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these sequences can then be used by researchers to identify common

genetic variants in human populations.

HGDP-CEPH cell line panel: a publicly available collection of DNA

samples collected by the Human Genome Diversity Project and

housed at the Centre d’etude du Polymorphisme Humain (http://

www.cephb.fr/HGDP-CEPH-Panel/). The panel consists of 1064 lym-

phoblastoid cell lines, representing individuals from 54 globally

distributed populations. Recently, atypical (i.e. potentially misla-

belled or duplicate samples) and first and second order relatives

have been identified in the panel and excluded in the three standar-

dized subsets labelled H1048, H971 and H952 respectively [62]. The

H971 subset, used to generate Figure 1 in the main text and Figure Ib

in Box 1 excludes two atypical individuals and pairs of first-degree

relatives. The panel has been used in several recent studies of global

human genetic variation [8,10–12,50,52] and has been genotyped at

nearly 1000 autosomal microsatellite markers, as well as biallelic

polymorphisms [22,36,68].

Hs: gene diversity as defined by Nei (equation 7.39 in Ref. [70]). Hs is

an unbiased estimator of the mean expected heterozygosity under

Hardy–Weinberg equilibrium.

Island model: a model of population structure defined by Wright

(1931) [71], which describes gene flow in a subdivided population.

Each subpopulation of size N sends out and receives migrants to

each of the other subpopulations at the same rate (m). This contrasts

with a stepping-stone model, in which subpopulations send out and
Global human genetic variation is greatly influenced by
geography, with genetic differentiation between popu-
lations increasing with geographic distance and within-
populationdiversity decreasingwith distance from Africa.
In fact, these ’clines’ can explain most of the variation in
human populations. Despite this, population genetics
inferences often rely on models that do not take geogra-
phy into account, which could result in misleading con-
clusions when working at global geographic scales.
Geographically explicit approaches have great potential
for the study of human population genetics. Here, we
discuss the most promising avenues of research in the
context of human settlement history and the detection of
genomic elements under natural selection. We also
review recent technical advances and address the chal-
lenges of integrating geography and genetics.

Global patterns of human genetic variation
The influence of geography on patterns of genetic variation
was recognized in the first half of the twentieth century,
when population genetics was still an emerging discipline
Glossary

Approximate Bayesian Computational (ABC) methods: methods that

are based on a combination of Bayesian inference and summary

statistics. The summary statistics are used to approximate a posterior

distribution, which is less computationally intensive than conven-

tional Monte Carlo Markov Chain (MCMC) methods.

Ascertainment bias: bias resulting from selection and characteriz-

ation of markers in a subset of samples. For example, if markers are

chosen on the basis of their high polymorphism in a particular

population, their variability might be artificially inflated in this popu-

lation relative to the total.

Carrying capacity: the maximum number of individuals that can be

sustained by local resources.

Cline: the gradual linear change in a character (e.g. allele frequency,

within-population genetic diversity or between-population genetic

differentiation) with increasing geographic distance.

Friction: relative difficulty in moving through a landscape.

FST: the correlation of genes drawn at random from each subpopu-

lation [69]. FST is commonly used as a measure of the degree of

genetic differentiation of subpopulations

HapMap Project: an international project (http://www.hapmap.org)

that aims to compare genetic sequences of different individuals;

receive migrants to their right and left neighbours only.

Isolation-by-distance (IBD): the tendency for most individuals to

migrate between neighbouring populations, which results in a

smooth increase in genetic differentiation with increasing geo-

graphic distance between populations (i.e. a cline).

Multiregional evolution: a model of modern human evolution that

proposes that all human populations living today originated in their

various continents with archaic human populations always linked by

gene flow [30]. Genetic evidence, for example that global diversity is

a subset of that found in Africa, does not support this model and

therefore the alternative Unique Origin (or ‘‘Out-of-Africa’’) model is

generally accepted nowadays.

Multi-dimensional scaling: a type of multivariate analysis that allows

information to be displayed in two (or more) dimensions

One-dimensional stepping-stone: a model of population structure in

which populations are arranged linearly and exchange individuals

with their right and left neighbours.

Pharmacogenetics: the study of genetically determined variations in

drug response, efficacy and frequency of adverse reactions.

Procrustes analysis (or least-squares orthogonal mapping): a poten-

tially informative alternative to the Mantel test for comparing two

sets of data based on matching corresponding points (landmarks or

sampling locations) from each of the two data sets.

Selective sweep: the rapid fixation of an allele under strong

directional selection. Neutral variants that are physically linked

to the selected allele are also swept to fixation (a phenomenon

known as genetic hitchhiking). This results in a region of reduced

variation on the chromosome relative to other genomic regions.
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Two-dimensional stepping-stone: extension of the one-dimensional

stepping-stone model, in which each local population can exchange

migrants with its four neighbours.

Unique Origin Model: also referred to as the ‘Out-of-Africa’ or ‘Recent

African Origins’ model of modern human evolution. This model

proposes that anatomically modern humans arose in Africa �200

000 years ago as a new species [29]. Approximately 100 000 to 60 000

years ago, a small population in East Africa started expanding and

eventually spread across the world, replacing all non-African archaic

humans [20]. It is often assumed that there was a major bottleneck

associated with the exit from Africa.
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(e.g. Refs [1,2]). In the 1970s, studies revealed a simple
relationship between the frequency of human blood group
polymorphisms and geographic location [3,4]. Further
analyses revealed even stronger geographic patterns or
‘clines’ (seeGlossary): genetic distance between populations
increased with geographic distance at both continental and
global scales [5,6], which is characteristic of so-called ‘iso-
lation by distance’ (IBD) [7] models. Despite these early
studies demonstrating the importance of IBD, few studies
have applied IBD models to global-scale questions, such as
the colonization of the world by anatomically modern
humans.

In recent years, the field of human population genetics
has greatly benefited from large-scale surveys of human
genetic variationathundreds of loci. Inparticular, thepaper
by Rosenberg and colleagues [8] will probably be remem-
beredas amilestone in thefield.For thefirst time, the entire
scientific community could access a dataset of nearly 400
autosomal microsatellite markers typed on the Human
Genome Diversity Project (HGDP-CEPH) cell line panel
[9], a resource of over 1,000 DNA samples from individuals
frommore than 50 globally distributed populations. Several
recent studies have examined patterns of human genetic
variation in the HGDP-CEPH panel and other large data-
sets, using geographically explicit frameworks (e.g. Refs
[10–13]), and such studies support the single-locus based
patterns of IBD generated by Cavalli-Sforza and colleagues
[5]. As well as their obvious relevance to human settlement
history, these results have increasing significance in a
medical context, for example in pharmacogenetics, where
the genetic structure of a population is used as a predictor of
the efficacy of drugs or the likelihood of adverse reactions
(e.g. Refs [14–16]). Given these recent developments and
their implications, we discuss here the relevance of these
global clinal patterns for inference in human population
genetics and for studies of genomic regions under natural
selection. We also examine the technical prospects, chal-
lengesandpitfalls of geographicallyexplicit analyses (Box1)
and address whether clines are compatible with other
results that have described human genetic variation as
‘clustered’ (Box 2).

Human genetic variation is mainly clinal
Several groups have confirmed that the genetic
differentiation between pairs of populations correlates
exceptionally well with the geographic distance separating
them (e.g. Refs [10,11,13,17,18]). Relethford [17]demon-
strated a remarkably strong pattern of isolation by distance
when correlating geographic distance (great circle distances
www.sciencedirect.com
forced through choke points; Box 1) with either variation in
cranial morphology or genetic distance (as measured by
FST and estimated from 14 blood polymorphisms in 32
populationsand frommicrosatellite loci in theHGDP-CEPH
panel) [8]. Thiswas later confirmed ina largermicrosatellite
dataset [10], and a similar pattern was uncovered using a
more complex method for computing probable colonization
routesalong landmasses [11,13] (Figure1aandBox1Figure
Ia). These studies revealed that geographic distance
explains at least 75% of the variance between human popu-
lations [10,11,13] (Figure 1a).

An even more striking feature in the microsatellite data
is that geographic distance from East Africa (the probable
cradle of anatomically modern humans (e.g. Refs [19,20])
explains an impressive 85% of the smooth decrease in gene
diversity (Hs) within human populations [10,12,13]
(Figure 1b and Box 1 Figure Ib). Perhaps even more
remarkably, similar clinal patterns can be recovered for
variation in human craniometric measurements [21] and
even the gut bacteriumHelicobacter pylori, suggesting that
this species has been commensal with human populations
since our initial exit from Africa [13]. In each case, no step
decrease(s) in genetic diversity were found that could be
interpreted as evidence for genetic discontinuities, even at
continental boundaries. Moreover, the global distribution
of single nucleotide polymorphism (SNP)-based haplotypes
and the extent of linkage disequilibriumwithin populations
are also compatible with a mostly clinal pattern of human
genetic variation [22]. Taken together, these results illus-
trate that modern humans have a recent African origin and
that therewas essentially continuous gene flow over limited
distances (includingbetweenAfrica andEurasia) during the
colonization process. These clines might seem to contrast
with work that has described human genetic variation as
‘clustered’; however, the important point that we make in
Box 2 is that clinal models explain the great majority of the
variance. As we demonstrate in the following sections,
models based on a simple diffusion process are therefore
useful for interpretingpatternsofhumansettlementhistory
and should thus also be useful as null models when testing
for selection.

Population genetics inference in a clinal world
Given the strong patterns of IBD outlined above, it is
clearly time to move on from thinking about human popu-
lation genetics in the traditional island model framework,
which is still often implicitly assumed. It has, for example,
recently been suggested that the Americas were founded
by fewer than 80 effective individuals [23]. Although this
deduction was based on a highly sophisticated coalescence
model thatmakesmathematical sense and enabled several
parameters to be estimated simultaneously, it assumed,
rather artificially, that Asia and America constituted two
separate, randommating populations and did not consider
the geographical relationship between samples within and
between these two areas. The model thus assumes that
migrants are randomly drawn from all over Asia, as
opposed to coming predominantly from neighbouring popu-
lations (which would be consistent with an IBD model).
The expected diversity in the simulated source population
is therefore likely to be an overestimate, meaning that the



Box 1. Geographically explicit analyses: technical problems and potential solutions

Geographic distance between populations

The first step for a geographically explicit analysis is to establish the

distances between populations. The simplest approach is to consider

the great circle distance between two locations, which is the distance

over the shortest, most direct route on a sphere (i.e. ‘as the crow

flies’). However, in most instances, it is desirable to take into account

barriers, such as oceans or mountain ranges, which prevent the free

flow of individuals (and thus genes). If clear ‘choke points’ are present

(such as the Suez and Bering straits for movement from Africa to Asia

and from Asia to America, respectively), it is possible to simply force

any movement between regions through them but allow completely

free movement within the regions by using great circle distances

[10,17]. A more sophisticated approach that enables addition of more

complex barriers is to build up explicit friction matrices that describe

how difficult it is to move from one location to another. For small-

scale movement, friction matrices can be computed over projected

maps (e.g. using the software PATHMATRIX [26]), but for large-scale

movement the distortion is far too great, and distances computed

onto a spherical referential are far superior [12,24]. The latter

approach has been used to model human migrations across the

whole globe, forcing movement to occur only on land with an altitude

less than 2000 m [11] (Figure Ia).

Statistical frameworks for inference

Once the appropriate distances between populations have been

estimated, we need to make inferences about population genetic

differences on the basis of their geographic distances. The oldest and

most commonly used framework for geographically explicit analysis

is to compute the Mantel correlation [59] between matrices. A matrix

of pairwise genetic distances between all possible pairs of popula-

tions is correlated with a matrix of geographic distances. The

significance of the resulting correlation coefficient (called a Mantel

coefficient) is best determined through permutations. A similar, but

much less common approach is to use multi-dimensional scaling to

generate a synthetic configuration of locations based on the pairwise

genetic distances, and then match it to the geographic configuration

using Procrustes analysis [60].

In a few instances, when there is a specific hypothesis of directional

movement from a source, it is possible to look for geographic

patterns in a particular genetic variable. Cavalli-Sforza and colleagues

[5] pioneered this approach by creating ‘synthetic maps’ by plotting

Principal Component Scores to infer movement of individuals within

continents. This approach can be further formalized by explicitly

correlating population estimates (e.g. heterozygosity) with distance

from the source, a technique successfully applied to the ‘out of Africa

hypothesis’ [10,12] (see main text). We illustrate how such genetic

diversity data can be interpolated in the form of a synthetic map in

Figure Ib. General Linearized Models (GLMs) could be adopted if a

more sophisticated framework is required, such as when testing for

non-linear effects of geographic distance or the presence of discrete

clusters of populations [55].

Investigating selection

The geographically explicit frameworks described above can be

expanded to look at selection. In a nutshell, any selected gene should

show both a signal of ancient demography (i.e. the pattern revealed by

neutral loci) as well as its own peculiar signature of selection. The

methods above can be used to estimate the strength of the

demographic (neutral) pattern, and deviations from that pattern can

be interpreted as due to selection. In a pairwise framework, we can use

partial Mantel tests, which allow us to investigate the link between

pairwise genetic distances and pairwise differences in the selecting

force (e.g. difference in maximum temperature between locations) after

having accounted for geographic distance. This approach has been

used extensively, but concerns have been raised on the validity of P

values associated with permutation tests [61]. With a specific,

directional movement hypothesis, it is possible to use a GLM to fit

both distance from the source as well as the selective factors. The latter

approach successfully confirmed the link between pathogen richness

and diversity at the human leukocyte antigen (HLA) class I genes [39].

Figure I. (a) Estimating geographic distances. The map shows likely colonization

routes (red lines) between populations in the HGDP-CEPH panel (blue spots)

assuming an origin of modern humans in East Africa (Addis Ababa, red spot).

Geographic distances were estimated between populations along the

colonization routes using an approach based on graph theory. Routes were

forced through landmasses with altitude less than 2000 m (areas over 2000 m are

shown by brown shading). Geographic distances from Addis Ababa, as

illustrated in this figure, as well as a matrix of pairwise distances between all

HGDP-CEPH populations are available as supplementary material online. (b)

Interpolation of global human genetic diversity. The intensity of the green colour

represents the genetic diversity obtained with an inverse distance-weighted

(IDW) interpolation method on landmasses using the ArcGIS Spatial Analyst

extension. Blue dots represent the 54 populations from the H971 subset of the

HGDP-CEPH dataset [62].
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true number of colonists needed to explain the diversity
observed in the Americas might in fact be much greater.

Several recent papers have based their inference of
human settlement history onmore realistic, geographically
explicit models. The simplest approach takes advantage of
the clinal patterns of human genetic variation and the fact
that geographyexplains sucha large portionof the variance.
www.sciencedirect.com
For example Ramachandran et al. [10] performed a series of
simulations to investigate themode of global colonization of
modern humans. They developed an innovative method to
locate the most likely starting point of global population
expansion, given the pattern of declining heterozygosity
with geographic distance in the HGDP-CEPH panel. A
model of colonization of the world through a serial founder



Box 2. The ‘clines versus clusters’ debate

The strong clinal patterns in Figure 1 in the main text seem to be at

odds with work that has described human genetic diversity as

discontinuous or ’clustered’ (e.g. Ref. [8,15]). For instance, using the

programme STRUCTURE [63], Rosenberg and colleagues identified

six groups of genetically similar individuals (‘clusters’), five of which

correspond to major geographic regions, suggesting reduced gene

flow at continental boundaries [8,10,49].

These two apparently incompatible representations of human

genetic diversity led to numerous reanalyses of the HGDP-CEPH

datasets and promoted debate on whether human genetic variation

could be better described by clusters or clines [11,12,39,49–51,56,64].

STRUCTURE reveals gradients of ancestry proportions even under a

model of strict IBD [51,63]. If sampling is heterogeneous (sampling sites

are themselves clustered) then the data will reveal genetic clusters that

are biologically meaningless [51,63] (see Figure I). Serre and Pääbo [50],

investigating this through simulations, argued that the clusters

described by Rosenberg et al. [8] were caused by the discontinuous

nature of the sampling scheme used for the HGDP-CEPH panel and

found that, by sampling individuals uniformly across the globe, a

picture of continuous, clinal variation emerged. Rosenberg et al. [49]

subsequently explored several sub-sampling strategies and reached an

opposite conclusion: clusters remain even when sampling uniformly

across the globe. They suggested these clusters were genuine and

attributed their presence to slight discontinuities in the pattern of IBD

previously identified [10,11,17], which is consistent with reduced gene

flow at geographical barriers such as the Himalayas and Sahara [49,65].

These different representations of human genetic diversity are,

however, not mutually exclusive and several authors agree that

human genetic diversity can probably be best explained by a

synthetic model, in which most of the population differentiation can

be explained by IBD, with some discontinuities arising from barriers

to dispersal [51,56,66,67]. In other words, human genetic variation

might be best explained by a combination of both clines and clusters.

However, clusters explain only a minute fraction of the variance [8,49]

relative to clines. As mentioned in the main text (Figure 1b), >75% of

the total variance of pairwise FST can be captured by geographic

distance alone. Adding information on genetic clusters to this model

captures only an extra �2% of the variance.

Figure I. Heterogeneous sampling can reveal genetic clusters that are

biologically meaningless. The gradation in colour from blue to orange

represents a hypothetical situation of strictly continuous variation in allele

frequencies. If sampling is heterogeneous (population samples represented here

by circles) then the pattern of clinal variation can be mistaken for genetically

distinct clusters (black ellipses).
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effect (or ‘dynamic stepping-stone’) starting at a single
African origin provided an excellent fit to the observed
geographic pattern of heterozygosity. Liu et al. [24] also
tookadvantageof theseclinalpatterns to investigatehuman
settlement history. They used a dynamic population
genetics model based on a one-dimensional stepping-stone
coupled with an explicit geographical framework (i.e. geo-
graphic distances along landmasses fromEastAfrica, avoid-
Figure 1. Human genetic variation is mainly clinal. (a) Pairwise genetic distance (FST) b

geographic distance. There is a strong, positive, linear relationship between genetic diff

IBD. 77% of the variance can be explained by geographic distance between populatio

geographic distance from East Africa (Addis Ababa). In this case, geographic distance

populations. Decreasing diversity with distance from East Africa is consistent with Africa

along likely colonization routes (see Box 1 text and Box 1 Figure Ia) and analyses were b

HGDP-CEPH panel [62]. The figures are updated from Ref. [13]. See also Refs [10,12].

www.sciencedirect.com
ing areas with mean altitude >2000 m; Box 1 Figure Ia) to
simulate parameters of the colonization process. Parameter
values were estimated that provide the best fit to the
variance in allele size computed in the HGDP-CEPH
dataset. Their results indicate a scenario inwhich theworld
was colonized by a founding population of �1000 effective
individuals that started expanding some 56 000 years ago
and rapidly colonized new habitats [24].
etween populations in the HGDP-CEPH cell line panel is plotted against pairwise

erentiation and geographic distance between populations, which is consistent with

ns. (b) Gene diversity (Hs) within the HGDP-CEPH populations is plotted against

from East Africa explains nearly 85% of the decrease in genetic variation within

n origins for modern humans. In both cases, geographic distances were estimated

ased on 783 autosomal microsatellites typed in the H971 standardized subset of the
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A much more complex, geographically explicit
framework has recently been adopted to investigate
specific questions pertaining to the origins and settlement
history of modern humans [25,26]. The approach used in
these studies was based on the highly innovative method
described by Currat and Excoffier [25] and implemented in
the software SPLATCHE [27]. Briefly, geographical infor-
mation, such as vegetation or topography, is used to define
the carrying capacity and relative ‘friction’ for each
100 km2 cell (or ‘deme’). The friction map is then used in
a deterministic forward demographic simulation under a
dynamic two-dimensional stepping-stone [28] to generate a
database of migration rates and population sizes for each
cell. A stochastic coalescent (i.e. backward in time) simu-
lation is then performed to obtain the range of possible
patterns of genetic diversity given the demography.
Parameters of the demographic expansion can then be
evaluated against observed data. Using an early version
of this method, which assumed environmental homogen-
eity, Currat and Excoffier [25] simulated the range expan-
sion of modern humans into Europe under realistic
demographic scenarios to investigate potential admixture
between colonizing humans and resident Neanderthals.
Their simulations indicated that even with only a few
admixture events, the contribution of Neanderthal genes
to the current human gene pool should be large because
new (Neanderthal) genes have a high probability of per-
sistence when entering a progressively expanding (modern
human) population compared with those entering a
stationary population. However, the complete absence of
Neanderthal mtDNA in modern Europeans indicates no
(or virtually no) successful admixture events between
Neanderthal females and human males.

More recently, Ray et al. [26] compared the observed
pattern of genetic differentiation between populations (in
the HGDP-CEPH panel) to that expected under various
models of modern human origins to see whether the
observed patterns of genetic diversity enabled them to
distinguish between Unique Origin (UO) models (e.g. Ref.
[29]) and different possible scenarios of Multiregional Evol-
ution (MRE) (e.g. Ref. [30]; see Ref. [31] for a review of the
models). After correcting for a potential ascertainment bias,
they inferred that a unique origin in East Africa was the
modelwith the highest likelihood.However, they found that
several other UO scenarios (but no MRE model) had high
likelihoods, illustrating the limitations of this method, and
the authors suggest improvements, for example by imple-
menting Approximate Bayesian Computational (ABC)
methods, which have recently shown to be useful for infer-
ring migration rates after spatial expansion [32]. Other
large challenges include allowing for temporal changes in
population sizes and dispersal rates. Despite the limita-
tions, this approach is a milestone in methods for incorpor-
ating spatial data into population geneticsmodels of human
evolution.

Testing for selection within a geographically explicit
framework
Discovering and describing genomic elements under
selection is of great interest because of the close relationship
between heritable disease susceptibility and natural selec-
www.sciencedirect.com
tion. As our ancestors colonized the entire world, different
populations were exposed to various environments and
infectious agents. A textbook example for the signature of
differential exposure to a selective pressure is the distri-
bution of the Hbs mutation causing sickle cell anaemia [33],
which is found at high frequency in Africa. It is likely that
there has been a catalogue of such regional selective press-
ures, as suggested by the presence of a large number of
selective sweeps [34] in all three populations from the
International HapMap Project (Yorubans from Africa, indi-
viduals of European descent and individuals of Chinese and
Japanese ancestry).

Integrating geographical information into analyses
holds great promise for more robust inference of selection.
Essentially all approaches used to test for selection are
based on the same premise: given that all polymorphisms,
whether selected or not, are affected by the past demogra-
phy, neutral or nearly neutral genomic regions will fit to a
general pattern, whereas selected ones will deviate from it
(see Ref. [35] for a recent review). Various approaches
differ in the exact way they test for a deviation, but they
can be broadly classified into two main categories, depend-
ing on whether they estimate the general pattern directly
from the data (‘model-free’ tests) or through an explicit
underlying demographic model (‘model-based’ tests).
These two approaches are discussed below, and in Box 1
we outline how the geographic frameworks themselves can
be expanded to investigate selection.

Model-free methods

Model-free approaches (sometimes referred to as ‘outlier
approaches’) are conceptually simple, as they entail com-
putation of the same statistics for many polymorphisms
and flagging outliers to the main distribution as candidate
selected genes. Despite their simplicity, these approaches
have proven powerful. For example, Young et al. [36]
investigated the genetic basis of hypertension by compar-
ing the distribution of SNPs in five genes involved in blood
pressure regulation with the distribution of the HGDP-
CEPH microsatellites and 42 control SNPs. They found
two functional SNPs to show a stronger association with
latitude (an environmental proxy for hypertension
susceptibility) than any of the other markers, and another
five functional SNPs to be as closely associated with lati-
tude as the most extreme of the control markers.

However, it is important to bear in mind that the ability
of model-free tests to detect true selection is a function of
the number of comparable polymorphisms in the dataset,
as these define the global empirical distribution from
which outliers are detected. For example, the AIDS-resist-
ant 32-base deletion haplotype in the cytokine receptor
CCR5 (CCR5-D32) is confined to a narrow geographic
range (northern Europe), where it is found at very high
frequency. Although there is evidence that this extraordi-
nary pattern has been generated by selection [37], when
compared with a large number of markers from the same
chromosome andmarkers found within 180 immunological
genes, CCR5-D32 was found to be unexceptional in its
diversity or distribution [38].

The need for a large number of control loci to be typed in
the same populations as the polymorphism of interest is an
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obvious limitation of most model-free approaches. A
possible way to overcome such a limitation is to take
advantage of the clinal patterns in neutral markers
described in the previous section. Because global patterns
are so strong, it is possible to predict the distribution of
neutral alleles even in populations that have not yet been
typed. This approach was used by Prugnolle et al. [39] to
investigate balancing selection in human major histocom-
patibility complex (MHC) class I genes. After correcting for
the decline in diversity observed with increasing distance
from East Africa, genetic diversity at the MHC was shown
to be positively associated with the number of endemic
diseases to which a population was exposed. This approach
could easily be applied to other polymorphisms for which
information has been compiled from disparate sources
(such as those covered by the allele frequency database
ALFRED, http://alfred.med.yale.edu/alfred/). Although the
HapMap data has been useful for detecting selection in
many cases [34,40], a far larger number of populations
would increase the statistical power to detect selection
using geographic approaches. Furthermore, it would
enable characterization of associations between regional
environmental factors and genotypes. Unfortunately,
though, this approach might be limited in its ability to
detect regions under selection if the population has been
through a bottleneck, or if the selected allele was pre-
viously neutral (rather than a new mutation), is recessive
and/or is in a region of high recombination [41].

Model-based approaches

PioneeredbyR.A.Fisher’s ‘waveof advanceof advantageous
genes’ model [42], model-based tests rely on a general
demographic model, rather than empirical data, to decide
whether the distribution of a given gene is compatible with
the assumption of neutrality. Estimates from this approach
are therefore only as good as the demographic models on
which they are based. A particular complication stems from
the rapid spatial expansion of anatomically modern
humans. It has been shown that for spatially expanding
populations, alleles present at the edge of the expansion can
reach unusually high frequencies [43,44]. Such local over-
representationwould be characterized as incompatiblewith
neutrality by a static model. This mechanism has been
invoked as an alternative to natural selection to explain
the distribution of variants of themicrocephalingene,which
is essential for brain development [45–47]. Returning to the
case for selection atCCR5-D32,Fisher’smodel was recently
adapted to investigate the distribution of this allele in a
geographically explicit framework [48]. In contrast to
results from the model-free approach of Sabeti and col-
leagues [38], fitting selection gradients to observed allele
frequency data confirmed that strong selection and long-
range dispersal have been important in determining the
spread of CCR5-D32. A limitation of this model is that it
enables only estimation of the ratio of dispersal to selection
and not direct estimation of the selection coefficient (unless
the age of the allele is known). The model could also be
extended to include genetic drift and also information at
linked markers.

Although the case of CCR5-D32 illustrates that both
model-free and model-based approaches have their limita-
www.sciencedirect.com
tions, both methods have enormous potential. Further use
of such geographically explicit approaches could greatly
benefit our understanding of how natural selection
has shaped the human genome and enable us to detect
associations between regional environmental factors and
genotypes.

Concluding remarks and future directions
The genetic structure of human populations at neutral loci
is largely characterized by clinal patterns that are consist-
ent with global-scale IBD. The jury is still out, however, on
the exact biological processes that have generated the 5–6
clusters observed in human populations [8,49–51] and
their importance for our understanding of the distribution
of human genetic variation. Focusing on the simple clinal
patterns enables us to infer key parameters of human
settlement history using tractable population genetics
models and to explore the influence of selection on different
regions of the genome.

This is an important and exciting time for human
population genetics research, as additional data are becom-
ing increasingly available. For instance, 15 populations
from India [52] and 29 from The Americas (A. Ruiz-Linares,
personal communication) have recently been typed for the
autosomal microsatellites previously used in the HGDP-
CEPH panel [10]. As reflected in this review, analyses have
so far focused onmicrosatellites, but there is also awealth of
data being generated fromSNPs, in particular thanks to the
HapMap initiative. SNP data offers exciting prospects for
the analysis of functional regions. Unfortunately, though,
the HapMap project intentionally focused on only four
populations, which is too small a number to enable mean-
ingful geographically explicit analyses. The situation could
change with different initiatives under way that aim to
collect genotypes from large association mapping studies
[for example the Welcome Trust Case Control Consortium
(http://www.wtccc.org.uk/), the Genetic Association Infor-
mation Network (http://www.fnih.org/GAIN2/home_new.
shtml) and the European Genotype Archive (http://www.
ebi.ac.uk/ega/)], but it is unlikely that samples from a
diverse geographic rangewill be available in the near future
because association studies tend to focus on a limited num-
ber of populations.

Progress in the field will not depend just on the
availability of more data. Although geographically explicit
models are now well within reach, there are several chal-
lenges for their further development and application in
human population genetics research. There is room for
considerable improvement in the geographic models them-
selves (see Box 1), by the inclusion of many other sources of
information. For example, maps of past vegetation could be
used to adjust relative parameters of carrying capacity and
migration rate in different parts of the world. An improve-
ment to human colonization models could come from the
integration of palaeontological and archaeological data, and
information on human remains in different geographical
areas could be incorporated into the inference procedure to
model the wave of advance. It might be possible to integrate
indirect information, suchas themass faunal extinctionthat
is thought to have coincidedwith the spread of anatomically
modern humans [53]. More recent major events in human

http://alfred.med.yale.edu/alfred/
http://www.wtccc.org.uk/
http://www.fnih.org/GAIN2/home_new.shtml
http://www.fnih.org/GAIN2/home_new.shtml
http://www.ebi.ac.uk/ega/
http://www.ebi.ac.uk/ega/
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evolution, such as the re-colonization of northern latitudes
after the Ice Ages, could also be taken into account.

Although all these prospects are exciting, it is important
to keep in mind that the optimal complexity of models
depends on their capacity to capture the pattern in the data
while keeping the number of parameters to a minimum.
There will always be a trade-off between the complexity of
a model and the transparency and reproducibility of
results. Expanding the number of parameters in popu-
lation genetics models without a concomitant increase in
the quality and quantity of the data can lead to spurious
results owing to model over-fitting (i.e. if the complexity of
the model is too great for the number of observations).
There is no simple rule for what level of complexity is best,
as this will depend crucially on the question being asked
and the quality of the data. Searching for genomic regions
under natural selection, for instance, might best be
approached with simple, robust, geographically explicit
models.

We have of course focused this review on inference of
patterns in human populations, but geographical frame-
works will have an important role to play more generally.
For example geographic frameworks could be used to study
phylogeographic patterns linked to post-glacial (re-) colo-
nization in natural populations, or the spread of human
pathogens or commensals, as demonstrated by the Helico-
bacter study [13] mentioned previously. Finally, we have
also concentrated on inference at a global scale, but there
are many important regional-scale questions, which could
be pursued using spatially explicit frameworks that incorp-
orate information on local geography, culture and
language, and we envisage this to be a significant avenue
for future development. For these more regional-scale
analyses, human population geneticists should pay atten-
tion to the field of landscape genetics. This emerging
discipline integrates population genetics and landscape
ecology in a spatially explicit framework to evaluate how
environment and landscape influence genetic structure of
populations (see Refs [27,54–57] for important methodo-
logical developments and Ref. [58] for a recent review).
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