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In addition to vector (V) type new particles extensively discussed previously, both CP-even (S) and
CP-odd (P) spin-0 dark matter (DM) mediators can couple to muons and be produced in the
bremsstrahlung reaction μ− þ N → μ− þ N þ SðPÞ. Their possible subsequent invisible decay into a
pair of Dirac DM particles, SðPÞ → χχ̄, can be detected in fixed target experiments through missing energy
signature. In this paper, we focus on the case of experiments using high-energy muon beams. For this
reason, we derive the differential cross sections involved using the phase space Weiszäcker-Williams
approximation and compare them to the exact-tree-level calculations. The formalism derived can be applied
in various experiments that could observe muon-spin-0 DM interactions. This can happen in present and
future proton beam-dump experiments such as NA62, SHIP, HIKE, and SHADOWS; in muon fixed target
experiments as NA64μ, MUonE and M3; in neutrino experiments using powerful proton beams such as
DUNE. In particular, we focus on the NA64μ experiment case, which uses a 160 GeV muon beam at the
CERN Super Proton Synchrotron accelerator. We compute the derived cross sections, the resulting signal
yields and we discuss the experiment projected sensitivity to probe the relic DM parameter space and the
ðg − 2Þμ anomaly favored region considering 1011 and 1013 muons on target.

DOI: 10.1103/PhysRevD.108.056018

I. INTRODUCTION

The Standard Model (SM) cannot explain the origin of
dark matter (DM), although it makes up almost ≃85% of
the Universe’s matter [1]. The indirect evidence of DM are
associated with the rotational velocities of galaxies, the
cosmic structure of a large scale, the anisotropy of the
cosmic microwave background, and gravity lensing [2–4].
Nevertheless, the composition of DM continues to be one
of the most challenging puzzles for particle physics.

Theoretically, well-motivated scenarios to explain the
origin of Dark Matter as a thermal freeze-out relic involve
the presence of feebly interacting light scalars from dark
sectors (DS) [5,6]. This framework addresses the origin of
DM using a similar mechanism to the weakly interacting
massive particles and could imply the existence of sub-GeV
spin-0 DM mediators with feebly interaction strength [7].
In addition, the observed low energy experimental anoma-

lies such as the recently confirmed tension of 4.2σ [8] in the
measurement of themuon’s anomalousmagneticmoment [9]

Δaμ ≡ aexpμ − athμ ¼ ð251� 59Þ × 10−11; ð1Þ
has also motivated the existence of physics beyond the
Standard Model and could be explained in DS framework
[10].We note that recent calculations [11–16] of the hadronic
vacuum polarization contribution to ðg − 2Þμ shifts the
anomaly to the level of Δaμ ¼ ð183� 59Þ × 10−11, that
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corresponds to a significance of 3.1σ [17] (for recent
experimental results from CMD-3 collaboration see, e.g.,
Ref. [18]). In the present paper, we consider the result (1) as a
hint of new physics. In particular, a possible solution to that
discrepancy involves the introduction of a newweak coupling
between the standard matter and a light scalar DM mediator
[5,19,20]. Other possibility to address the anomaly considers
the case of a light vector mediator (see more details in
[21,22]). This study focuses on the computation of the
production cross sections of scalar (S) and pseudo-scalar
(P) mediators after a high energymuon scatters off in a target
(see, e.g., Fig. 1). Our study is particularly relevant to
experiments involving high energy muon interactions with
a fixed target such as muon experiments NA64μ at CERN
[22,23] or the proposalM3 at Fermilab [19]. Nevertheless, it
can also be relevant for (i) current and planned proton beam-
dump experiments such asNA62 [24], SHIP [25], HIKE [26],
SHADOWS [27], the ILC beam dump [28,29], (ii) muon
beam-dump [30], (iii) the MUonE experiment [31], and
(iv) DUNE [32] aiming also to perform complementary
searches to such hidden particles. In this manuscript, we
take as an example the NA64μ experiment at CERN devoted
to probe weakly coupled dark sectors with muons.
In the NA64μ experiment, a 160 GeV muon beam is

directed to an electromagnetic calorimeter functioning as
an active target, where the spin-0 DM mediators are
produced. The resulting particles carry away a portion of
the primary muon beam energy. The measurement of the
primary muon missing momentum is the key feature of the
experimental technique.
In this paper, the production cross section of spin-0

particles on the reaction μN→μNSðPÞ are derived. In
particular, we show that the widely used Weizsäcker-
Williams (WW) approach for the spin-0 production repro-
duces the exact tree level (ETL) cross sections with an
accuracy at the level of ≲Oð5%Þ. Furthermore, a novel
analytical formula for computing the differential cross sec-
tions in the WWapproximation has been obtained in order to
perform more accurate and less computationally demanding
MC simulations of a dark boson emission. The results have
been implemented in the Geant4-basedDarkMatter simulation
package DMG4 [33,34]. Additionally, we analyze the differ-
ential cross sections with respect to the recoil angles of the
muon and spin-0 DM mediators relevant to obtain accurate
and realistic signal yields in fixed target experiments.

This paper is organized as follows: In Sec. II, we discuss
the typical scenarios for spin-0 DM mediators. In Sec. III,
we calculate at ETL the total cross section for spin-0
mediator production. In Sec. IV, we discuss the differential
cross sections for the angle and energy fraction of the
outgoing particles in the WW approach. In Sec. V, we
derive novel analytical differential cross sections for the
emitted spin-0 mediator in WW approach. In Sec. VI we
compare WW and ETL cross sections. Finally, in Sec. VII,
we evaluate the projected sensitivities for NA64μ experi-
ment in leptophilic scenarios. We summarize our results
and conclusions in Sec. VIII.

II. A SIMPLIFIED MUON-PHILIC MODEL

In this paper, we focus on lepton-specific spin-0mediators
that do not need to couple to neutrinos and assume muon-
specific couplings of (pseudo)scalar boson. The simplified
muon-philic spin-0 boson Lagrangians can be written for
scalar, S, and pseudoscalar, P, respectively as follows

L ⊃ LSM þ 1

2
ð∂μSÞ2 −

1

2
m2

SS
2 þ gSSμ̄μ; ð2Þ

L ⊃ LSM þ 1

2
ð∂μPÞ2 −

1

2
m2

PP
2 þ igPPμ̄γ5μ; ð3Þ

where LSM is the SM Lagrangian, gSðPÞ is the coupling
strength to muons and mSðPÞ the mass of the mediator. The
extension to the dark sector can be introduced through the
benchmark couplings to Dirac DM fermions

L ⊃ χ̄ðiγμ∂μ −mχÞχ þ gχSSχ̄χ; ð4Þ

L ⊃ χ̄ðiγμ∂μ −mχÞχ þ igχPPχ̄γ5χ; ð5Þ

wheremχ is a mass of DM particle, gχS and g
χ
P are the typical

DM couplings to scalar and pseudoscalar mediators respec-
tively. Moreover, we assume that the invisible decay of
SðPÞ → χχ̄will be the dominant channel. Thismeans thatwe
focus only on the benchmark regime mSðPÞ ≳ 2mχ and
gχSðPÞ ≫ gSðPÞ in the present study.

We also note that scalar couplings (2) can be originated
from flavor specific Lagrangian of higher dimensions
in Higgs extended sectors [35] that can be probed by
accelerator-based experiments [5,19,20]. For pseudoscalar
benchmark couplings (3) we address the reader to Ref. [36],
where muon-specific ALPs signatures were studied in
detail in the light of atmospheric probes of ALPs using
Cerenkov detectors near the Earth’s surface.
The one-loop leading order contributions from scalars to

the ðg − 2Þμ are obtained through the Yukawa-like inter-
action and are given by [37–40]

ΔaS ¼
g2S
8π2

Z
1

0

dx
m2

μð1 − xÞð1 − x2Þ
m2

μð1 − xÞ2 þm2
Sx

; ð6Þ

FIG. 1. Diagrams describing spin-0 DM mediator production
via bremsstrahlung μN → μNSðPÞ, followed by invisible decay
SðPÞ → χχ̄.
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where we defined gS ¼ eϵS, with e ¼ ffiffiffiffiffiffiffiffi
4πα

p
the electric

charge and α ≃ 1=137 the fine-structure constant. In the
case where mS=mμ → 0, gS ¼ ð3.63� 0.43Þ × 10−4.
On the other side, the one-loop contribution of the muon-

philic pseudoscalar boson to Δaμ is negative, so the
CP-odd spin-0 mediator cannot accommodate the explan-
ation of the ðg − 2Þμ anomaly [36]. For completeness, we
refer the reader to [21] for a discussion of the contribution
of the vector-boson. In addition, for recent progress on
probing leptophilic dark sector see also Refs. [25,41–43].

III. THE EXACT TREE-LEVEL CALCULATION

In the following, we discuss the computations of the
exact-tree-level production cross sections for both, a light
scalar and pseudoscalar muon-philic boson. We follow the
notations of [44,45]. We refer to the kinematic variables
of the process μ−ðpÞ þ NðPiÞ → μ−ðp0Þ þ NðPfÞ þHðkÞ
from our previous work [21]. Here we denote via
H ¼ ðS; PÞ the general muon-specific CP-even and
CP-odd spin-0 boson. Let us recall the definition of the
double-differential cross section [44]

dσ
dxd cos θH

����
ETL

¼ ϵ2Hα
3jkjEμ

jpjjk − pj
Ztmax

tmin

dt
t2
Gel

2 ðtÞ
Z2π
0

dϕq

2π

jAH
2→3j2
8M2

;

ð7Þ
where x ¼ EH=Eμ is a fractional energy, tmin and tmax the
minimum and maximum momenta transfer and Gel

2 ðtÞ the
squared elastic form factor as defined in [21,44,46], ϕq is
the axial angle of the threemomentum transfer to the nucleus
q ¼ Pi − Pf defined in the polar frame in Ref. [44]. The
amplitude squared associated to the production of a (pseudo)
scalar boson is calculated using the FeynCalc package [47]
embedded in the Wolfram- language-based Mathematica
package [48]. With similar kinematics as defined for the
vector V–boson, we obtain in the case H ¼ S

jAS
2→3j2 ¼

1

ũ2s̃2
f4ð4m2

μ −m2
SÞðP · p0Þ2s̃2 − 4½tðP · pÞ2

− 2ð4m2
μ −m2

S þ tÞðP · pÞðP · p0Þ
þ tðP · p0Þ2�s̃ũþ 4ð4m2

μ −m2
SÞðP · pÞ2ũ2

þ P2½s̃þ ũ�2½ðm2
S − 4m2

μÞtþ s̃ũ�g; ð8Þ
as well as for the pseudoscalar particle, H ¼ P,

jAP
2→3j2 ¼

1

ũ2s̃2
f8ð−m2

P þ tÞðP ·pÞðP ·p0Þs̃ũ
− 4ðP ·pÞ2ũðts̃þm2

PũÞ− 4ðP ·p0Þ2s̃ðtũþm2
Ps̃Þ

þP2ðs̃þ ũÞ2ðm2
Ptþ s̃ũÞg; ð9Þ

for which the relevant Mandelstam variables and dot prod-
ucts read

s̃ ¼ ðp0 þ kÞ2 −m2
μ ¼ 2ðp0 · kÞ þm2

H;

ũ ¼ ðp − kÞ2 −m2
μ ¼ 2ðp · kÞ þm2

H; ð10Þ

P2 ¼ 4M2 þ tðp0 þ kÞ2; ðP · pÞ ¼ 2MEμ − ðs̃þ tÞ=2;
ð11Þ

P · p0 ¼ 2MðEμ − EHÞ þ ðũ − tÞ=2; ð12Þ
with Pμ ¼ ðPi þ PfÞμ, Pi ¼ ðM; 0Þ being the nucleus four-
momentum in the laboratory frame, Pf ¼ ðP0

f;PfÞ is its
outgoing momentum. The resulting squared matrix elements
Eqs. (8) and (9) coincide with those given in Refs. [44,46],
implying replacement of the electron with muon,
i.e. me → mμ.

IV. THE WW APPROXIMATIONS FOR THE
(PSEUDO)SCALAR EMISSION CROSS SECTIONS

In this section, we use the Weizsäcker-Williams (WW)
approximation to compute the double-differential produc-
tion cross sections for H, assuming that the energy of the
incoming muon is much larger than bothmμ andmH. In this
approach, the flux of virtual photons from the moving
charged particles can be treated as a plane wave and
approximated by real photons. We follow the same pro-
cedure as the one described in [21], Sec. III, namely
considering the effective photon flux to read

χ ¼
Z

tmax

tmin

dt
t − tmin

t2
F2ðtÞ; ð13Þ

where tmin ≃U2ðx; θHÞ=ð4E2
μð1 − xÞ2Þ and tmax ¼ m2

H þ
m2

μ are the minimum and maximum momentum transfer to
the nuclei. The function U2 is given by Eq. (19) below and
depends on the fractional energy x ¼ EH=Eμ and the H–
boson recoil angle θH. F2ðtÞ is the squared elastic form
factor, whose exact form is given in [21]. In particular, for
the choice of ðx; θHÞ and ðy;ψμÞ variables, the WW-
approximated quantities read respectively

dσH2→3

dxd cos θH

����
WW

≃
αχ

πð1 − xÞE
2
μxβH

dσH2→2

dðpkÞ
����
t¼tmin

; ð14Þ

dσH2→3

dyd cosψμ

����
WW

≃
αχ

πð1 − yÞE
2
μyβμ0

dσH2→2

dðpkÞ
����
t¼tmin

; ð15Þ

where βH ¼ ð1 −m2
H=ðxEμÞ2Þ1=2 is the typical velocity of

the produced hidden boson, βμ ¼ ð1 −m2
μ=ðyEμÞ2Þ1=2 and

y ¼ Eμ0=Eμ are the typical velocity of the recoil muon and
its energy fraction respectively, ψμ the recoil angle of
outgoing muon. The expression of the photon flux χ is
given by (13). The cross section of the process μγ → μH
has the following form
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dσH2→2

dðpkÞ ¼ ϵ2Hα
2
2π

s̃2
jAH

2→2j2; ð16Þ

where the squared amplitudes read

jAS
2→2j2 ¼ 2ðm2

S − 4m2
μÞ
��

s̃þ ũ
s̃ ũ

�
2

m2
μ −

t2
s̃ ũ

�
−
ðs̃þ ũÞ2

s̃ ũ
;

ð17Þ

jAP
2→2j2 ¼ 2m2

P

��
s̃þ ũ
s̃ ũ

�
2

m2
μ −

t2
s̃ ũ

�
−
ðs̃þ ũÞ2

s̃ ũ
: ð18Þ

We note that for the ðx; θHÞ—plane one has the following
expressions for the Mandelstam variables

s̃ ≃U=ð1 − xÞ; U ¼ E2
μθ

2
Hxþm2

Hð1 − xÞ=xþm2
μx;

ð19Þ
ũ ≃ −U; t2 ¼ −xU=ð1 − xÞ þm2

H: ð20Þ

On the other hand, for the ðy;ψμÞ—plane the Mandelstam
variables read

s̃ ≃ t̃=ð1 − yÞ; ũ ≃ −yt̃=ð1 − yÞ; t̃ ≃m2
H − t2; ð21Þ

t2 ≃ −½E2
μψ

2
μyþm2

μð1 − yÞ=yþm2
μy� þm2

μ: ð22Þ

Here we assume that the photon virtuality is sufficiently
small t≡ −q2 ≪ s̃; ũ; t2. Thus we neglect q2 in Eqs. (17)
and (18) implying that the longitudinal part of the ampli-
tude squared 2 → 2 is small compared to the transverse
term (see, e.g., Ref. [49]). Let us also remark on the typical
energy fractions of the outgoing muon and H boson in the
process μN → μNH for certain benchmark kinematics. The
lowest possible energy of the produced H-boson implies
that xmin ≃mH=Eμ ≲ x, i.e., in this case the spin-0 particle
is produced with zero three-momentum, jkj ¼ 0. This
means also that almost all energy of the initial muon is
transferred to the outgoing muon, which leads to the typical
bound y≲ ymax ≃ 1 −mH=Eμ. On the other hand, if the
initial muon transfers its maximal energy to spin-0 boson,
then we get y≳ ymin ≃mμ=Eμ and x≲ xmax ≃ 1 −mμ=Eμ.

V. ANALYTICAL INTEGRATION OF THE WW
APPROXIMATION OVER THE ANGLE θH

In the WWapproach, the lower bound of the flux integral
tmin depends on both the fractional energy x and the emitted
angle θH of the boson mediator. Although WW provides
more accurate results than its improved approach (IWW),
the integration of the double-differential cross section is
still computationally expensive, to sample a sufficiently
large number of MC events [33]. In this work, we perform
an explicit integration over θH to obtain an analytical
expression for dσH2→3=dx. We emphasize that this result can
also be expanded to the light V vector boson case.

The formula for the differential cross section can be
rewritten in the following form

dσH2→3

dx

����
WW

¼ ϵ2Hα
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 −

m2
H

E2
μ

s
1− x
x

Zumax

umin

du
jAH

2→2j2χ
u2

; ð23Þ

where the limits of integration over the Mandelstam
variable are

umax ¼ −m2
Hð1 − xÞ=x −m2

μx; ð24Þ
umin ¼ −xE2

μðθmax
H Þ2 −m2

Hð1 − xÞ=x −m2
μx; ð25Þ

where θmax
H is the typical maximal angle between the

initial muon and the emission momentum of the H boson.
Numerical analysis show (see e. g. Sec. VI below) that for
the ultrarelativistic muons expected at NA64μ one can set
θmax
H ≃ 0.1. It is worth noticing that in Eq. (23) we imply
d cos θH ≃ du=ð2xE2

μÞ in order to introduce a new variable
of the integration u instead of cos θH. The transition
amplitude squared then reads

jAH
2→2j2ðx; uÞ ¼ CH

1 þ CH
2

1

u
þ CH

3

1

u2
; ð26Þ

where the coefficients CH
i are

CS
1 ¼ CP

1 ¼ x2

1 − x
; CS

2 ¼ 2ðm2
S − 4m2

μÞx; ð27Þ

CP
2 ¼ 2m2

Px; CP
3 ¼ 2m2

Pðm2
Pð1 − xÞ þm2

μx2Þ; ð28Þ

CS
3 ¼ 2ðm2

S − 4m2
μÞðm2

Sð1 − xÞ þm2
μx2Þ: ð29Þ

For completeness, we also derive the coefficients for the
vector boson emission. In particular, for the case of H ¼ V
these quantities read explicitly in the following form

CV
1 ¼ 2

ð2 − 2xþ x2Þ
1 − x

; CV
2 ¼ 4ðm2

V þ 2m2
μÞx; ð30Þ

CV
3 ¼ 4ðm2

V þ 2m2
μÞðm2

Vð1 − xÞ þm2
μx2Þ: ð31Þ

The flux of virtual photons χ in the Weizsacker-Williams
approximation can be expressed via the typical elastic
atomic form-factor in the following form

χ ¼ Z2

Ztmax

tmin

t − tmin

t2

�
t

ta þ t

�
2
�

td
td þ t

�
2

dt ¼ Cχ
1 þ Cχ

2u
2

þ Cχ
3 ln

�
u2g2 þ td
u2g2 þ ta

�
þ Cχ

4u
2 ln

�
u2g2 þ td
u2g2 þ ta

�
; ð32Þ

where Z ¼ 82 is the atomic number of the lead target of
NA64μ,

ffiffiffiffi
ta

p ¼ 1=Ra is a momentum transfer associated
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with nucleus Coulomb field screening due to the atomic
electrons, with Ra being a typical magnitude of the atomic
radius Ra ¼ 111Z−1=3=me,

ffiffiffiffi
td

p ¼ 1=Rn is the typical
momentum associated with nuclear radius Rn, such that
Rn ≃ 1=

ffiffiffi
d

p
and d ¼ 0.164A−2=3 GeV2, A ¼ 207 is the

atomic mass number of the lead target, tmin ¼ g2u2 is
minimal transfer momentum, here we denote g ¼
1=ð2Eμð1 − xÞÞ for simplicity. Typically the maximal
transfer momentum tmax is chosen to be tmax ¼ m2

μ þm2
H

in [44,46], however, the numerical calculations reveal that
tmax can be set as large as tmax ≳ td in order to achieve a
better accuracy for WW approach. The coefficients
Cχ
1; C

χ
2; C

χ
a, and Cχ

4 in (32) are collected in Appendix.
By substituting Eqs. (32) and (26) into the differential

cross section (23) one can obtain the following expression:

�
dσ
dx

�
WW

¼ ϵ2Hα
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 −

m2
H

E2
μ

s
1 − x
x

Zumax

umin

�
CH
1 C

χ
2 þ

CH
2 C

χ
2

u

þ CH
1 C

χ
1 þ CH

3 C
χ
2

u2
þ CH

2 C
χ
1

u3
þ CH

3 C
χ
1

u4

þ
�
CH
1 C

χ
4 þ

CH
2 C

χ
4

u
þ CH

1 C
χ
3 þ CH

3 C
χ
4

u2

þ CH
2 C

χ
3

u3
þ CH

3 C
χ
3

u4

�
ln

�
u2g2 þ td
u2g2 þ ta

�	
du: ð33Þ

The differential cross section with respect to x, can be
represented as the sum of six typical terms

�
dσ
dx

�
WW

¼ ϵ2Hα
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 −

m2
H

E2
μ

s
1 − x
x

X6
i¼1

ΔIHi ðx; uÞ; ð34Þ

where ΔIHi ðx; uÞ ¼ IHi ðx; umaxÞ − IHi ðx; uminÞ. The func-
tions IHi ðx; uÞ are described in Appendix. Alternatively,
one can also exploit the state-of-the-art MadGraph [50] or
CalcHEP [51] packages with appropriate atomic form-
factor implementation [20,42,52–56]. That analysis, how-
ever, is beyond the scope of the present paper.

VI. NUMERICAL INTEGRATION
OF THE CROSS SECTIONS

The comparison between the expression for
dσ=dxd cos θH at ETL and in the WW approximation is
shown for both scalar and pseudoscalar mediators in Figs. 2
and 3. The H mass spans from 10 MeV to 1 GeV.
Following the nominal beam energy of the NA64μ experi-
ment, the initial state muon energy is set to Eμ ¼ 160 GeV.
The integration over ðt;ϕqÞ in Eq. (7) is performed using
the parametrization of [57] to integrate out ϕq. The integral
over t is computed numerically through Monte Carlo
integration [58]. Only the region of phase space ðx; θHÞ
where the double-differential cross section contributes
more is shown. Both the complete calculation (ETL) and
the WW results have the double differential cross section
peak at the same order of magnitude. Additionally, from
both Figs. 2 and 3 it can be seen that θH is constant around
∼5 × 10−4 as expected from the typical emission angle

FIG. 2. Top: double-differential cross section at ETL in the ðx; θSÞ space. The expression of Eq. (7) is integrated using both the angular
parametrization from [57] and MC integration [58]. Bottom: double-differential cross section in the WW approach for the ðx; θSÞ
variables [see Eq. (14) with an amplitude squared as defined in Eq. (17)]. The mass range spans from 10 MeV to 1 GeV. The mixing
strength is ϵS ¼ 10−4.
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∼mμ=Eμ, which is independent of mH. To perform the
comparison between the ETL and WW approximated
results, Eq. (7) is integrated over θ and compared to the
expression in Eq. (34). The results in the case H ¼ S and
H ¼ P are shown respectively in Figs. 4 and 5. In both
cases the integrated differential cross section relative error
with respect to the exact calculation is below ≲Oð5%Þ for
the full mass range.
However, on the boundaries of the fractional energy

domain, x → xmin ≪ 1 and x → xmax ≃ 1, the relative error

can be as large as ≳Oð5%Þ. After the numerical integration
of the differential cross section, this effect is negligible.
Therefore, the yields of the produced spin-0 bosons can be
calculated accurately in WW approach [21].
For completeness, the single differential cross sections

with respect to the outgoing muon fractional energy, y, and
emission angle, ψ , are integrated according to Eq. (15). The
results are illustrated in Figs. 6 and 7. Similarly as in the
result for the integration over x, the integrated differential
cross section relative error is of the order ≲Oð5%Þ.

FIG. 3. The same as in Fig. 2 but for pseudoscalar field P.

FIG. 4. Top: single-differential scalar mediator cross sections as a function of x in the ETL (red dashed line) and WWapproximation
(green dashed line) regime for different mass values. The exact approach (ETL) results are obtained numerically through integration by
quadrature of the results of Fig. 2. Bottom: relative error, ðOWW −OETLÞ=OETL, between the WW and ETL expressions defined
respectively in Eqs. (7) and (34). The mixing strength is ϵS ¼ 10−4.
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FIG. 5. The same as in Fig. 4 but for pseudoscalar mediator P.

FIG. 6. Single-differential scalar mediator cross sections in WW approximation regime for different mass values (from the top to the
bottom line the masses are 10, 100, 500, and 1000 MeV). The mixing strength is ϵS ¼ 10−4. Left: single-differential cross section as a
function of the outgoing muon fractional energy. Right: single-differential cross section as a function of the outgoing muon angle.

FIG. 7. The same as in Fig. 6 but for pseudoscalar mediator P.
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VII. PROJECTED SENSITIVITIES TO THE
MIXING STRENGTH

The typical estimate of the sensitivity of a given experi-
ment can be computed following the yield formula [45]

NH ¼ NMOT
ρN A

A

X
i

σHðEiÞΔLi; ð35Þ

where ρ and A are respectively the target density and its
atomic weight, Ei the energy of the muon at the ith step-
length ΔLi in the target and NMOT the number of muons on
target. We recall that NA64μ target is a lead-scintillator
sandwich electromagnetic calorimeter of 40 radiation
lengths ð40X0Þ [22]. However, for a realistic sensitivity
study of one’s experiment to new physics models, including

particles propagation through the detectors, the differential
cross sections for the production of light muon-philic
mediators are implemented using the interface provided
by the fully Geant4 [59] compatible DMG4 package. In Fig. 8
the production yields for both cases H ¼ S and H ¼ P as
obtained through a realistic Geant4 simulation of the NA64μ
detectors are shown. The number of signal events NH are
given in the scenario where ϵH ¼ 10−4. For completeness,
the yield for the vector case (H ¼ V), for which the similar
calculations and implementation were performed previ-
ously, is plotted.
The sensitivity of the experiment in the case where

H ¼ S andH ¼ P is shown inFig. 9 in the invisible scenario,
S → invis, in the target parameter space ðmH; gHÞ.
Equation (34) is considered, i.e., the WW regime, and
embedded in the aforementioned simulation framework.
The limits are calculated at 90% C. L., requiring
NH ≳ 2.3, and assuming 100% efficiency and no back-
ground. It is worth noting that our work provides a better
precision of the signal yield than in Ref. [5] where the
projected limits are obtained through pure numerical inte-
gration of the production cross section in the improved WW
(IWW) approach for which the relative error can be as large
as 40% [21]. In the chosen mass range, both sensitivities for
the case H ¼ S and H ¼ P yield similar reach as Eqs. (17)
and (18) only differ by the typical factorsm2

S − 4m2
μ andm2

P.
NA64μ projected sensitivity for 1013 MOT can com-

pletely probe the new physics contribution to the ðg − 2Þμ
anomaly for a muon-philic scalar mediator for masses
below 3 GeV. The DM relic predictions have been obtained
in [5]. The “kink” present in the DM relic curves arises as at
mS ¼ 2mμ a new annihilation channel to muons is kine-
matically accessible. For a similar mass range and MOT,

FIG. 8. Number of light mediators, NH , per muons on target
(MOT) as obtained through a full Geant4 simulation of the NA64μ
target using the DMG4 package (ϵH ¼ 10−4 is considered in this
case). For completeness, in addition to the scalar (S) and
pseudoscalar (P) mediators is also shown the vector (V) case.

FIG. 9. Projected sensitivity in the ðmH; gμÞ phase space obtained through a full Geant4-based [59] Monte Carlo simulations of the
NA64μ set-up, together with the embedding of Eq. (34) in the DMG4 package [33] for 1011 (plain magenta line) and 1013 (dashed
magenta line) MOT. The limits are calculated at 90% C.L. Left: scalar (S) case. Are also shown the ðg − 2Þμ � 2σ band following Eq. (6)
and the thermal freeze-out target as computed in [5] for the scenario gχ ¼ 1 both with mS ¼ 3mχ and mS ≃ 2.1mχ . The M3 experiment
phases 1 and 2 (plain and dashed blue lines) are shown for completeness [19] together with the ATLAS HL-LHC analysis at LLHC ¼
3 ab−1 [60] (orange line) and the FASERν projected sensitivity at LLHC ¼ 250 fb−1 (light blue line) and LLHC ¼ 3 ab−1 (dashed light
blue line) [56]. Right: pseudoscalar (P) case.
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the target parameter space for thermal relic DM with a
scalar mediator is fully accessible in the scenario where
gχS ¼ 1 and mS ¼ 3mχ . Because of the similar behavior of
the cross sections at masses above the muon mass
(mS ≳mμ), the previous statement is also valid in the case
of a pseudoscalar mediator, H ¼ P. In the near-resonant
scenario for which mS ≃ 2.1mχ , only the portion of
parameter space with mH ≲OðmμÞ is accessible. Note that
for completeness projected sensitivities from both M3

phases I and II are shown for 1010 MOT and 1013 MOT
respectively given the phase-space values provided in [19].
Additionally, the ATLAS-HL [60] and FASERνð2Þ [56]
expected limits are shown.

VIII. SUMMARY

In this work, we have derived, based on the work of
[21,44,46], the differential cross sections for spin-0 DM
mediator production in fixed target experiments through
muon bremsstrahlung. We have shown that the commonly
used Weiszäcker-Williams approximation reproduces well
the exact-tree-level calculations cross section with an accu-
racy at the level of≲Oð5%Þ in the high-energy beam regime.
We have also calculated the SðPÞ differential cross section as
a function of new variables, namely the scattered muon
fractional energy and recoil angle, of potential importance
for Monte Carlo simulations and in the estimate of rea-
listic signal yields in missing momentum experiments.
Additionally, we developed an analytical expression of
the differential cross section of spin-0 mediators in WW
approximation to reduce computational time due to numeri-
cal integration. We highlight that the results derived can
be relevant for different experiments such as proton beam-
dump as NA62, SHADOWS, SHIP and HIKE, muon fixed
target experiments such as NA64μ, MUonE and M3, and
future neutrino experiments as DUNE. In this work, we
have considered as benchmark the NA64μ experiment.
Finally, our calculations were used to derive the pro-
jected sensitivities of the experiment to probe leptophilic
scenarios. Our results demonstrate the potential of muon
fixed target experiments to explore a broad coupling and
mass region parameter space of spin-0 DM mediators,
including the DM relic and the ðg − 2Þμ anomaly favored
parameter space.
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APPENDIX: SPECIAL FUNCTIONS

In this section, we collect the coefficients needed for the
analytical differential cross section calculation

Cχ
1 ¼

Z2t2d
ðta − tdÞ3

�
tdðta − tdÞ
td þ tmax

þ taðta − tdÞ
ta þ tmax

−−2ðta − tdÞ þ ðta þ tdÞ ln
�
td þ tmax

ta þ tmax

��
;

Cχ
2 ¼

Z2t2dg
2

ðta − tdÞ3
�

ta − td
td þ tmax

þ ta − td
ta þ tmax

þ 2 ln
�
td þ tmax

ta þ tmax

��
;

Cχ
3 ¼ −

Z2t2dðta þ tdÞ
ðta − tdÞ3

; Cχ
4 ¼ −

2Z2t2dg
2

ðta − tdÞ3
:

The coefficients for the resulting cross section (34) are

IH1 ðx; uÞ ¼ CH
1 C

χ
2uþ CH

2 C
χ
2

lnðu2Þ
2

−
CH
1 C

χ
1 þ CH

3 C
χ
2

u
−
CH
2 C

χ
1

2u2
−
CH
3 C

χ
1

3u3
; ðA1Þ

IH2 ðx;uÞ ¼
CH
3 C

χ
3

3

·

�
−

1

u3
f1ðx;uÞ− 2

g2

u

�
1

td
−
1

ta

�
− f2ðx;u;4Þ

	
;

ðA2Þ

IH3 ðx; uÞ ¼
CH
2 C

χ
3

2

�
f3ðx; uÞ −

1

u2
f1ðx; uÞ

	
; ðA3Þ

IH4 ðx; uÞ ¼ ðCH
1 C

χ
3 þ CH

3 C
χ
4Þ
�
f2ðx; u; 2Þ −

1

u
f1ðx; uÞ

	
;

ðA4Þ

IH5 ðx; uÞ ¼
CH
2 C

χ
4

2
·

�
ln

�
td
ta

�
lnðu2Þ − Li2

�
−
g2u2

td

�

þ Li2

�
−
g2u2

ta

�	
; ðA5Þ

IH6 ðx; uÞ ¼ CH
1 C

χ
4fuf1ðx; uÞ þ f2ðx; u; 0Þg; ðA6Þ

where Li2ðxÞ is a polylogarithm and the auxiliary functions
are

f1ðx; uÞ ¼ ln

�
u2 þ b
u2 þ a

�
; b ¼ td

g2
; a ¼ ta

g2
; ðA7Þ
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f2ðx; u; nÞ ¼ 2

�
1

b

�n−1
2

arctan
�

uffiffiffi
b

p
�
− 2

�
1

a

�n−1
2

arctan
�

uffiffiffi
a

p
�
; ðA8Þ

f3ðx; uÞ ¼
1

b
ln

�
u2=g2

u2 þ b

�
−
1

a
ln

�
u2=g2

u2 þ a

�
: ðA9Þ
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