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Land cover dynamics influence the spatio-temporal evolution of the Rural-Urban Interface (RUI). This
represents the most prone area for human-caused forest fires ignitions in Mediterranean countries.
Traditionally, RUI mapping is based on the measurement of the distances among specific land covers.
This methodology suffers from the definition of pre-established fixed parameters. To avoid this arbi-
trariness, a new procedure based on Multilayer Perceptron and Fuzzy Set Theory is introduced in this

paper. This allows to develop continuous non-categorical maps expressing the possibility of being part of
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this interface. Thus, an innovative way for assessing the uncertainty in identifying RUI is presented. The
proposed methodology has been applied to the case study of Portugal, elaborating a future scenario for
the RUI The results show how the framework proposed in this paper is able to correctly identify the
areas belonging to this interface, providing useful information for forest fires -prevention policies.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Wildland-Urban Interface (WUI) was first defined as the area
“where humans and their development meet or intermix with
wildland fuels” (USDI - US Department Of The Interior and USDA -
US Department Of Agriculture, 2001). Lately, compounded by
climate changes, urban growth and the fragmentation of rural
areas, WUI became the central focus of wildland fire policy (Stewart
et al., 2007).

Several approaches have been proposed by the scientific com-
munity to map the WUI (Bar-Massada et al., 2013; Conedera et al.,
2015; Herrero-Corral et al., 2012; Lampin-Maillet et al., 2010;
Radeloff et al., 2005). These are prevalently GIS based, where the
boundaries of the WUI area are defined through a fixed-distance
buffer around buildings and overlapping the wild vegetation/for-
est. This assumption relies on the observation that human pres-
ence, associated to factors such as the population and buildings
density or the proximity to roads or single houses, positively affects
the probability of forest fires occurrences. Therefore, the spatial
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extent of WUI is determined by anthropogenic variables, wild
vegetation and the buffer value.

Such WUI maps are useful support tools for fire managers, but
suffer the definition of fixed parameters and a pre-established
buffer's width. It was pointed out that maps relying on the same
broad definitions and input data can result in hugely different WUI
classifications due to differences in the analytical methods used to
produce them (Stewart et al., 2009). Moreover, even when similar
conceptual models, data sources, parameters and metrics are
applied, details of the implementation can lead to different esti-
mates of the WUI's extent (Platt, 2010). Nevertheless, all these
methods are appropriate and necessary to give precise indication
for fire protection and prevention, provided that their limitations
are made explicit, as well as the purpose for which such maps were
developed, the quality of the data and the method of analysis.

WUI is not a static concept; to the contrary, it dynamically
changes in space and in time, driven by different anthropogenic
and environmental factors. For instance, the abandonment of
remote rural areas and the consequent urbanization processes fa-
vours the expansion of the WUI and enhances the probability that
forest fires reach houses and infrastructures (Theobald and Romme,
2007; Viedma et al., 2015; Zhang et al., 2008). Deforestation and
afforestation are other factors affecting the WUI dynamics.

Land use and land cover changes (LULCC) are closely related to


Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
mailto:federico.amato@unibas.it
mailto:marj.tonini@unil.ch
mailto:beniamino.murgante@unibas.it
mailto:mikhail.kanevski@unil.ch
mailto:mikhail.kanevski@unil.ch
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2018.03.016&domain=pdf
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft
https://doi.org/10.1016/j.envsoft.2018.03.016
https://doi.org/10.1016/j.envsoft.2018.03.016
https://doi.org/10.1016/j.envsoft.2018.03.016

172 E Amato et al. / Environmental Modelling & Software 104 (2018) 171187

the delimitation of an interface area between urban and rural/
wildland surfaces, where human-caused forest fires are more likely
to occur, and represent a main hazard for people, houses and in-
frastructures. In the last few decades LULCC in European Mediter-
ranean countries have been marked by the progressive
abandonment of rural areas under the pressure of urbanization and
the expansion of costal tourist centers (Alados et al., 2004). As a
consequence, rural activities, such as low-intensity agriculture and
grazing practices, were progressively discarded leading to the
intensification of forest covers and scrubland vegetation, especially
in remote and poor accessible areas (Antrop, 2004; Millington et al.,
2007; Poyatos et al., 2003). Urbanization is a very complex and
dynamic process that involves natural and the rural lands: these are
progressively converted into urban and industrial areas, driven by
physical conditions (e.g. topography) and the accessibility to the
area (e.g. road network) (Antrop, 2000; Kim et al., 2017). Specif-
ically in Portugal, that in terms of burned area and number of forest
fires is among the first three countries in Europe (Moreira et al.,
2001; Nunes et al., 2005; Oliveira et al., 2017), the abandonment
of rural lands in marginal areas and the coastal urbanization
characterized the landscapes changes since 1980 (Diogo and
Koomen, 2012; Nunes et al., 2016; Van Doorn and Bakker, 2007).

In this context, the notion of WUI has to be redefined, taking into
account the related rural-urban process and the changes of the
landscape. Therefore, the broader concept of Rural—Urban Interface
(RUI) is more appropriate. RUI has been identified by recent studies
as the most fire prone area in Mediterranean countries (Badia-
Perpinyd and Pallares-Barbera, 2006; Catry et al., 2009; Moreira
et al,, 2009). LULCC and RUI have a strong mutual influence: on
the one hand, each vegetated land cover type has a specific fire
proneness (Pereira et al., 2014; Oliveira et al., 2014); on the other
hand, fire affects the landscape pattern and dynamics by changing
the vegetation structure and soil processes (Pausas et al., 2008;
Viedma, 2008). This suggests the opportunity of investigating the
spatio-temporal changes of the RUI and make prevision about its
future evolution by analysing and modelling LULCC.

Land use science is an extremely investigated field (Foley et al.,
2005; Kalnay and Cai, 2003; Ramankutty and Coomes, 2016). In the
last decades, particular attention was paid to LULCC and broad
ranges of models have been developed for research and manage-
ment purposes. These include tools to analyse and quantify changes
incurred between two or more periods and can incorporate so-
phisticated models to predict land use/land cover future scenarios
(Martellozzo et al., 2018). Several of these last LULCC models have
been designed to facilitate decision-making processes in the field of
landscape protection, natural hazards and disaster risk manage-
ment, urban growth regulation (Foley et al., 2011; Amato et al,,
2015, 2016; Munoz-Rojas et al., 2015; Di Palma et al., 2016; Nunes
de Oliveira et al.,, 2017; Young, 2017). Routines and software
developed to predict LULCC and future scenario implement models
that can broadly be classified as based on deductive or inductive
approaches (Overmars et al., 2007a, 2007b). The latter are based on
past land use/land cover (LULC) in a raster format (i.e. pixel units) to
estimate the change transition potential, and apply mathematical/
statistical functions including explanatory spatial variables to pre-
dict future scenarios. Inductive models are commonly used in land
change science, in which emphasis is placed on fitting parameters
to observations. In contrast, deductive approaches (including
agent-based models) simulate the interactions among a set of so-
called agents (e.g. land use, householders, farmers, etc.) to anal-
yse their effects on the system as a whole, attaining deeper
knowledge of the process. These models, focusing on actors’ be-
haviours, are more popular among economists and decision makers
(d'Aquino et al., 2002; Parker et al., 2003; Robinson et al., 2007).

This paper proposes an innovative approach to define the RUI

avoiding the definition of rigid boundaries and eliminating their
dependence on predefined parameters, such as the buffer width
around the concerned land cover classes. A spatio-temporal anal-
ysis of RUI has been performed here, based on LULCC model, which
allowed to define future scenario maps. These represent a useful
support tool for the development of effective fire prevention pol-
icies. The methodology has been applied to the case study of
Portugal (Western Europe), an area particularly affected by fires.

2. Materials and methods

In this study we introduce a spatially explicit inductive approach
to analyse spatio-temporal changes of the RUI and to simulate
future scenarios based on the evolution and prediction of the RUI in
Portugal from 1990 up to 2030. Among the existing implemented
approaches, we selected the Land Change Modeler (LCM™, also
available as an ArcGIS® extension); it includes a supervised neural
network model, namely Multilayer Perceptron (MLP) trained by
backpropagation, to produce probability maps allowing to elabo-
rate future scenarios. This approach fits well when the process
under study is non-linear, as it is the case for simulating urban
growth and rural development. Moreover, compared with other
models/software, LCM provides an higher accuracy of simulations
when using MLP (Eastman et al., 2005).

2.1. Study area

Portugal is located in the south-western Europe. It covers the
western coast of the Iberian Peninsula for about 200 km (Fig. 1).
Mainland has surface of 89,000 km? with an altitude range from sea
level to about 2000 m in the north central region. Continental
Portugal has a temperate climate characterized by wet and mild
winters and dry summers, warm in the northern area and hot in the
southern. This typical Mediterranean type of climate suffers from
the influence of the Atlantic Ocean that bathes its western and
southern coasts (Instituto Portugués do Mar e da Atmosfera, 2018).
The country is split by the Tagus River in two parts of approximately
the same size, but characterized by a different topography and sub-
climatic conditions. In the northern area prevails a mountainous
landscape interspaced with river valleys, with an annual average
temperature ranging from 8°C to 12°C. The southern part is
characterized by rolling plains with an average annual temperature
of about 17 °C. Vegetation grows in the spring season, while it ex-
periences hydric and thermical stress during the summer months,
when most fire occurrences are reported. In agreement with the
climate and the local topography, forests are predominant in the
northern half of the country, while in the southern area prevail
agricultural lands and scrub types of vegetation in the south
coast(EEA, 1994) Urban areas are mostly located in the north-
western part of the country; here there are the two metropolitan
areas of Porto and Lisbon. In the southern part only the Algarve
coastal region, which has its administrative centre in the city of
Faro, is densely populated.

Fire events in Portugal display a regime strongly related to
climate and weather conditions, resulting in about 90% of burned
areas concentrated in the summer season (June to September).
Many studies report that in the Iberian Peninsula, weather and
climate are responsible for about two-thirds of variability of the
total annual burned area (Pereira et al., 2013, 2005; Trigo et al.,
2016). As regards to the distribution in space and in time of forest
fires and burned area in the last decades, the northern Portuguese
area is much more affected than the southern: namely, in the
period 1990—2013, 25,322 fires were registered in the first,
compared with 1951 in the second (considering only burned
areas > 5 ha) (Tonini et al., 2017b). Density maps derived from this
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Fig. 1. Land cover classsification based on the second level of the CORINE Land Cover (CLC) 2012 inventory.

same dataset revealed the presence of hot spots almost each year in
the northern region, with a higher concentration in the north-
eastern more populated areas.

2.2. Data acquisition and pre-processing

To perform the simulation, three land cover maps were used as
inputs. These were collected from the CORINE Land Cover (CLC)
inventory (Copernicus Programme, http://land.copernicus.eu). CLC
maps have been produced for the years 1990, 2000, 2006, 2012.
However, the 2006 map has not been considered in this work, in
order to have more homogeneous time-step between the time-

periods. CLC has a minimum mapping unit (MMU) of 25 ha for
areal phenomena, and a minimum width of 100 m for the linear
ones. Land covers are classified into 44 classes articulated over
three levels. For the present purpose, CLC maps have been reclas-
sified with reference to the second level as reported in Table 1.
From a parallel research study focused on the assessment of RUI
and related land covers in Portugal (Tonini et al., 2017a), it resulted
that forest and semi-natural areas, jointly with heterogeneous
agricultural areas, constitute in this country the vegetated burnable
area. Therefore, the RUI's boundaries, needed to validate the model,
were defined by spatially intersecting these classes with areas
surrounding artificial surfaces. The buffer's width was fixed at 1 km,
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Table 1

Land cover classsification based on the second level of the CORINE Land Cover (CLC) nomenclature.

Proposed Classification

CLC Nomenclature (Level 2)

Urban fabric
Other artificial surfaces

Irrigated agricultural areas

Heterogeneous agricultural areas
Forest and semi-natural areas

Wetlands

Water bodies

Urban fabric

Industrial, commercial and transport units
Mine, dump and construction sites
Artificial, non-agricultural vegetated areas
Arable land

Permanent crops

Pastures

Heterogeneous agricultural areas

Forest

Shrub and/or herbaceous vegetation associations
Open spaces with little or no vegetation
Inland wetlands

Coastal wetlands

Inland waters

Marine waters

which is consistent with worldwide-applied values (i.e. 1.5mi
(~2.4km) in USA (Radeloff et al., 2005) and from 100m to 400m
around single settlements in Europe (Bouillon et al., 2012).

In calibrating the MLP neural network, a number of driving
variables have been selected and used as nodes in the input layer.
Digital Elevation Model, slope and aspect (i.e. the downslope di-
rection of the maximum rate of change in value from each cell to its
neighbours measured clockwise in degrees) were downloaded
from the Copernicus database of the European Environment
Agency (Reference Data — Copernicus Land Monitoring Service
website). Agricultural and population census data have been
derived from the Portuguese National Institute of Statistics (Portal
do Instituto Nacional de Estatistica, n.d.). Distance from primary
roads and from the cities with more than 50.000 inhabitants
resulted from the Open Street Map Database (OpenStreetMap
website). Soil thickness, ph, texture and ecological value have
been derived from EPIC WebGIS (EPIC WebGIS Portugal, n.d.), an
interactive spatial data infrastructure, which provides georefer-
enced cartography at national scale.

Other variables were derived from a change detection analysis
between the inputs of CLC maps. Hence, an Evidence Likelihood
function was used to evaluate the relationship among the experi-
enced changes, the Protected Areas and the European protected
sites belonging to the Natura 2000 network (derived from the
Portuguese Law, 2008/142), the European statistical administrative
units NUTS (Nomenclature des unités territoriales statistiques) of
second and third level and the changes themselves. Finally, the
distance from each land cover class has been considered as a dy-
namic variable, i.e. a variable that changes over time, depending on
the intermediate stages of the simulation.

All data have been produced in raster format with a spatial
resolution of 100 m x 100 m. They have then been projected in the
ETRS89/ETRS-LAEA spatial reference system (EPSG: 3035). This is
generally used for statistical mapping at all scales as it ensures a
true area representation.

2.3. Forecasting the rural urban interface: model setting

In this paper, the use of a LULCC model is proposed to analyse
and simulate the variation of RUI in time. The extent of the RUI is
strictly dependent on land cover, as it represents the interface be-
tween urban and burnable vegetated rural areas. Changes in arti-
ficial surfaces, forests and non-irrigated/heterogeneous agricultural
areas affect the extensions of the RUI, indeed. Therefore, a proxy to
predict RUI for future scenarios is the simulation of changes in LULC
and, consequently, the definition of new boundaries for the pro-
spective RUL

The main LULCC prediction models are based on an a priori
knowledge of the study area and on the driving forces that explain
changes in land use (Batty, 1997). This information is used as
spatially explicit variable to calibrate the models. However, the
definition of the rules to characterize the likelihood that a transi-
tion between two different land cover classes will occur is an open
issue. To solve it, several transition potential models have been
proposed in the literature (Eastman et al., 2005; Saeidi et al., 2017;
van Vliet et al,, 2016). In the present study, as highlighted before,
the MLP neural network algorithm was used for the transition
potential modelling. Subsequently, a Markov Chain (MC) applica-
tion allowed the definition of the change demand, i.e. the quantity
of changes expected among each pairwise combination of land
cover classes in a certain time. Finally, a threshold procedure was
used for the change allocation modelling, allowing ranking the
pixels of the transition potential map starting from the assumption
that the pixels experiencing a change in a specific iteration of the
simulation process are those with a higher transition potential.

To correctly calibrate and validate the model, at least three land
cover maps, corresponding to three different periods (i.e. Ty, T; and
T,) are needed. The model is then performed using the Ty and T;
land cover maps as input to generate a simulation at the time T5.
Therefore, the obtained map is compared with the real land cover
map at the time T, and Kappa statistics are evaluated (Pontius,
2000). If the validation procedure confirms a good quality of the
simulation, the same hyper-parameters used in this stage to cali-
brate the MLP are used to model T3 by means of the T; and T, land
cover input maps as input. To focus the evaluation of the calibration
procedure on the validation of the MLP application and, therefore,
on the quality of the transition potential maps, in the calibration
stage the Markovian definition of the change demand has not been
applied. Whereas, the real transition matrix measured between the
T; and T, land cover maps has been used, while MC model was
applied to quantify the transition between different land covers in
the period T5- Ts.

This technique gave as output a land use simulation map for Ts.
Subsequently, the RUI could be identified by applying buffers to the
land cover classes whose interaction defines this specific interface.
However, the RUI obtained with this procedure is intensely
dependent on the selection by the user of an appropriate buffer
distance. Moreover, a binary logic to define the membership of a
space unit to the RUI seems inappropriate. This is even truer when
the RUI definition is based on the results of a previous simulation.
In that case, a dichotomous identification of RUI would assume that
the modelled land cover is precise, exhaustive and unambiguous
(Zadeh, 1973a; Zimmermann, 2010a). Nevertheless, even a well-
structured and well-calibrated LULCC model is unlikely to ensure
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a perfect recognition of all the structure and the patterns of the real
world.

To overcome to this issue, in this study we applied fuzzy sets
theory as a method to deal with uncertainty and vagueness in the
definition of the boundaries of the RUI (Asadi et al., 2017; Uusitalo
et al., 2015). This approach overcomes the traditional Boolean
classification of spatial units, in which a cell is either belonging to
RUI or not. Rather, it expresses the possibility of a pixel of belonging
to the RUI set.

To model this “possibility” map, the Transition Potential Model
based on MLP have been used to generate two transition probability
maps for the time T,. The first expresses the probability of having a
transition from any land cover class to the urban area, while the
second expresses the probability of having a transition from any
land cover class to the rural surfaces. In agreement with our pre-
vious finding (Tonini et al., 2017a), CLC classes considered to define
these transition maps are the following: “urban fabric” for urban
area and “forest and semi-natural areas” together with “heteroge-
neous agricultural areas” for the rural surfaces.

The fuzzification of these two maps allowed their overlapping,
giving as an output a map expressing the possibility of each cell to
belong to RUI. For the tuning of the fuzzification parameters, and
for the validation of the possibility map, a dataset containing points
belonging to the RUI for T, was employed. This RUI map has been
defined through the commonly-used procedure based on fixed
distance buffers. Specifically, a 1 km buffer has been measured
around both the urban area (i.e. “urban fabric”). Hence, the areas
belonging to RUI were defined as the one belonging to the inter-
section of this areas with the burnable vegetated rural area (i.e.
“Forest and semi-natural areas” and “Heterogeneous agricultural
areas”) (Tonini et al.,, 2017a). Specifically, the procedure was eval-
uated by the estimation of the Receiver Operating Characteristic
(ROC) and the associated Area Under the Curve (AUC) (Hanley and
McNeil, 1982; Robin et al., 2011). Once the validation confirmed the
quality of the fuzzification process, the same parameters were used
to create a possibility map for Ts.

Fig. 2 shows the general flowchart of the methodology proposed
in this paper for the calibration, validation and simulation steps.

2.3.1. Calibration of multilayer perceptron (MLP)

The main purpose of this phase is to define proper parameters to
be used to minimise the error generated through the application of
the MLP. The model performances were evaluated by measuring
the root mean square error (RMSE), indeed. MLP architecture is
constituted by a series of processing units, named neurons after the
metaphor of the biological neuroscience, able to compute and
model a specific problem. MLP are extremely useful when phe-
nomena are characterized by a strong nonlinearity or when the
analysis is carried out into a high dimensional space (i.e. inde-
pendent variables driving the process) (Haykin, 2008).

When used for the creation of transition potential maps, the
areas that experienced a land cover change are used as training
samples to analyse the relationship between input and output (Li
and Yeh, 2002, 2001). The input layer is constituted by the
driving variables. These are commonly considered as good
explanatory variables to be used as inputs in different models (Silva
et al,, 2016; van Vliet et al., 2012). According to Meyfroidt (2016),
driving forces in LULCC are those factors that are cause of land or
environmental change and that have a marked association with the
nature of the change. Besides, the output layer is defined by all the
possible transitions among the different land cover classes included
in the model. It also includes the possibility of having a persistence
of the considered classes. As soon as the training is completed, new
data are presented to the network and the activation levels are
defined for all the modelled classes. As a result, the transition

potential maps are generated. In our case, these represent the
probability of each pixel of having a change from its starting land
cover to urban cover and forests or heterogeneous agricultural
areas, respectively. These maps were than used in the fuzzification
process.

2.3.2. Validation

Validation is a crucial phase to estimate the performaces of the
calibrated model. Specific procedures were implemented to assess
the quality of both the LULC prediction, both the fuzzy possibility
map of RUL

The accuracy of the LULCC prediction was carried out through
the measurement of Kappa coefficient of agreement (Pontius,
2000). Naming s the generic element of the simulation map S and
a the generic element of the reference land cover map A, and
assuming to have i = 1,2, ..c possible land cover classes, the eval-
uation of the correspondence between the two maps is given
considering the observed fraction of agreement P,, the expected
fraction of agreement P, and the maximum fraction of agreement
Pmax (Van Vliet et al., 2011). These values are defined as

Po:i[p(a:iS:l] (1)
i=1

Pe=> [p(a=1i)p(s=1)] (2)
i=1

Prax = Z[minp(a =1i), p(s =1)] (3)

i=1

where p(a = i) is the fraction of cells having the land cover i in the
map A and p(s = i) indicates the number of cells having the land
cover i in S. Kappa is then derived from these values through the
equation

_Po—Pe
Kappa = ~— 5, (4)

However, it is also possible to consider Kappa as the product of
two other measures, the Kappdacarion and the Kappagisrogram- The
mathematical formulation of the two is given by

Po — P

Kappascation = ﬁ (5)
Ppax — P

KappaHistogram = rqax_ipee (6)

While the former quantifies the spatial position agreement be-
tween the categorical values of the two maps, the latter measures
the quantitative agreement among their class sizes (Amato et al.,
2017).

Fuzzy set theory was applied to generate a map describing the
possibility of each pixel to belong to the RUIL Fuzzy sets are an
extension of the conventional crisp (i.e. Boolean) sets. The latter are
defined as sets in which each member matches the class concept
and the class boundaries are sharp. A membership function for a
crisp set can have either value O or 1, meaning that the generic
observation z can either be or not be a part of the set (Zadeh, 1965).
However, in fuzzy sets theory crisps sets are considered as a case of
partial membership, while the general theory is applied to describe
those situations in which the class boundaries cannot be precisely
defined (Sheehan and Gough, 2016; Wieland and Mirschel, 2017;
Zadeh, 2008, 1973b).
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Given the space of objects Z, the fuzzy set A in Z is

A= (z, MFf(z)) forallzeZ (7)

In which MF% () is the membership function of zin A. It is crucial
to comprehend how the membership function reflects a degree of
belonging to a set based not on probability, but on possibility (Bai
and Wang, 2006). Hence, MF,{ (z) expresses the grade of compati-
bility of the predicate related to A and z with a scale that can vary
continuously in the range (0,1) (Luo and Dimitrakopoulos, 2003).
Authors have proposed different kinds of fuzzy membership func-
tions (Wang and Mendel, 1992; Zimmermann, 2010b, 2001). In this
work, the fuzzy near membership function and the fuzzy large
membership function were implemented (Fig. 3).

Generally speaking, the near membership function is used to
calculate fuzziness near to a defined intermediate value. A
maximum membership value is assigned to this midpoint, while
the other values decrease to 0 depending on a spread parameter.
The mathematical formulation for the near membership is:

1
1+fi*(z - fr)?

Differently, the large membership function is used to stress the
tendency of high value of the object Z to have high membership in
the fuzzy set. This relationship is expressed by the equation:

(8)

MF/% (Z)Near =

1

Large — W

In both the fuzzy near and the fuzzy large membership func-
tions, f1 is the spread and f; is the defined intermediate value.

Given a number of fuzzy sets, the literature proposes several
methods to use logical queries to select and combine them (An
et al., 1991; Bonham-Carter and Bonham-Carter, 1994). The appli-
cation of these overlay rules, which are based on a generalization of
the conventional operation used in the Boolean sets, imply the
computation of a new MF value, which is called joint membership
function value (JMF) (Burrough, 1989; Murgante and Las Casas,
2004). To our purposes, we will only present three JMF: the fuzzy
Or, the fuzzy Sum and the fuzzy Gamma.

The fuzzy Or operator recalls the Boolean Or logical union, as the
JMF is dependent on the maximum value of any of the input set
maps. Therefore, it is expressed as:

MF% (2) 9)

(10)

1

JMFog = MAX (MFf\ (z))

Differently, the fuzzy Sum operator is matching with an

09 | ——Large 50,5
08
0.7
0.6
0.5
04
03
0.2
0.1

- Large 50, 3
~—Large 50, 1

Fuzzy Membership (Large)

10 30 50 70 90
Crisp Values

algebraic product. The mathematical formulation of this operator
is:

IMFgyps = 1 — f[(1 - (MFf(z))i )
i=1

(11)

Through this operator, the output is always larger than, or equal
to, the largest contributing fuzzy membership value. This is an
increasing function, used when the combination of multiple evi-
dence is considered to be more important that any single mem-
bership function used as input.

Finally, the Gamma operator is defined as:

n

IMFomma = (1 -11(1 - (vr@),) )7<

i=1

n Y
(wri2),

(12)

i=1

where v is defined in the range (0, 1). It is possible to demonstrate
that the JMFgapmma includes most of the common JMF operators,
including the JMFqg, corresponding to a y equal to 0.75, and the
JMFgyp, corresponding to a y equal to 1 (Raines et al., 2010).

In this paper, the transition potential maps expressing the
probability of having a change toward urban or rural coverages are
fuzzified by means of the MF large and near function. This process
of fuzzification of probability data has been already investigated
(Buckley, 2004; Eslami and Buckley, 2004; Pota et al., 2013; Zadeh,
1999) and applied in geography for the creation of susceptibility
maps (Hattab et al., 2013). Subsequently, JMF were evaluated for Or,
Sum and Gamma operators. In this paper, a gamma of 0.875 was
chosen as an intermediate value between the Sum and Or function.
The validation of the obtained possibility maps for RUI was done via
the relative operating characteristic (ROC). ROC is a quantitative
measure that enables the comparison between a suitability map,
which in our case represents the possibility of having RUI, and a
binary variable representing the presence or the absence of the
considered phenomena. To perform it, the suitability map was
divided into a number of percentile groups. For each group, a two-
by-two contingency table, whose entries are the hits, the misses,
the false alarms and the correct rejections, was defined. The ROC
metrics was evaluated by the AUC, which was computed as:

n
AUC = Xive — Xd[Yi + Yip1 — Yi/2]

i=1

(13)

where, for the percentile threshold t and for n suitability group, X;
is the rate of false positive and Y; the rate of true positive, evaluated
as:
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Fig. 3. Fuzzy Large and Fuzzy Near Membership functions drawed using f; equal to 50 and multiple values of.f,
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Multilayer perceptron (MLP) networks used to define the transition potential maps. Raster cells belonging to the output layer were halved to generate a training and a testing

set. RMSE was then measured for both the sets.

Model/transition to MLP network structure

Training RMSE Testing RMSE Skill Measure

Urban fabric 9-7-6
Other artificial surfaces 9-8-6
Irrigated agricultural areas 9-6-4
Heterogeneous agricultural areas 11-7-4
Forest and seminatural areas 9-7-4

0.0813 0.0824 0.9732
0.2150 0.2198 0.7631
0.0833 0.0866 0.9913
0.1786 0.1812 0.9156
0.1487 0.1514 0.9584

Fe
Q'/

in which P is the number of observations in the binary variable
referenced as positives; Q is the number of observations referenced
as negative; F; are the fals alarms and H; are the hits (Gil Pontius
and Schneider, 2001). A perfect matching among the suitability
map and the reference variable corresponds to an AUC of 1, while a
0.5 value corresponds to a random location of the values of the
suitability map. Moreover, in this work both ROC and TOC (Total
Operating Characteristic) were computed, as suggested by Pontius
and Kangping (2014). TOC allows an easier evaluation of the size of
all the entries of the two-by-two contingency table. Differently,
ROC only shows the rate of true-positives on the vertical axis versus

Xi = n:% (14)

the rate of false-positives on the horizontal axis for each threshold
(Pontius and Parmentier, 2014).

2.3.3. Simulations
The parameters obtained through the calibration procedures
have been used to predict future transition potential maps (known
s “soft prediction”) and a potential LULC map for T3 (known as
“hard prediction”). The difference between “soft” and “hard” pre-
diction is that the first yields the entire set of simulated transitions,
while the second yields only one specific transition, selected
through a multi-objective land competition model. Hence, to
generate a hard prediction, the change demand (i.e. the expected
quantities of changes for each land cover class) have to be modelled
using MC.

Input
Transition Potential
Transition Potential All-to-
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Agricultural Areas
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Fig. 4. Flowchart of fuzzification and sensitivity analysis processes.
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MC models are based on the idea that the next step in a process
depends only on the current state of the system, independently
from the state measured at every previous step (Yang et al., 2012;
Pontius and Cheuk, 2006; Mas et al., 2014; Pontius et al., 2008;
Guan, 2008). A classical MC approach has been used (Kityuttachai
et al., 2013) to predict the transition area matrix to support
LULCC prediction. Hence, given the n states of the MC and called p;;
the probability measured from the cross tabulation of having a
transition from the land cover j to the land cover i, then

A= [py) (15)
is the transition matrix of the MC and
Xni1 =AXy (16)

where X, 1 and X, are two consecutive state vectors in which the
i, component represents the probability that the system is in the
iy, state at that time.

In this study, a quadratic regression is used to interpolate
transition probability matrix and model change demand for the
LULCC simulation. The basic assumption is that if the frame-period
T, — T3 separating the prediction time T3 and the previous period
T, is an even multiple of the frame period T; — T, on which the
transition matrix is computed, then the new transition probability
matrix is derived by simply powering the starting matrix by a
number given by (T, — T3)/(T; — T,). Only if the prediction period is
between even multiples of the training period, the power rule is
used to generate three transition matrixes to cover the prediction
period through the resolution of a simple quadratic regression
(Takada et al., 2010).

Once modelled the change demand, the obtained transition
matrix was used to allocate changes in the future land use map
based on the transition potential output of the MLP. The output of

this procedure is a land use map for T3 on which it was possible to
define multiple buffers on the urban and rural classes in order to
have an evaluation of the location of the RUI through the traditional
procedure. At the same time, a gamma fuzzification of the transi-
tion potential maps allowed the definition of a map expressing the
possibility of belonging to RUI for T3; this represents the main
result of the analysis conducted in this paper.

3. Model calibration and results
3.1. Calibration of multilayer perceptron (MLP)

The MLP network was used to define transition potential maps.
As the output layer of MLP is defined by all the possible transitions
among the land cover classes, a change detection between the year
1990 and 2000 was performed. A threshold was applied to ignore
the transitions affecting a total area smaller than 2500 square kil-
ometres in the entire study area. Thus, transitions from and toward
water bodies and wetlands were excluded, as they are mainly due
to misclassifications in the CLC maps. The remaining transitions
were divided into five groups, depending on the final coverage of
the land cover shift. Each group was then used as an output layer in
a different MLP neural network. It is important to highlight that the
output neurons in this layer are represented both by the possible
transitions detected through the change detection, and by the
possibility of having a persistence of the initial land cover class.

The input layer included up to 17 driving variables selected
among the ones presented in the Materials and Methods section.
Each network was first trained with all the variables of interest.
Subsequently, a backwards elimination stepwise analysis has been
performed to reduce the complexity of the model (Derksen and
Keselman, 1992; Holland and Goldberg, 1989). Hence, the least
significant variables were dropped one after another and the model
was refitted until only statistically significant variables remained in

Boxplot of mean AUC for different Joint Membership Functions
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Fig. 6. Best ROC and TOC curves for the Fuzzy Gamma Overlay of both training and testing set.

the network. This methodology allows a reduction of the
complexity of the network and an increase in its performances.
Table 2 reports the main features of the MLP networks used to
calibrate the model. Five networks were implemented based on the
final class in the transition process. All the networks were set up
using momentum factor equal to 0.5 and sigmoid constant 1. The
skill measure represents the measured accuracy of the transition
prediction minus the accuracy expected by chance.

3.2. Land change model validation

The transition potential maps obtained with the MLP were used
to simulate LULCC up to 2012. The aim of this procedure was to

validate the capacity of the MLP to correctly predicting the location
of land cover changes. Hence, in this stage the real transition matrix
measured on the CLC data for the period 2000—2012 was used to
model change demand.

The result was a land cover simulation for the year 2012. A
comparison with the reference map for the same year resulted into
an overall Kappa is 0.8227. This value expresses a high capacity of
the model to simulate the real-occurred land cover transition. The
Kappagistogram has a value of 0.9835. This very high value is not
surprising at all, as it measures the quantity of changes that, in this
stage of the model, was defined through the real transition matrix
for the period 2000—2012. The Kappa;cqrion had a value of 0.8365.
Though this is a good value, it is important to highlight that the
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Fuzzy Overlay (Gamma = 0.875)
wm High Possibility

|, Possibility

Fig. 7. Possibility RUI map for the year 2030 obtained from the fuzzy overlay using the best fitting parameters measured in the calibration phase.

error in locating the change measured by this parameter is partly
due to a misclassification in the CLC map of 1990 for classes broad-
leaved and agro-forestry area, corrected only in the 2000 CLC map
through the standard CLC procedure. Although this error affected
the correct classification in this simulation, these two classes have
been reclassified in our scheme as heterogeneous agricultural area
and forest and semi-natural area respectively, and both contribute
to our definition of the RUIL. Moreover, the 2030 simulation map
was not been affected by this error, as the MLP was trained on the
2000 and 2012 CLC map, which were not reporting these
misclassifications.

3.3. Fuzzification, possibilities and sensitivity analysis

The transition potential map obtained from the MLP could also
be interpreted as a susceptibility map. Hence, a transition potential
map can be seen as a map expressing in a range from 0 to 100 the
probability for a pixel of having the right conditions to experience a
land use change. Therefore, a hypothetical overlay of the transition
potential maps expressing the probability of having shifts toward
urban fabric, heterogeneous agricultural areas and forest and semi-
natural areas could describe the tendency to generate the rural-
urban interface. However, when mixing together these maps,
each single pixel is considered as a target for different kinds of



182 E Amato et al. / Environmental Modelling & Software 104 (2018) 171187

ST

Qe
ortalegre

0! 25" 50w . fou

g —

Land Cover 2030 Rural-Urban Interface

- Urban Fabric - Forests and Semi-natural Areas RUI (buffer 2 Km)

- Other Artificial Surfaces - Wetlands Fuzzy Overlay (Gamma = 0.875)
[ ] irrigated Agricultural Areas [ water Bodies wm High Possibility

|:| Heterogeneous Agricultural Areas — o Possibility
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possible transformations. Therefore, the use of fuzzy set theory was
considered as a robust mathematical background to deal with this
high level of uncertainty. To only consider the urban and the rural
interaction, the transition probability maps of land cover changes
toward heterogeneous agricultural areas and forests and semi-
natural areas were overlapped using a logical OR function (i.e.
given two maps A and B the overlay is given by ((A+ B) — (A*B))
obtaining a transition probability of having changes toward rural.

A fuzzification of the transition potential map poses two issues.
Firstly, the spread f; has to be defined for each fuzzification. Sec-
ondly, the ability of the fuzzy overlay to identify the areas most
prone to be part of the RUI has to be validated.

To overcome these issues, a dataset of about 15,000 points was
created. Points were chosen based on the RUI measured for the year
2012, in which hard boundaries were mapped as explained in
section 2.2.1, ensuring a homogeneous distribution within the RUI
and imposing a minimum distance among them of 1km. This
dataset was then used to create 100 training/testing subsets, always
having 70% of the points in the training set. They are considered as
positive observations, i.e. points detecting the presence of the RUI
All the points were associated with the value of the corresponding
pixel in both the maps of transition potential all-to-rural and all-to
urban (Fig. 4). The mean values for each of the training sets for both
urban and rural maps were then measured. These parameters were

Fuzzy Gamma Values
in a RUI Buffer
between 500 and 1000m

Fuzzy Gamma Values
in a 500m RUI Buffer

Count

used as spread f; in creating 100 fuzzifications of the all-to-rural
transition potential and 100 fuzzifications of the all-to-urban
transition potential.

The fuzzy large membership function was used for the fuzzifi-
cation of the all-to-urban map. In this way, the higher tendency of
the pixel nearest to the urban area to influence the RUI has been
considered. To the contrary, the use of the fuzzy near function in
fuzzifying the all-to-rural map highlighted the higher propensity of
the points in a distance between 500 m and 1 km from the rural
coverages of influencing the shape of the RUIL The result of this
process were 100 fuzzy maps expressing the possibility of the
pixels of experiencing a transition toward rural coverages and be-
ing included in the RUI, and 100 fuzzy maps expressing the possi-
bility of the pixels of being with a given distance from urban areas
such as to be considered as part of the RUIL. These maps were
overlaid through three different JMF functions. This enabled an
evaluation of the best JMF in describing RUI between the fuzzy Or,
the fuzzy Sum and the fuzzy Gamma overlay rule.

To compare the overlay maps, randomly chosen pseudo-absence
points were added to both the training and testing sets as negative
observations, i.e. adding information about the absence of RUI. The
resulting sets were used to verify the capability of the JMF maps of
predicting the presence of the RUIL ROC and TOC curves were
calculated for all the training and testing sets for all the fuzzy maps

Fuzzy Gamma Values
in a RUI Buffer
between 1000 and 2000m

Fig. 9. Histograms of the Fuzzy Gamma Overlay functions for the year 2030 measured in the different buffer zones of the RUL



184 E Amato et al. / Environmental Modelling & Software 104 (2018) 171187

using the R package “TOC”. Fig. 5 summarises the mean values of
the AUC measured for all the maps.

The fuzzy gamma overlay function was found to be the best
model in identifying the presence of RUI with a mean AUC value of
0.811 (and standard deviation of 0.003) for the training dataset and
of 0.811 (and standard deviation of 0.002) with the testing dataset.
Fig. 6 shows ROC and TOC curves for both training and testing sets
measured for the best fitting combination of parameters in the
fuzzification process and in the gamma overlay operation.

Specifically, the curves in Fig. 6 were obtained by using a spread
of 0.6215 in the fuzzification of the all-to-urban potential map and a
value of 0.6618 in the fuzzification of the all-to-rural map. There-
fore, these parameters were also used in the simulation stage
before performing a fuzzy gamma overlay.

3.4. Change prediction maps

The parameters obtained through the calibration and verified in
the validation stage have been used to simulate LULCC in Portugal
for the year 2030. Transition potential maps for 2030 obtained
applying MLP have been used to identify the RUI through the
procedure proposed in this paper. Fig. 7 shows the predicted RUI for
the year 2030 obtained through the Fuzzy Gamma Overlay. The
visual inspection of this map reveals that the areas where the RUI
has the highest possibility to extend in 2030 are found around the
most populated cities, driven by the growing peri-urban fringes of
urban areas. Specifically, they are located in the area enclosed by
Braga-Porto-Aveiro-Vila Real (in the northwestern area) with a
spatial contiguity along the coast up to the city of Lisbon and the
peninsula of Setubal, and crossing the city of Coimbra. Another
highly predisposed area in the onrthern part of the country is
located around the city of Viseu, in the Centro Region, while in the
southern part clusters are visible along the coastline in the Faro
Region, this last probably due to the expansion of tourism-led
development. In the e northeastern mountainous region towards
the interior and in the sothern part of the country, characterized by
rolling plains, hotspots for RUI are scattered in the area, probably
driven by the abandonment of agricultural activities and the
consequent spreading of the forest.

To validate this fuzzy RUI map, the hard prediction for LULC
2030 was considered (Fig. 8). Following the standard procedure to
map the RUI (Tonini et al., 2017a), which considers the intersection
between the enhanced surface surrounding urban areas and the
overlapping burnable vegetated rural areas, three different buffer
widths of 500, 1000 and 2000 m were applied. An overlay between
the different buffers and the fuzzy possibility RUI map allowed an
evaluation of the capability of the latter to identify as most fire-
prone areas all those pixels included in the buffers.

Fig. 9 shows the histograms corresponding to the values of the
pixels included in the different buffer widths. Noticeably, even in
the buffer range between 1000 and 2000 m, 88.84% of the pixels
have a possibility value higher than 90, while 72.10% have a value
higher than 95. These values corresponded respectively to 92.11%
and 85.96% for the buffer distance between 500 and 1000 m and to
93.29% and 90.54% for the buffer distance between 0 and 500 m.

4. Discussion

Several studies highlighted how land use changes are among the
primary fire ignition causes (Ganteaume et al., 2013). The rapid
urbanization of the European Mediterranean countries over the last
decades, principally due to the development of tourism and the
huge growth of metropolitan areas, implicates a higher range of
possible fire causes due to the presence of human-rural interactions
(Hill et al., 2008; Lasaponara et al., 2006). Specifically, human

activities influence the spatio-temporal characterisation of forest
fires occurrence (Bar Massada et al., 2009). RUI evolves under the
pressure of anthropogenic and environmental factors, such as ur-
ban growth and fragmentation, abandonment of rural areas,
deforestation, and its mapping is closely related to LULCC. RUI has
been deeply investigated by researchers and fire managers in the
last decades, and several geospatial models for defining and map-
ping its extension have been developed. RUI mapping is indeed a
fundamental tool for decision-makers in order to design their
policies with regard to forest fires protection and prevention. In the
present research, authors propose an innovative approach to assess
the spatio-temporal variability of RUI, related to LULCC, with the
final goal of elaborating a future scenario of this interface for
Portugal. On the one hand, the proposed fuzzy RUI map can be
modelled for different temporal horizons and different socio-
economic scenarios, so to consider the dynamic nature of land
use over time. On the other hand, compared with the classical
approaches used in RUI mapping, the information given by the
fuzzy RUI map are richer and account for uncertainty. Hence,
depending on the sensibility of decision-makers and on the avail-
able resources, different thresholds or defuzzification procedures
can be applied to the map to identify the areas to be considered as
RUI and in which implementing concrete and effective policies to
reduce the exposure of the artificial surfaces to fire risks.

Concerning the methodology discussed in this paper, results
shown in previous sections highlight the effectiveness of the pro-
posed framework in identifying the RUI through a flexible
approach. The main aim of the study was avoiding the rigid defi-
nition of boundaries rising from the classical binary classification
methods. In this sense, fuzzy set theory offers a solid mathematical
background on which solve the issue of labelling each pixel as
belonging or not to the RUI through the assignation to each pixel of
a degree of possibility of belonging to the RUI set.

Nevertheless, fuzzy set theory is not the only possible approach
to deal with uncertainty. Recent studies have tested the effective-
ness of multi-label classification in LULCC simulations (Omrani
et al., 2015). Conventionally, LULCC simulation maps, such as the
2030 land cover map proposed in this paper, are the result of a
mono-label classification where a single specific class is assigned to
each pixel. However, to take into account the uncertainty deriving
from a long-term prediction, multi-label approaches can be used to
associate spatial unit with a set of multiple classes. Multi-label
classifications have substantial differences with the fuzzy set the-
ory (Boutell et al., 2004). Fuzzy membership functions are generally
used to deal with ambiguity in the classification of an object, but
their overall purpose is its precise classification (Malczewski,
2006). This is usually obtained through a defuzzification proced-
ure, which derives a crisp set from a fuzzy one (Power et al., 2001).
Differently, multi-label classifications are used to assign multiple
classes to each object, and are based on the assumption that the
different labels are not mutually exclusive (Omrani et al., 2017).
Hence, multi-label classifications would not be effective in defining
RUI, as a pixel can either be considered as belonging to the interface
or not, and the two options are mutually exclusive.

5. Conclusions

The present paper introduces a new approach for elaborating a
fuzzy map of the Rural Urban Interface, expressing the possibility of
a pixel of belonging to the RUI set. The procedure, allowing to make
a prediction, is based on Land Use/Land Cover simulation models.
The study area includes the entire mainland Portugal, one of the
most fire prone country in Europe.

A future scenario for LULCC was computed for the year 2030,
based on the Corine Land Cover (CLC) maps representing observed
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land cover for the years 1990, 2000 and 2012. In this study, we
adopted a spatially explicit inductive method, allowing to estimate
the change transition potential between CLC1990 and CLC2000.
Therefore, statistical functions and algorithms accounting for
explanatory spatial variables (e.g. road network, population den-
sity, agricultural census, altitude, slope, etc.), based in our case on
artificial neural network, and specifically Multilayer Perceptron
(MLP) algorithm, were used for the transition potential modelling.
Then, a Markov Chain procedure was applied to allocate the tran-
sition among different land covers in the period 2000—2012. A
backpropagation algorithm was used to correctly train the MLP
model. After the validation of the model, performed via Kappa
statistics by comparing the simulated and the observed land cover
maps for the year 2012, the transition potential was allocated from
the CLC2012 to obtain the future land cover map for the year 2030.
Despite its complexity, this procedure is extremely robust, espe-
cially considering how the application of a non-linear model is
perfectly appropriate f to investigate phenomenon like land use/
land cover changes which are naturally non-linear. Moreover, it
does not rely on expert knowledge inputs and provides a high
goodness of fit value.

Once the LULCC scenario for the year 2030 has been created and
validated, it was used to evaluate the possibility of each pixel to
belong to the RUI set, by applying a fuzzification procedure. The
fuzzy membership function was used for the fuzzification of the all-
classes-to-urban and all-classes-to-rural map. The results of this
process are fuzzy maps expressing at once the possibility of each
pixel of experiencing a transition toward rural coverages and of
being in a distance from urban areas. These maps were then
overlapped through joint membership fuzzy functions, which
overlays probability map of having shifts for the year 2030 toward
the urban and the vegetated burnable rural areas. The resulting
map well describe a future scenario of RUI in Portugal.

Actually in this country it does not exist jet a specific legislation
about RUI (or WUI), but only one general mention at this regard in
the National Plan to Protect the Forests against Wildfires, in the
Portuguese Law 16/2009. In this Plan it is suggested the need of
maintaining an external buffer strips around population clusters,
especially in those with the highest fire vulnerability, in order to
protect urban-forest interface. The fuzzy RUI map resulting from
the present study represents in this context a key tool for policy
makers. Indeed, it expresses with a different degree of certitude the
possibility of an area to belong to the RUI, allowing to take actions
where these possibility is higher. More in general, RUI maps
represent a fundamental tool to give practical indications in term of
land and fire management. For local interventions, and for land use
policy purposes, it is necessary to define spatial limits. Moreover,
when planning for future strategies, it is crucial to develop models
for land change prediction. The method developed in this paper can
be generalised to the investigation of the spatio-temporal evolution
of urban-interface vulnerable areas different that the RUI: in all
these cases, a map representing the tendency towards relevant land
cover/use classes identified on a prospective map provides a much
more realistic, useful and unbiased result than crisp maps.
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