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Abstract
A brief exposure to rightward prismatic adaptation (PA) was shown to shift visual field representation within the inferior
parietal lobule (IPL) from the right to the left hemisphere. This change in hemispheric dominance could be interpreted
as (1) a general effect of discrepancy in visuomotor alignment caused by PA or (2) a direction-specific effect of
rightward PA. To test these hypotheses, we compared the effects of rightward and leftward PA on visual represen-
tation in normal human subjects. Three groups of normal subjects underwent an fMRI evaluation using a simple visual
detection task before and after brief PA exposure using leftward- or rightward-deviating prisms or no prisms (L-PA,
R-PA, neutral groups). A two-way ANOVA group � session revealed a significant interaction suggesting that
PA-induced modulation is direction specific. Post hoc analysis showed that L-PA enhanced the representation of the
right visual field within the right IPL. Thus, a brief exposure to L-PA enhanced right hemispheric dominance within the
ventral attentional system, which is the opposite effect of the previously described shift in hemispheric dominance
following R-PA. The direction-specific effects suggest that the underlying neural mechanisms involve the fine-tuning
of specific visuomotor networks. The enhancement of right hemispheric dominance following L-PA offers a parsimo-
nious explanation for neglect-like symptoms described previously in normal subjects.
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Introduction
Prismatic adaptation (PA) consists of a brief session

during which subjects point to targets under visual control
while wearing goggles with prisms that deviate the visual

field to the right or to the left. First pointings are charac-
terized by errors that disappear after 10–15 trials. The
adaptation is typically measured once the prisms are
removed by the so-called “aftereffect” that corresponds
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Significance Statement

Leftward-deviating prisms (L-PA) increased the representation of the right visual field within the right inferior
parietal lobule (IPL). This enhancement of the right hemispheric dominance within the ventral attentional
system contradicts the dominance shift, from right to left hemisphere, which is induced by rightward-
deviating prisms (R-PA). Thus, the PA-induced modulation of hemispheric dominance within the ventral
attentional system is sensitive to the direction of prismatic deviation and is likely to depend on fine-tuning
of specific visuomotor networks. The overemphasis of right visual field representation within the (right)
ventral attentional system offers a parsimonious explanation for neglect-like effects following L-PA.
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to the pointing errors opposite to the deviation and that
reflects the prism-induced sensorimotor realignment
(Weiner et al., 1983). Adaptation to rightward-deviating
prisms (R-PA) yields a systematic leftward deviation of
visuomotor and proprioceptive responses, whereas adap-
tation to leftward-deviating prisms (L-PA) yields a system-
atic rightward deviation (Rossetti et al., 1998; Redding
et al., 2005; Jacquin-Courtois et al., 2013).

The neural processes underlying ongoing PA have been
studied in normal subjects during different stages of PA.
These studies showed primary activation within the
parieto-temporal cortex and the cerebellum, suggesting a
visual and proprioceptive spatial realignment during L-PA
(Luauté et al., 2009; Chapman et al., 2010) and R-PA
(Danckert et al., 2008); alternating L-PA and R-PA was
used in an early study and provided evidence for the
involvement of parietal cortex in adaptation (Clower et al.,
1996). The effects after the adaptation have been inves-
tigated in normal subjects using rightward deviating
prisms (Crottaz-Herbette et al., 2014). By comparing task-
related activations acquired pre and post-PA, this study
showed that R-PA bilaterally modulated the activation in
the inferior parietal lobule (IPL) during visual target detec-
tion by increasing the representation of left, central, and
right visual fields in the left IPL and by decreasing the
representation of right and central visual fields in the right
IPL. Thus, R-PA shifted hemispheric dominance for visu-
ospatial representation within the ventral attentional sys-
tem from the right to the left hemisphere; this shift is most
likely one of the key mechanisms which underlies thera-
peutic effect of R-PA in neglect (Clarke and Crottaz-
Herbette, 2016).

This rapid change in hemispheric dominance could be
interpreted in two different ways. First, it may be induced
by any discrepancy in sensorimotor realignment, possibly
by uncovering pre-existing bilateral visual representations
within the left IPL (de Haan et al., 2015) or by tapping into
the left-dominant motor attentional system (Rushworth
et al., 2001, 2003). If this is the case, then adaptations to
leftward or rightward prisms should lead to similar mod-
ulations of the ventral attentional system with an in-
creased activation of the left IPL and a decreased
activation of the right IPL during a visual detection task
after both adaptations. Second, the change in hemi-
spheric dominance may be specific to the direction of PA,
suggesting that fine-tuning of visuospatial representa-
tions in response to specific visuomotor adaptation plays

a critical role. In the case of direction specificity, L-PA
could be expected to yield the opposite effect to R-PA,
namely, to increase activation in the right IPL in response
to ipsilateral, right targets. If present, the effect of L-PA
may offer a highly interesting therapeutic option for the
treatment of attentional disorders, which can occur in left
hemispheric stroke (Murakami et al., 2014). To test the
two hypotheses, we compared the effects of L-PA and
R-PA on visual representation. The current study involved
three groups of normal subjects who underwent func-
tional MRI during a simple visual detection task before
and after a brief adaptation session wearing leftward- or
rightward-deviating prisms or plain glasses (L-PA, R-PA,
neutral groups).

Materials and Methods
Participants

Forty-two participants were included in this study, with
14 participants (seven men, mean age � 24.1, SD � 3.0
years) undergoing L-PA, 14 participants (seven men,
mean age � 26.0 years, SD � 5.0 years) undergoing
R-PA, and 14 participants (seven men, mean age � 25.8
years, SD � 5.1 years) in the control group (neutral). A
one-way ANOVA comparing the mean age between the
three groups did not show a significant difference be-
tween the groups (F(2,39) � 0.85, p � 0.44). All participants
were right handed (Oldfield, 1971) and had a normal or
corrected-to-normal vision. None of the subjects had a
neurological or psychiatric illnesses. All participants gave
written informed consent according to procedures ap-
proved by the Ethics Committee of the Faculty of Biology
and Medicine, University of Lausanne.

Experimental design
The same procedure was used for the L-PA, R-PA, and

neutral groups, comprising two MRI blocks that were
separated by an intervention using visuomotor adapta-
tion. MRI blocks consisted of anatomical sequences (only
before the adaptation) and event-related fMRI acquisi-
tions (before and after the adaptation). The R-PA and
neutral groups did two other tasks that were analyzed
elsewhere (Crottaz-Herbette et al., 2014). The delay be-
tween the adaptation and the detection task was the
same for the three groups.

Visual detection task
During the fMRI acquisitions, all participants had to

press the response button when they detected a large
white star on black background. These visual stimuli were
presented for 500 ms in three different locations: in the
midsagittal plane, at 20° to the right or 20° to the left. The
locations were pseudorandomized and each location was
presented 20 times. The interevent intervals were jittered,
between 1 and 20 s with steps of 1 s. During this task,
participants were asked to fixate on a central fixation
point. Participants responded by pressing a button with
their right hand as soon as they detected the visual stim-
ulus. The tasks were programmed using the software
E-Prime (Psychology Software Tools). The duration of the
task was 6 min 44 s.
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Visuomotor adaptation
The visuomotor adaptation was performed outside the

scanner and consisted of pointing with the one index finger
to visual targets presented 14° to the left or to the right of the
midsagittal plane. The prisms (www.optiquepeter.com) de-
viated the visual field 10° to the left for the L-PA group and
to the right for the R-PA group (Rossetti et al., 1998; Redding
et al., 2005; Rode et al., 2006); goggles without deviation
were used for the neutral group. During the pointing move-
ments, participants in the R-PA and neutral groups used
their right index finger whereas participants in the L-PA
group used their left index finger. With the exception of the
hand used during the adaptation, the procedure for PA,
including the positioning of the participants, was similar
across our three groups.

The choice of the left hand for pointing in the L-PA
group was motivated by putative clinical implications. If
L-PA enhances right hemispheric dominance within the
ventral attentional system, as postulated in our hypothe-
sis, it may offer an interesting therapeutic approach for
attentional disorders in left hemispheric stroke (which is
often associated with motor deficits of the right upper
limb). Each participant’s head was immobilized in a head
rest and the first two thirds of the pointing trajectories
were hidden from his/her view. The visuomotor adapta-
tion involved 3 min of pointing movements. The pointing
was paced by the experimenter, who indicated verbally
which of the two points should be targeted next. To avoid
automatic pointing, the intertrial interval varied (1.0–1.5 s)
and the order of targets was pseudorandomized. The total
number of pointing movements was on average 150
(range � 145–155). The time for pointing was kept con-
stant across subjects, as was the time between the two
fMRI sessions.

During the first trials, participants showed initial errors
in the direction of the prisms’ deviation, and then they all
pointed correctly to the targets. Immediately after the
goggles were removed, the aftereffect was assessed by
asking the participants to look at one of the visual targets
and then to close their eyes and to reach for the target
with the index finger used during the adaptation. A similar
procedure was used twice for the left target and twice for
the right target in a pseudorandom order; the number of
measures was limited in order to minimize de-adaptation
before the second fMRI session. For each participant and
each target position, we put a mark on the table where the
participant pointed, and we measured, in mm, the devia-
tion between the pointing and the actual target, with
positive values representing a deviation to the right of the
targets and negative values representing a deviation to
the left of the targets. We averaged the two pointings for
each target location. A mixed design ANOVA with group
(R-PA, L-PA, neutral) as a between-subjects factor and
side of target (left, right) as a within-subjects factor was
conducted on these data.

Data acquisition
Imaging acquisitions, structural MRI and event-related

fMRI were conducted at the Lemanic Biomedical Imaging
Center (Centre d’Imagerie Biomédicale) in the Centre Hos-

pitalier Universitaire Vaudois, Lausanne on a 3T Siemens
Magnetom Trio scanner with a 32-channel head-coil. A
single-shot echo planar imaging gradient echo sequence
(repetition time � 2 s; flip angle � 90°; echo time � 30 ms;
number of slices � 32; voxel size � 3 � 3 � 3 mm; 10%
gap) was used for fMRI acquisitions. A total of 32 slices were
acquired in the AC-PC plane in a sequential ascending order
and covered the whole head volume. For each participant, a
high-resolution T1-weighted 3D gradient-echo sequence
was acquired (160 slices, voxel size � 1 � 1 � 1 mm). We
put padding around each participant’s head to prevent head
movements in the coil.

Data analysis
Behavioral performances (reaction time and number of

correct responses) recorded during the task were ana-
lyzed with a mixed design ANOVA with group (R-PA,
L-PA, neutral) as the between-subjects factor and session
(1, 2) as the within-subjects factor. The software Statisti-
cal Parametric Mapping (SPM8, Wellcome Department of
Cognitive Neurology, London, United Kingdom) was used
to process imaging data. For the functional acquisition,
a motion correction was performed by applying a
6-parameter rigid-body transformation minimizing the dif-
ference between each image and the first scan. These
realigned images were co-registered with the partici-
pants’ anatomic images and then normalized to the Mon-
treal Neurological Institute (MNI) template using a twelve
parameters affine transformation. Finally, these images
were resliced to obtain a 2 � 2 � 2 mm voxel size and
spatially smoothed using an isotropic Gaussian kernel of
6-mm FWHM to increase signal-to-noise ratio.

For each participant, the general linear model, as im-
plemented in SPM8 software (http://www.fil.ion.ucl.ac.uk/
spm/software/spm8/), was used for the first level
statistics. The parameters of the realignment were in-
cluded in the model as regressors. For all participants,
contrasts of interests were specified for both sessions.
The maps generated from these contrasts were used as
the second-level (group-level) statistics based on the ran-
dom field theory. All group analyses were restricted to
voxels with the probability of belonging to gray matter
greater than 50%, as defined in the a priori template
available in SPM.

Statistical analyses on the activation maps were con-
ducted on a general mixed design ANOVA that included
the factors group (R-PA, L-PA, neutral) as the between-
subjects factor and session (1, 2) and stimulus position
(left, center, right) as the within-subjects factors. From this
general ANOVA, the first analysis was on the interaction
between the three factors (group � stimulus position �
session) to determine the effects of our factors globally.
Then, the interaction between the factors group and session
was analyzed to determine the relationship between these
two factors independent of the stimulus positions. The gen-
erated statistical maps of activation for these interactions
were set at a threshold of p � 0.05 and a cluster extent of
k � 100 (above the expected number of voxels per cluster as
automatically calculated by SPM). The effects of each inter-
vention were further investigated by directly comparing ses-
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sion 1 to session 2 (post hoc t tests) for each stimulus
position and each group separately. The generated statisti-
cal maps of activation for these t tests were set at a thresh-
old of p � 0.05 and a cluster extent of k � 150 (above the
expected number of voxels per cluster as automatically
calculated by SPM).

Results
Aftereffects of the visuomotor adaptation

The aftereffects of PA occurring after the removal of the
prismatic goggles were assessed as pointing errors to the
right or left of the actual target (expressed in positive and
negative values, respectively). For the L-PA group, the point-
ing errors were always to the right of the left and right
targets; the means of the pointing errors were �5.1 � 2.4
cm for the left target and �5.9 � 2.4 mm for the right target.
For the R-PA group, the pointing errors were always to the
left of the left and right targets. For this group, the means of
the pointing errors were �66 � 16 mm (mean � SD) for the
left target and �5.6 � 1.9 mm for the right target. For the
neutral group, pointing errors were to the right or to the left
of the targets; mean pointing errors were �7.0 � 1.1 cm for
the left target and �6 � 8 mm for the right target. A two-way
mixed design ANOVA with group (L-PA, R-PA, neutral) as
the between-subjects factor and side of target (left, right) as
the within-subjects factor revealed a significant main effect
of group (F(2,39) � 314.9; p � 0.001) but no significant effect
for the side of the target or interaction. The aftereffects were
globally larger for the L-PA and R-PA than for the neutral
group, with the R-PA group showing errors to the left of the
targets and the L-PA group showing errors to the right of the
targets.

Behavioral results of the visual detection task
For accuracy (Table 1), an ANOVA including the factors

groups (L-PA, R-PA, neutral), sessions (1, 2) and stimulus
positions (left, center, right) did not show a significant
effect. For the reaction times (Table 1), the ANOVA includ-
ing the factors group (L-PA, R-PA, neutral), session (1, 2),
and stimulus position (left, center, right) showed only one
significant main effect for the factor stimulus position
(F(2,38) � 14.73, p � 0.01), with the subjects being globally
faster for the central position.

Modulation of activation patterns by interventions
The overall modulations were analyzed with a mixed de-

sign ANOVA with group (L-PA, R-PA, neutral) as the

between-subjects factor and session (1, 2) and stimulus
position (left, center, right) as the within-subjects factors.
The triple interaction between the factors group, session,
and stimulus position yielded a significant effect in the right
angular gyrus, the left anterior superior and the middle tem-
poral gyri and bilaterally in the superior (medial) parietal
regions, the precuneus, medial and middle frontal gyri, SMA
and the middle cingulate areas (Fig. 1A). The interaction
between the factors group and session yielded a significant
effect on the left hemisphere in the angular gyrus, the middle
temporal gyrus and the middle occipital gyrus, on the right
hemisphere in the supramarginal gyrus, and bilaterally in the
superior temporal gyrus and the orbito-frontal cortex (Fig.
1B). These results indicate that the direction of prismatic
deviation impacts the PA-induced modulation of activity
within the left and the right IPL.

To gain insight into the direction-specific changes of
the PA intervention, the effects were analyzed separately
for each of the three intervention groups and stimulus
position with paired t tests comparing activation pre- and
postintervention. L-PA enhanced the response to right
visual targets within the ipsilateral, right angular gyrus
(Fig. 1C). R-PA enhanced the response to right, central,
and left targets within the left IPL as described previously
(Crottaz-Herbette et al., 2014), as well as in parts of the
prefrontal and temporal cortexes for the central and right
targets (Fig. 1D). Exposure to plain goggles increased the
response to right targets bilaterally in the superior tempo-
ral gyrus and to left targets within the right supramarginal
gyrus and bilaterally within the occipital cortex (Fig. 1E).
Thus, there is a striking but opposing effect of PA depend-
ing on the direction of prismatic deviation. L-PA enhanced
right hemispheric dominance within the ventral attentional
system by increasing the representation of the right visual
field within the ipsilateral, right IPL. R-PA shifted this
hemispheric dominance from the right to the left IPL by
increasing the representation of right, central, and left
visual field within the left IPL (see also Crottaz-Herbette
et al., 2014; Clarke and Crottaz-Herbette, 2016).

Direction-specific effects of PA on hemispheric
dominance within the ventral attentional system

IPL is classically subdivided into angular and supramar-
ginal gyri, each of which comprises several subdivisions
defined by cytoarchitectonic and connectivity criteria
(Caspers et al., 2008; Mars et al., 2011). The effects which
we report here involved mostly the angular and less so the

Table 1. Average accuracy (mean � SEM; top) and average reaction times (bottom) for the visual detection task for the L-PA,
R-PA, and neutral groups for both sessions (1 and 2) and for all stimulus positions (left, central, and right targets)

Left targets Central targets Right targets
Session 1 2 1 2 1 2

Accuracy (%)
L-PA 99.64 � 0.36 98.93 � 1.07 98.93 � 0.57 99.29 � 0.49 99.64 � 0.36 100.00 � 0.00
R-PA 98.21 � 1.00 99.29 � 0.49 100.00 � 0.00 99.29 � 0.71 96.79 � 1.62 99.64 � 0.36
Neutral 100.00 � 0.00 98.21 � 1.79 99.64 � 0.36 99.29 � 0.49 99.64 � 0.36 98.57 � 1.10
Reaction time (ms)
L-PA 388 � 24 399 � 17 383 � 24 385 � 17 379 � 23 403 � 19
R-PA 408 � 15 416 � 19 397 � 15 403 � 15 401 � 13 414 � 15
Neutral 375 � 10 404 � 14 360 � 10 383 � 14 365 � 9 396 � 10
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supramarginal gyrus. The right angular gyrus showed a
significant interaction between the factors group � ses-
sion � stimulus position, which was driven by a strong
increase in activation by right targets following L-PA (Fig.
1A,C). The left angular gyrus showed a significant inter-
action between the factors group � session, which was
driven by a strong increase in activation by left, central,
and right targets following R-PA (Fig. 1B,D; Crottaz-
Herbette et al., 2014). In both hemispheres these clusters
were within the cytoarchitectonic areas PGa and PGp of
the angular gyrus (Caspers et al., 2008), known for their
role in redirecting of visuospatial attention (Mort et al.,

2003; Thiel et al., 2004). The supramarginal gyrus was
highlighted on the right side by a significant interaction
between the factors group � session, which appeared to
be driven by an increase in activation in the control con-
dition (Fig. 1B,E). This part of the supramarginal gyrus
corresponds to the cytoarchitectonic areas PF and PFt
(Caspers et al., 2008), which plays a role in visuomotor
coordination (Binkofski et al., 1999; Frey et al., 2005; Grol
et al., 2007). In summary, PA appears to affect the atten-
tional module within the angular gyrus: L-PA increases the
representation of right targets on the right side, whereas
R-PA increases the representation of left, central, and right

Figure 1. Surface renderings of the brain activation showing significant activation in the general mixed design ANOVA for the
interaction between all three factors, group as the between-subjects factor and session and stimulus position as the within-subjects
factors (A); and for the interaction between the factors group and session (B). C–E, Surface renderings of post hoc paired t tests
(post � pre-intervention) for the L-PA (C), R-PA (D), and neutral groups (E) for each stimulus position separately. All maps are set at
a threshold of p � 0.05 and k � 100 for the interactions and k � 150 for the t tests.
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targets on the left side. The effect in right supramarginal
gyrus appears to be driven by the control condition and may
represent a modulation of visuomotor coordination.

As reported in a previous study, a brief exposure to
R-PA increased the representation of the left, central, and
right visual fields in the left IPL and shifted the hemi-
spheric dominance within the ventral attentional system
from the right to the left hemisphere (Crottaz-Herbette
et al., 2014). This shift in hemispheric dominance offers a
parsimonious explanation for behavioral effects of R-PA
observed both in normal subjects and neglect patients
(Clarke and Crottaz-Herbette, 2016). Our new results con-
trast with this effect as we found that a brief exposure to
L-PA increases the representation of the right visual field
in the right IPL, enhancing the right hemispheric domi-
nance within the ventral attentional system (Fig. 2). This
overemphasis of the right visual field within the (right-
dominant) ventral attentional system offers an explanation
for the behavioral effects of L-PA reported in several
previous studies, including neglect-like performance. It
also offers insight into the putative neural mechanisms
that underlie the effect of L-PA.

Discussion
Behavioral effects of leftward PA
Neglect-like performance in normal subjects

Several studies in normal subjects have shown that
L-PA induces neglect-like performance in some, but not
all visuospatial tests (Michel, 2016). L-PA yielded a right-
ward bias on the perceptual variant of the line bisection

task (Colent et al., 2000), including striking similarities with
neglect symptoms, such as effect of line length and mod-
ulation of the rightward deviation by the position of the
lines (Michel et al., 2003). This rightward bias in percep-
tual line bisection is long-lasting yet fluctuating, suggest-
ing that the visuospatial shift needs time to build up
(Schintu et al., 2014). L-PA also induced a rightward shift
in visual midpoint judgments occurring both in peri- and
extrapersonal spaces (Berberovic and Mattingley, 2003).

In the present study L-PA did not induce a lateral bias in
the target detection task performed during the fMRI ac-
quisition. The use of more complex tasks during the fMRI
acquisition would be of interest in further studies for two
reasons. First, more difficult detection tasks would allow
us to assess a putative lateral bias in performance, pos-
sibly a neglect-like effect. It is to be noted, however, that
in several studies L-PA failed to yield behavioral effects
with the Posner paradigm (Morris et al., 2004; Bultitude
et al., 2013a).This lack of behavioral effects contrasts with
the results of event-related potentials to different compo-
nents of the endogenous variants of the Posner task,
which revealed attentional asymmetries that were remi-
niscent of neglect (Martín-Arévalo et al., 2016). With L-PA,
but not with R-PA or neutral goggles, two measures stood
out. The L-PA induced reduction of the N1 amplitude
elicited by the cue was greater for leftward than rightward
cues, suggesting an L-PA-induced asymmetry in atten-
tional orienting. The L-PA-induced reduction of the P1
amplitude was greater for the invalidly cued left than right
target, suggesting an asymmetry in attentional disen-

Figure 2. Schematic representation of the dorsal and ventral attentional systems (DAS, VAS, outlined in blue and orange,
respectively), the visual areas, and their interactions (based on Koch et al., 2008; Corbetta and Shulman, 2011). Situations without PA
(A) as well as after L-PA (B) and R-PA (C) are represented. L-PA-induced changes are highlighted in yellow: enhancement of right
visual field representation in the right VAS (as reported in our current findings) and the increased inhibition from left to right DAS
(resulting from change in respective excitability as in Schintu et al., 2016). R-PA-induced changes (C) are highlighted in gray (based
on Crottaz-Herbette et al., 2014 and discussed in Clarke and Crottaz-Herbette, 2016).
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gagement. Second, the use of bisection tasks, which have
been shown to be modulated by L-PA (Michel and Cruz,
2015; Striemer et al., 2016), may help to explore the effect
of L-PA beyond that on the ventral attentional system.

Our results offer a parsimonious explanation for
neglect-like performance described above.

L-PA overemphasizes the responsiveness of the right
IPL to stimuli presented within the right visual field. This
stronger representation of the right visual field within the
right-dominant ventral attentional system may facilitate
the access of right stimuli to the dorsal system and drive
the left dorsal attentional system more forcefully. An over-
active left dorsal attentional system is bound to create a
right attentional bias in behavioral tasks. In addition, it
may increase the interhemispheric inhibition of the con-
tralateral, right dorsal system and decrease its activity
(Koch et al., 2011). This interpretation is supported by a
recent study that has indeed demonstrated that L-PA
increased the excitability of the parietal circuitry in the left
and decreased it in the right hemisphere (Schintu et al.,
2016).

Modulation of global vs. local processing bias by
L-PA Tasks that implicate attention to global vs. local
features of stimuli rely on complex cortical networks (Fink
et al., 1996, 1997). Although sustained attention to either
level was shown to activate a right hemispheric temporo-
parieto-prefrontal network, directing attention to global
aspects highlighted specifically the role of the right lingual
gyrus while attending to local aspects activated the left
inferior occipital cortex. Performance in tasks such as
Navon figures, with incongruent global and local features,
are characterized in normal subjects by greater interfer-
ence from global rather than local features. L-PA was
shown to reduce the global processing bias (Bultitude and
Woods, 2010). A later study using different paradigms, the
rod-and-frame illusion and the simultaneous-tilt illusion,
demonstrated that L-PA enhanced local processing bias
(Reed and Dassonville, 2014). Thus, in normal subjects,
L-PA shifted the processing bias from global to local
features, as often found in neglect (Robertson et al., 1988;
Marshall and Halligan, 1995). Our results offer only a
partial explanation for these findings. After L-PA, the in-
creased activation to ipsilateral targets within the right
ventral attentional system (shown here) and the ensuing
enhanced activity within the left dorsal attentional system
(Schintu et al., 2016) may change the encoding within the
left early-stage visual areas, including the inferior occipital
cortex, and may thus favor the processing of local fea-
tures.

Visuospatial remapping
Spatial remapping ensures the integration of visual in-

formation as gaze moves across a scene, resulting in a
stable representation of the visual environment despite
constantly changing retinal images. It depends critically
on the right posterior parietal cortex (Heide et al., 1995;
van Koningsbruggen et al., 2010). Using the double-step
saccade paradigm, Bultitude and colleagues (Bultitude
et al., 2013b) have shown that L-PA impairs spatial re-
mapping in the left visual field. The authors proposed that
the temporary realignment of spatial representations with

L-PA altered right hemispheric remapping processes. Our
results demonstrated right hemispheric remapping within
the (right) ventral attentional system, but it concerns the
right and not left visual space.

Behavioral effects of rightward PA
In normal subjects R-PA appears to yield behavioral

effects only rarely. R-PA increase the speed of reflexive
reorienting from invalid cues on the left to targets on the
right side in a subgroup of subjects, who had large cueing
effects before R-PA; no effect was reported on voluntary
reorienting (Striemer et al., 2006). Another study found right-
ward shift in visual midpoint judgment in extrapersonal, but
not in peripersonal space (Berberovic and Mattingley, 2003).
A third study investigated spatial remapping with a double-
step saccade paradigm (Bultitude et al., 2013b). R-PA af-
fected oculomotor performance, most likely by low-level
adaptation aftereffects, but did not yield any spatial remap-
ping. The explanation for these three observations in terms
of the shift of hemispheric dominance of the ventral atten-
tional system from the right to the left hemisphere, which is
induced by R-PA, were discussed in a recent review (Clarke
and Crottaz-Herbette, 2016).

Putative mechanisms of leftward PA
The effect of L-PA relies most likely on several func-

tional systems, as suggested by a series of studies. Spa-
tial realignment during the actual adaptation to prisms
was shown to involve the parieto-temporal cortex and the
cerebellum (Luauté et al., 2009; Chapman et al., 2010),
with a critical contribution of the latter (Panico et al.,
2016). At the level of the posterior parietal and primary
motor cortices L-PA was found to induce hemispheric-
specific changes in excitability: an increase in motor
evoked potentials in the left and a decrease in the right
hemisphere (Schintu et al., 2016). Here, we show that
L-PA enhances the representation of the right visual field
within the right IPL.

Taken together, the above quoted evidence suggests
neural mechanisms which may underlie the effect of L-PA,
and provides ground for new hypotheses and further
studies. While the subject is wearing leftward-deviating
prisms, targets appear to the left of their actual position. In
Figure 3, we represent a simplified situation where the
target is in the right visual field near the vertical meridian
and L-PA shifts it into the left visual field so that the target
activates the corresponding left visual field representation
within the retinotopically organized visual areas of the
right hemisphere. To point successfully towards the tar-
get, the movement has to be directed towards the actual
site within the right hemispace; attention-driven move-
ments towards the right hemispace are represented in the
left superior parietal lobule (Leonards et al., 2000; Cor-
betta et al., 2002; Silver and Kastner, 2009). Thus, suc-
cessful adaptation to leftward deviating prisms can be
expected to involve several steps, including a modulation
of salience of particular spatial representations within
each hemisphere. Learning to associate a target which
appears on the left side with a pointing movement ori-
ented towards the right space is very likely to result in the
strengthening of the link between the left visual field
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representations in the right occipital cortex and the dorsal
attentional system in the left hemisphere. This link can be
mediated by several pathways. First, the most likely path-
way proceeds from visual areas in the right hemisphere to
the (right) ventral attentional system and then via an in-
terhemispheric connection to the left dorsal attentional
system. Such heterotopic-crossed connections can be
monosynaptic, as demonstrated histologically in the hu-
man occipito-parieto-temporal cortex (Di Virgilio and
Clarke, 1997). The key observation of our study, namely,
the reorganization within the (right) ventral attentional sys-

tem, further supports this interpretation. Second, it is very
unlikely that a functional link between the representations
of the perceived and the actual position occur at the level
of early-stage visual areas since the interhemispheric
connections between these areas concern only a narrow
part of the cortex along the representation of the vertical
meridian (Clarke and Miklossy, 1990) and the intrahemi-
spheric connections are retinotopically organized (Clarke,
1994). Third, the link is also unlikely to be mediated by
afferents from the right to the left dorsal attentional sys-
tem. A recent study has shown that right-to-left connec-
tions are lessened following L-PA, most likely as a result
of an increase in parietal excitability in the left and a
decrease in the right hemisphere (Schintu et al., 2016).

Conclusion
L-PA increased the representation of the right visual

field within the right IPL. This enhancement of the right
hemispheric dominance within the ventral attentional sys-
tem contrasts with the dominance shift, from right to left
hemisphere, which is induced by R-PA (Crottaz-Herbette
et al., 2014). Thus, the PA-induced modulation of hemi-
spheric dominance within the ventral attentional system is
sensitive to the direction of the prismatic deviation and is
likely to depend on fine-tuning of specific visuomotor
networks.

The overemphasis of the right visual field representation
within the (right) ventral attentional system offers a parsi-
monious explanation of neglect-like effects following
L-PA. It is bound to more forcefully drive the left dorsal
attentional system, creating an attentional bias towards
the right space. The underlying neural mechanisms most
likely involve a strengthened link between the (right) ven-
tral attentional system and the left dorsal attentional sys-
tem.

The effect of L-PA, which we report in this study, is
likely to be of considerable interest for the rehabilitation of
attentional deficit in left hemispheric stroke. These deficits
are frequent and often preclude the return to work and/or
driving (Murakami et al., 2014). They may be the result of
the re-organization which takes place within the intact
hemisphere after unilateral focal lesions (Adriani et al.,
2003). We have shown here that adaptation to left-
deviating prisms by means of left-hand pointing enhances
right hemispheric dominance within the ventral attentional
system and may thus constitute a very useful therapeutic
intervention in left hemispheric stroke.
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