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Endothelin B Receptor, a New Target in Cancer Immune Therapy

Lana E. Kandalaft, Andrea Facciabene, Ron J. Buckanovich, and George Coukos
Ovarian Cancer Research Center University of Pennsylvania, Philadelphia, Pennsylvania

Abstract
The endothelins and their G protein-coupled receptors A and B have been implicated innumerous
diseases and have recently emerged as pivotal players in a variety of malignancies. Tumors over-
express the endothelin 1 (ET-1) ligand and the endothelin-A-receptor (ETAR). Their interaction
induces tumor growth and metastasis by promoting tumor cell survival and proliferation,
angiogenesis, and tissue remodeling. On the basis of results from xenograft models, drug
development efforts have focused on antagonizing the autocrine-paracrine effects mediated by ET-1/
ETAR. In this review, we discuss a novel role of the endothelin-B-receptor (ETBR) in tumorigenesis
and the effect of its blockade during cancer immune therapy. We highlight key characteristics of the
B receptor such as its specific overexpression in the tumor compartment; and specifically, in the
tumor endothelium, where its activation by ET-1 suppresses T-cell adhesion and homing to tumors.
We also review our recent findings on the effects of ETBR-specific blockade in increasing T-cell
homing to tumors and enhancing the efficacy of otherwise ineffective immunotherapy.

Background
The endothelin system

The endothelin system comprises four endothelin (ET) peptide ligands, ET-1, 2, 3 (1), and the
more recently discovered ET-4 (2); their two G protein-coupled receptors (GPCR), ETAR (3)
and ETBR (4); and the endothelin-converting enzymes (ECEs), which catalyze the generation
of the biologically active ETs. ETs derive from precursor proteins after cleavage by membrane-
bound metalloproteinase ECEs (5) and are well known for their overall vasoconstricting
activity. Among them, ET-1 is the most potent ligand and the most widely expressed in
endothelial cells (6). The endothelin peptides exert their function through binding to their
cognate receptors A and B, whereby they trigger divergent intracellular effects by activating
numerous downstream signaling pathways. Members of the endothelin system have been
identified in neuronal, renal, and vascular tissues, and their involvement has been well
documented in an array of physiological processes such as embryonic development,
reproduction, angiogenesis, and cardiovascular homeostasis (4,7–9).

Role of the endothelin system in disease
The role of the endothelin system has been well characterized in cardiovascular and renal
disorders (10–13). ET-1 is produced by endothelial cells and exerts autocrine-paracrine
functions by binding to ETAR and ETBR on vascular endothelial cells and pericytes. Balanced
activation of the two receptors maintains vascular tone and regulates endothelial cell
proliferation (14,15), whereas imbalance in this system contributes to the onset of
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hemodynamic disorders. The same applies to the renal vasculature, in which endothelins play
a major role in maintaining normal vascular tone through both the A (13,16) and B receptor
(17). Endothelins and their receptors have also been implicated in pulmonary hypertension
(18), asthma (19), and pulmonary fibrosis. ET-1 immunostaining was detected in normal lung
epithelium and vasculature (20). ETAR is found on vascular and airway smooth muscle,
whereas ETBR is mostly often found on the endothelium and smooth muscle cells. Activation
of both A and B receptors on lung smooth muscle cells results in vasoconstriction, whereas
ETBR activation alone leads to bronchoconstriction (21).

ETAR and ETBR are also involved in inflammatory processes. Both ETAR and ETBR
expression in bronchial smooth muscle cells is increased upon experimentally induced airway
inflammation (22). ETAR activation is also required for endotoxin-induced inflammation
(23) or T-cell homing to the lungs after allergenic or inflammatory stimuli, whereas
experimental airway inflammation is abrogated by ETAR inhibition (24,25). The role of the
endothelin axis in inflammation extends beyond the respiratory tract. ETAR activation mediates
renal inflammation and transforming growth factor-β (TGF-β) production in diabetes (26).
Owing to its proinflammatory properties (27,28), ET-1 contributes to the progression of various
diseases like glomerulosclerosis and atherosclerosis and the pathogenesis of autoimmune
diseases such as scleroderma and lupus erythematosus (29,30). Importantly, ET-1 is
synthesized by lymphocytes and other leukocytes, and has been shown to activate the
proinflammatory transcriptional factor nuclear factor-κB (NF-κB) in human monocytes via
ETBR and to stimulate the production of inflammatory interleukins and tumor necrosis factor-
α (TNF-β) (ref. 31). ET-1 is also a chemoattractant for monocytes in vitro, via stimulation of
IL-8/CXCL8 and monocyte chemoattractant protein-1 (MCP-1)/CCL2 (32,33).

Role of the endothelin system in cancer
Endothelin 1—The role of the endothelin system in cancer has been reviewed extensively
by Bagnato and colleagues (34) and others in the field. Kusuhara and colleagues were among
the first to report ET-1 overexpression by breast, colon, stomach, prostate, and glioblastoma
cell lines (35,36). Ovarian, neuroblastoma, and human papilloma virus (HPV)-positive human
cervical carcinoma cell lines also overexpress ET-1 (37,38), whereas increased
immunopositivity for ET-1 was detected in vivo in human colorectal cancer (39). Compiling
clinical evidence shows elevated plasma ET-1 levels in patients diagnosed with various solid
tumors, including hepatocellular, gastric, and prostate cancer (40–42). Interestingly, condensed
breath of patients with non small cell lung carcinoma (NSCLC) showed increased ET-1 levels
(43), proposing ET-1 as an early detection marker (44). Finally, in ovarian carcinoma, high
ET-1 levels were detected in ascites (45). In summary, the endothelin 1 ligand is overexpressed
by many tumors.

Strong evidence suggests a role for members of the endothelin system in the growth and
progression of multiple tumors. Exogenous addition of ET-1 to a range of cell lines promotes
various aspects of tumorigenesis. In prostate cancer cell lines, ET-1 increased survival and
proliferation (42,46). Exposure of breast cancer cells to ET-1 led to invasive phenotype, which
involved matrix metalloproteinase (MMP) activity (47). The same mechanism occurred in
osteosarcoma, in which ET-1 was shown to promote MMP-2 and MMP-9 induction (48).
Lastly, in colon cancer ET-1 overexpression was shown to rescue cancer cells from apoptosis
and growth arrest by promoting the oncogene β-catenin (49).

ETAR—The effects of ET-1 on cancer cells are mostly mediated by ETAR. Importantly,
ETAR was shown to be overexpressed in renal and cervical cancer cell lines (50,51) as well as
several cancer types in vivo including colorectal, bladder, prostate, and nasopharyngeal
carcinomas (46,52–55). ETAR is also overexpressed in approximately 85% of primary and
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metastatic ovarian carcinomas. In this study, all ovarian carcinoma-derived cell lines were
positive for both ET-1 and ETAR mRNA (56). Concomitant up-regulation of ET-1 and ETAR
on tumor cells contributes to cell autonomy and malignant progression and triggers complex
pathways driving tumorigenesis, including cell proliferation, inhibition of apoptosis, matrix
remodeling, invasion, and metastatic dissemination (57). ET-1/ETAR also increases invasion
and migration of tumor cells through downstream effects on MMPs, cadherins, connexins, and
integrins. Increased cell proliferation is mediated by increased Ca2+ uptake and activation of
the PKC, PLC, MAPK, and AKT pathways. ET-1/ETAR interaction can also activate the AKT
and the NF-?B pathways to promote tumor cell survival (34).

The mitogenic activity of ET-1 can also be augmented by growth factors (57). One example
is the cross-signaling between ETAR and the epidermal growth factor receptor (EGFR) (ref.
34). EGFR has been identified as a downstream mediator of ETA-receptor activation by ET-1
in ovarian cancer (58). The mechanism is triggered by ET-1, which causes EGFR
transactivation. This event leads to activation of the RAS/MAPK pathway and AKT activation
through the formation of Shc/Grb-2 complexes (45,58), subsequently contributing to the
mitogenic signaling induced by ET-1. This cross-signaling between the EGFR and ETAR
pathways provides the rationale for combining EGFR inhibitors with ETAR antagonists to treat
ovarian carcinoma. It has been shown that ZD4054, a specific ETAR antagonist, reduces ET-1-
induced EGFR transactivation, whereas the EGFR inhibitor gefitinib significantly inhibited
EGF and ET-1 induced EGFR phosphorylation (59). This drug combination simultaneously
disables multiple signaling pathways, offering improvements in ovarian carcinoma treatment
(59).

ET-1 increases the expression of cyclooxygenase (COX)-1 and COX-2, prostaglandin (PG)
E2, and VEGF production by ovarian cancer cells via ETAR activation (60). The effect of ET-1
on VEGF expression is mediated through HIF-1α (61). Elevated expression of ET-1 has been
associated with increased VEGF expression, lymphatic vessel invasion, and unfavorable
outcome in invasive ductal breast carcinoma (62). A correlation between ET-1 expression and
VEGF expression has also been shown in lung cancer (63). Additionally, inhibition of human
ovarian tumor growth in nude mice after treatment with the potent ETAR -selective antagonist
ABT-627 was associated with reduced COX-2 and VEGF expression by the tumor (60). Thus,
over-expression of the ligand ET-1 and its receptor, ETAR, account for autocrine-paracrine
activation of the endothelin axis in many solid tumors, which plays important and multifaceted
roles in tumor cell progression. The ETAR is therefore a very attractive target for cancer
therapy.

ETBR—Investigation of the role of ET-1/ETBR in tumor cell biology has been more limited.
In normal cells, ETBR counter-regulates ET-1/ETAR activity through multiple mechanisms
including increasing production of nitric oxide, promoting ET-1 clearance, triggering apoptotic
pathways, and blocking cell growth; but it is unclear whether such antagonism also operates
in tumor cells (64). Interestingly, ETBR is overexpressed and correlates with melanoma
development and progression. Expression profiling of human melanoma biopsies indicated
ETBR overexpression to be associated with aggressive tumor phenotype (65), and ETBR was
proposed as tumor progression marker (66). Underscoring the role of ETBR in melanoma
growth, the specific antagonist BQ-788 was found to inhibit the growth of human melanoma
cell lines and to reduce human melanoma tumor growth in a nude mouse model (67,68). The
B receptor is also expressed in Kaposi’s sarcoma and glioblastoma (69–71).

The role of ETBR in cancer angiogenesis has been thoroughly investigated and reviewed by
Bagnato and colleagues (34). ET-1 has been shown to directly promote tumor angiogenesis by
inducing endothelial cell survival, proliferation, and invasion through ETBR (61). ET-1
promotes angiogenesis also indirectly, by upregulating VEGF production in the vasculature,
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also through ETBR activation (72), and increases vascular permeability through VEGF in
response to tissue hypoxia (73). Furthermore, ET-1 upregulates expression of the extra domain-
B containing fibronectin (EDB+ FN) in human vascular endothelial cells (74,75). EDB+ FN is
a recently proposed marker of angiogenesis expressed in human cancers and in ocular
neovascularization in patients with proliferative diabetic retinopathy. There is a strong
correlation between ETBR and VEGF expression in a number of different tumor specimens
(76).

Clinical-Translational Advances
ETAR and ETBR antagonists in cancer therapy

ETAR and ETBR represent interesting targets for cancer chemoprevention and therapy. Many
receptor antagonists have been developed and undergone preclinical and clinical testing. Some
compounds have preferential A or B receptor inhibitory activity, whereas others exhibit mixed
A and B antagonism. Given the prominent role of ETAR in tumor cell biology, ETAR -selective
antagonists have been developed more extensively than ETBR antagonists to treat malignancy
(see Table 1). The first ETAR -selective peptide antagonist, BQ-123 (77), was shown to inhibit
cervical cancer growth in preclinical models (78). Furthermore, nonpeptide ETAR antagonists
such as Atrasentan, ZD4054, and YM598 have been shown to have a static effect on ovarian
tumor growth in xenograft models (79); to delay progression of prostate cancer (80,81); and
to attenuate growth and metastasis of human gastric carcinoma (82). ETAR inhibitors are
currently undergoing clinical testing for various cancer indications. A list of endothelin
antagonists under preclinical or clinical development for cancer and various other indications
is provided in Table 1. Notably, phase II results with Atrasentan in hormone refractory prostate
cancer (HRPC) were encouraging (83). However, subsequent phase III trials in metastatic and
nonmetastatic HRPC showed no significant therapeutic effects despite evidence of biologic
effects on serum markers of disease burden (84,85). Large geographic differences in the median
time to progression were also noted; U.S. patients showed less gain in time to progression
relative to non-U.S. patients (85). Given the role of ETBR in melanoma cells, ETBR antagonists
have been tested in melanoma, in which they proved efficacious (67,68). Interestingly,
IRL1620, an ETBR agonist, was shown to improve both delivery and therapeutic efficacy of
paclitaxel in breast tumor-bearing mice (86).

ETBR and the tumor endothelial barrier to T-cell homing
The focus of cancer therapy targeting ET-1 to date has been to antagonize the autocrine-
paracrine effects of ET-1 on tumor cells, mediated mainly by ETAR. Our laboratory recently
showed a novel application of ETBR blockade in tumor therapy. Specifically, ETBR blockade
at the tumor endothelium proved to be therapeutically efficient for tumor immune therapy (Fig.
1) (ref. 87). The success of immune therapy depends on the ability of effector T cells to infiltrate
tumors. Although current tumor vaccines have proven effective in producing an antitumor
immune response as measured by blood assays, they have fallen short of clinical expectations.
Endothelium is a crucial controller of T-cell trafficking in homeostasis, autoimmunity, and
transplantation in humans. We showed that the endothelial barrier also exists in tumors and is
partly mediated by ETBR.

This mechanism was uncovered in human ovarian cancer, in which endothelial cells were
microdissected from tumors with brisk tumor-infiltrating lymphocytes (TILs) and tumors
lacking TILs, to examine differences in their molecular profile. ETBR emerged as one of the
few genes overexpressed in tumor endothelial cells from tumors lacking TILs by Affymetrix
array analysis (87). ETBR was mostly localized to the endothelium and some stroma cells by
immunostaining in human ovarian cancers. ETBR mRNA or protein overexpression was
associated with absence or paucity of TILs, especially of intraepithelial (also called
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intratumoral) T cells (87). These are T cells infiltrating the epithelial component of the tumor
(tumor islets), which predict longer survival in ovarian cancer (88). ET-1 is overexpressed in
ovarian cancer cells (34), and it was found that ET-1 mRNA was significantly higher in
microdissected (cytokeratin-positive) tumor cells from tumors lacking TILs relative to tumors
with brisk TILs. Thus, the entire ET-1/ETBR (tumor-endothelial) paracrine axis seems
upregulated in ovarian cancers lacking TILs. Importantly, we showed that recombinant human
ET-1 blocks adhesion of activated T cells to human umbilical vein endothelial cells in vitro.
These results establish a vascular mechanism of tumor immune evasion mediated by the
endothelin system (87).

TNF-α is a major inflammatory cytokine implicated in carcinogenesis, tumor angiogenesis,
and progression, and it is up-regulated in ovarian cancer (89). It has been previously reported
that the overall TNF-α mRNA levels are similar in ovarian tumors with or without
intraepithelial T cells (88). This was counterintuitive, as TNF-α is a major factor activating
endothelium and promoting adhesion of T cells. It has been now found that ET-1 efficiently
blocks adhesion of T cells to endothelial cells even when endothelial cells are activated with
TNF-α (87). This observation explains the paradox of how tumors may exhibit inflammation
yet be prohibitive to T-cell infiltration, thus establishing immune privilege even in the face of
inflammation.

ET-1 was found to abrogate T-cell adhesion to endothelium via ETBR and through suppression
of endothelial intercellular adhesion molecule-1 (ICAM-1) expression at base line as well as
following endothelial activation with TNF-α. Furthermore, it was found that ETBR -induced
suppression of ICAM-1 expression and surface clustering was mediated by nitric oxide (NO).
ETBR blockade with the selective antagonist BQ-788 upregulated endothelial ICAM-1
expression, promoted ICAM-1 clustering at the cell surface, and restored adhesion of T cells
to ET-1-treated endothelial cells. ICAM-1 neutralizing antibody abrogated the effect of
ETBR blockade to promote T-cell adhesion to endothelium in vitro (87). These observations
indicate that the endothelin system is crucial for controlling lymphocyte homing in tumors and
that endothelial ETBR overexpression, which can sway the vascular ETAR/ETBR balance
toward ETBR hyperactivity, results in suppression of T-cell homing. This evidence is
substantiated by complementary data in lung inflammation; ETAR activation is required for
endotoxin-induced inflammation (23), whereas T-cell homing to lungs in response to an
inflammatory stimulus is abrogated by ETAR blockade (24,25). Thus, vascular ETAR
activation results in increased T-cell homing, whereas increased ETBR signaling facilitates
immune privileged status.

ETBR blockade in cancer immune therapy
To test the activity of ETBR in controlling T-cell homing to tumors and the effects of its
blockade in vivo in the context of immunotherapy, vaccine approaches that have no efficacy
in delaying tumor growth were used. It was found that vaccine failure was associated with poor
accumulation of T cells at the tumor site, in spite of detectable systemic antitumor immune
response. ETBR blockade with specific antagonist BQ-788 greatly enhanced the efficacy of
prevention and therapeutic vaccines. BQ-788 did not increase systemic immune response to
the vaccine in vivo, but rather greatly enhanced T-cell infiltration in tumors following vaccine
(87). This was attenuated by ICAM-1 neutralizing antibody, confirming the requirement for
adhesive interactions mediated by ICAM-1 following ETBR blockade in vivo. Furthermore,
BQ-788 markedly increased homing of T-cells to tumors after adoptive transfer in mice. Thus,
in many tumors there is hyperactivation of a paracrine ET-1/ETBR axis established between
tumor cells and endothelium, whereby tumor cells overexpress and release ET-1 whereas the
tumor endothelium overexpresses ETBR. This axis tonically suppresses T-cell homing (even
in the presence of tumor inflammation), and can be disrupted by ETBR blockade, which in

Kandalaft et al. Page 5

Clin Cancer Res. Author manuscript; available in PMC 2010 July 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



vivo markedly enhances tumor immune therapy (87). This mechanism may not be unique to
ovarian cancer. For example, ETBR is also overexpressed in breast cancer vasculature (86).
Interestingly, ETBR upregulation predicts poor outcome both in breast and ovarian cancer
(47,90). The mechanisms underlying ETBR overexpression in tumor endothelium are not fully
understood, but VEGF may be implicated (91,92).

Our results argue that ETBR antagonists warrant testing in combination with passive or
adoptive immunotherapy. There are unique features that render ETBR blockade an attractive
strategy in cancer immunotherapy. First, as outlined above, the axis ET-1/ETBR seems to be
selectively upregulated in the tumor compartment but not in normal tissues. Indeed, in mouse
experiments, ETBR blockade by BQ-788 did not result in systemic inflammation or illness,
and frequency of CD45+ lymphocytes or CD3+ T cells in liver, spleen, lungs, or kidneys after
vaccine or adoptive T-cell transfer was not affected by BQ-788 (87). This is in contrast to
current immunomodulatory approaches, which achieve systemic activation of effector cells by
attenuating peripheral tolerance or other homeostatic checkpoint mechanisms and can result
in significant autoimmune toxicity (93). Second, ETBR -selective antagonists, including
BQ-788, have been tested in humans and are well tolerated even in patients with cardiovascular
disease (94–96). Thus, ETBR can be pharmacologically perturbed with existing drugs to
enhance the efficacy of immune therapy. Third, ETBR blockade is likely to have also direct
antiangiogenic effects through suppression of endothelial nitric oxide. Unlike in patients with
sepsis (97), NO inhibition is safe and has been well tolerated in cancer patients (98). Although
the anticancer effect of ETBR (or NO) blockade as monotherapy may be modest, the
concomitant administration of immunotherapy may act synergistically against angiogenesis
(86,99).

Implications for pure ETAR antagonists
Currently, on the basis of results obtained mostly with xenograft tumor models in
immunodeficient mice, cancer therapy targeting ET is focused on ETAR blockade. However,
previous evidence shows that ETAR signaling is required for T-cell homing (24,25), whereas
our work indicates that increased ETBR activity in tumor endothelium results in reduced T-
cell homing and ETBR blockade is required to improve T-cell homing to tumors. Because of
the tonic antagonism between ETAR and ETBR signaling in the vasculature, pharmacologic
ETAR blockade could tilt the balance toward increased ETBR signaling in the tumor
vasculature. This could possibly result in increased angiogenesis and, on the basis of our work,
could suppress T-cell homing to tumors. It has been previously shown that patients with ovarian
cancer whose tumors are infiltrated by intraepithelial T cells survive longer (88), a concept
validated by several groups (100–103). Similar observations were made in other solid tumors.
In colon cancer, tumor-infiltrating T cells predict survival better than conventional anatomical
staging (104), whereas in prostate cancer TIL represent a strong independent prognosticator
of longer survival (105). Although the function of tumor-infiltrating T cells is not fully
understood, it is possible that they contribute to controlling tumor growth during or after
conventional cancer therapy. For example, the long-term therapeutic effects of VEGF receptor
2 blockade, a major antiangiogenic pharmacologic intervention, were fully depended on
CD8+ T cell infiltration in tumors (106). Furthermore, conventional chemotherapy agents have
immunomodulatory effects and their long term efficacy may depend in part on immune effector
mechanisms (107). If this were the case, ETAR blockade alone might increase ETBR signaling
and reduce T-cell infiltration in tumors. This could negate some of the potential efficacy of
cancer therapies and explain in part the failure of pure ETAR antagonists to produce significant
clinical results in tumors in which TIL may affect survival. Our results argue that ETAR/
ETBR mixed antagonists might offer the advantage of simultaneously targeting the tumor cell
(through ETAR) and enhancing antitumor immune mechanisms (through vascular ETBR) and
should be the focus of future therapy.
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Fig. 1.
Control of T-cell homing to tumors by endothelin 1 expressed by tumor cells. Opposite
paracrine effects are exerted by endothelin on tumor endothelium through ETAR and ETBR.
The balance between ETAR and ETBR determines the fate of antitumor T-cell response.
Overexpression of ETBR in tumor endothelium results in increased angiogenesis but also
suppression of ICAM-1 expression on endothelial cells, and inhibition of T-cell
transendothelial migration and homing. This effect is largely mediated by NO. NO donors and
possibly ETAR inhibitors exert similar effects. ETBR blockade results in increased expression
of endothelial ICAM-1 and increased binding and transendothelial migration of T cells to the
tumor. NO antagonists and TNF-α exert similar effects. Additional tumor-promoting autocrine
effects of endothelin are established by binding to ETAR on tumor cells, resulting in enhanced
tumor cell survival, proliferation, migration, and invasion. Each of these effects entail multiple
signaling pathways.
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