions as well as behavior. Although the interaction between chronic pain and physical functioning is a
well-accepted paradigm in clinical research, the understanding of how pain affects individuals’ daily life
behavior remains a challenging task. Here we develop a methodological framework allowing to objectively
document disruptive pain related interferences on real-life physical activity. The results reveal that
meaningful information is contained in the temporal dynamics of activity patterns and an analytical model
based on the theory of bivariate point processes can be used to describe physical activity behavior. The model
parameters capture the dynamic interdependence between periods and events and determine a ‘signature’ of
activity pattern. The study is likely to contribute to the clinical understanding of complex pain/
disease-related behaviors and establish a unified mathematical framework to quantify the complex
dynamics of various human activities.

ain is conceptualized as a subjective and multidimensional experience that both influences and is influenced

by a wide range of biological, psychological and social factors'. When pain becomes chronic, it often has a

detrimental effect on a person quality of life. The effective pain management begins with a comprehensive
understanding of its causes and mechanisms. Over the last decades the medical and research communities have
been struggling with the assessment of chronic pain conditions and have agreed that the main outcome domains
are pain intensity, physical functioning, emotional functioning, and patient ratings of overall improvement.
Physical functioning, defined as observable physical limitations experienced by patient over a defined period of
time, can be inferred from the monitoring of the daily physical activity (PA), i.e. all movements that an individual
performs to achieve the activities of daily living. Compared to all other pain-related dimensions, which are based
on self-reporting and are therefore inherently subjective, physical functioning/activity has the advantage of being
quantifiable objectively.

Although the interaction between chronic pain and PA is a well-accepted paradigm in clinical practice, there is
still the need for a methodological framework allowing a comprehensive assessment of daily functioning. The
studies conducted during the last decade with the aim to quantify the relationship between pain and daily PA
provided variable results depending on how and how precisely PA was assessed. A review of the results and
limitations of these studies indicates that in addition to issues related to the measurement protocol (e.g. necessity
for ambulatory long-term monitoring) an important aspect is the methodological analysis of raw data usually
recorded with body-worn accelerometer devices**. The information provided by changes of specific activity
parameters, for instance duration and type of body postures/activities or gait parameters (speed, cadence) has
obvious clinical relevance®>® however it ignores important features of dynamics of human PA behavior™*. The PA
in real life is made of a large number of actions that are repeated in various and complex patterns, for which there
is currently no quantitative definition of normality. In addition, a large number of factors including age, disease,
the confinement due to work or otherwise, the response to unexpected events, and the deliberate decisions to
perform specific tasks may significantly modify the PA pattern by changing the duration, frequency and timing of
various body postures and activities. The methodological analysis must therefore focus on both, the quantitative
aspects and the dynamical properties of activity patterns*”?®.

Recent research on the dynamics of human activity has suggested that long-term monitoring may allow for new
insights into the temporal organization of PA patterns in health and disease. The suggestion is that normal
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behavior is governed by scale invariance (statistical properties of
fluctuations of PA patterns remain the same at different time-scales)
and universal distribution laws”'*. Scale-invariant dynamic pat-
terns have been found in fluctuations of the forearm motor activity',
the posture allocation” and the gait'* with long-range correlations on
time scales of seconds to hours that are insensitive to either changes
in mean activity level or to fluctuations caused by random and sched-
uled extrinsic factors". This time-invariant dynamic patterns was
associated with the healthy function (i.e., flexible behavior, capability
of altering motor behavior to adapt to different task demands, and a
possible regulation by central control mechanisms”'*'*'), and it was
shown to be affected by aging and by disorders such as Alzheimer’s
disease'’, chronic pain’ and chronic fatigue syndrome®. Studies that
have focused on the statistical distribution of forearm motor activity
have found that the durations of activity periods (i.e., wrist accelera-
tion counts above predefined thresholds) follow a universal stretched
exponential cumulative distribution with characteristic time, which
is not different in healthy subjects and patients with major depressive
disorders. On the other hand, the durations of night resting periods
follow a scale-free cumulative distribution with significantly lower
scaling exponents in patients than in healthy subjects'>. A few hypo-
thesis were proposed to explain the intrinsic origin of universality
and scale invariance in human behavior®'*'> however the complexity
resulting from the interplay of specific behavioral tasks, different
environments, and various social contexts makes it difficult to pro-
vide a comprehensive understanding.

Generally, the acquisition of scientific knowledge about a phe-
nomenon/process necessitates the (1) measurement and data collec-
tion, (2) information extraction from data, and (3) interpretation of
the information according to a theory/hypothesis. The current
knowledge about how complex interactions between various factors
may reflect a PA pattern that is specific to a condition/individual can
be improved only with a research effort at each level, from data
collection and information extraction to validation of theoretical
frameworks able to explain the patterns in the data. Even though
in chronic pain research significant progress was made with the
conceptualization of different behaviors related to coping strategies
(i.e. activity avoidance, persistence and pacing)'®?’, less is known
about how specific strategies relate to actual PA patterns in daily
life**>. Given the above context, the aim of the present study is to
contribute to the understanding of human PA patterns in chronic
diseases/pain conditions by describing methodological analysis to
extract relevant information from data collected under long-term
real-life conditions. We hypothesize that appropriate tools, which
are able to quantify the various parameters of PA and their inter-
dependence, may objectively document if and how pain interfere and
disrupt normal daily activity. Such tools may be useful in future
prospective studies designed to validate the theoretical models of
activity-related behavioral styles'*>*.

Detailed body movements recorded in patients suffering from
intractable chronic pain and healthy subjects are used to accurately
quantify PA in terms of posture allocation (i.e. sitting, standing, lying)
and walking* (compared to the traditional wrist actimetry this
assessment is more adequate to characterize the functional limita-
tions due to chronic pain of different etiologies). With this informa-
tion, the PA pattern is modeled as a two-state process by defining the
successive, aggregated periods of standing and/or walking as activity,
and sitting and/or lying as diurnal rest (the definition of sitting/lying
as rest relates to the fact that all patients reported pain-related limita-
tions of their walking perimeter; an alternative, more generic defini-
tion could be ‘sedentary®). The methodological approach used to
analyze this pattern aims to reveal and quantify various embedded
behavioral features: the total amount of time spent in activity/rest, the
statistical distribution laws characterizing the periods of activity and
rest, the relationship between the duration of successive activity
and rest periods, and the dynamics of transitions between activity

and rest. Finally, an analytical model able to incorporate the relevant
observed features is formulated. The analysis is conducted on a large
database in order to: (i) identify the features of PA patterns that better
differentiate clinically significant chronic pain intensities; (ii) get a
better understanding on the factors influencing the temporal organ-
ization of human PA patterns in health and disease; (iii) verify the
capability of the analytical model to reliably capture the relevant PA
features; (iv) discuss the results in the context of contemporary stud-
ies on statistical modeling of human dynamics'®'>*%%,

Results

Collected data. The study includes 72 subjects (58 chronic pain
patients and 14 healthy pain free individuals) who were monitored
in real-life conditions during 5 consecutive days, eight hours per day.
The patients estimated the intensity of their usual pain on a visual
analogue scale (VAS) from 0 to 10. To quantify the impact of
clinically different pain intensities (min 30% difference on VAS)
on PA, independently of demographic covariates such as age and
employment status, the subgroups are matched in two pairs and the
comparison is performed as follows: no pain (VAS = 0, n = 14
subjects) vs. severe pain (VAS = 7 to 10, n = 25) in middle age
groups and moderate pain (VAS = 4 to 6, n = 14) vs. severe pain
in old age (n = 19) groups (Table S1).

Total time spent in activity and rest. Figure 1a shows an illustrative
PA pattern as it unfolds over a period of monitoring time. Because
chronic pain may interfere with physically demanding tasks, the
usual assessment procedure is to quantify the amount/percentage
of time spent in either PA states. The group-averaged results
shown in Fig. 2a indicate that with higher pain intensities the
amount of time spent in activity decreases significantly. Although
this parameter indicates that pain intensity may have an impact on
the amount of physically demanding activities it does not contain
information about the dynamics of PA behavior, i.e. how the total
amount of activity is distributed in periods over the time. Therefore,
the next step is to search for a distribution model that characterizes
the periods of activity (a) and rest (r) of individual subjects.

Distribution laws of activity and rest periods. The shape of empiri-
cally complementary cumulative distribution of diurnal activity and
rest periods illustrated in Fig. 3 (mixture of a straight line and a
slightly curved line as a parabola) suggests the lognormal distri-
bution to be a suitable analytical model to fit the observed data®.
Goodness of fit analysis conducted with other candidates indicates
the lognormal distribution to be the best fitting model for more than
60% of data. For 30% of data the best fitting model is the double
Pareto distribution (Pareto2) which falls between the lognormal and
Pareto (see Supplementary Method S1, Table S1). The estimated
scale (u,) and shape (o) parameters of the lognormal cumulative
distribution function (CDF), F,(x)=1/2erfc(— Inx — u,)/0y), indi-
cate that there is a trend (statistically non-significant) towards
increased variability in periods of rest and decreased variability in
periods of activity when pain increases (i.e., high pain intensity
increases the likelihood of longer rest periods and shorter activity
periods) (see Supplementary Tables S2, S3). A possible explanation
for this observation is that all included patients reported limitation
for long continuous walking (see Methods, Study design and data
collection).

Statistical distance between distributions of activity and rest
periods. In the quest of unraveling clear differences in PA pat-
terns, we consider the subject’s dichotomous activity-rest allocation
over the monitoring time (Fig. la) and quantify the statistical
distances/differences between CDF of activity and rest periods,
Fy(x) and F.(x), respectively. Figures 4ab show illustrative
examples of estimated CDFs for a patient with a high pain score
and a pain free healthy subject. To quantify the entire difference
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Figure 1| Representation of information embedded in PA pattern as periods and events. (a) pattern of dichotomous PA states from which PA periods
are defined as: activity, a={a;}, i=1,n, rest, v={r;}, i=1,n, and activity-rest succession (pattern ‘ar’), ar ={ayraxra,...,a;r;}, i=1,n; (b) pattern of
differences between successive periods of activity and rest from which PA periods are defined as: amount of excess rest following the previous activity,
ot = {ri—ai}, ri=a;,i=1,n, and amount of deficit in rest following the previous activity, 8~ ={r;—a;}, r;<a;i=1,n; (c) pattern of a— rand r— a
transitions represented as event series and event counts, N(T) = {Ni(T)}, k = 1,M, where N(T) denotes the counting function of the pooled process which
assembles and orders the occurrence time of a — rand r — a transitions; (d) conditional intensity functions ,(t|H;|) and 4,(¢t|H;|) (inverted to aid
visualization), who model the dependencies between the timings of a — rand r— a transitions. Note that this illustrative example is extracted from the

PA pattern of one subject.
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Figure 2 | Parameters quantifying the PA pattern. (a) the cumulated activity level (overall time spent in activity), activity(%); (b) the area between CDF
of activity and rest periods, A,,; (c) the area between CDF of differences 0~ and ST, Ay; (d) the burstiness parameter B; (e) the 1* order serial correlation
coefficient between successive activity and rest periods (memory coefficient) M; (f) the Fano factor scaling exponent wg, quantifying multi-scale

burstiness of PA events/transitions.

between the CDFs we use the area test statistic defined as A,, =
Apr — A% where A7 and A7 represent area over F,(x) and
F,(x) respectively, calculated by trapezoidal numerical integration.
A positive value for A,, indicates that F,(x) is above F,(x), i.e., over
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Figure 3 | Complementary cumulative distribution (log-log plot) of
activity and rest periods, estimated for each subject in the four groups.

ensemble the activity periods are shorter compared to the rest periods
while a negative value indicates F,(x) above F,(x), i.e., the rest periods
are shorter than activity periods.

The computations show that area A, increases with pain intensity
and discriminates significantly between the compared groups
(Fig. 2b). It should be pointed out that A,, provides a better discrim-
ination between patients with and without pain than the total
amount of activity, especially in middle age subjects. This suggests
that individuals with different pain intensities have different alloca-
tion pattern of the activity and rest periods (Fig. 1a), despite similar
cumulated time. For instance, the same amount of activity can be
cumulated in different ways - from a few longer periods or from
many shorter periods or from a combination of both. Multiple
regression analysis (all subjects, n = 72) indicates that a significant
amount of the variance in activity(%) parameter (R*> = 60%, p <
0.0001) is associated with the total number of activity to rest and rest
to activity transitions, NT, (f = 0.06, t-ratio = 4.7, p < 0.0001) and
the area A, (f = —0.03, t-ratio = 6.3, p < 0.0001). Relevant pain-
related behavioral features are therefore likely to reside in the tem-
poral dynamics of PA patterns i.e. in the manner in which activity and
rest periods are interwoven throughout daily-life.

Relationship between successive activity and rest periods. It makes
intuitive sense to assume that the duration of resting time after a
physically demanding activity increases in conditions such as
chronic pain (and/or fatigue, old age), and consequently, it is
relevant to study the differences between the duration of successive
activity and rest periods.
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Figure 4 | Illustrative example of statistical distances between
distributions of activity and rest periods (5* and 5~ in the inset),
quantified with the area test statistics (color-area) for: (a) a patient with
high pain level (VAS = 7.4) and (b) a healthy pain free subject (VAS = 0).
The higher positive value of A,, (As) for the chronic pain patient indicates
that in ensemble, activity periods are shorter than resting periods while the
negative A,, for the healthy pain free subject indicates that activity periods
are longer than resting periods.

The sequence of differences 6, =r;—a;, i=1,...,n (Fig. la, b) is
divided into subsequences 5 and 6~ depending on whether the
rest period is longer or shorter than the preceding activity period, that
is: 5,6{5,(+ }c»r,- >a; and 5,‘6{517 }c»r,» <a; (r; following a; ). As with
the periods of activity and rest, the best fit for CDF of 6" and 6 is
obtained with the lognormal distribution (see Supplementary Table
S1). The analysis shows that the area between CDF of §* and &,
denoted by Aj, increases (i.e., rest periods following activity periods
are longer) when the intensity of pain increases, indicating slightly
better differentiating properties than A,,, as illustrated in Fig. 2c and
Fig. 4a, b (inset).

The main observation from these results is that activity and rest
periods, and their successive differences follow long-tailed distri-
bution suggesting inhomogeneous/bursty dynamics of PA pattern.
This point out to three fundamental questions addressed in the fol-
lowing: (i) how can be such inhomogeneous temporal dynamics of PA
behavior quantified, (ii) why does it occur and (iii) how to specify it
into a mathematical analytical model.

Temporal dynamics of PA pattern: correlations and burstiness.
Theoretically, two different mechanisms may be at the origin of
inhomogeneous/bursty dynamics of PA pattern (Fig. 1a): (1) the
correlations between successive activity and rest periods, and (2)
the high variability of their duration indicated by the long-tail of
fitted distribution®. Correlations between successive periods are
estimated with the 1% order serial correlation/memory coefficient,
M (Methods). The modest positive values of M indicate a tendency
for long (short) activity/rest periods to be followed by long (short)
rest/activity periods and this trend is accentuated in patients with low
pain scores (Fig. 2d). The negative mean value in the severe pain, old

age group suggests that in elderly patients with high pain scores there
is a tendency for short activity periods to be followed by long rest
periods (the vice-versa, i.e., long activity followed by short rest is not
supported by the values of As).

The variability of PA pattern is quantified with the normalized
coefficient of variation defined as the burstiness coefficient, B
(Methods). The observed trend is toward a reduced but not statist-
ically significant variability of activity-rest sequence when pain
increases (Fig. 2e). This can be explained by the fact that the value
of B increases because of two opposite factors: the large tail of the
distribution of activity periods (more common with low pain intens-
ity) and/or the large tail of the distribution of rest periods (more
common with severe pain conditions).

It is worth mentioning that when B and M parameters character-
izing PA patterns are represented in the (M, B) space, the dynamics of
these patterns is consistent with those of other human activities®, as
illustrated in Fig. 5.

Temporal dynamics of PA pattern: multi-scale correlations and
burstiness. Further insight into the dynamics of PA pattern can be
obtained from the quantification of long-term multi-scale
correlations of activity to rest (a — r) and rest to activity (r — a)
transitions defined as point-processes, i.e. the timing of transitions
(7, tj', i=1,..,n,j=1,...,m) are modeled as events on the monitoring
time-axis (Fig. 1¢). The interesting question with this representation
is whether the events of the pooled process (£\U;) occur randomly,
ie. uncorrelated, or in bursts (and burst-within-bursts), i.e.
correlated over many time-scales. The statistical measure used to
distinguish multi-scale burstiness from random behavior is the
Fano factor®, defined as the variance to mean ratio of the number
of events in time windows of specified length T (Methods). The
analysis indicates that the Fano factor scaling exponent, denoted
by wp, decreases significantly with increased pain severity (Fig. 2f).
Higher values of wr suggest that the PA events occur in bursts and
this pattern holds over several time scales. Conversely, lower values
of wr indicate that transitions appear more randomly distributed
over the monitoring time.

To understand the possible origin of the multi-scale burstiness and
its behavioral consequences we investigate the relationship between
the metrics that quantify the dynamics of PA pattern. For any given
point process, the inter-event periods and the event counts statistics
are closely related, as indicated by the analytic equation of Cox &

Lewis® expressed as: lim F(T)=CV?(1+2 Z SC;). In our case,
T—o0

CV is the ratio of the standard deviation to the mean of activity-rest
(ar) sequence illustrated in Fig. la, and SC; denotes the i" serial
correlation coefficients of ar sequence. According to this equation
we explore the Fano factor scaling exponent wp as a function of the
burstiness parameter B (normalized CV), and the memory coefficient
M (1* order SC): multiple regression analysis (n = 72) indicates that
a significant amount of the variance in o (R* = 40%, p < 0.0001) is
associated with B (f = 0.64, t-ratio = 4.1, p = 0.0001) and M (f =
0.54, t-ratio = 3.3, p = 0.001). The memory coefficient M (and
implicitly wp) decreases when area A; increases (r = —0.67, p =
107'), i.e. when longer rest periods succeed to activity periods. The
suggestion is that the multi-scale burstiness features may reflect the
capacity of a subject to balance the duration of successive activity and
rest periods (positive M) including the ability to perform long periods
of activity followed by short rest (smaller/negative A;). In the elderly
and in chronic pain patients the bursty PA pattern breaks down,
presumably because systematically longer rest periods are needed
to recuperate after an episode of demanding activity (negative/zero
M). It should be pointed out that the bursty PA pattern can also be
broken by increased yet abnormal PA qualified as ‘overactive/endur-
ance’ behaviors'>*. In this case, a decreased/negative value of M
describes rest periods that are consistently shorter than their preced-
ing activity periods.
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Figure 5| Human PA pattern in the Memory-Burstiness (M, B) phase diagram. Recent studies in statistical physics community showed that the pattern
of various human activities such as email and phone communications, web browsing, library visitation, etc., is characterized by long-tailed distributions
of inter-event intervals and burstiness, for which various generating mechanisms were proposed. Our analysis reveals that human daily-life PA patterns
locate in the same area in the (M, B) space however, with advanced aging and disease (severe pain), the PA patterns shift from the common area.

An additional insightful view on the possible origin of the multi-
scale burstiness can be obtained by exploring the relation between the
timing of PA events using surrogate data analysis (see Supplemen-
tary Method S2, Table S4). This analysis demonstrate that for the
pain-free group the multi-scale burstiness properties are essentially
due to positive correlations among events, associated with the spe-
cific ordering of activity and rest periods and, to a lesser extend to the
distribution of activity and rest periods themselves. Conversely, for
the chronic pain groups the surrogate data analysis indicates no
correlation among events in the original data therefore the values
of wp are mainly related to the long-tailed distribution of activity and
rest periods.

Statistical modeling of PA pattern: bivariate point process model.
In order to formulate a mathematical model capable to capture the
dynamics of PA patterns we consider the sequences generated by the
timing of transitions r — a4, {ti”},iz 1,...,n and a — 1,

t tj=1....m as a bivariate stochastic point process (Fig. 1c). A
point process able to model burstiness/clustering and correlations
in a parsimonious way is the Hawkes bivariate (mutually exciting)
point process (HBPP) with exponential decay****. The HBPP is
described by the conditional intensity functions A,(t|H;) and
A-(t|Hy) (equation 1, Method) which represent the instant proba-
bilities of r — a and a — r transition occurrences given the
previous realizations (history H;). The most important quantities
of HBPP in the context of our modeling are the averaged condi-
tional rates 4, and 4,, and the cluster sizes ¢, and ¢, (equation 2,
Method).

Goodness of fit analysis demonstrates that the model fits accur-
ately (95% CI) for all subjects (see Supplementary Method S3, Table
S5, and Figures S1-S72). The descriptive properties of the model are
evaluated using the multiple/bivariate regressions between the
empirical parameters describing the PA pattern and the estimated
HBPP model parameters. The variance in the empirical number of

transitions NT is significantly explained (R* = 82%, p < 0.0001) by
the model avergged conditional rates 4, (§ = 74981, t-ratio = 12.7, p
< 0.0001) and 4, (f = 29804, t-ratio = 3.7, p = 0.0004). The variance
in the burstiness parameter B is significantly associated (R = 63%, p
<< 0.0001) with the cluster size ¢, (f = 0.052, t-ratio = 9, p < 0.0001)
and ¢, (f = 0.007, t-ratio = 2.1, p = 0.03), while the variance in the
memory parameter M is moderately but significantly explained (R’
= 42%, p < 0.0001) by the cluster size c, (f = 0.04, t-ratio = 6.5, p <
0.0001) and ¢, (f = —0.02, t-ratio = 4.7, p < 0.0001). The amount of
activity (%) and the area A; are significantly associated with 4, (r =
0.7,p < 0.0001 and r = —0.6, p < 0.0001, respectively). These values
indicate that the HBPP can be used as a unified stochastic model of
the various dynamical features of PA pattern.

Discussion

Quantitative parameters such as the time spent walking or standing
(activity) can be useful metrics - and make intuitive sense - when
assessing PA. However, measuring activity (or rest) as percentages of
the monitoring time does not capture information regarding the
activity-rest temporal pattern, for example, does not distinguish
between a large number of short periods and a small number of long
periods — two situations with different underlying dynamics. The
results of this study provide empirical evidence that clinically rel-
evant information may be contained in the way the durations of
activity and rest (sedentary) periods are distributed in everyday life.
This is illustrated by the fact that the parameters quantifying the
dynamics of PA pattern (i.e., A, As, M, op) are more discriminative
than activity(%) (Fig. 2). However, none of these parameters shows a
complete non-overlap between the compared groups which signifies
that some individuals with high pain intensity may display a PA
behavior similar with free/low pain subjects (either in terms of total
cumulated activity(%), dynamics of pattern, or both). These findings
seem to support the conceptualization of chronic pain as an intricate
relationship between physiological and psychological factors with

| 3:2019 | DOI: 10.1038/srep02019

6



impact on the triad physical, emotional, and social functioning. The
suggestion is that the patterns of daily life activity may be modulated
not only by pain intensity but also by emotional/psychological fac-
tors such as the ability to develop behavioral coping strategies'®. The
‘fear-avoidance’ of activity is the most popular pain-behavioral
model however recent data suggest that more complex behaviors
are equally appropriate: the ‘pacing’ which consists of repeated rest
breaks that presumably help to complete activities, and ‘endurance/
over-activity’ where high rate activity patters are supposed to help to
get things done despite pain®. Although these assumptions need to
be validated in larger future prospective studies, designed to include
in addition to PA monitoring adequate avoidance-endurance ques-
tionnaires', the presented methodological framework (which quant-
ify both the quantity of activity as well as the dynamics of PA pattern)
has the potential to objectively reveals such complex behaviors (see
Fig. 6). The approach could be useful in the context of the studies
initiated in psychobiological pain research'>* as well as for dia-
gnostic and personalized therapy since circumstantial evidence sug-
gest that excessive avoidance behavior and excessive endurance
behavior may lead to increased disability levels through different
mechanisms'**.

The results of our study may also contribute to the understanding
of PA behavior in the context of the current research on human
dynamics. The analysis shows that the timing of a — r/r — a transi-
tions follows non-Poissonian statistics characterized by a bursty pat-
tern, and the durations of activity and rest periods display long-tailed
distributions. Recent studies indicated that the bursty patterns aris-
ing from long-tailed distributions (i.e. power-law, lognormal,
stretched exponential) and/or the temporal correlations between
inter-event periods are common in many human activities such as
sending e-mails***”*, visiting libraries, web-browsing®, trading in a
stock market® or initiating arm-movements'>. Our results reveal that
durations of activity and rest periods are characterized by similar
long-tailed distributions, and the parameters of lognormal fitted
model vary with pain intensity (and aging). Long-tailed distributions

70 T T T T

were frequently used to describe statistics of complex systems, i.e.,
systems with multiple interaction units*>”. In the context of the
present study we can postulate that the overall dynamics of human
PA patterns is determined by aggregated effects of competing factors
related to the patient (e.g. pain intensity, fear of movement, fatigue,
coping strategies) as well as to the environment (e.g. work, reaction to
unforeseen events, daily tasks). When pain increases over a certain
threshold, the patient-related factors (i.e., pain) may prevail over
physically demanding task resulting in interruption of activity or
the need for longer recuperation periods or both. The statistical
distance between the distributions of the periods quantifying the
excess of or deficit in rest after an activity period (As) is one of the
parameters that provide the best distinction among patients with
different pain intensities.

The temporal dynamics observed for PA patterns appears also to
be consistent with dynamics of other human initiated actions™.
Several mechanisms have been proposed to explain the temporal
bursts of the various actions including rational decision making pro-
cesses that result in prioritizing the tasks*®, the memory effects*®, and
the varying/adaptive interest®® whereby human behavior is influ-
enced by prior experience. There is however, no evidence suggesting
that such mechanisms could explain the bursty pattern of PA (ini-
tiation of of a — #/r — a transitions). Instead the results may con-
tribute to understand why aging and pain intensity interfere with
normal PA causing a deviation from the ‘common area’ in (M, B)
space (Fig. 5). With decreasing physical capacity (impairment of
physical functioning), longer resting periods are observed after activ-
ity periods resulting in decreased correlations (M) between success-
ive activity and rest states.

While a number of studies have examined the PA in specific dis-
orders, the quantification and modeling of the features of PA and the
related behaviors remain challenging. We have shown that relevant
information on the dynamics of human activity is embedded in the
temporal pattern of occurrence of PA events. The data presented here
is based on a large number of heterogeneous subjects (in terms of
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Figure 6 | Empirical evidence that different pain-behavioral models - defined as fear-avoidance, endurance/over-activity and pacing may characterize
daily functioning in chronic pain patients. Each bubble contains subject’s specific information about the cumulated activity(%) level (on the y-axis) and
the statistical distance between distribution of activity and rest periods, A, (in the bubble relative size): fear-avoidance behavior might be attributed to the
chronic pain patients with low activity levels while endurance might be attributed to the severe pain patients who perform high amounts of activity levels,
comparable with no/moderate pain subjects. Pacing behavior might be associated to the chronic pain patients with high level of cumulated activity but
with a more fragmented pattern and longer rest periods compared to activity periods (i.e. bigger bubble sizes, as observed for the patients in the severe pain,
middle age group compared to the subjects in the no pain, middle age group).
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Table 1 | Characteristics of each group (mean = SD) and statistical differences between groups
no pain, middle severe pain, Differences moderate pain, severe pain, Differences
age (n = 14) middle age (n = 25) between groups old age (n = 14) oldage (n = 19)  between groups
Pain intensity 0 7+1.3 p=0 3.6x14 77 *+13 p=0
(VAS, O to 10)
Age, yrs 57 14 549 p=0.63 7310 74 +8 p=0.2
Gender, 8(53%) 15(60%) p=0.32 9(56%) 10(52%) p=0.61
n males (%)
Employed, n (%) 13(86%) 25(100%) p=0.06 2(0.13%) 0(0%) p=0.1
Diagnosis, - 4(SS) 5(SS) 9(SS) -
n (type) 13(FBSS) 3 (FBSS) 4(FBSS)
2(CRPS) 3(PVD) 2(PVD)
3(PVD) 1(LB) 1(PN)
1(LB) 1(Meralgyal) 1(DA)
1(PN) 1(DA) 2(HD)
1(HD)
Diagnosis: SS = spinal stenosis; FBSS = failed back surgery syndrome; CRPS = Complex regional pain syndrome; PVD = peripheral vascular disease; LB = low back and leg pain; PN = polyneuropathy;
DA = deafferentation; HD = Herniated disc.

pain intensity, environment, age, etc.) in whom the bivariate Hawkes
point processes is a convenient mathematical framework to model
the dynamics of 2 — r and r — a transition times. The stochastic
conditional intensity functions describing the time dependence of
the transition rates (Methods, equation 1) provide a ‘signature’ of the
subjects’ PA behavioral pattern through the set of parameters tuned
to fit the experimental data (see Supplementary Figures S1-S72).
Hawkes point processes have been used to model various human
activities/social phenomena® including financial markets trading
activity®, online video views and conversation patterns*. In the
context of PA patterns our results pave the way for further studies
that might focus on the generalization to the marked case, by spe-
cifying for each a — r transition the movement intensity during the
preceding activity period (e.g. in terms of walking duration, speed,
body acceleration, or energy expenditure) and model in this way a
process that convey more physically and pain/fatigue related
information.

Finally, it is important to note that the findings of this study have
inherent limitations related to the sample size and the data collection
procedure. Due to the complexity and variety of human daily-life
activities, the data collected from 72 subjects in the limited period of
five days may be no sufficiently representative and therefore restrict
the generalization of the results.

Methods

Study design and data collection. The analysis is performed retrospectively on data
that were collected prospectively in an observational study designed to assess PA in
chronic pain patients treated with spinal cord stimulation (SCS). The main inclusion
criteria were eligibility for SCS therapy and pain-related limitation of the walking
perimeter, therefore the group was not homogenous in terms of pathologies and
demographic data (Table 1). The healthy pain free volunteers were recruited from
patients’ relatives or the medical staff of the pain clinic. After approval of the local
ethical committee, and written informed consent was obtained, PA was monitored
under normal unrestricted life conditions using three miniaturized data-loggers (55
X 40 X 18 mm, 50 g) stuck to the skin with medical adhesive patches. The data-
loggers included inertial sensors (accelerometers and gyroscopes), memory,
electronics for the data acquisition and rechargeable batteries. One device was fixed
on the chest (sternum) to measure the trunk vertical and frontal accelerations, and the
angular velocity in the sagittal plane. Two devices were fixed on one leg (thigh and
shank) aligned with the medio-lateral axis to measure vertical and frontal
accelerations and the angular velocity of the thigh and of the shank in the sagittal
plane. This sensor configuration allows accurate detection (sensitivity and specificity
superior to 95%) of body postures (sitting, standing, lying) and walking activity**. The
subjects were instructed to install the devices and start the recording in the morning
before engaging in daily activities. Chronic pain conditions were assessed using the
usual pain intensity experienced by subjects during PA monitoring period. The
subjects were asked to rate their pain on a visual analog scale (VAS) from 0 to 10.

Estimation of burstiness and memory. Short-term correlations are estimated with

Mo 2 Zﬁfl (ari—my)(ariy1 —my)
n—1 i=1 102
periods, m;(m;) and ¢,(g,) are the mean and standard deviation of ar;(ar; ;)
respectively (j = 1,...,n — 1). Burstiness/variability is estimated with the coefficient®”:
Gar —Mm,
B= "% where m,, and o,, are the mean and standard deviation of the pattern
Oar + Mgy

‘ar’

where 7 is the number of activity and rest

Estimation of multi-scale burstiness using the Fano factor. In order to provide a

stable/robust estimate of parameters, the PA event series of each subject are obtained
by concatenating the data from the five consecutive days. Thus, the occurrence time of
events are mapped onto (0,T},), as follows: if ¢ is the time of an event occurring in the
d™ day (d = 1,2,...,5) then the occurrence time of this event in the final PA event series

d—
is t+ Zi: 11 I;, where I, is the length of 4" day and T, is the total monitoring time

during the five days.

The Fano factor is defined as the ratio of the variance of the number of transitions
to the mean number of transitions in time windows of specified length, T:
Ry - YN
- mean(Ni(T)
T (Fig. 1c). For a data block of length T, the window length T is progressively
increased from a minimum of 2 sec to a maximum of T,/10 so that at least ten non-
overlapping windows are used to estimate F(T). If transitions (a — r and r — a) are
organized in temporal clusters/bursts (and bursts within bursts), the Fano factor
varies as F(T)oc T“F for long counting times. The exponent wp is bounded in the
range0 < wr < 1, increasing values toward the upper bound providing a measure of
the correlations and burstiness of transitions over various time scales. If transitions
are randomly distributed then F(T) is flat for all time scales andwp=~0"".

where Ni(T) is the number of transitions in k™ window of length

Modelisation of PA pattern using the bivariate Hawkes point processes. Within
the framework of this process the temporal behavior (time-dependence) of r — a and
a — r sequences is modeled by the conditional intensities).,(t|H;) and A,(t|H;),
respectively, which represent the infinitesimal rate at which transitions are expected
to occur around a particular time ¢, conditional of the recent history of the transitions

sequences up to time £, Hy = /Ut : 1,1/ < t}:

= —Ba(t—1) —Ba(t—1))
FatlH) =+ D, _ ot + Dt

. . 1)
Zo(t|Hy) =, + th, » ae P 4 th » tyge Pt

where 1, i, are background rates of spontaneous transitions (i.e. not related to the
timing of the other transitions) and f3,,, f, are the rates of decay controlling the
influence of the time distance to past transitions on overall rates 4, A.. The scale
parameters o, and o, measure the impact of an r — a/a — r transition on the rate of
subsequent r — a/a — r transitions (self-dependence) while o, and o,, measure the
impact of an a — r/r — a transition on the rate of subsequent r — a/a — r transitions
(mutual-dependence). As each transition occurs, the conditional rate increases
according to the values of the scale parameters (Fig. 1d). More specifically, an r — a/a
— r transition occurring at the basal rate u may trigger a burst/cluster of successive
transitions. The expected cluster sizes ¢, and c, are equal with the total integrated
intensity of the exponential kernels®:

* * 5t %a | Olar
a=1/1-— [ aue*ﬁwfdwr[ age Patdr ) =1/1— (2422
Jo Jo Ba Ba

2
the 1* order serial correlation/memory coefficient M defined for the sequence of Y *© vy O Oy @
successive activity-rest periods (pattern ‘ar’) (Fig. 1a) as follows™: ¢=1/1— L ae dt+ [0 e dt | =1 /1— B + B,
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and the average of the occurrence rate of transitions is given by:

Ja=E[7(t|H})]| = tyc, and 4, = E[2,(t|H,)] = pt,¢,. Given the parametric form of the
bivariate process in eq. 1, the set of parameters are estimated using the maximum
likelihood estimation (MLE). The log-likelihood can be computed as the sum of the
likelihood of each process:

L (tgsttysBasBrotastar ors0tra) = L (1B a-0tas%ar) + L (btysBr sty s0tra) ()

n . . o n _ e
L= " 10g (Hy + %aRa(i) + ttar Rar (i) — 1, T+ 7= > (P70 —1)

i=2 ai=1

Gar Em: ~BaTu=1))

HrS e -

/ja j=1

, . @

L= bym+m&w+mmm»ﬂun+f}:@*“ﬁ97n+

j=2 ri=1

ﬁi(e*’f'”ﬁ'ﬁf )

ﬁr j=1

where R are recursive expressions given by:

Ro(1)=Rer(1)=Rr(1) =Rpo(1) =0 (5)
Ry(i)=e~ P =0 (14 Ry(i—1)) (©)

Rop(i) =~ P D (R, (i— 1)+

Ze*ﬁa(ﬁ’ﬂ,’) (7)

{jit® <t/ <t}

Ry(j)=e M7+ R (1)) ®)

D et ©)

{it <tf <t}

i

Ru()=e 55D (Rpa(i— 1))+

The MLE of the vector parameter 0= (i,.,,Bq.Br:0a0r,0,0rq) is given by
0 :Argrn(}in(L“(é)) +L"()) subject to positivity and stability constraints,

Ya Sar Tr T
Ba" Ba "B B,
using the simulated annealing optimization method and the goodness of fit for the

data of each subject is assessed using the QQ-plot and the Kolmogorov-Smirnov plot
(KS-plot) (see Supplementary Method S3).

PasPrstasar, 0ty ,0trg >0 and <1 respectively. The MLE is performed

Statistical analysis. PA parameters are calculated for each subject, then the mean and
standard deviation values are calculated for each group of subjects. The distribution of
parameters in each group is tested for Normality (Shapiro-Wilk test), and based on
Normality test the differences between groups is assessed using two-sided Student’s t-
test or nonparametric Mann-Whithney test. Correlations between different PA
parameters are quantified using Spearman rank-correlation test.
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