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Abstract. Tuning the regularization hyperparameter α in inverse prob-
lems has been a longstanding problem. This is particularly true in the
case of fetal brain magnetic resonance imaging, where an isotropic high-
resolution volume is reconstructed from motion-corrupted low-resolution
series of two-dimensional thick slices. Indeed, the lack of ground truth
images makes challenging the adaptation of α to a given setting of inter-
est in a quantitative manner. In this work, we propose a simulation-based
approach to tune α for a given acquisition setting. We focus on the influ-
ence of the magnetic field strength and availability of input low-resolution
images on the ill-posedness of the problem. Our results show that the op-
timal α, chosen as the one maximizing the similarity with the simulated
reference image, significantly improves the super-resolution reconstruc-
tion accuracy compared to the generally adopted default regularization
values, independently of the selected reconstruction pipeline. Qualitative
validation on clinical data confirms the importance of tuning this param-
eter to the targeted clinical image setting. The simulated data and their
reconstructions are available at https://zenodo.org/record/8123677.
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1 Introduction

Magnetic resonance imaging (MRI) has become an increasingly important tool
to investigate prenatal equivocal neurological situations, as it provides excel-
lent anatomical details [1,2]. However, three-dimensional (3D) high-resolution
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(HR) imaging of the fetal brain is unfeasible due to the unpredictable fetal mo-
tion. In clinical practice, T2-weighted (T2w) fast spin echo (FSE) sequences are
commonly used to minimize the effects of intra-slice random fetal movements,
and multiple orthogonal series are acquired, resulting in several low-resolution
(LR) series of two-dimensional (2D) thick slices [3,4]. Nevertheless, the strong
anisotropy of the images leading to partial volume effects on small structures
within the fetal brain and the remaining inter-slice motion hamper the accurate
analysis of 3D imaging biomarkers.

Several post-processing techniques have been proposed to combine multi-
ple motion-corrupted LR series and leverage the information redundancy from
orthogonal orientations to reconstruct a single, 3D isotropic HR motion-free
volume of the fetal brain [5,6,7,8]. These approaches all feature several pre-
processing steps (e.g. brain extraction, intensity correction, and harmonization)
leading to slice-to-volume registration (SVR) where inter-series inter-slice mo-
tion is estimated, followed by super-resolution reconstruction (SRR). This latter
step can be framed as an inverse problem of the form

min
x

1

2
∥Hx− xLR∥2 + αR(x), (1)

where x is the target HR image, xLR the LR series, H an operator describing
the motion, blurring and downsampling model estimated from the data, and R
the regularization function (e.g., total-variation (TV) [6], first-order Tikhonov
[7], etc.). α is a parameter that balances the strength of the regularization term
compared to the data fidelity term.

Various applications in medical image computing are formulated as inverse
problems, and the optimization of regularization parameters has been widely
studied in this context [9,10]. Most strategies explicitly rely on reference data,
which are not available in the context of fetal MRI, making the setting of the
regularization parameter α in a principled and quantitative manner highly chal-
lenging. To circumvent the lack of HR data of the fetal brain, several works use
HR MR images from newborns as ground truth data and downsample them to
simulate the acquisition of LR series that are then reconstructed and compared
to the HR image to set the default value of their regularization parameters [5,6].
Alternative approaches consider a leave-one-out approach where the left-out LR
series serves as a reference for the quantitative evaluation of the SRR [5,6], or
use a volume reconstructed from all available LR series as a reference to which
SRR with fewer LR series can be compared [7]. However, all of these works
rely on constructing surrogate ground truth images to study the influence of the
regularization parameter on the quality of the SRR but do not provide insights
on how to adapt it when new input acquisition setting has to be reconstructed.
Furthermore, despite well-known differences in image acquisitions protocols, fe-
tal brain SRR MRI studies are still carried out using the default regularization
values of the selected pipeline [6,7,11,8].

This work proposes the first approach to optimize the setting of the reg-
ularization parameter α based on numerical simulations of imaging sequences
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tailored to clinical ones. We take advantage of a recent Fetal Brain MR Acquisi-
tion Numerical phantom (FaBiAN) [12] that provides a controlled environment
to simulate the MR acquisition process of FSE sequences, and thus generates re-
alistic T2w LRMR images of the fetal brain as well as corresponding HR volumes
that serve as a reference to optimize the parameter α in a data-driven manner,
considering both acquisition setting-specific and subject-specific strategies.

Our contributions are twofold. First, using synthetic, yet realistic data, we
study the sensitivity of the regularization to three common variables in inverse
SRR problem in fetal MRI: (i) the number of LR series used as input, (ii) the
magnetic field strength which impacts also the in-plane through-plane spatial
resolution ratio, and (iii) the gestational age (GA), which leads to substantial
changes in brain anatomy. Secondly, we qualitatively illustrate the practical value
of our framework, by translating our approach to clinical MR exams. We show
that α∗ estimated by our simulated framework echoes a substantial improvement
of image quality in the clinical SRR. To generalize the validity of our findings, we
perform our study using two state-of-the-art SRR pipelines, namely MIALSRTK
[6] and NiftyMIC [7].

2 Materials and methods

2.1 Simulated acquisitions

We use FaBiAN [12,13] to generate T2w MR images of the developing fetal brain
derived from a normative spatiotemporal MRI atlas (STA) [14] that features
18 subjects from 21 to 38 weeks of GA. Typical FSE acquisitions are simu-
lated using the extended phase graph (EPG) formalism [15], at either 1.5T or
3T, according to the MR protocol routinely performed at our local hospital for
fetal brain examination. All sequence parameters are kept fixed at a given mag-
netic field strength (at 1.5/3T : TR, 1200/1100ms; TE, 90/101ms; voxel size,
1.1×1.1×3/0.5×0.5×3mm3). Stochastic 3D rigid motion of little-to-moderate
amplitude as well as random complex Gaussian noise (mean, 0; standard devia-
tion, 0.15 at 1.5T, respectively 0.0025 at 3T) are applied during k-space sampling
to simulate as closely as possible the MR acquisition process. Both realistic fetal
movements and noise levels are qualitatively estimated from clinical LR series
and set accordingly to match the characteristics of real scans [16,17,12]. More
specifically, a maximum of 5% motion-corrupted slices is generated over the
whole fetal brain volume with independent translation within a uniform dis-
tribution of [-1,1]mm in every direction and 3D rotation within [-2,2]° for little
motion, respectively [-3,3]mm and [-5,5]° for moderate motion, to reproduce typi-
cal motion patterns. Multiple orthogonal LR series xLR = {xLR,i}i are simulated
with a shift of the field-of-view of 1.6mm in the slice thickness direction for series
in the same orientation. The amplitude of fetal motion and the number of sim-
ulated LR series are further detailed in the experimental settings (Sections 2.3
and 2.4). A visual comparison between clinical LR series and the correspond-
ing simulated data is available at Figure 8 in the Supplementary material. A
reference HR isotropic volume xHR of the fetal brain is also simulated for each
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subject, without bias field or motion, to serve as a reference for the quantitative
evaluation of the corresponding SRR.

2.2 Super-resolution reconstruction methods

Two widely adopted reconstruction pipelines, MIALSRTK [6] and NiftyMIC [7],
are used to reconstruct 3D isotropic HR images of the fetal brain from orthog-
onal LR series. For each pipeline, we perform a grid search approach of the
regularization parameter space.

Remark. Contrary to NiftyMIC [7], MIALSRTK [6] places its regularization
parameter λ on the data fidelity term. For the sake of consistency, we will only
use the formulation of Equation 1, with α = 1/λ in the case of MIALSRTK.

Quality assessment. Solving Problem 1 yields a SR-reconstructed image x̂HR

whose quality can be compared against the reference xHR using various met-
rics. We use two common metrics for SRR assessment [5,6,7], namely the peak
signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) [18].
The best regularization parameter α is identified as the one maximizing a given
performance metric.

2.3 Experiment 1 – Controlled in silico environment

In this first experiment, we study the sensitivity of the parameter α to common
variations in the acquisition pipeline.

Dataset. For every STA subject, nine LR series (three per anatomical orienta-
tion) are simulated at 1.5T and 3T with little amplitude of stochastic 3D rigid
motion.

Experimental setting. We define four configurations based on the number of
LR series given as input to the SRR pipeline (three or six series) and the mag-
netic field strength (1.5 or 3T). Note that the inter-magnetic field difference is
especially captured in the image resolution, with a through-plane/in-plane ratio
of 3.3/1.1 = 3 at 1.5T and 3.3/0.5 = 6.6 at 3T. In each configuration, individ-
ual brains are repeatedly reconstructed (n = 3) from a selection of different LR
series among the nine series available per subject.

The grid of parameters searched for NiftyMIC consists of 10 values geomet-
rically spaced between 10−3 and 2, plus the default parameter αdef = 0.01. For
MIALSRTK, we use α ∈ {1/0.75, 1/1.0, 1/1.5, 1/2.0, 1/2.5, 1/3.0, 1/3.5, 1/5.0}
(8 values, with default parameter αdef = 1/0.75). At the end of the experiment,
the best parameter, for either of the pipelines, is referred to as α∗

1.

Statistical analysis. The optimal regularization parameters evaluated for the
different SRR configurations are compared using the Wilcoxon rank sum test.
The difference between the metrics performance obtained with default or optimal
parameters is tested with a paired Wilcoxon rank sum test. The p-value for
statistical significance is set to 0.05.
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2.4 Experiment 2 – Clinical environment

Clinical MR fetal exams are prone to substantial inter-subject variation and het-
erogeneity. In particular, the number of LR series available for reconstruction,
as well as the amplitude of fetal motion, greatly vary from one subject to the
other [19]. Therefore, this second experiment has two purposes. First, we trans-
late our findings from the first experiment to clinical data using the best value
α∗
1. Secondly, we study an alternative approach to perform a tailored subject-

wise regularization tuning by simulating synthetic data for each subject that
mimic the clinical acquisitions available. We refer to the obtained value as α∗

2.
Dataset. Twenty fetal brain MR exams conducted upon medical indication were
retrospectively collected from our institution. All brains were finally considered
normal. Fetuses were aged between 21 and 34 weeks of GA (mean ± standard
deviation (sd): 29.7±3.6) at scan time. For each subject, at least three orthogonal
series were acquired at 1.5T (voxel size: 1.125×1.125×3mm3). After inspection,
four to nine series (mean ± sd: 6.3± 1.5) were considered exploitable for SRR.

The local ethics committee approved the retrospective collection and analysis
of MRI data and the prospective studies for the collection and analysis of the
MRI data in presence of a signed form of either general or specific consent.

The same 20 subjects are simulated using exam-specific parameters to mimic
as closely as possible the corresponding clinical acquisitions. In particular, we
match the number and the orientation of the LR series, as well as the amplitude
of fetal motion (from little to moderate), and the GA of each subject.
Experimental setting. We consider the same regularization parameter space
as in Experiment 1 (Section 2.3), and evaluate both clinical and simulated data
on this parameter grid.
Statistical analysis. We compare the similarity between the images recon-
structed by MIALSRTK and NiftyMIC using both default and optimized pa-
rameters. In this experiment, no reference images are available. Statistical sig-
nificance of the performance difference is tested using a paired Wilcoxon rank
sum test (p < 0.05 for statistical significance).

3 Results

3.1 Experiment 1 – Controlled in silico environment

Optimal regularization parameter. Figure 1 shows the optimal regulariza-
tion parameters α∗

1 of SRR by MIALSRTK and NiftyMIC for each configuration.
Regardless of the magnetic field strength and the number of LR series used for
reconstruction, the optimal regularization parameters that maximize the PSNR
and SSIM compared to a synthetic HR volume greatly differ from the default
values. For MIALSRTK, αdef = 1/0.75, while the optimal range is found be-
tween 1/2.25 and 1/4.5. For NiftyMIC, αdef = 0.01, whereas the optimal range
is found between 0.015 and 0.15.

We observe that for both the PSNR and the SSIM, the optimal regular-
ization weight increases with the number of series used in the reconstruction,
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Fig. 1. Optimal regularization parameters α∗
1 for MIALSRTK (left panel) and

NiftyMIC (right panel) in the four different configurations studied. △ indicates the
mean optimal parameter. Inter-configurations p-values (Wilcoxon rank sum test, sig-
nificance: p < 0.05) are indicated. The dashed line shows the value of the default
parameter for each SRR technique.

and decreases with the resolution. This is because changing the number of LR
series or the magnetic field strength affects the magnitude of the data fidelity
term with respect to the regularization term. When more series are combined
in the SRR, a larger regularization parameter must be used to keep the ratio
∥Hx− xLR∥2/αR(x) constant.

Quality improvement. The corresponding mean PSNR and SSIM values, com-
puted across all subjects both with default and optimal regularization parame-
ters, and compared to the reference HR volume are displayed in Table 1. Overall,
the quality metrics obtained from the SRR with optimal parameters are signifi-
cantly improved compared to those obtained with default values. These results
strongly suggest that the regularization parameters are highly sub-optimally set
for both SRR pipelines. This is further illustrated on Figure 2, where we re-
construct simulated data and compare them to the corresponding ground truth
image: using a default α, MIALSRTK tends to overly smooth the image, while
NiftyMIC reconstructs images that are artificially sharp, enhancing edges beyond
what is present on the reference image.

Gestational age-based analysis. Since the human brain undergoes drastic
morphological changes throughout gestation [20], one could expect to adjust α
to GA. However, our experiments (cf. Supp. Figure 7) suggest that the α∗ does
not depend on GA, and is in line with the values reported on Fig. 1.

3.2 Experiment 2 – Clinical environment

In this experiment, we compare two differently optimized regularization param-
eters. First, we use the optimal value α∗

1 (from Fig. 1 at 1.5T, and rounded
to the closest value on the grid of parameters). Second, we use the optimized
regularization parameter α∗

2 estimated from the subject-specific simulation.
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Table 1. Mean metrics computed across all subjects on images reconstructed using
the default regularization parameter αdef or the optimal parameter α∗

1 respectively,
compared to the simulated reference HR volume, for the four configurations studied. †
indicates paired Wilcoxon rank sum test statistical significance (p < 0.05).

MIALSRTK NiftyMIC
PSNR (↑) SSIM (↑) PSNR (↑) SSIM (↑)

(Field strength; # LR) αdef α∗
1 αdef α∗

1 αdef α∗
1 αdef α∗

1

(1.5T; 3) 18.9 20.2† 0.78 0.80† 17.3 20.8† 0.79 0.82†

(1.5T; 6) 20.1 20.8† 0.82 0.83† 17.0 21.5† 0.80 0.84†

(3T; 3) 19.9 21.8† 0.75 0.77† 20.5 21.2† 0.77 0.77†

(3T; 6) 21.0 22.2† 0.78 0.80† 20.9 22.0† 0.80 0.80†

Figure 3 shows the SRR of two subjects with default and optimal parameters
using both pipelines. We observe that using the optimal parameters α∗

1 and α∗
2

makes the reconstructed images more similar. Indeed, the default parameters of
MIALSRTK and NiftyMIC promote opposite behaviors, towards smoother (i.e.,
the default regularization is higher than the optimal one), respectively noisier
(the default regularization is lower than the optimal one) images.

We quantitatively confirm the similarity of the optimized SRR by computing
the PSNR and the SSIM between the reconstructed images from both methods
for αdef, α

∗
1 and α∗

2. The results are shown in Figure 5. The difference between
the default and optimized parameters is statistically significant for both metrics.
There is however no significant difference between the images reconstructed using
the parameters optimized setting-wise (α∗

1) and subject-wise (α∗
2). As shown in

Fig. 6, the parameters α∗
2 optimized based on subject-specific simulations always

lie within the range of optimal parameters α∗
1 determined in Exp. 1.

Beyond more similar images, optimizing the regularization parameter can
also matter in terms of the structures that will be visible on the image. On
Figure 4, using the optimal α∗

1 allows to delineate the deep gray matter more
clearly compared to the αdef.

4 Discussion and Conclusion

In this paper, we propose a novel simulation-based approach that addresses the
need for automated, quantitative optimization of the regularization hyperparam-
eter in ill-conditioned inverse problems, with a case study in the context of SRR
fetal brain MRI. Our estimated regularization weight shows both qualitative and
quantitative improvements over widely adopted default parameters. Our results
also suggest that subject-specific parameter tuning – which is computationally
expensive to run – might not be necessary, but that an acquisition setting-specific
tuning, ran only once, might be sufficient in practice.

As such, the proposed methodology demonstrates a high practical value in a
clinical setting where fetal MR protocols are not standardized, leading to het-
erogeneous acquisition schemes across centers and scanners. Besides, we show
that our simulation-based optimization approach reduces the variability in im-
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Fig. 2. Axial comparison of SRR of simulated cases of a 30-week old subject, using
default and optimal parameters from Experiment 1 (α∗

1), reconstructed with three LR
series.

Fig. 3. Illustration of the domain shift between SRR techniques for two clinical sub-
jects (left, GA: 23 weeks, 8 LR series and right, GA: 32 weeks, 4 LR series). The SR
reconstructions using the default α (orange boxes) are much more different than the
ones reconstructed with the optimal parameters (blue boxes).

Fig. 4. Comparison of a clinical case (GA: 28 weeks, 8 LR series) reconstructed using
NiftyMIC with different regularization parameters. We see that the optimal parameter
α∗
2 yields a smoother image with less ringing artifacts at the frontal lobe (red arrow)

and a more clearly delineated deep gray matter (yellow arrows).

age quality and appearance between the two SRR pipelines studied. We expect
this behavior to contribute to mitigating the domain shift currently inherent to
any reconstruction technique, a key challenge in the development of automated
tissue segmentation methods [21,22]. Future work will address some limitations
of this study. Indeed, we mostly focused on the influence of the main magnetic
field strength and the number of available LR series, but the signal-to-noise ratio
within LR series may also affect the regularization setting [12]. This aspect could
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Fig. 5. Similarity (PSNR and SSIM)
between the images reconstructed us-
ing MIALSRTK and NiftyMIC with
default and optimal regularization pa-
rameters. Comparison is done between
all 20 clinical exams; p-values from
paired Wilcoxon rank sum test, sta-
tistical significance: p < 0.05).

Fig. 6. PSNR (left: MIALSRTK, right:
NiftyMIC) for the simulated subjects of
Experiment 2. Every light line represents an
individual subject, and their average is the
bold black curve. Dashed red (vertical) line
is the default regularization for each method.
Purple region highlights the range of optimal
parameters determined in Experiment 1 at
1.5T.

also be tuned within the proposed MR acquisition simulation framework. More-
over, clinical assessment by radiologists of the different SRR would be important
to further validate our method. Such an evaluation would allow to compare our
approach to other techniques for parameter tuning, which cannot be done quan-
titatively due to the lack of HR ground truth data.
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Supplementary material

Fig. 7. Optimal parameters for MIALSRTK and NiftyMIC as a function of the gesta-
tional age (GA), using simulated data, using 3 different reconstructions for each subject
at each GA. There is only a very moderate effect at best on the optimal regularization
parameter as a function of the GA. The default parameter for MIALSRTK is α = 4/3
(dashed line) and for NiftyMIC, α = 0.01 is below the y-axis.

Fig. 8. Comparison of simulated and clinical LR series at 1.5T (1.1×1.1×3mm3, GA:
23 weeks) and 3T (0.5× 0.5× 3mm3, GA: 32 weeks).
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Fig. 9. Clinical LR series of a subject of 32 weeks of GA, in the three orthogonal
orientations, with the corresponding SRR using MIALSRTK (reconstructed using 4 LR
series), with default and optimized hyperparameters (α∗

2 comes from experiment 2).
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