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A B S T R A C T

Screening Papanicolaou test samples has proven to be highly effective in reducing cervical cancer-related
mortality. However, the lack of trained cytopathologists hinders its widespread implementation in low-resource
settings. Deep learning-assisted telecytology diagnosis emerges as an appealing alternative, but it requires
the collection of large annotated training datasets, which is costly and time-consuming. In this paper, we
demonstrate that the abundance of unlabeled images that can be extracted from Pap smear test whole slide
images presents a fertile ground for self-supervised learning methods, yielding performance improvements
compared to off-the-shelf pre-trained models for various downstream tasks. In particular, we propose Cervical
Cell Copy-Pasting (𝙲3𝙿) as an effective augmentation method, which enables knowledge transfer from public
and labeled single-cell datasets to unlabeled tiles. Not only does 𝙲3𝙿 outperforms naive transfer from single-
cell images, but we also demonstrate its advantageous integration into multiple instance learning methods.
Importantly, all our experiments are conducted on our introduced in-house dataset comprising liquid-based
cytology Pap smear images obtained using low-cost technologies. This aligns with our long-term objective of
deep learning-assisted telecytology for diagnosis in low-resource settings.
1. Introduction

Cervical cancer is considered nearly completely preventable but
continues to be a leading cause of cancer mortality. In 2020, about
342 000 women died from this disease, most of them in developing
countries where cytology-based screening programs to detect and treat
precancerous lesions are not available or affordable [1].

In the knowledge that human papillomavirus (HPV) is the etio-
logical factor that drives cervical cancer development, secondary pre-
vention with HPV testing has, in recent years, become the preferred
screening method in many high-income settings. It is recommended
by the WHO for women aged > 30 years in low-and-middle-income
countries (LMICs) [2]. Its high sensitivity and negative predictive value
in detecting cervical intraepithelial neoplasia grade 2 or worse (≥CIN2)
allow extended screening intervals. Recently, the development of fully
automated diagnostic devices providing rapid HPV testing of self-
obtained vaginal samples has offered a great opportunity to improve
the effectiveness of cervical cancer prevention in low-resource con-
texts [3].
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However, a single HPV test has limited specificity and can lead to
unnecessary workup and overtreatment. Therefore, a triage strategy
is required for HPV-positive women to mitigate this difficulty. Cytol-
ogy is generally proposed as it is an effective method for triaging
HPV-positive women [4], but in low-resource settings, various logistic
and operational reasons prevent successful cytology implementation.
Amongst other barriers, cytological triage can be time-consuming, and
in countries that use cytology as a triage method, results are typically
unavailable on the same day as sample collection. In lower-income
settings, loss to follow-up means that this becomes a seriously limiting
problem. In these settings, therefore, rapid tests that give same-day
results and lead to decisions about treatment are preferred.

A solution for countries with limited resources could be affordable
digital imaging technology for real-time remote cytologic diagnosis
by specialists [5]. Using this scheme, the preparation and digitization
of cervical smears from HPV-positive women would be performed
on-site during the same visit using a ‘‘test-triage-and-treat’’ approach
(3T-approach) [6]. This process eliminates the need for in-house cy-
topathologists and might allow for reliable, cost-effective triage of
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HPV-positive women. Furthermore, to facilitate the visual analysis of
Pap slides and reduce the screening time, deep learning-based al-
gorithms could be used to obtain a rapid and accurate cytological
diagnosis allowing a ‘‘same-day treatment’’.

The emergence of affordable and portable high-resolution scanners,
such as the Grundium Ocus®40, along with low-cost slide prepara-
tion procedures like SurePath™, creates a favorable environment for
his endeavor. When it comes to the learning algorithm, the main
xpenses are associated with the annotation process and the level of
xpertise it demands. Nevertheless, acquiring a large and well-curated
nnotated dataset proves challenging and time-consuming. Therefore,
n important stepping stone towards the long-term objective of deep
earning-assisted cytology diagnostics is to lower the barrier imposed
y annotation requirements. Towards that goal, we investigate the
pplication of self-supervised learning (SSL) methods to effectively
tilize the abundance of unlabeled images freely available from whole
lide images (WSIs) of Pap smear tests. More generally, we analyze
nd report some of the successes and shortcomings of deep learning for
ytology images. Specifically, we unveil the following aspects of deep
earning-based Pap smear cytology:

• We thoroughly evaluate the ability of models pre-trained with
self-supervised learning to learn meaningful visual representa-
tions of cytology images for various downstream tasks. In partic-
ular, the resulting representations show superior discriminability
and generalizability;

• Our experiments reveal that representations learned with pub-
licly available single cervical cell datasets, e.g., Herlev [7], or
Sipakmed [8], do not generalize well to different modalities such
as images representing multiple cells. To mitigate this issue,
we propose a data augmentation strategy tailored for cytology
images dubbed Cervical Cell Copy-Pasting (𝙲3𝙿). Furthermore, we
demonstrate the effectiveness of 𝙲3𝙿 for learning generalizable
representations from single-cell datasets;

• We experimentally observe that multiple instance learning (MIL),
the commonly used strategy for obtaining WSI-level representa-
tions and predictions, does not fully exploit the inherent proper-
ties of Pap smear cytology slides. Consequently, we introduce a
set of simple yet effective modifications, e.g., processing only the
top-k most suspicious instances, to better align MIL methods with
Pap smear test images;

• We present a medium-sized liquid-based cytology Pap smear
test images dataset from HPV-positive women. The slides of this
dataset are prepared with the SurePath™ procedure, which results
in a small cell-deposit area. This shortens the time of digitization
and yields smaller WSIs files. This is ideal for our telecytologic-
based same-day ‘‘test-triage-and-treat’’ long-term objective. The
presented dataset is particularly challenging as all samples are
from HPV-positive women, and negative slides typically portray
signs of infections, which complicates the diagnosis.

. Related work

Whole slide images have been adopted in surgical pathology, where
here is evidence that the diagnostic performance of digital microscopy
s equivalent to light microscopy. However, in cytopathology practice,
he uptake of WSIs has been slower, as cytological preparations fre-
uently display thick cell groups. This phenomenon, which necessitates
ultiple scanning planes to allow proper analysis of the slides, has been
technological barrier preventing digital cytology from widespread

doption. Today, whole slide microscope scanners integrate z-stacking,
vercoming the technological constraints of the three-dimensional na-
ure of cytological preparations [9]. The increase in file size resulting
rom scanning multiple focal planes can be counterbalanced by using
iquid-based cytology preparations, which concentrate the cytological
2

aterial in a limited region of the glass [9]. These technological
advances in whole slide imaging and portable devices for primary
diagnosis have been accompanied by increasing efforts to evaluate,
validate, and regulate their usage [10–12], and it is recommended that
future studies are conducted in accordance with the updated guidelines
proposed by the US College of American Pathologists (CAP) [10].

The aforementioned technological advances and the availability of
affordable and transportable digital microscopes in the market bring
forth numerous opportunities for regulated innovation. The added pos-
sibility of incorporating computer-assisted and/or automated diagnos-
tics makes this an even more exciting prospect. For most cancer-
related diagnostics, histopathology-based assessment is considered the
‘‘gold standard’’. This explains why histology garners far more at-
tention from the machine learning community, e.g., Abbet et al.
[13], Stegmüller et al. [14], Bozorgtabar et al. [15] than cytology.
Recently though, cytopathology has gained more traction and recog-
nition, as it offers a non-invasive and inexpensive diagnostic tool
suited to resource-constrained countries. Consequently, there have been
significant advancements in machine-learning approaches applied to
cytology.

Most of these advancements focus on cell-level tasks, e.g., classifi-
cation [16,17], detection [18,19] or segmentation [20]. These inno-
vations aim to improve the efficiency and accuracy of cervical cancer
screening and other forms of cancer diagnosis from cytological samples.
The classification of whole slide Pap smear test images remains sig-
nificantly less studied, despite its practical application being the most
promising. Notable works on the topic include [21], who combined
low- and high-resolution stages for the identification/localization of
suspicious lesions and their classification. The high-resolution stage
relies on a recurrent neural network (RNN)-based classification model
to predict the WSI-level scores. Another study, [22], leveraged a YOLO-
based [23] approach to generate cell/tile-level predictions in the first
stage and a transformer model for the aggregation and WSI-level clas-
sification in the second stage. Similarly, [24] proposed the integration
of an attention module to detect abnormal cells in large patches and
computed the abnormality probability of a given patch as the average
of its constituent cells. The WSI-level score is obtained by averaging
the abnormality of its patches. Recently, [25] proposed a three-stage
pipeline for lung cancer cytopathological WSIs classification. Their
approach integrates a transformer-based model to extract fine-grained
lesion features, which are then aggregated into intermediate patch-level
features, and coarse-grained features for final WSI-level classification.

3. Datasets

In-house dataset. We present our in-house dataset composed of a
cohort of 307 Pap smear slides. The Pap tests were performed after the
occurrence of a positive primary HPV test in Cameroon. The prevalence
of cytology-positive slides is approximately 20%, translating to 69
positive and 238 negative slides. The preparation of the slides follows
the SurePath™ procedure. This choice is aligned with our long-term
objective: same-day ‘‘test-triage-and-treat’’ of HPV-positive women in
a resource-limited setting. Indeed, this preparation yields a small cell-
deposit area, which shortens the scanning time and reduces the size
of the digitized slides. Additionally, the SurePath™ procedure exists in
a manual and low-cost version to further ease its adoption in a low-
income setting. Along the same line, the slides are digitized with the
Grundium Ocus®40 scanner: a portable and affordable solution. The
WSIs are acquired with a 12 megapixels image sensor, a 40× objective,
and Z-stacking (3 focal planes spaced by 1μm).

After digitization, cell-level annotations are obtained using QuPath
[26], resulting in a total of 1228 annotated positive cells. The an-
notations are used to create a dataset of 1228 positive cell images
and as many positive 320 × 320 pixels tiles (cell+context, see Fig. 1)
both at 20× magnification (0.50 μm∕px). Alternatively, we create an
unlabeled tile dataset by finding the cell-deposit area with standard

image processing techniques and subsequently sampling 320 × 320 tiles

https://www.grundium.com/ocus40/
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Fig. 1. Overview of the in-house dataset. (a) The 𝑁 WSIs are labeled as positives (𝑁𝑝 samples) or negatives (𝑁𝑛 samples). (b) 1228 cell-level annotations are used to extract
isolated positive cells and 320 × 320 pixels tiles, both at 20× magnification. (c) The tiles of each WSI are extracted based on a regularly spaced grid, yielding ∼1.5M unlabeled
tiles (320 × 320 pixels at 20× magnification) distributed over 307 slide bags.
on a regular grid without overlap, yielding approximately 1.5M images,
subdivided into 307 bags encompassing an average of 5200 tiles each.
The bags are used for WSI-level classification (see Section 4.3), whereas
the individual tiles serve as a substrate for the SSL pre-training (see
Section 4.1). We use a stratified 4-fold split approach to partition the
slides into training, validation, and test subsets. The slide-level splits
are common to all experiments, including the SSL pre-training.
Herlev. A liquid-based cytology Pap smear tests images dataset [7] en-
compassing 917 labeled cell images. It contains 242 cytology-negative
images of annotated cell types of superficial squamous epithelial (NS),
intermediate squamous epithelial (NI), and Columnar epithelial (NC). The
675 cytology-positives images are annotated as lesion cells of mild squa-
mous non-keratinizing dysplasia (LD), moderate squamous non-keratinizing
dysplasia (MD), severe squamous non-keratinizing dysplasia (SD), and
squamous cell carcinoma in situ intermediate (CIS), respectively.
Sipakmed. A dataset of cervical squamous cells [8] from Pap smear
images, which comprises 4049 labeled cell images. The 2411 cytology-
negative images are further categorized in metaplastic (M), superficial-
intermediate (SI), and parabasal (P). Similarly, images are annotated as
Koilocytotic (K) and dyskeratotic (D) are represented among the 1638
cytology-positive images.

4. Method & experiments

Collecting extensive and meticulously curated annotated data is
time-consuming and expensive. Consequently, we investigate
self-supervised learning methods and approaches that require few
labeled samples. More precisely, in Section 4.1, we provide empirical
evidence that self-supervised learning approaches can be successfully
leveraged to learn meaningful representations of multiple-cell images,
i.e., unlabeled tiles. Our proposed cell augmentation method 𝙲3𝙿 is
discussed and extensively tested in Section 4.2. Finally, in Section 4.3,
we provide and discuss simple, yet effective tools tailored to existing
MIL methods for cytology Pap smear test WSIs.

4.1. How well do self-supervised models transfer to cytology images?

While self-supervised learning methods have gained attention for
diverse downstream tasks in histopathology images, these approaches
have received little attention for cytology-related tasks due to sparse ev-
idence for their use on Pap smear cytology images. Most state-of-the-art
SSL methods [27–30] for image-level representations learning rely on
maximizing the similarity of an image’s representation under informa-
tion preserving transformations. Crucially, one of these transformations
is a spatial crop, which is at risk of losing its information-preserving
property on cytology images, partly due to the preparation of the slides
that break long-range spatial dependencies. However, each digitized
cytology slide can yield thousands of unlabeled images, which indicates
3

that cytology could potentially be a playground where SSL methods
thrive.
Self-supervised pre-training. We pre-train our models, using DINO
[30] as the self-supervised learning framework. This choice is moti-
vated by its strong nearest neighbor classifier capability and excel-
lent performance across different backbones. DINO relies on a pair
of Siamese teacher-student networks and falls in the category of self-
distillation methods. The underpinning principle of the method is to
train the student network to mimic the teacher’s output distribution
when both models are fed with distinct views of the same input image.
DINO leverages both global views and local views. The former typically
spans a larger image region and captures image-level dependencies,
while the latter occupies a fraction of the image and yields local-
ized features. By leveraging views at different scales, local-to-global
consistency can be distilled from the teacher to the student network.
Compared to contrastive learning approaches [27,31], self-distillation
methods [30,32] must explicitly avoid the collapse of the learned
representation to trivial solutions. In particular, DINO only updates
the teacher network’s weights with an exponential moving average
(EMA) of those of the student network. Additionally, the entropy of
the teacher’s output distribution is constrained with sharpening and
centering tricks.

We experiment with two types of architecture, ResNet-50 [33]
and vision transformer (ViT), ViT-S/16 [34], for which we use the
recommended hyperparameters available on the official repository. The
arguments only differ from the recommendations for the batch size and
the number of local crops. The batch size is set to fill the available
GPU memory, i.e., 𝚋𝚊𝚝𝚌𝚑_𝚜𝚒𝚣𝚎 = 256 for a ResNet-50 and 𝚋𝚊𝚝𝚌𝚑_𝚜𝚒𝚣𝚎 =
192 for a ViT-S/16. We do not use local crops as they can result in
ambiguous positive pairs for non-object-centric datasets, as is the case
here. For each architecture, we train one model per stratified split (see
Section 3) for 300 epochs; hence we obtain four pre-trained models for
each architecture.

In all the following experiments, we compare the quality of the
learned visual representations under the above-described setting to the
ones obtained under a supervised pre-training on ImageNet-1k. For the
ResNet-50 architecture, we use the weights provided by PyTorch [35],
whereas, for the ViT-S/16, we rely on the weights of [36] (trained
without distillation).
Cell-level classification. After model pre-training, we probe the
quality of the learned features on a cell-level classification task. We opt
for a k-NN classifier to limit the manual intervention to the minimum,
thereby obtaining results that reflect the learned representations’ qual-
ity. We use two publicly available cervical cell Pap smear datasets: the
Herlev dataset [7] and the Sipakmed dataset [8]. These datasets are
randomly split in train/validation with a 75/25 partition. We report
the mean and standard deviation of the class-wise and weighted 𝐹1
scores over 4 independent runs for each pre-trained model, i.e., a total
of 16 for the models pre-trained under the self-supervised framework

https://github.com/facebookresearch/dino
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Fig. 2. Overview of the proposed MIL-based method for classifying Pap smear WSIs. (a) A positivity score is obtained independently for each tile of the input WSI, and
the embeddings of the tiles having the top-k highest scores are extracted. (b) The top-k embeddings attend to one another to produce the slide-level representation, where the
positivity score is obtained using the same classifier as for the independent tiles predictions. (c) The tiles corresponding to the top-k scores are stored as confident positives or
hard negatives queues, depending on the slide-level label. (d) Positive and negative cells are pasted upon randomly sampled confident positives and hard negatives, respectively. (e)
A score for each pasted tile is obtained using the same backbone and classifier. The model is conjointly trained to correctly classify WSIs and pasted tiles.
Table 1
Cell-level classification results on Herlev. We report the class-wise and weighted 𝐹1 scores of a k-NN classifier. The features are extracted by a ViT-S/16 or a
ResNet-50 pre-trained under a supervised pre-training on ImageNet or a self-supervised pre-training on our in-house unlabeled tiles dataset using DINO. The
highest mean score for a given class and backbone are highlighted in bold.

positives negatives average

backbone CIS LD MD SD NC NI NS positives negatives weighted 𝐹1

ResNet-50 55.0 ± 4.5 64.3 ± 5.3 𝟒𝟖.𝟔 ± 𝟒.𝟖 51.3 ± 3.7 𝟓𝟑.𝟖 ± 𝟒.𝟏 87.0 ± 7.5 89.6 ± 6.3 𝟗𝟑.𝟐 ± 𝟎.𝟔 𝟖𝟎.𝟏 ± 𝟏.𝟕 60.2 ± 3.2
ResNet-50 𝟓𝟗.𝟎 ± 𝟕.𝟏 𝟔𝟔.𝟐 ± 𝟑.𝟕 𝟒𝟖.𝟔 ± 𝟔.𝟖 𝟓𝟑.𝟎 ± 𝟒.𝟗 50.9 ± 8.0 𝟖𝟖.𝟖 ± 𝟓.𝟐 𝟗𝟐.𝟒 ± 𝟐.𝟖 92.3 ± 1.5 78.6 ± 3.8 𝟔𝟏.𝟕 ± 𝟑.𝟐

ViT-S/16 55.1 ± 5.7 59.5 ± 3.2 38.6 ± 8.2 48.7 ± 3.1 49.2 ± 4.6 75.8 ± 5.1 83.2 ± 7.2 92.4 ± 1.1 76.8 ± 2.4 55.2 ± 2.0
ViT-S/16 𝟔𝟐.𝟖 ± 𝟒.𝟒 𝟔𝟔.𝟖 ± 𝟒.𝟓 𝟒𝟖.𝟐 ± 𝟓.𝟏 𝟓𝟑.𝟓 ± 𝟓.𝟓 𝟓𝟖.𝟖 ± 𝟕.𝟓 𝟖𝟑.𝟒 ± 𝟏.𝟗 𝟖𝟗.𝟕 ± 𝟑.𝟐 𝟗𝟑.𝟏 ± 𝟎.𝟗 𝟖𝟎.𝟖 ± 𝟐.𝟗 𝟔𝟐.𝟔 ± 𝟐.𝟖
Table 2
Cell-level classification results on Sipakmed. We report the class-wise and weighted 𝐹1 scores of a k-NN classifier. The features
are extracted by a ViT-S/16 or a ResNet-50 pre-trained under a supervised pre-training on ImageNet or a self-supervised pre-
training on our in-house unlabeled tiles dataset using DINO. The highest mean score for a given class and backbone are
highlighted in bold.

positives negatives average

backbone D K M P SI positives negatives weighted 𝐹1

ResNet-50 𝟗𝟒.𝟓 ± 𝟏.𝟒 85.0 ± 0.8 89.2 ± 1.2 94.4 ± 1.4 97.2 ± 0.4 94.5 ± 0.4 96.4 ± 0.3 92.1 ± 0.6
ResNet-50 93.7 ± 0.9 𝟖𝟕.𝟕 ± 𝟏.𝟕 𝟗𝟏.𝟐 ± 𝟏.𝟑 𝟗𝟕.𝟐 ± 𝟎.𝟗 𝟗𝟖.𝟔 ± 𝟎.𝟔 𝟗𝟓.𝟓 ± 𝟎.𝟔 𝟗𝟔.𝟗 ± 𝟎.𝟒 𝟗𝟑.𝟕 ± 𝟎.𝟕

ViT-S/16 89.6 ± 1.8 82.6 ± 2.8 85.2 ± 2.3 94.2 ± 0.6 95.3 ± 0.7 93.4 ± 1.1 95.5 ± 0.8 89.3 ± 1.3
ViT-S/16 𝟗𝟒.𝟖 ± 𝟎.𝟖 𝟖𝟖.𝟏 ± 𝟏.𝟑 𝟗𝟏.𝟏 ± 𝟏.𝟐 𝟗𝟖.𝟎 ± 𝟎.𝟓 𝟗𝟖.𝟓 ± 𝟎.𝟑 𝟗𝟓.𝟔 ± 𝟎.𝟔 𝟗𝟕.𝟎 ± 𝟎.𝟒 𝟗𝟒.𝟏 ± 𝟎.𝟒
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see Section 4.1) and 4 runs for the supervised ones. The number of
eighbors 𝑘 is selected to maximize the weighted 𝐹1 score.

In Tables 1 and 2, we observe that despite being pre-trained
ithout any labels and not on isolated cells, the models resulting from
INO’s pre-training are on-par or better than the ones pre-trained on

mageNet-1k, which are competitive baselines and the de facto choice
or most practitioners. It further appears that the Herlev dataset is
ore challenging, especially with fine-grained class labels. However,

he representations are good enough to differentiate negative cells from
ositive ones.
ile-level classification. The representations learned via
elf-supervised learning are also evaluated on a tile-level classifica-
ion task. As for the cell-level classification task, we rely on a k-NN
pproach. To that end, we prepare a labeled tiles dataset composed
4

c

f our in-house 1228 positive tiles (see Section 3) and as many tiles
andomly sampled from negative slides. The k-NN classifier is fitted on
5% of the resulting dataset and tested against the remaining 25%. We
se the same evaluation setting as for the above-described cell-level
lassification task.

We observe in Table 3 that the self-supervised pre-training yields
significant boost in performance when the pre-training and tar-

et datasets are well aligned. Overall, it is remarkable that the self-
upervised models pre-trained with DINO transfer well to cytology
mages, considering that DINO was originally tailored for object-centric
atasets. Furthermore, the quality of the classification obtained with a
-NN classifier only seems to imply that the SSL models do not encode
ultiple cells as a single pattern, as it would not allow for the matching

f positive tiles. We postulate that this is a consequence of the random
ropping operation.
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Fig. 3. Visualization of the different pasting approaches on randomly sampled tiles from the in-house dataset and random pasted cells from both Herlev and Sipakmed datasets.
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Table 3
Tiles-level evaluation results of the frozen models on the in-house set of tiles. A k-NN
classifier is fitted on 75% of the samples and evaluated on the remaining 25%. We
report the class-wise and weighted 𝐹1 scores of 4 independent runs. The features are
extracted by a ViT-S/16 or a ResNet-50 pre-trained under a supervised pre-training
on ImageNet or a self-supervised pre-training on our internal dataset using DINO. The
highest mean score for a given class and backbone is highlighted in bold.
backbone SSL positives negatives weighted 𝐹1

ResNet-50 ✗ 81.6 ± 0.3 79.1 ± 0.5 80.4 ± 0.2
ResNet-50 ✓ 𝟗𝟓.𝟑 ± 𝟎.𝟔 (+13.7) 𝟗𝟓.𝟏 ± 𝟎.𝟕 (+16.0) 𝟗𝟓.𝟐 ± 𝟎.𝟔 (+14.8)
ViT-S/16 ✗ 77.8 ± 0.6 72.1 ± 1.8 74.9 ± 1.0
ViT-S/16 ✓ 𝟗𝟔.𝟔 ± 𝟎.𝟒 (+18.8) 𝟗𝟔.𝟒 ± 𝟎.𝟓 (+24.3) 𝟗𝟔.𝟓 ± 𝟎.𝟒 (+21.6)

4.2. Cervical Cell Copy-Pasting: 𝙲3𝙿

In Section 4.1, we discuss the applicability of self-supervised learn-
ing to cytology images and report evidence of its effectiveness. As
much as self-supervised learning is an adequate approach that can
yield semantically coherent clusters of image representations, it does
not permit the labeling of the aforementioned clusters. Therefore, we
investigate if this labeling operation can be performed using publicly
available datasets. The major obstacle to achieving this objective is that
most public datasets are at the cell level, whereas a lot of cytology
tasks, e.g., whole slide image classification, require patch/tile level rep-
resentations and annotations. Consequently, we first show that naively
using models trained on cell-level datasets does not transfer well to tile-
level downstream tasks. We then propose a simple yet effective method
based on samples mixing to overcome this issue.

Methods that involve sample mixing, e.g., mixup [37] or Cut-
Mix [38], have been introduced to improve the generalization ca-
pabilities of neural networks. They achieve this by generating new
image-label pairs through the combination of existing labeled samples.
Here, we explore the mixing of unlabeled tiles and labeled single-cell
images to produce labeled tiles.
Cells to tiles transfer learning. We first evaluate the capability of
a classifier trained on open-source cell-level datasets for the tile-level
classification at test time. To that end, a k-NN classifier is fitted on the
Herlev or Sipakmed datasets using only binary labels, i.e., negative or
positive, and subsequently evaluated on our in-house set of labeled tiles.
For each pre-trained model, we report the class-wise 𝐹1 score averaged
over 4 independent runs, which only use 75% of the training set each.
When the model is pre-trained in a self-supervised manner, the scores
are further averaged over the pre-training splits (see Section 4.1). The
number of neighbors 𝑘 is selected to maximize the 𝐹1 score of the
positive class.

The results reported in Table 4 clearly show that a direct transfer
learning from cells to tiles with a k-NN classifier performs poorly. More
precisely, it can be observed that the models pre-trained in a supervised
setting cannot detect the discriminant signal from the positive tiles. It
is unclear whether this failure is a consequence of the shift in modality,
5

i

Table 4
Transfer learning results from Herlev and Sipakmed to our in-house labeled tiles dataset.
A k-NN classifier is fitted on the binary version of the Herlev (H) and Sipakmed
(S) datasets and is evaluated on the in-house set of labeled tiles. The features are
extracted by a ViT-S/16 or a ResNet-50 pre-trained under a supervised pre-training on
ImageNet-1k or a self-supervised pre-training on our in-house unlabeled tiles dataset
using DINO. The highest mean score for a given source dataset and backbone is
highlighted in bold.

Herlev → tiles Sipakmed → tiles

backbone SSL negatives positives negatives positives

ResNet-50 ✗ 33.3 ± 5.7 0.0 ± 0.0 𝟔𝟖.𝟗 ± 𝟐.𝟗 0.0 ± 0.0
ResNet-50 ✓ 𝟔𝟑.𝟕 ± 𝟏.𝟔 𝟑𝟑.𝟖 ± 𝟓.𝟗 65.3 ± 1.2 𝟏𝟖.𝟒 ± 𝟒.𝟖

ViT-S/16 ✗ 39.5 ± 3.9 0.0 ± 0.0 𝟕𝟒.𝟖 ± 𝟐.𝟖 0.0 ± 0.0
ViT-S/16 ✓ 𝟓𝟎.𝟒 ± 𝟏.𝟒 𝟒𝟏.𝟑 ± 𝟐.𝟔 61.3 ± 1.8 𝟑𝟎.𝟐 ± 𝟔.𝟗

able 5
ransfer learning results from Herlev and Sipakmed to our in-house labeled tiles dataset
sing 𝙲3𝙿-paste. A k-NN classifier is fitted on the pasted cells from the Herlev (H)
nd Sipakmed (S) datasets, and evaluated on the in-house set of positive cells/tiles. The
eatures are extracted by a ViT-S/16 or a ResNet-50 pre-trained under a supervised pre-
raining on ImageNet-1k or a self-supervised pre-training on our in-house unlabeled tiles
ataset using DINO. The highest mean score for a given source dataset and backbone
s highlighted in bold.

Herlev → tiles Sipakmed → tiles

backbone SSL negatives positives negatives positives

ResNet-50 ✗ 29.8 ± 2.5 65.0 ± 0.4 46.0 ± 1.5 65.3 ± 0.7
ResNet-50 ✓ 𝟒𝟏.𝟎 ± 𝟏.𝟑 𝟕𝟎.𝟕 ± 𝟎.𝟓 𝟔𝟑.𝟒 ± 𝟏.𝟎 𝟕𝟒.𝟓 ± 𝟎.𝟖

ViT-S/16 ✗ 27.1 ± 0.8 66.0 ± 0.6 52.9 ± 0.8 67.4 ± 1.3
ViT-S/16 ✓ 𝟓𝟒.𝟖 ± 𝟏.𝟒 𝟕𝟓.𝟑 ± 𝟎.𝟒 𝟕𝟕.𝟗 ± 𝟎.𝟓 𝟖𝟑.𝟒 ± 𝟎.𝟑

.e., single-cell images to multi-cell images, or due to the small capacity
f the classifier, the backbone, or another domain discrepancy between
he source and target datasets. Overall, the self-supervised pre-trained
odels generalize better on this task.
Cells to tiles transfer learning with pasting. In order to un-

erstand why a k-NN classifier is unable to transfer learning from
ingle-cell images to tiles. We repeat the same experiment with one
rucial addition. As a pre-processing step, we use the proposed aug-
entation i.e., we paste all the cells from Herlev or Sipakmed upon

andomly sampled tiles from negative slides, referred to as canvases.
he label of the pasted cell is attributed to the resulting pasted tile.
n this first pasting scenario, we use the most straightforward pasting
echnique, which is referred to as the paste strategy.
aste: The strategy relies on a two-step procedure to paste a cell on
tile: (i) the pasting location of the cell is uniformly sampled among

ll the positions that would allow the cell to fit entirely in the tile, and
ii) the pixels of the tile in the pasting site are replaced by those of the
ell. As such, this strategy is closest to CutMix [38].

As can be seen in Table 5, the proposed augmentation significantly
mproves the ability of the classifier to detect positive cells in tiles. This
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Fig. 4. The t-SNE projection obtained from a ViT-S/16 encoder of cells from Herlev,
ur in-house labeled tiles, and Herlev cells augmented with 𝙲3𝙿-Poisson.

Table 6
Ablation results on pasting method. A classifier is trained on cells from Herlev or
Sipakmed with 𝙲3𝙿 and various pasting techniques and subsequently evaluated on the
in-house labeled tiles. We report the class-wise and weighted 𝐹1 scores. The highest
mean score for a given source dataset, class, and backbone is in bold. The selected
pasting technique is highlighted.

Herlev Sipakmed

pasting backbone negatives positives negatives positives

paste ResNet-50 76.3 ± 3.3 76.8 ± 5.6 𝟕𝟒.𝟐 ± 𝟔.𝟎 𝟕𝟕.𝟐 ± 𝟓.𝟑
blend ResNet-50 72.9 ± 3.9 75.2 ± 6.9 67.0 ± 1.3 70.0 ± 6.4
Poisson ResNet-50 𝟖𝟎.𝟒 ± 𝟐.𝟐 𝟕𝟕.𝟖 ± 𝟓.𝟗 73.3 ± 4.6 71.3 ± 2.1

paste ViT-S/16 𝟕𝟑.𝟐 ± 𝟕.𝟓 𝟕𝟕.𝟏 ± 𝟖.𝟗 45.5 ± 3.3 70.5 ± 4.7
blend ViT-S/16 67.6 ± 3.1 67.6 ± 3.6 51.8 ± 6.2 69.7 ± 8.4
Poisson ViT-S/16 71.2 ± 9.4 76.7 ± 8.5 𝟕𝟐.𝟔 ± 𝟖.𝟑 𝟕𝟕.𝟎 ± 𝟖.𝟗

is not trivial considering the large distribution shift between the cells
of Helev/Sipakmed and the ones represented in our in-house tiles, the
mall capacity of the classifier, and that tiles resulting from paste do
ot look natural. The t-SNE [39] mapping depicted in Fig. 4 shows
hat the cells and labeled tiles representation are mapped to different
egions of the space.
asting technique: In Table 5, we showed that the proposed pasting
ethod could significantly improve the transferability from public

ingle-cell datasets to tiles representing multiple cells. Although the
asting method (paste) used to generate the results depicted in Ta-
le 5 works, it is coarse and does not produce natural-looking images.
s such, it can result in the model focusing exclusively on the pasted
egions throughout training, hence performing poorly at test time.
herefore, we investigate if this scenario occurs and if better alterna-
ives exist. In addition to paste, we test two other alternatives referred
o as blend and Poisson. Examples of samples obtained with the
ifferent pasting methods are depicted in Fig. 3.
lend: The only difference w.r.t. paste is that, instead of replacing

he pixels of the canvas with those of the cell, the pixels of the pasting
ite result from a convex combination of those of the cell and canvas:

𝚋𝚕𝚎𝚗𝚍 = (1 − 𝜆paste) ⋅ 𝑥cell + 𝜆paste ⋅ 𝑥canvas (1)

here 𝜆paste is sampled uniformly at random from the interval [0, 1].
Due to the transparency of the pasting operation, the resulting images
6

Table 7
Ablation experiments for pasting probability. A classifier is trained on cells from Herlev
or Sipakmed with various probabilities of applying 𝙲3𝙿-Poisson on negative (-) and
positive (+) tiles. The classifier is then evaluated on the in-house labeled tiles. We
report the class-wise and weighted 𝐹1 scores. The highest mean score for a given source
dataset, class, and backbone is in bold. The selected pasting method is highlighted.

Herlev → tiles Sipakmed → tiles

pasting [%] (- ∣ +) backbone negatives positives negatives positives

0 ∣ 100 ResNet-50 76.6 ± 3.3 71.5 ± 8.2 83.3 ± 5.5 81.3 ± 8.0
50 ∣ 100 ResNet-50 𝟖𝟏.𝟔 ± 𝟐.𝟕 75.0 ± 5.2 𝟖𝟒.𝟐 ± 𝟒.𝟐 𝟖𝟐.𝟐 ± 𝟑.𝟗

100 ∣ 100 ResNet-50 80.4 ± 2.2 𝟕𝟕.𝟖 ± 𝟓.𝟗 73.3 ± 4.6 71.3 ± 2.1

0 ∣ 100 ViT-S/16 78.4 ± 4.8 71.7 ± 8.7 25.2 ± 16.0 65.2 ± 8.5
50 ∣ 100 ViT-S/16 𝟖𝟑.𝟏 ± 𝟐.𝟑 𝟖𝟏.𝟒 ± 𝟐.𝟏 𝟖𝟎.𝟒 ± 𝟒.𝟕 75.7 ± 11.5

100 ∣ 100 ViT-S/16 71.2 ± 9.4 76.7 ± 8.5 72.6 ± 8.3 𝟕𝟕.𝟎 ± 𝟖.𝟗

look more natural as it mimics the effect of overlapping cells and the
border of the cell image is less visible. This mixing technique is closest
to mixup [37].
Poisson: The main pitfall of the blend strategy is that it can only
conceal the boundaries of the pasting site by concealing the cell, which
is undesirable. Poisson blending [40] was proposed to mitigate that
issue. The blending operation is formulated as an optimization problem,
which aims to compute the values of the pixels in the pasting site to
preserve the gradients of the source/cell image while matching the
pixel intensities of the target/canvas image at the boundaries.

We train a linear classifier on top of the pre-trained models with
different pasting operations. In this experiment, 1000 unlabeled tiles are
used as canvases for each class (negative/positive), and labeled tiles are
obtained online by pasting a randomly selected labeled cell upon one
of the canvases. Notably, positive cells are pasted upon unlabeled tiles
from positive slides and reciprocally for negative cells. After training,
the classifier is evaluated on the in-house labeled tiles. We report the
class-wise 𝐹1 score averaged over 4 independent runs per pre-trained

eights. The scores are further averaged over the pre-training splits
see Section 4.1). For this experiment (and the ones that follow), we
nly use models pre-trained in a self-supervised manner as they have
hown to be on par or better than their supervised counterparts.

Table 6 shows that the blend approach yields worsen results
ompared to paste. We postulate that this is a consequence of 𝜆paste
ither being too low and the resulting images not looking more natural
han the ones produced with paste, or it being too high and the pasted
ontent being barely visible. Moreover, we observe that the Pois-
on technique performs similarly to paste for all backbone/dataset
ombinations, except for the ViT-S/16 + Sipakmed scenario, in which
ase it is the only pasting technique that yields decent results for the
lassification of negative tiles.

Fig. 4 reflects that positive cells augmented with 𝙲3𝙿-Poisson ap-
ear to be close to groups of positive tiles, demonstrating the improved
lignment obtained with our augmentation strategy compared to the
aste strategy.
asting probability: So far, we have applied the pasting operation in
perfectly symmetric manner, i.e., it is systematically applied inde-

endently of the cell’s label and that of the slide from which the
anvas is extracted. Nonetheless, our setting is inherently asymmetric:
n one side, we know with certainty that tiles extracted from negative
lides are all negatives; on the other side, little can be said with
egard to the label of tiles extracted from positive slides. Furthermore,
y systematically using 𝙲3𝙿, we are encouraging the model to only
onsider the pasting site which is undesirable. We propose to exploit
he asymmetry of the setting and not systematically use 𝙲3𝙿 on negative
iles. This further allows the model to learn from real negative examples
ithout the risk of feeding mislabeled samples to the model. Therefore,
e replicate the experiment of Table 6, but this time, 𝙲3𝙿-Poisson

is applied on the unlabeled tiles from negative slides with a given
probability (see Table 7).
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Fig. 5. Box plots depicting the class-wise 𝐹1 scores against the number of unlabeled tiles used as canvases for the pasting augmentation. The performance achieved
without the proposed augmentation can be observed at the zero of the x-axes.
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Table 8
Evaluation results of the cells-pasting augmentation method with transfer learning from
Herlev or Sipakmed to our in-house tiles dataset. A classifier is trained on the cells
dataset without and with 𝙲3𝙿-Poisson. We report the class-wise and weighted 𝐹1
cores. The highest mean score for a given backbone, class, and source dataset is
ighlighted in bold.

Herlev → in-house tiles Sipakmed → in-house tiles

backbone negatives positives negatives positives

ResNet-50 67.2 ± 3.5 71.1 ± 4.4 70.9 ± 3.9 63.8 ± 6.7
ResNet-50 𝟖𝟑.𝟏 ± 𝟓.𝟓 (+15.9) 𝟖𝟏.𝟖 ± 𝟖.𝟏 (+10.7) 𝟖𝟒.𝟐 ± 𝟒.𝟐 (+13.3) 𝟖𝟐.𝟐 ± 𝟑.𝟐 (+18.4)

ViT-S/16 72.2 ± 0.8 67.7 ± 7.4 52.2 ± 5.0 32.4 ± 5.0
ViT-S/16 𝟖𝟑.𝟏 ± 𝟐.𝟑 (+10.9) 𝟖𝟏.𝟒 ± 𝟐.𝟏 (+13.7) 𝟖𝟎.𝟒 ± 𝟒.𝟕 (+28.2) 𝟕𝟓.𝟕 ± 𝟏𝟏.𝟓 (+43.3)

Although never applying 𝙲3𝙿 to negative tiles is the scenario in
which the model processes the most realistic samples, we observe
in Table 7 that it can be harmful. This observation is unsurprising,
considering that in this situation, the positive label is perfectly corre-
lated with the pasting operation. In fact, it is surprising that we do
not see even worse. We argue that this is in part due to the ability of
𝙲3𝙿-Poisson to fool the model. The models trained using 𝙲3𝙿 with

probability of 0.5 seem to perform favorably compared to the ones
sing it systematically. It is noteworthy that in that setting, the positive
abel is correlated with the action of pasting.
ow many canvases are required?: To answer this question, we re-
eat the experiment of Table 6, with a 0.5 probability of applying
3𝙿-Poisson and a varying number of canvases per class.

Fig. 5 depicts the class-wise 𝐹1 scores for each available back-
bone/dataset combination. It appears clear that, up until ≈ 2000 can-
vases, increasing the number of canvases favorably impacts the clas-
sifier’s performance. After that point, the model tends to overfit the
pasted cells, which occur more often and independently of the canvases,
which in turn translates to a decreased downstream performance.
𝙲3𝙿 results: Our extended experiments reveal that 𝙲3𝙿 offers a well-
rounded augmentation strategy to bridge the gap between publicly
vailable single-cell and unlabeled tiles datasets. We further show that
he proposed augmentation yields significant improvement compared
o the approach of naively transferring from a classifier trained on
ingle-cell datasets. In Table 8, we also show that our approach
utperforms the naive transferring methods by a large margin with a
lassifier trained with 𝙲3𝙿-Poisson, a pasting probability of 0.5, and

the optimal number of canvases (see Fig. 5).

4.3. Aligning MIL to cytology images

In Sections 4.1 and 4.2, we showcase the benefits of self-supervised
learning for cell-level and tile-level classification tasks on cytology
7

mages and proposed an augmentation strategy 𝙲3𝙿 to make the most
ut of publicly available single-cell datasets. Combined together, this
ffers the opportunity to design Pap smear WSIs classification modules
equiring few labels. More precisely, we harness the power of self-
upervised learning and our augmentation strategy 𝙲3𝙿 to better align
ell-established MIL methods for Pap smear WSIs classification.
roblem formulation. As a primer, we briefly revisit the underlying
oncepts and assumptions of the multiple instance learning framework.
n a binary MIL setting, the objective is to correctly predict the label
∈ {0, 1} of an input bag of instances 𝑿 = {𝒙1,… ,𝒙𝑛}, where 𝑛 is

llowed to vary from one bag to the other. The instance-level labels
𝑦𝑖}𝑛𝑖=1 ∈ {0, 1} are assumed to exist but to be unknown throughout
he training phase. As such, the MIL objective can be formulated as the
etection of positive instances (𝑦 = 1) within the bags, i.e.:

=

{

1, iff ∑

𝑖 𝑦𝑖 > 0,
0, otherwise.

(2)

s pointed out in AbMIL [41], the above bag labeling function is
ermutation invariant w.r.t. the instance labels, hence so must be the
redictions 𝑌 = 𝑆(𝑿), where 𝑆 is the bag scoring function. In the
ontext of cytology, WSIs are the bags and their constituent tiles are the
nstances. One can observe that the permutation invariance assumption
s particularly well-grounded in that setting. The overall diagnosis is
ased on the presence of abnormal cells within the entire slide rather
han the specific arrangement or order of those cells. Furthermore, as
consequence of the slide preparation, the arrangement of the cells on

he slides exhibits little to no ordering or positional dependency.
In most MIL methods, the slide-level representation 𝐳 is obtained as

weighted sum/convex combination of the 𝑛 instance-level represen-
ations 𝐻 = {𝐡1,… ,𝐡𝑛}:

=
∑

𝑖
𝛼𝑖𝐡𝑖 (3)

here 𝛼𝑖 is a scalar that modulates the contribution of the 𝑖th instance
o the overall representation. The slide’s score is obtained by feeding
he slide-level representation to a classifier 𝑔:

̂ = 𝑔 (𝐳) (4)

s the instance-level representations 𝐡𝑖 and the slide-level representa-
ions 𝐳 span the same space, we argue that instance-level predictions
an be obtained with the same classifier:

𝑦̂𝑖 = 𝑔
(

𝐡𝑖
)

(5)

MIL experimental setup. We experiment with 3 different MIL meth-
ods, namely AbMIL [41], TransMIL [42], and CLAM [43]. We directly
use their official implementations. We remove the positional encoding

from TransMIL as it brings little information in our setting, as discussed
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Table 9
Evaluation of the MIL-based methods before and after adding our augmentation 𝙲3𝙿

and top-k selection strategy for Pap-smear test WSIs classification on our in-house dataset
AuC scores

top-k ∣ 𝙲3𝙿 method backbone 𝜆loc slide-level tile-level

✗∣ ✗ AbMIL ViT-S/16 – 59.0 ± 11.2 65.9 ± 11.6
✓∣ ✗ AbMIL ViT-S/16 – 𝟕𝟔.𝟖 ± 𝟑.𝟑 𝟖𝟔.𝟗 ± 𝟐.𝟐
✓∣ ✓ AbMIL ViT-S/16 0.1 76.5 ± 2.9 (+17.5) 86.1 ± 2.2 (+20.2)

✗∣ ✗ AbMIL ResNet-50 – 61.1 ± 11.2 61.6 ± 12.5
✓∣ ✗ AbMIL ResNet-50 – 70.9 ± 8.0 74.6 ± 20.8
✓∣ ✓ AbMIL ResNet-50 1.0 𝟕𝟐.𝟖 ± 𝟐.𝟐 (+11.7) 𝟖𝟎.𝟔 ± 𝟒.𝟑 (+19.0)

✗∣ ✗ TransMIL ViT-S/16 – 58.1 ± 5.4 53.3 ± 9.9
✓∣ ✗ TransMIL ViT-S/16 – 59.8 ± 14.6 53.7 ± 12.4
✓∣ ✓ TransMIL ViT-S/16 0.1 𝟕𝟐.𝟏 ± 𝟖.𝟒 (+14.0) 𝟔𝟕.𝟕 ± 𝟏𝟏.𝟖 (+14.4)

✗∣ ✗ TransMIL ResNet-50 – 49.9 ± 5.2 46.7 ± 10.7
✓∣ ✗ TransMIL ResNet-50 – 46.1 ± 8.7 50.1 ± 12.9
✓∣ ✓ TransMIL ResNet-50 1.0 𝟔𝟗.𝟒 ± 𝟏𝟒.𝟓 (+19.5) 𝟕𝟏.𝟔 ± 𝟏𝟓.𝟏 (+24.9)

✗∣ ✗ CLAM ViT-S/16 – 61.3 ± 6.2 69.4 ± 8.9
✓∣ ✗ CLAM ViT-S/16 – 73.8 ± 4.4 𝟖𝟒.𝟏 ± 𝟑.𝟔
✓∣ ✓ CLAM ViT-S/16 0.5 𝟕𝟒.𝟖 ± 𝟑.𝟎 (+13.5) 77.0 ± 2.9 (+7.6)

✗∣ ✗ CLAM ResNet-50 – 64.3 ± 11.1 61.4 ± 11.3
✓∣ ✗ CLAM ResNet-50 – 68.8 ± 14.4 68.4 ± 7.2
✓∣ ✓ CLAM ResNet-50 1.0 𝟕𝟕.𝟓 ± 𝟑.𝟒 (+13.2) 𝟕𝟗.𝟎 ± 𝟒.𝟎 (+17.6)

above. Each MIL method is tested with both types of backbones (ViT-
S/16 and ResNet-50), which are initialized with the weights obtained
from DINO’s pre-training [30]. In all experiments, the weights of the
backbone are kept frozen. Considering the availability of 4 pre-training
weights per backbone (see Section 4.1), the first one is used to de-
termine the best hyperparameters, and the three remaining ones are
reserved for evaluation purposes. For each setting, we report the av-
erage and standard deviation of the slide-level and instance-level AUC
scores. The instance-level score is computed using our in-house positive
tiles and randomly sampled tiles from negative slides (both extracted
from the test tiles).
Results discussion for MIL-based methods. In the first scenario, we
experiment with the MIL methods using their default implementations.
It can be observed in Table 9 that this setting is suboptimal for all MIL
method/backbone combinations. This is intriguing, considering that the
backbone demonstrated strong performances (see Table 3) at the tile
level and that the chosen MIL methods are well-established baselines.
We argue that this is a consequence of the particularity of Pap smear
test images. Of note, features correlated with negativity are present
almost everywhere, even in positive tiles, and features correlated with
positivity are scarce. Together, this makes for a particularly challenging
setting to capture the positive signal in the slide-level representation,
𝐳.
Top-k selection: To mitigate the aforementioned issue, we propose
only processing the top-k most suspicious tiles in each slide using the
same backbone and classifier as for the slide-level predictions. We
see that as the backbone is frozen, the tiles’ representations can be
pre-computed, which makes the identification of the top-k tiles not
compute-intensive. In all following experiments, we use 𝑘 = 8 top-k
tiles and a 𝚋𝚊𝚝𝚌𝚑_𝚜𝚒𝚣𝚎 = 16.

Table 9 shows that adding a top-k module yields significant im-
provements for all MIL methods except for TransMIL. When using the
top-k is beneficial for the slide-level predictions, we observe that it also
benefits the tiles-level predictions, which is unsurprising considering
that the slide-level representation 𝐳 is most likely closer to that of tiles
when it results from a weighted-sum over 8 tiles representations than
over the entire bag (see Eq. (3)). Similarly, the poor tile-level perfor-
mance of TransMIL is a potential explanation for its ineffectiveness at
the slide level. Indeed, if the model cannot detect the positive tiles, the
overall representation does not reflect the nature of the slide well.
Tile-level objective: To improve the ability of the model to identify
8

suspicious tiles, we propose to integrate a tile-level loss into the overall
training objective:

 = slide + 𝜆tile ⋅ tile (6)

where 𝜆tile denotes the tile loss coefficient. We use a 𝚋𝚊𝚝𝚌𝚑_𝚜𝚒𝚣𝚎 of 8
for the tiles and the optimal value of 𝜆tile is determined independently
for each backbone/method combination. Moreover, since we aim for
a method using only slide-level labels, we explore the possibility of
benefiting from 𝙲3𝙿. As depicted in Fig. 2, hard negative and confident
positive tiles are collected throughout training and used as canvases
where negative and positive cells can be pasted upon, respectively.
We refer to hard negatives/confident positives as the 10 tiles having the
highest positivity score in each negative/positive slide, respectively.
The method used for pasting is 𝙲3𝙿-Poisson, and we rely on cells from
both Herlev and Sipakmed.

As shown in Table 9, incorporating a localized objective alongside
𝙲3𝙿 yields significant improvements in the tile-level predictions of
TransMIL. Consequently, this facilitates the detection of suspicious tiles
and ultimately enhances the accuracy of slide-level predictions. It is
worth noting that 𝙲3𝙿 is not exclusively advantageous for TransMIL, as
it proves to be beneficial at the slide level in all scenarios except for
ViT-S/16 + AbMIL. We posit that a tile-level loss is implicitly enforced
when employing a top-k selection approach. In other words, the repre-
sentation of the top-k selected tiles is encouraged to be aligned with the
slide label. Hence, when the top-k selection is accurate, 𝙲3𝙿 becomes
less relevant as ‘‘real’’ labeled tiles are available. Nonetheless, this
scenario seldom occurs, especially when the backbone is a ResNet-50,
whose features have 2048 dimensions (> 5× more than for a ViT-S/16),
which increases the number of parameters of the MIL module. This
may explains why settings relying on a ResNet-50 as backbone tend
to benefit more from 𝙲3𝙿.

5. Conclusion

This paper intervenes at a particularly opportune moment in the
realm of telecytology innovation. The introduction of affordable slide
scanners, such as the Grundium Ocus®40, coupled with cost-effective
slide preparation methods like SurePath™, presents unique opportuni-
ties for advancing remote cytology diagnostics. To contribute to this
ambitious endeavor, we present a medium-sized dataset of Pap test
WSIs from HPV-positive women, collected in a resource-constrained
setting in Cameroon.

Additionally, our experimental findings highlight the successful
application of self-supervised learning to reduce the annotation bur-
den, with the resulting representations outperforming off-the-shelf pre-
trained models across various downstream tasks. Additionally, we have
introduced 𝙲3𝙿, an augmentation strategy, which effectively transfers
knowledge from public single-cell datasets to unlabeled tiles. 𝙲3𝙿 proves
to be beneficial not only for tile-level classification but also for slide-
level classification. Regarding the WSIs classification, our experiments
reveal that MIL methods may overlook crucial characteristics of Pap
smear images. These limitations can be accounted for by introducing
simple modifications that prove to be beneficial. Overall, classifying
Pap smear WSIs relying solely on slide-level labels remains challenging,
particularly in our scenario where all samples are from HPV-positive
women, which adds an additional layer of complexity.
Limitations. Our experiments are conducted on only one self-
supervised learning method, namely DINO [30] due to its strong
performance on the k-NN evaluation benchmark and compatibility with
various backbones. We argue that the main reason why SSL methods
could be inadequate for cytology images is that the objective may en-
force consistency between semantically unrelated views. Nevertheless,
this potential pitfall results from the spatial cropping strategy, which is
common to most self-distillation and contrastive methods. Therefore,
our conclusions, based on DINO, are likely also applicable to other
methods. Alternatively, larger vision transformer backbones, e.g., ViT-
B/16, would be worth investigating, yet lighter architectures, such as
ViT-S/16 and ResNet-50, remain better suited in the low-data regime.
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