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Abstract

The convergence of properly time-scaled and normalized maxima of independent standard Brownian mo-
tions to the Brown-Resnick process is well-known in the literature. In this paper, we study the extremal
functional behavior of non-Gaussian processes, namely squared Bessel processes and scalar products of
Brownian motions. It is shown that maxima of independent samples of those processes converge weakly on
the space of continuous functions to the Brown-Resnick process.
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1. Introduction

The study of Gaussian processes, their suprema and sojourns has been of interest to researchers for quite
some time; see the excellent monographs by Leadbetter et al. [25], Berman [4], Lifshits [26], Piterbarg [28],
Adler and Taylor [1], Azaı̈s and Wschebor [3] and Yakir [32] for a detailed overview. These studies involve
investigations of the asymptotic behavior of the maximum of a Gaussian (and sometimes non-Gaussian)
process over a specific set under time and space scalings. On the other hand, in spatial extreme value theory,
the main focus is on pointwise maxima of independent processes representing regular measurements of an
environmental quantity, for instance.
Suppose a large number, n, of particles start at the origin and move along the trajectories of independent
Brownian motions in an m-dimensional Euclidean space. Denote by Mn(t), t ≥ 0, the maximal squared
displacement from the origin of those n particles at time t. It is well-known that for a fixed t > 0 and suitable
normalizing sequences an > 0, bn ∈ R, we have the weak convergence

lim
n→∞

P
(

Mn(t) − bnt
ant

≤ x
)

= exp(− exp(−x)), x ∈ R, (1)

see e.g., [11, p.156]. In this paper we are interested in the functional convergence of the quantity in (1) on
the space of continuous functions. In the one-dimensional case, Brown and Resnick [6] showed that the
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functional limit is given by a stationary, max-stable process. This Brown-Resnick process and its general-
izations in Kabluchko et al. [24] and Kabluchko [23] are now well-known in extreme value theory and have
recently found importance as models for spatial extreme weather events; see Davis et al. [7], Davison et al.
[8], Engelke et al. [14].
The finite-dimensional distributions of a Brown-Resnick process can be naturally identified as the so-called
Hüsler-Reiss distributions introduced in Hüsler and Reiss [22] which appear as the limits of maxima of a
triangular array of Gaussian random vectors. Those distributions arise even in more general, non-Gaussian
settings, as shown in Hashorva [16] and Hashorva et al. [17]. In fact the latter paper provides conditions
for the weak convergence of maxima of independent, multivariate chi-square random vectors to the Hüsler-
Reiss distribution. Such an observation naturally points us towards the question whether there are some
non-Gaussian processes whose maxima are attracted by the Brown-Resnick process under appropriate linear
scaling.

This is the principal focus of our paper which is organized as follows. In Section 2 we introduce nec-
essary notation, recall the definition of Brown-Resnick processes and provide the two main theorems (Sub-
section 2.1). They state the functional convergence of maxima of independent (weighted) squared Bessel
processes and, furthermore, it is shown that the Brown-Resnick process also appears as the limit of maxima
processes obtained by the scalar product of two independent, m-dimensional Brownian motions. Subsection
2.2 gives a sketch of the proof of these results. The main lemma, which might be of some independent
interest, and the rigorous proofs of the theorems are relegated to Section 3. Section 4 concludes the paper.

2. Extremal behavior of squared Bessel processes and Brownian scalar product processes

In the sequel, for T > 0 we denote by C[0,T ] and C[0,∞) the space of real-valued continuous functions
on [0,T ] and [0,∞), respectively, equipped with the topology of uniform convergence (on bounded inter-
vals).
Let {Xi, i ∈ N} be the points of a Poisson point process on R with intensity measure e−xdx, x ∈ R, and let
{Bi, i ∈ N} be independent standard Brownian motions on [0,∞) which are also independent of {Xi, i ∈ N}.
The original Brown-Resnick process presented in [6] is denoted by MB and defined as

MB(t) = max
i∈N

(
Xi + Bi(t) − t/2

)
, t ≥ 0. (2)

More generally, for a centered Gaussian process {η(t), t ∈ R} with stationary increments and variance func-
tion σ2(t) the corresponding max-stable, stationary Brown-Resnick process Mη is defined by

Mη(t) = max
i∈N

(
Xi + ηi(t) − σ2(t)/2

)
, t ≥ 0, (3)

where ηi, i ∈ N, are independent and identically distributed (i.i.d.) copies of η, see Kabluchko et al. [24],
Kabluchko [23], Dombry and Eyi-Minko [10].
Originally, the standard Brown-Resnick process was derived as the limit of the maximum of i.i.d. Gaussian
processes, namely Brownian motions and Ornstein-Uhlenbeck processes. Motivated by the recent findings
of Hashorva et al. [17], in this section we show that two other classes of non-Gaussian processes lead to the
same limit process MB. More precisely, we investigate (weighted chi-square, or squared Bessel processes,
and scalar-product processes related to standard Brownian motions.

2.1. Main results
We first state the two main results of this paper. To this end, let {Bi, j, i ∈ N, 1 ≤ j ≤ m} be independent

standard Brownian motions on [0,∞) and denote by Bi = (Bi,1, . . . , Bi,m) the vector process. Furthermore,
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let Σ be a positive-definite m × m matrix with eigenvalues 1 = λ1 ≥ · · · ≥ λm in decreasing order, and let p
be the multiplicity of the maximum eigenvalue λ1 = 1, that is, p = #{ j : λ j = 1, 1 ≤ j ≤ m}. By the eigen
decomposition of Σ we can write Σ = UT ΛU, where Λ is the diagonal matrix with the eigenvalues of Σ and
U is the orthogonal matrix of its eigenvectors. Define for i ∈ N the (weighted) squared Bessel process of
dimension m ≥ 1 as

ξi(t) = BT
i (t)ΣBi(t) = ‖Λ1/2UBi(t)‖22, t ≥ 0, (4)

where ‖x‖2 denotes the Euclidean norm of x ∈ Rm. Set Cp,m :=
∏m

i=p+1
1

√
1−λi

and Cm,m := 1. It follows easily
from Lemma 4.1 in Appendix that for constants an, bn defined by

an = 2, bn = 2 ln n + (m − 2) ln(ln n) − 2 ln(Γ (m/2) /Cp,m), n ≥ 1, (5)

the maximum Mn,ξ(t) = max{ξ1(t), . . . , ξn(t)} for any fixed t > 0 satisfies

lim
n→∞

P
(

Mn,ξ(t) − bnt
ant

≤ x
)

= exp(− exp(−x)), x ∈ R. (6)

In their paper, Hashorva et al. [17] prove that the normalized maxima of independent chi-square random
vectors converge to the Hüsler-Reiss distribution [22] which are the finite dimensional distributions of the
Brown-Resnick processes Mη defined above. On the other hand, Brown and Resnick [6] showed that the
rescaled maxima of an independent sequence of rescaled Brownian motions tend to the Brown-Resnick
process. Thus a Brown-Resnick limit for the maxima of squared Bessel processes is quite intuitive. The
sequence of processes Mn,ξ, n ≥ 1, is defined on C[0,∞), but weak convergence of Mn,ξ holding on C[0,T ]
for all T > 0 implies convergence on C[0,∞) and proving convergence on C[0,T ] is similar to proving it
for C[0, 1]; see Brown and Resnick [6]. For the sake of simplicity, we thus show weak convergence only on
C[0, 1].
For 1 ≤ i ≤ n, n ∈ N, define the local, or rescaled, processes

ξi,n(t) =
ξi (1 + t/bn) − bn (1 + t/bn)

2
, t ≥ 0. (7)

Our first result below shows the functional convergence of the maximum process max1≤i≤n ξi,n to the
standard Brown-Resnick process MB.

Theorem 2.1. We have the weak convergence, as n→ ∞,

max
i=1,...,n

ξi,n(t)
d
→ MB(t), t ∈ [0, 1]

on the space of continuous functions C[0, 1].

Remark 2.2. a) The process
{
Λ1/2UBi(t), t ≥ 0

}
has the same distribution as

{
Λ1/2Bi(t), t ≥ 0

}
, since U is

an orthogonal matrix and the law of the m-dimensional Brownian motion Bi is invariant with respect to
orthogonal transformations. Consequently, we have the equality in distribution{

‖Λ1/2UBi(t)‖22, t ≥ 0
} d

=
{
BT

i (t)ΛBi(t), t ≥ 0
}

=
{
λ1B2

i,1(t) + · · · + λmB2
i,m(t), t ≥ 0

}
.

b) If Σ = I, the identity matrix, then the above theorem implies that the maximum over squared Bessel
processes converges to the Brown-Resnick process, that is,

max
i=1,...,n

B2
i,1(1 + t/bn) + . . . + B2

i,m(1 + t/bn) − bn (1 + t/bn)

2
d
→ MB(t), t ∈ [0, 1].
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Since Bessel processes are defined as the norm of multivariate Brownian motions, we shall investigate
further the extremal behavior of the scalar product of two independent Brownian motion vector processes.
Let therefore {Bi, j, B̃i, j, i ∈ N, 1 ≤ j ≤ m} be independent standard Brownian motions on [0,∞) and define
for i ∈ N

γi(t) = Bi,1(t)B̃i,1(t) + . . . + Bi,m(t)B̃i,m(t), t ∈ [0,∞). (8)

By Lemma 4.1 in the Appendix it follows that for constants a∗n, b
∗
n defined by

a∗n = 1, b∗n = ln n + (m/2 − 1) ln(ln n) − (m/2 − 1) ln 2 − ln Γ (m/2) , n ≥ 1 (9)

the maximum process Mn,γ(t) = max{γ1(t), . . . , γn(t)} for a fixed t > 0 satisfies

lim
n→∞

P
(

Mn,γ(t) − b∗nt
a∗nt

≤ x
)

= exp
(
− exp(−x)

)
, x ∈ R. (10)

Note in passing that a∗n, b
∗
n are however different than in the case of squared Bessel processes. Similarly as

above we define for 1 ≤ i ≤ n the local processes

γi,n(t) = γi
(
1 + t/(2b∗n)

)
− b∗n

(
1 + t/(2b∗n)

)
, t ≥ 0. (11)

We have the following result for the convergence of max1≤i≤n γi,n, as n→ ∞.

Theorem 2.3. For n→ ∞, we have the weak convergence

max
i=1,...,n

γi,n(t)
d
→ MB(t), t ∈ [0, 1]

on the space of continuous functions C[0, 1].

2.2. Sketch of the proof
In this subsection we outline the main steps for proving Theorem 2.1 with Σ being the identity matrix.

The proof for general Σ and of Theorem 2.3 are similar. The details can be found in the next section.
Let us first remark that the space C[0, 1] of continuous functions is not locally compact. This fact prevents
us from applying the standard theory for Poisson point processes in extreme value theory. In particular, [30,
Theorem 5.3] is not applicable for Poisson point processes on the space C[0, 1]. We thus rely on a similar
technique as in the proof of Theorem 17 in Kabluchko et al. [24] in order to show negligibility of lower order
statistics.

The key idea is to represent the process (7) in the following way. For i ∈ N and 1 ≤ j ≤ m, write

Bi, j (1 + t/bn) d
=Bi, j(1) +

1
√

bn
B∗i, j(t), t ≥ 0, (12)

where {B∗i, j(t), i ∈ N, 1 ≤ j ≤ m} are independent standard Brownian motions being further independent of
{Bi, j(1), i ∈ N, 1 ≤ j ≤ m}. Naturally we denote B∗i = (B∗i,1, . . . , B

∗
i,m). Plugging (12) into the definition of ξi,n

(with Σ = I), we thus have

ξi,n(t) d
=

∑m
j=1(Bi, j(1))2 − bn

2
+

 1
√

bn

m∑
j=1

Bi, j(1)B∗i, j(t) −
t
2

 +
1

2bn

m∑
j=1

(B∗i, j(t))
2

=: Xi,n + Ri,n(t) − t/2 + δi,n(t), t ∈ [0, 1]. (13)

In order to prove that the pointwise maximum of n copies of ξi,n converges to the Brown-Resnick process
MB, as n→ ∞, the following facts will either be used or established.
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• The error term {δi,n(t), t ∈ [0, 1]} becomes uniformly small, as n→ ∞. Therefore it does not affect the
maximum process (cf., Corollary 3.4 below).

• The collection of random variables {Xi,n, 1 ≤ i ≤ n} converges to a Poisson point process {Xi, i ∈ N} on
R with intensity measure e−xdx which is used in the definition of MB in (2). This fact is well-known
from univariate extreme value theory [11].

• Among the processes {ξi,n, 1 ≤ i ≤ n} for computing max
i=1,...,n

ξi,n, only the ones where Xi,n is in a compact

interval contribute to the maximum on the space C[0, 1]. In fact, we show that conditional on Xi,n being
outside this compact set, the contribution of {Ri,n(t) − t/2, t ∈ [0, 1]} is asymptotically negligible (cf.
Lemma 3.3 below).

• On the other hand, {Ri,n(t) − t/2, t ∈ [0, 1]} conditional on Xi,n being bounded in the compact interval,
converges weakly to the drifted Brownian motion {B(t) − t/2, t ∈ [0, 1]} as in the definition of MB in
(2) (cf. Lemma 3.1 below).

In summary, these points show that the maximum over n processes in (13) converges (as n → ∞) to the
maximum of the Poisson point process of the sum of the {Xi, i ∈ N} and the drifted Brownian motions. This
is nothing else than the definition of the Brown-Resnick process (2).

3. Proofs

3.1. Preliminary lemmas

We first prove the following main lemma, which is of some independent interest as a tool for showing
weak convergence to the Brown-Resnick process. It gives explicit conditions under which the reasoning of
Subsection 2.2 can be made rigorous. For instance, the conditions apply to the framework in Brown and
Resnick [6] and thus our lemma implies their weak convergence results. In the following, for a continuous
function f ∈ C[0, 1] we denote ‖ f ‖ = supt∈[0,1] | f (t)|.

Lemma 3.1. For n ∈ N, 1 ≤ i ≤ n, let the following triangular arrays be given, where the elements within
the rows of each array are i.i.d.:

1. Identically distributed random variables Yi,n satisfying

P(Y1,1 > u) = (1 + o(1))Kuβe−cudu, u→ ∞, (14)

with constants K, c > 0, β ∈ R. By Theorem 3.3.26 in Embrechts et al. [11], this implies that

lim
n→∞

nP(X1,n > s) = e−s, ∀s ∈ R, (15)

where Xi,n = a−1
n (Yi,n − bn) and

an = c−1, bn = c−1
(
ln n + β ln(c−1 ln n) + ln K

)
, n ≥ 1. (16)

Assume further that for all large r and any p > 0

lim sup
n→∞

n
∫ −r

−bn/(2an)
e−px2P(Xi,n ∈ dx) < ∞. (17)
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2. Stochastic processes {Ri,n(t), t ∈ [0, 1]}, such that the vector (Xi,n,Ri,n(·)) has the same distribution as
(Xi,n, φi,nWi,n(·)), where Wi,n ∼ {W(t), t ∈ [0, 1]} are standard Brownian motions independent of the
Xi,n, and φi,n are positive random variables, independent of Wi,n such that for some q > 0

lim
n→∞

nP(φ1,n > q) = 0 (18)

and for any compact set K ⊂ R

lim
n→∞

P(|1 − φ1,n| > ε | X1,n ∈ K) = 0, ∀ε > 0. (19)

3. Stochastic processes {δi,n(t), t ∈ [0, 1]}, independent of Xi,n, such that

limn→∞ P(‖δ1,n‖ > ε) = 0, ∀ε > 0, (20)
limn→∞ nP(‖δ1,n‖ > C) = 0, for some C > 0. (21)

Then, we have the weak convergence

ηn(t) := max
i=1,...,n

ζi,n(t) := max
i=1,...,n

(
Xi,n + Ri,n(t) − t/2 + δi,n(t)

) d
→ MB(t), t ∈ [0, 1] (22)

on the function space C[0, 1], where {MB(t), t ∈ [0, 1]} is the original Brown-Resnick process given by (2).

Remark 3.2. If (14) holds, then condition (17) is satisfied if Y1,1 possesses a density h such that for some
c > 0

P(Y1,1 > u) = (1 + o(1))h(u)/c, u→ ∞.

We will prove first the following useful result.

Lemma 3.3. With the notation and under the assumptions of Lemma 3.1, for any ε > 0 we can find constants
R,N > 0 such that for any r > R and n > N, we have

P(An) := P
(
∃t ∈ [0, 1] : ηn(t) , max

i∈{1,...,n},|Xi,n |<r
ζi,n(t)

)
≤ ε. (23)

Proof. We apply a similar technique as in the proof of Theorem 17 in Kabluchko et al. [24]. First note that

An ⊂ Cn ∪ Dn ∪ (An \ [Cn ∩ Dn]) ,

where for some r, r1 > 0

Cn =

{
inf

t∈[0,1]
ηn(t) < −r1

}
, Dn =

n⋃
i=1

{
Xi,n > r

}
.

Clearly by (15), for N and R large enough it holds that P(Dn) = nP(X1,n > r) < ε, for any n > N, r > R.
Moreover, note that Cn ⊂

⋂n
i=1 Fc

i,n, where

Fi,n =

{
Xi,n ∈ [−r, r], inf

t∈[0,1]

(
Ri,n(t) − t/2 + δi,n(t)

)
≥ r − r1

}
.

In view of assumption (19), for

∆i,n(t) := Wi,n(t)(φi,n − 1), t ∈ [0, 1] (24)
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we obtain for any δ > 0

P(‖∆i,n‖ > δ|Xi,n ∈ [−r, r]) ≤ P(‖Wi,n‖ > δ/τ) + P(|(φi,n − 1)| > τ|Xi,n ∈ [−r, r]) (25)

≤ Φ(δ/τ) + ε/2
≤ ε

for sufficiently small τ > 0 with Φ the survival function of an N(0, 1) random variable. Further, using
assumption 2 of Lemma 3.1, (20) and (25), we obtain for any δ > 0

P
(

inf
t∈[0,1]

(
Ri,n(t) − t/2 + δi,n(t)

)
< r − r1

∣∣∣∣Xi,n ∈ [−r, r]
)

≤ P(‖δi,n‖ > δ) + P
(

inf
t∈[0,1]

(
Wi,n(t) − t/2 + ∆i,n(t)

)
< r − r1 + δ

∣∣∣∣Xi,n ∈ [−r, r]
)

≤ P(‖δi,n‖ > δ) + P(‖∆i,n‖ > δ|Xi,n ∈ [−r, r]) + P
(

inf
t∈[0,1]

Wi,n(t) < r − r1 + 2δ + 1/2
)

≤
1
2
,

for n and r1 sufficiently large. Thus, by (15)

P(Fi,n) ≥
1
2
P(Xi,n ∈ [−r, r]) ≥

r
n

+ o(1/n), n→ ∞

for r large enough and uniformly in i ∈ N, and consequently

P(Cn) ≤
(
1 − P(F1,n)

)n
≤

(
1 −

r
n

+ o(1/n)
)n
≤ 2e−r < ε

for r and n large. It remains to show that P(An \ (Cn ∩ Dn)) becomes small. To this end, define events

Ei,n =
{
Xi,n < −r, sup

t∈[0,1]
ζi,n(t) > −r1

}
and note that An \ (Cn ∩ Dn) is a subset of the union

⋃n
i=1 Ei,n. Let C > 0 be the constant in (21) and recall

the stochastic representation of Ri,n from assumption 2. Then

P(Ei,n) ≤P(‖δi,n‖ > C) + P
(
Xi,n < −r, sup

t∈[0,1]

(
Xi,n + φi,nWi,n(t) − t/2

)
> −r1 −C

)
. (26)

For n large enough, (21) implies that the first summand is bounded by ε/n. A coupling argument yields that
the second summand can be bounded from above by

P(φi,n > q) + P
(
Xi,n < −r, sup

t∈[0,1]

(
Xi,n + qWi,n(t)

)
> −r1 −C

)
,

where again the first summand is bounded by ε/n by (18). We can write

P
(
Xi,n < −r, sup

t∈[0,1]

(
Xi,n + qWi,n(t)

)
> −r1 −C

)
≤

∫ −bn/(2an)

−∞

P
(

sup
t∈[0,1]

Wi,n(t) >
−r1 − x −C

q

∣∣∣∣ Xi,n = x
)
P(Xi,n ∈ dx)

+

∫ −r

−bn/(2an)
P

(
sup

t∈[0,1]
Wi,n(t) >

−r1 − x −C
q

∣∣∣∣ Xi,n = x
)
P(Xi,n ∈ dx).

(27)
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Recall the estimate

P
(

sup
t∈[0,1]

Wi,n(t) > u
)
≤ 2Φ(u) ≤ e−u2/2

for large u > 0. Choosing r > 2(r1 + C) implies (−r1 − x − C)/q > −x/(2q) for all x < −r and thus the first
term in (27) is bounded from above by

P
(

sup
t∈[0,1]

Wi,n(t) >
−r1 −C + bn/(2an)

q

)
≤ e−(bn/(4anq))2/2 < ε/n,

with an and bn defined in (16). Similarly, the second term in (27) is bounded from above by∫ −r

−bn/(2an)
e−x2/(8q)P(Xi,n ∈ dx) ≤ ε/n,

as a consequence of (17). Collecting all parts together yields

P
 n⋃

i=1

Ei,n

 ≤ nP
(
Ei,n

)
≤ ε

and thus P(An) ≤ 3ε for all n > N and r > R with N,R large enough.

Corollary 3.4. With the notation and under the assumptions of Lemma 3.1, for any ε > 0 we can find an
N ∈ N, such that for all n > N we have

P
(

sup
t∈[0,1]

|ηn(t) − η̃n(t)| > ε
)
≤ ε,

where

η̃n(t) = max
i=1,...,n

(
Xi,n + Ri,n(t) − t/2

)
, t ∈ [0, 1]. (28)

Proof. For any ε > 0 we have

P
(

sup
t∈[0,1]

|ηn(t) − η̃n(t)| > ε
)

≤ P
(
∃t ∈ [0, 1] : ηn(t) , max

i∈{1,...,n},|Xi,n |<r

(
Xi,n + Ri,n(t) − t/2 + δi,n(t)

))
+P

(
∃t ∈ [0, 1] : η̃n(t) , max

i∈{1,...,n},|Xi,n |<r

(
Xi,n + Ri,n(t) − t/2

))
+P

(
∃i ∈ {1, . . . , n} : |Xi,n| < r, ‖δi,n‖ > ε

)
≤ ε/3 + ε/3 + nP

(
|Xi,n| < r)P(‖δi,n‖ > ε

)
≤ ε,

where for the first and second summand r and N can be chosen according to Lemma 3.3. The last inequality
then follows from assumptions (15) and (20).
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Proof of Lemma 3.1. The proof will consist of two steps. First, we establish convergence of the finite dimen-
sional margins in (22), and, second, we show that the sequence of probability measures {ηn}n∈N on C[0, 1] is
tight. In fact, by Corollary 3.4, {ηn}n∈N converges weakly on C[0, 1] if and only if the sequence of probability
measures {η̃n}n∈N in (28) converges weakly on C[0, 1], and, in this case, the limits are equal. In the sequel
we will therefore consider {η̃n}n∈N instead of {ηn}n∈N.
For the first part, let t = (t1, . . . , tm) ∈ [0, 1]m and (y1, . . . , ym) ∈ Rm be fixed. It follows from Lemma 4.1.3
in Falk et al. [15] that it suffices to proof the convergence

lim
n→∞

nP(∀ j :X1,n + R1,n(t j) − t j/2 > y j) =

∫
R

e−yP
(
∀ j : W(t j) − t j/2 > y j − y

)
dy, (29)

where {W(t),t ∈ [0, 1]} is a standard Brownian motion. To this end, we recall the definition of ∆1,n in (24)
and, for clarity, denote by {W1,n(t) = W1,n(t) − t/2, t ∈ [0, 1]} the drifted process. For arbitrary δ, r > 0 we
obtain the estimate

P(∀ j : X1,n + W1,n(t j) + ∆1,n(t j) > y j) ≤ P(∀ j : X1,n + W1,n(t j) > y j − δ, |X1,n| < r)

+P(∀ j : X1,n + W1,n(t j) + ∆1,n(t j) > y j, |X1,n| > r)
+P(‖∆1,n‖ > δ, |X1,n| < r). (30)

Furthermore, as n→ ∞, the first summand fulfills

nP(∀ j : X1,n + W1,n(t j) > y j − δ, |X1,n| < r) =

∫ r

−r
P(∀ j : W1,n(t j) > y j − y − δ)nP(X1,n ∈ dy)

→

∫ r

−r
e−yP(∀ j : W1,1(t j) > y j − y − δ) dy,

since by (15), nP(X1,n ∈ dy) converges weakly to e−ydy, as n → ∞. Now, in view of the calculations
following (26) for the second summand in (30), and (25) and (15) for the third summand in (30), we have

lim sup
n→∞

nP(∀ j : X1,n + W1,n(t j) + ∆1,n(t j) > y j)

≤ lim
r→∞

∫ r

−r
e−yP(∀ j : W1,1(t j) > y j − y − δ) dy

+ lim
r→∞

lim sup
n→∞

nP(∀ j : X1,n + W1,n(t j) + ∆1,n(t j) > y j, |X1,n| > r)

+ lim
r→∞

lim sup
n→∞

nP(‖∆1,n‖ > δ, |X1,n| < r)

=

∫
R

e−yP(∀ j : W1,1(t j) > y j − y − δ) dy. (31)

Similarly, we can show that

lim inf
n→∞

nP(∀ j : X1,n + W1,n(t j) + ∆1,n(t j) > y j) ≥
∫
R

e−yP(∀ j : W1,1(t j) > y j − y + δ) dy. (32)

Since δ > 0 was arbitrary, (29) follows from (31) and (32) as δ ↘ 0, and thus the convergence of finite
dimensional margins.

In order to show the tightness of the sequence {η̃n}n∈N we note that the sequence {η̃n(0)}n∈N is tight since
it equals {maxi=1,...,n Xi,n}n∈N which converges to the Gumbel distribution by (15). For a function g ∈ C[0, 1]
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and any κ > 0, we define the modulus of continuity ωκ(g)

ωκ(g) = sup
s,t∈[0,1],|s−t|≤κ

|g(s) − g(t)|.

By Theorem 7.3 in Billingsley [5] it suffices to find for any ε, α > 0 a κ > 0 and N ∈ N such that

P(ωκ(η̃n) > α) < ε, n > N.

By choosing κ > 0 small enough, we get for any r > 0

P(ωκ(X1,n + W1,n + ∆i,n) > α | Xi,n ∈ [−r, r]) ≤ P(ωκ(W1,n) > α/2) + P(‖∆1,n‖ > α/2 | Xi,n ∈ [−r, r])
≤ ε/2 (33)

for all n > N with N large enough, because of the fact that W1,n is independent of X1,n and its distribution
does not depend on n, and condition (25). We proceed by noting that for any n, we have

{ωκ(η̃n) > α} ⊂
(
{ωκ(η̃n) > α} ∩ ÃC

n

)
∪ Ãn ⊂

 n⋃
i=1

Gi,n,

 ∪ Ãn, (34)

where

Ãn =

{
∃t ∈ [0, 1] : η̃n(t) , max

i∈{1,...,n},|Xi,n |<r

(
Xi,n + Ri,n(t) − t/2

)}
and

Gi,n =
{
Xi,n ∈ [−r, r], ωκ(Xi,n + W1,n + ∆i,n) > α

}
.

Conditioning we obtain for any ε′ > 0

P(Gi,n) = P(ωκ(Xi,n + W1,n + ∆i,n) > α | Xi,n ∈ [−r, r])P(Xi,n ∈ [−r, r]) ≤ ε′ P(Xi,n ∈ [−r, r])

by (33) and κ > 0 small enough, for any n > N. Thus, since by (15), P(Xi,n ∈ [−r, r]) is of order 1/n, we
have for any n > N with N large enough

P
 n⋃

i=1

Gi,n

 ≤ nP(Gi,n) < ε/2. (35)

Consequently, (34) together with (23) and (35) implies P(ωκ(η̃n) > α) < ε, for n > N, and hence the tightness
of {η̃n}n∈N.

3.2. Proofs of Theorems 2.1 and 2.3
Proof of Theorem 2.1. For simplicity, we drop the index 1 ≤ i ≤ n in the proof, since all random objects are
i.i.d. in this index. With Remark 2.2 and (12) in Subsection 2.2 we obtain the stochastic representation

ξn(t) d
=

(
B(1) +

√
1
bn

B∗(t)
)T

Λ

(
B(1) +

√
1
bn

B∗(t)
)
− bn (1 + t/bn)

2

=
B(1)T ΛB(1) − bn

2
+

(
1
√

bn
B(1)T ΛB∗(t) −

t
2

)
+

1
2bn

B∗(t)T ΛB∗(t) (36)

=: Xn + Rn(t) − t/2 + δn(t), t ∈ [0, 1]. (37)
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We check the assumptions of Lemma 3.1. By Lemma 4.1 in the Appendix, Yn := 2Xn + bn satisfies for
u→ ∞ (recall Cm,p =

∏m
i=p+1

1
√

1−λi
for p < m and Cm,m = 1)

P (Y1 > u) =
Cm,p

2p/2−1Γ(p/2)
up/2−1 exp(−u/2)

(
1 + O(1/u)

)
= 2P (Y1 ∈ du)

(
1 + O(1/u)

)
and hence assumption 1 of Lemma 3.1 holds (recall Remark 3.2).

A simple calculation with characteristic functions yields(
B(1)T ΛB(1),B(1)T ΛB∗(·)

) d
=

(
B(1)T ΛB(1),

√
B(1)T Λ2B(1)Wn(·)

)
d
=

 m∑
j=1

λ jB2
j (1),

√√ m∑
j=1

λ2
j B

2
j (1)Wn(t)

 ,
where {Wn(t) : t ∈ [0, 1]} are i.i.d. standard Brownian motions, independent of B(1). Thus, for Xn and Rn in
(37) we have the joint stochastic representation

(Xn,Rn) d
= (Xn, φnWn(·)) , φn :=

√∑m
j=1 λ

2
j B

2
j (1)

bn
.

Assume next for simplicity that p < m, the case p = m is easy. By Lemma 4.1 the tail asymptotics of∑m
j=1 λ

2
j B

2
j (1) and

∑m
j=1 λ jB2

j (1) are the same up to a positive constant. Hence, using (15) for any q > 1

lim
n→∞

nP
(
φ1,n > q

)
= lim

n→∞
nP

 m∑
j=1

λ2
j B

2
j (1) > bnq2

 = 0.

For arbitrary ε, r > 0 observe

P(|1 − φn| > ε|Xn ∈ [−r, r]) = P

 m∑
j=1

λ2
j B

2
j (1) < [bn(1 − ε)2, bn(1 + ε)2]

∣∣∣∣ m∑
j=1

λ jB2
j (1) ∈ [bn − 2r, bn + 2r]


≤ P

 p∑
j=1

B2
j (1) < bn(1 − ε/2)2

∣∣∣∣ m∑
j=1

λ jB2
j (1) ∈ [bn − 2r, bn + 2r]

 , (38)

since

p∑
j=1

B2
j (1) ≤

m∑
j=1

λ2
j B

2
j (1) ≤

m∑
j=1

λ jB2
j (1).

Using the same arguments as in the proof of Theorem 1 in Hüsler et al. [21], we can show that (38) converges
to 0, as n→ ∞. Thus, assumption 2 of Lemma 3.1 is fulfilled.

We note that δn in (37) is independent of Xn and for any ε > 0

P(‖δn‖ > ε) = P
(

sup
t∈[0,1]

(
B∗(t)T ΣB∗(t)

)
> 2bnε

)
→ 0, n→ ∞.
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Moreover, for a C > 1, in view of the Piterbarg inequality given in Proposition 3.2 in Tan and Hashorva [31]
(see also Theorem 8.1 in Piterbarg [28], or in Piterbarg [29]), we have for some positive constant λ

nP(‖δn‖ > C) = nP
(

sup
t∈[0,1]

(
B∗(t)T ΣB∗(t)

)
> 2bnC

)
≤ nP

(
sup

t∈[0,1]

(
B∗(t)T IB∗(t)

)
> 2bnC

)
≤ nbλne−bnC

→ 0, n→ ∞

and thus assumption 3 of Lemma 3.1 holds, and the assertion of the theorem follows.

Proof of Theorem 2.3. Again, for simplicity, we drop the index 1 ≤ i ≤ n in the proof. By the independent
increment property of Brownian motion, we write for 1 ≤ j ≤ m

B j
(
1 + t/(2b∗n)

) d
=B j(1) +

1√
2b∗n

B∗j(t), B̃ j
(
1 + t/(2b∗n)

) d
=B̃ j(1) +

1√
2b∗n

B̃∗j(t) t ≥ 0, (39)

where {B∗j(t), B̃
∗
j , 1 ≤ j ≤ m} are independent standard Brownian motions being further independent of

{B j(1), B̃ j, 1 ≤ j ≤ m}. Plugging (39) into the definition of γn in (11), we get

γn(t) d
=

 m∑
j=1

B j(1)B̃ j(1) − b∗n

 +

 1√
2b∗n

m∑
j=1

B j(1)B̃∗j(t) +
1√
2b∗n

m∑
j=1

B̃ j(1)B∗j(t) −
t
2

 +
1

2b∗n

m∑
j=1

B∗j(t)B̃
∗
j(t)

=: Xn + Rn(t) − t/2 + δn(t), t ∈ [0, 1]. (40)

As above, we only have to check the assumptions of Lemma 3.1. By Lemma 4.1 in the Appendix, Yn :=
Xn + b∗n satisfies for u→ ∞

P (Y1 > u) = (1 + o(1))
1

2m/2Γ(m/2)
um/2−1 exp(−u) = (1 + o(1))P (Y1 ∈ du)

and hence assumption 1 of Lemma 3.1 holds (recall again Remark 3.2).
A simple calculation with characteristic functions yields for Xn and Rn in (40) the joint stochastic repre-

sentation

(Xn,Rn) d
= (Xn, φnWn(·)) , φn :=

√
Ψn

2bn
, Ψn :=

m∑
j=1

(
B2

j (1) + B̃2
j (1)

)
,

where {Wn(t), t ∈ [0, 1]} are i.i.d. standard Brownian motions, independent of the Xn. Clearly, since Ψn is
chi-square distributed with 2m degrees of freedom, it holds for any q > 1 that

lim
n→∞

nP(φn > q) = lim
n→∞

nP
(
Ψn > 2bnq2

)
≤ lim

n→∞
nK exp(−bnq2) = 0,

12



where K > 0 is a constant. Furthermore, for arbitrary ε, r > 0 we have

P (|1 − φn| > ε|Xn ∈ [−r, r]) (41)

= P

Ψn < [2bn(1 − ε)2, 2bn(1 + ε)2]
∣∣∣∣ m∑

j=1

B j(1)B̃ j(1) ∈ [bn − r, bn + r]


=

P
(
Ψn < [2bn(1 − ε)2, 2bn(1 + ε)2] ,

∑m
j=1 B j(1)B̃ j(1) ∈ [bn − r, bn + r]

)
P

(∑m
j=1 B j(1)B̃ j(1) ∈ [bn − r, bn + r]

) .

By Lemma 4.1, for large n ∈ N the denominator can be bounded by

P

 m∑
j=1

B j(1)B̃ j(1) ∈ [bn − r, bn + r]

 ≥ K′
(
(bn − r)m/2−1er − (bn + r)m/2−1e−r

)
e−bn (42)

for some constant K′ > 0. For the numerator we first note that

Ψn =

m∑
j=1

(
B2

j (1) + B̃2
j (1)

)
≥ 2

m∑
j=1

B j(1)B̃ j(1)

and thus for n large enough it suffices to consider

P

Ψn > 2bn(1 + ε)2 , 2
m∑

j=1

B j(1)B̃ j(1) ∈ [2bn − 2r, 2bn + 2r]


≤ P

 m∑
j=1

(
B j(1) + B̃ j(1)

)2
> 2bn(1 + ε)2 + 2bn − 2r


≤ P

(
2χ2

m > 4bn(1 + ε) − 2r
)

≤ K′′(2bn(1 + ε) − r)m/2−1e−bn(1+ε), (43)

where χ2
m is a chi-square distribution with m degrees of freedom and K′′ > 0 is a constant. From (42) and

(43) it is now obvious, that the probability in (41) turns to 0, as n → ∞. Thus, assumption 2 of Lemma 3.1
is fulfilled.

Note that δn in (40) is independent of Xn. For any ε > 0

P(‖δn‖ > ε) = P

 sup
t∈[0,1]

∣∣∣∣∣∣∣∣
m∑

j=1

B∗j(t)B̃
∗
j(t)

∣∣∣∣∣∣∣∣ > 2bnε


≤ mP

(
sup

t∈[0,1]

∣∣∣B∗1(t)
∣∣∣ sup

t∈[0,1]

∣∣∣B̃∗1(t)
∣∣∣ > 2bnε/m

)
≤ M exp

(
−

bnε

m

)
= M′n−ε/m(ln(n))−(m/2−1)ε/m) → 0, n→ ∞,

where the second inequality follows from Lemma 2.1 in [2] (see also Corollary 2.2 in [20]) and M,M′ are
positive constants. Clearly, for C > m we further have

nP(‖δn‖ > C)→ 0, n→ ∞.

Thus assumption 3 of Lemma 3.1 holds, and the proof is complete.
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4. Conclusion and further work

Brown-Resnick processes have gained a lot of attention recently both because of their theoretical in-
tricacies as well as their potential applicability, especially in space-time modeling of extreme events; see
Davison et al. [8]. To this end, it is an important fact that this class of max-stable processes naturally appears
as max-limits of Gaussian processes (cf. Kabluchko et al. [24], Kabluchko [23]). We have shown that these
processes appear more generally as limits of maxima of not only Gaussian, but also squared Bessel processes
and Brownian scalar product processes. Further generalizations are under investigation. A recent work by
Engelke et al. [13] shows that Hüsler-Reiss type limit distributions are also obtained for non-identically
distributed independent Gaussian random vectors. A natural extension could be thus to consider maxima
of non-identically distributed independent Gaussian processes and their functional limits. Furthermore, the
independence assumption can be eventually relaxed as in Hashorva and Weng [19], so that the limit process
still remains Brown-Resnick. With regard to applications, there have been some developments in simulating
Brown-Resnick processes [9, 12, 27]. An alternative formulation as the limit of other processes as described
in this paper can potentially lead to further techniques for simulation.
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Appendix

Lemma 4.1. If Xi,Yi, i ≥ 1, are independent N(0, 1)random variables, then for any two integers p > 1, k ≥ 0
and 1 = λ1 = · · · = λp > λp+1 ≥ · · · ≥ λp+k ≥ 0, as x→ ∞ we have

P

 p+k∑
i=1

λiXiYi > x

 =
Ck

2p/2Γ(p/2)
xp/2−1 exp(−x)

(
1 + O(1/x)

)
= f (x)

(
1 + O(1/x)

)
, (44)

P

 p+k∑
i=1

λiX2
i > x

 =
C∗k

2p/2−1Γ(p/2)
xp/2−1 exp(−x/2)

(
1 + O(1/x)

)
= 2g(x)

(
1 + O(1/x)

)
, (45)

where f and g are the densities of
∑p+k

i=1 λiXiYi and
∑p+k

i=1 λiX2
i , respectively. Here C0 = C∗0 := 1 and

Ck :=
k∏

i=1

1√
1 − λp+i

, C∗k :=
k∏

i=1

1√
1 − λ2

p+i

.

Furthermore
∑p+k

i=1 λiXiYi is in the Gumbel max-domain of attraction with norming constants

a∗n = 1, b∗n = ln n + (p/2 − 1) ln(ln n) − (p/2 − 1) ln 2 − ln(Γ(p/2)/Cp).

Proof. The proof follows from Example 5 and 6 in Hashorva et al. [18]. The norming constants can be
easily found; see e.g., [11, p.155].
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