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Onekey barrier toimproving efficacy of personalized cancer
immunotherapies that are dependent on the tumor antigenic landscape
remains patient stratification. Although patients with CD3*CD8"

T cell-inflamed tumors typically show better response to immune checkpoint
inhibitors, itis stillunknown whether the immunopeptidome repertoire
presented in highly inflamed and noninflamed tumors is substantially
different. We surveyed 61 tumor regions and adjacent nonmalignant lung
tissues from 8 patients with lung cancer and performed deep antigen
discovery combiningimmunopeptidomics, genomics, bulk and spatial
transcriptomics, and explored the heterogeneous expression and
presentation of tumor (neo)antigens. In the present study, we associated
diverseimmune cell populations with theimmunopeptidome and found a
relatively higher frequency of predicted neoantigens located within HLA-I
presentation hotspotsin CD3°CD8" T cell-excluded tumors. We associated
such neoantigens withimmune recognition, supporting their involvementin
immune editing. This could have implications for the choice of combination
therapies tailored to the patient’s mutanome and immune microenvironment.

Tumorsare composed of heterogeneous populations of nonmalignant  antigen (HLA) presentation of those antigens to cytotoxic T cellsand the
and malignant cells with variable genetic and epigenetic characteristics  inductionand the duration of effective anti-tumor immunity. In patients
thatshape their ability to coexist and coevolve. Thisevolutionary pro-  with lung cancer, it has been shown that the tumor immune micro-
cess diversifies the expression of tumor antigens, the human leukocyte  environment (TME) is highly variable between and within patients'.
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Fig.1|Schematic summary of the lung cancer cohort. A summary of tissues
and analyses done on the multiregion tissues, as well as information on the
number of somatic mutations affecting protein sequences passing our pipeline’s
thresholds, mutational load, tumor purity, necrosis level, number of unique

HLA-Iand HLA-II peptides identified by mass spectrometry and the percentage of
peptides predicted as binders to the respective HLA allotypes (rank <2%). Patient
characteristics and processing information can also be found in Supplementary
Tables1land 2.

Tumors have been grouped into two main subtypes—infiltrated and
excluded—according to the magnitude of infiltration of cytotoxic
T cells*™*. Patients with infiltrated tumors typically respond better to
immune checkpoint blockade (ICB) therapy’. Never-smoker patients
with lung cancer respond poorly to ICB® and the low responsivenessis
thought to be associated with low tumor mutationalburden (TMB), low
neoantigenload and lower expression of programmed cell death-ligand
1(PD-L1)"% Inaddition, high density of tissue-residence memory T cells
within non-small-celllung cancers (NSCLCs) is associated with response
to ICB’. However, most patients harbor excluded tumors and even
patients with a high TMB may not respond'®. Moreover, it remains
unknown whether the repertoire of HLA-bound peptides presented
inT cell-infiltrated lung cancer tumors is substantially different from
therepertoire presented in excluded tumors, and whichimmunogenic
antigens mediate tumorkilling. Certainly, the rational development of
more effectiveimmunotherapy treatments targeting tumor antigens
in T cell-infiltrated and -excluded tumors would benefit from a more
complete understanding of the tumor antigenic landscape.

Immune editing of tumorsis adynamic process and the timing of
immune pressure plays animportant role in tumor evolution. Chronic
tobacco smoking inducesimmune surveillance, promoting the growth
of tumor clones capable of immune evasion early in carcinogenesis™.
In a therapeutic setting, clonal neoantigens (that is, detectable in all
cancer cells) were shown to have been eliminated after ICB treatmentin
resistant tumors'. Itiscommonly accepted that clonal mutated neoan-
tigens are ideal targets for vaccine or adoptive cell therapies. However,
the clonality and heterogeneity of other tumor-specific canonical and
noncanonical antigens” that can potentially manifest tumor recogni-
tion are largely unknown. Once identified, these new antigens may
serve asbiomarkersand guide the development of advanced personal-
izedimmunotherapy.

To capture the complex interplay between the tumor anti-
genic landscape and anti-tumor immunity in lung cancer, we inte-
grated genomics, transcriptomics, immunopeptidomics, spatial

transcriptomics and multiplexed immunofluorescence (mlF) imag-
ing to investigate the antigenic landscape in tumors with variable
degrees of immune infiltration. We surveyed 61 tumor regions and
adjacent nonmalignant lung tissuesin 8 patients with lung cancer and
performed deep antigen discovery combining HLA-land HLA-I mass
spectrometry-based immunopeptidomics, identified tumor antigens
and explored their heterogeneous presentation. We associated diverse
immune cell populations with the HLA-Ilimmunopeptidome and iden-
tified apanel of source proteins, the presentation of which is associated
with either CD3"CD8" T cell infiltration or inflammation. We found
that CD3'CD8" T cell-excluded tumors not only have a higher expres-
sion, but also a higher presentation efficiency of tumor-associated
antigens (TAAs). Asignificantly higher frequency of predicted neoanti-
gens within HLA-I presentation hotspots was detected in the excluded
tumors and nonsmokers compared with T cell-infiltrated tumors or
smokers. With an unbiased external resource of validated immuno-
genic neoantigens, we associated such neoantigens in presentation
hotspots with immune recognition, supporting their involvement in
immune editing. Our approach could guide the choice of combination
therapies tailored to the patient’s mutanome and the TME.

Results

Characterization of the antigenic landscape and the TME

In the present study, we analyzed a collection of multiple lung tumor
regions derived from the same masses and paired nonmalignant
adjacentlungtissues (here defined as macro-regions) from 8 primary
NSCLCs collected in treatment-naive patients. We subjected a total
of 61 macro-regions from 5 lung adenocarcinomas (LUADs), 2 lung
squamous-cell carcinomas (LUSCs) and 1large-cell neuroendocrine car-
cinoma (LCNEC) to deep proteogenomic analyses whichincluded gen-
eration of whole-exome sequencing (WES) and bulk RNA-sequencing
(RNA-seq) datasets, as well as mass spectrometry-based HLA-I
and HLA-Il immunopeptidomics, applying data-dependent and
-independent acquisition methods (DDA and DIA, respectively)™
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(Fig. 1and Supplementary Table 1). We accurately identified, in total,
102,323 HLA-1and 53,343 HLA-Il peptides, as corroborated by the high
fraction of peptides predicted tobind the respective HLA alleles (rang-
ing from 90% in 02289 t0 96.2% in 02672 for HLA-1 and from 75.3% in
02287 to 84.2% in 02288 for HLA-II) and the typical peptide length
distributions and binding specificities (Fig. 1, Extended Data Fig. 1a-e
and Supplementary Tables 2 and 3). The exceptionally low recovery of
peptides from samples 02288-5 and 02288-6 was probably due to the
highly (95%) necrotic tissue (Fig. 1and Supplementary Table 1). The
number of identified HLA-land -1l peptides correlated with the amount
oftissue available for analysis inindividual patients (P= 0.027) but not
across patients (P = 0.845; Extended Data Fig. 1f,g). Across patients,
the number of HLA-I- and HLA-II-bound peptides correlated with the
respective HLA expression as assessed by bulk RNA-seq (P=0.0003
and 7.3 x10°%, respectively; Extended DataFig. 1h,i), suggesting impor-
tant interpatient variability. This could relate to variable prevalence
of immune cells, which typically express high levels of HLA molecules
and may contribute substantially to the measured immunopeptidome.
Asexpected, we found pathogenic mutations inoncogenesinclud-
ing KRAS and EGFR in LUAD samples, and multiple mutations in 7TP53
in both LUAD and LUSC samples (Fig. 2a), and prominent smoking
mutational signatures were found in patients 02671,03023, 02672 and
02290 (referred to below as ‘smokers’; Fig. 1). Principal component
analysis (PCA) of genes known to be overexpressed exclusively in LUSC
or LUAD tumors® confirmed the classification of our samples (Fig. 2b
and Supplementary Table 4). We calculated an inflammation score'
frombulk RNA-seq data using a defined immune-related gene panel”,
shown to have optimal performance for lung cancer transcriptomes’.
We assigned to each macro-region aninflammation status against the
landscape of 1,012 LUADs and LUSCs from The Cancer Genome Atlas
(TCGA) program (Fig. 2c,d). Awide range of inflammation was observed
across patients and within individual patients, whereas the adjacent
nonmalignant lung tissues were overall scored as inflamed.

Spatial analysis of T cell infiltration and inflammation

Immune classification of lung cancer has proven quite challenging.
Indeed, immune infiltration, as determined by detailed pathologi-
cal evaluation, may disagree with infiltration status inferred by gene
expression profiles'. Therefore, we determined the CD3*CD8" T cell
infiltration after pathological inspection with hematoxylin and eosin
staining and mIF staining of T cell tumor infiltration markers (CD3,
CDS8, granzyme B (GrzB), Ki67, cytokeratin (CK) and DAPI) (Fig. 3a,b
and Extended Data Fig. 2) in one randomly selected macro-region tis-
sue per patient. The level of double-positive CD3*CD8" T cells in tumor
versus stroma areas and the level of GrzB in the tumor regions were
relatively higher in samples 03023, 02290 and 02672. These samples
were therefore assigned as CD3*'CD8" infiltrated and the remaining
samples were assigned as CD3*'CD8" T cell excluded (Student’s t-test
P=0.036) (Fig. 3¢).

The presence of various immune cells is expected to affect the
tumor antigenic landscape through potentialimmune editing, whereas
immune cells are expected to contribute directly to the immunopep-
tidome. To explore the latter, we assessed overall inflammation level
(onascale of high versus low) by spatial transcriptome analyses using
the GeoMx Cancer Transcriptome Atlas (CTA) platform. Using CD45,
CKand DAPI (to captureimmune cells, tumor and epithelial cells, and

for segmentation, respectively) we selected for each patient defined
micro-regions of interest that were subjected to spatial proteomic and
transcriptional analyses. According to the morphological differences
and the above markers, the selected micro-regions were annotated as:
(1) tumorislets, (2) necrotic, (3) stroma (with variable contributions of
tumor cellsand immune cells), (4) CD45" (immune) cell rich, (5) tertiary
lymphoid structures (TLSs) and (6) other (including blood vessels and
nonmalignant lung) (Fig. 3d, Supplementary Fig.1and Supplementary
Table 5). CD45 expression in tumor and stroma micro-regions was
relatively lower in sample 02290 compared with 03023 and 02672, as
well as in samples 02287 and 02288 compared with 02289, 02671 and
03421. We therefore assigned samples 02290, 02287 and 02288 as
relatively low and the rest as high inflammation (Fig. 3e).

Based on the above results, we grouped the patients in a
two-dimensional (2D) space relative to each other. On the hori-
zontal axis we ordered the patients on the scale of CD3*CD8" T cell
infiltration (excluded versus infiltrated) and on the vertical axis
based on overall inflammation level (low versus high, Wilcoxon’s
test P=0.00022; Fig. 3f). Specifically in tumor micro-regions,
the expression of the immune-related genes'™ CCLS, CD27 (PD-L1),
CD8A, CMKLR1, CXCL9, CXCR6, IDOI1, LAG3, NKG7, PDCDILG2
(PD-L2), PSMBI10 and STATI followed the profile of CD45, sup-
porting our classification (Fig. 3g and Extended Data Fig. 3a,b).
This rather irregular classification was relevant for downstream
assessment of immune editing mediated by CD3"CD8" T cells and
for the assessment of the global contribution of immune cells to
the immunopeptidome. Furthermore, tumoral micro-regions in
immune-infiltrated tumors are expected to better ‘mirror’ the bulk
tissue because these micro-regions contain components of the
immune compartment, as opposed to tumoral micro-regions of
immune-excluded tumors. Indeed, correlating the GeoMx gene
expression profiles of each tumor micro-region and the respective
patient macro-regions’ bulk RNA-seq data revealed increasing varia-
tion (calculated as variance of correlation coefficients) from tumors
marked as CD3°CD8" T cell-infiltrated-low (02290, better mirror),
CD3*CD8" T cell-infiltrated-high (03023 and 02672), CD3*CD8"
T cell-excluded-high (02289, 02671 and 03421) and CD3"CD8"
T cell-excluded-low (02287 and 02288, poor mirror) (Student’s
t-test P=0.082; Fig. 3h-j), supporting our classification above. It is
interesting that, compared with LUADs, LUSC tumors were reported
tobe more heterogeneous, due to both tumor-intrinsic factors (for
example, driver mutations, copy number variations, gene expres-
sion profiles) and heterogenic composition of the TME, and these are
often linked". Indeed, the above variance of correlations revealed
that the two LUSC tumors are more variable than LUADs (P= 0.0019;
Fig. 3k). We next minimized the bias introduced from the compo-
nents of the immune compartment by calculating this variance
only between tumoral micro-regions in the excluded tumors. The
variance in LUAD (02287, 02671 and 03421) and LUSC (02288 and
02289) tumors was similar (P = 0.43; Fig. 31). We then compared the
variance of correlation between macro- and micro-regions similarly,
only for excluded tumors, and found a higher variation for LUSCs
compared with LUADs (P = 0.11; Fig. 3m), confirming that these
two LUSC tumors are indeed more heterogeneous and the immune
compartment may play animportantrole. Furthermore, considering
only the five LUAD cases, we found a significantly higher variance of

Fig.2|Pathogenic mutations and inflammation scores. a, Heat map of
detected mutations (n =157 mutations) that were annotated as pathogenic by the
FATHMM predictionin COSMIC. Colors represent different patients and every
lineis amacro-region (n = 51 macro-regions). Mutations in KRAS, TP53and EGFR
are highlighted inred. b, PCA of genes associated with either LUADs or LUSCs
confirming the classification of the samples. The list of genes was taken from Reili
etal.” andis provided in Supplementary Table 3 (n = 53 macro-regions).

¢, Inflammation scores calculated for each macro-region as well as LUAD and

LUSC tumors from TCGA using expression levels of theimmune-related gene
panel asin Danaher et al.”. The different macro-regions (n = 53 macro-regions)
of patients with lung cancer were superimposed on the TCGA data (n =1,011
TCGA patients). d, Inflammation scores for each macro-region. The scatter plot
denotes 53 regions of the 8 different patients; the red color denotes the healthy
samples and red boxes denote the regions subjected to GeoMx analysis. In
patient 02287, the tissue selected for GeoMx was not subjected to bulk RNA-seq
and therefore not shown in this panel.
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correlation between micro- and macro-regions in excluded tumors
(P=1.8 x107%; Fig. 3n), supporting our conclusion about this com-
plementary approach to validate our classification.
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and -extrinsic factors may influence their expression on the malignant
cells. Toinvestigate how such factors influence the HLA-Ilimmunopep-
tidome, we first assessed the expression of the HLA-Il presentation
machineryinthe different micro-regions. HLA-Ilmachinery expression
was higherininfiltrated-high tumor micro-regions compared with other
groups, but similar to stroma micro-regions (except sample 03421, as
explained below; Fig.4a).Inthe CD3'CD8" T cell-infiltrated-low sample,
the expression of the machinery was higher in tumor micro-regions
than in the stroma micro-regions, whereas, in excluded-high and
excluded-low samples, the class Il machinery was, as expected, more
abundant in the stroma than in the tumor micro-regions (Fig. 4a).
Next, we constructed a panel of source genes that were exclusively
presented along the axis of infiltration (infiltrated versus excluded) and
inflammation (high versus low), belonging to enriched immune-related
terms (Extended DataFig.4 and Supplementary Table 6). For example,
toll-like receptor 9 (TLR9) was presented in the HLA-II peptidome of
infiltrated samples (03023 and 02672). TLR9 is known to be predomi-
nantly expressed by plasmacytoid dendritic cells and B cells?*® and can
reactivate immune surveillance to recognize tumor-specific antigens?.
These results suggest that the HLA-Il peptidome is influenced by the
TME and it is a source of biomarkers that capture information about
the TME.

To explore this further, we assessed the expression of HLA-DRB
across tumors and found higher expression in tumor regions than
in stroma regions, specifically in the LUAD patients 03421 and 02672
(Fig. 4b), in whom HLA-Il molecules were indeed immunolocalized
to the membrane of tumor cells (assigned as HLA-II" tumors; Fig. 4c).
LUAD predominantly arises from asubset of alveolar type 2 (AT2) cells
thatare knownto constitutively express HLA-11”>?*, Mouse models sug-
gest that de-differentiation of AT2 cells into a LUAD state is initiated
by loss of the lineage transcription factor NKX2-1, which is a master
regulator of pulmonary differentiation®". NKX2-1was significantly more
abundantly expressed in LUADs compared with LUCSs and LCNECs
in tumor micro-regions, and slightly, yet not significantly, more in
LUAD HLA-II" tumors (samples 03421 and 02672; Fig. 4d,e). HLA-II
peptides derived from source genes that were presented exclusively
in the HLA-II" tumors and not in any of the healthy tissues were asso-
ciated with variable cellular processes (Supplementary Table 7). An
interesting example is the category called activation of cysteine-type
endopeptidase activity involved in the apoptotic process, including
proteins such as CASP4, which is an inflammatory caspase that acts
as an essential effector of inflammasomes®, and the human growth
and transformation-dependent protein (HGTD-P), which promotes
intrinsic apoptosis in response to hypoxia® (Fig. 4f,g). HLA-Il expres-
sion on the LUAD cancer cells may therefore reflect cancer intrinsic
and de-differentiation states, but other factors may also be involved.
Gene ontology (GO) enrichment analysis of genes overexpressed
(z-score >2) in tumor micro-regions of the two above HLA-II* cases

(patients 03421 and 02672), relative to all other patients, revealed
a significant enrichment for genes associated with processing and
presentation of exogenous antigens on HLA-Il and on HLA-I, whereas
terms related to cell cycle, regulation of transcription and cellular
response to DNA damage were mostly enriched in HLA-II” tumors
(Fig. 4h); however, these differences were not obvious when stroma,
CD45"and TLS micro-regions were analyzed (Fig. 4h). Overall, tumors
03421 and 02672 were classified as CD3°CD8" T cell-infiltrated and
-excluded tumors, respectively, suggesting amore complex underlying
biology associated with the HLA-Ilimmunopeptidome.

HLA-Il peptidome associated withimmune cells in the TME
Next, we explored the extent to which immune cell markers are cap-
tured by the immunopeptidome in the different groups of tumors.
We leveraged a previously published immunopeptidomics dataset
of isolated human immune cells before and after in vitro activation,
including CD14" precursor cells,immature and mature dendritic cells
and CD19"B cells, CD4", CD8" and their corresponding activated cells”.
For each cell type, we obtained alist of source gene markers that were
at>99th and >80th percentiles of the overall sampling score distribu-
tion across all the genes, for HLA-1 and HLA-Il immunopeptidomes,
respectively (Supplementary Table 8), and assessed the presentation
level of these immune cell markers in our cohort. Remarkably, signifi-
cantly higher HLA-Il presentation levels of CD8"and CD4" T cells, and
their activated counterpart cells were found ininfiltrated tumors and
smokers, but notin the tumors annotated asimmune high (Fig. 5a-c).
By contrast, CD14", immature and mature dendritic cells, as well as
CD19"and activated CD19" cells, were significantly more represented
only intheimmune-high tumors (Fig. 5a-c). Not surprisingly, the HLA-I
immunopeptidome did not reveal as much, potentially because HLA-I
molecules are ubiquitously expressed (Extended DataFig. 5). We con-
cluded that activated CD8" and CD4" T cells are represented in the
HLA-Il immunopeptidome and even more substantially in their acti-
vated states, specifically in tumors annotated as T cell infiltrated and
in smokers, whereas the presentation of B cells and dendritic cells is
associated with overall high inflammation.

With an independent approach guided by the GeoMx transcrip-
tome data, we further explored whether the presence of particular
immune cell types in the different micro-regions could affect and
contribute to the presented HLA-Ilimmunopeptidome. We calculated
the relative amount ofimmune cells in each micro-region” (Extended
DataFig. 6a). As expected, immune cells were found to be more abun-
dant in the stroma micro-regions than in the tumor micro-regions
of excluded-high and excluded-low tumors, and vice versa in the
infiltrated-low sample. Next, we focused on all source genes found
to be presented in the HLA-Il peptidome and further grouped these
source genes as tumor related (upper quartile) or stroma, TLS and
CD45" related (lower quartile) (Fig. 5d-i), based on their expression

Fig. 3| Defining tumors as excluded, infiltrated, immune low and immune high.
a,b, The mIF images of 03023-02 (a) and 02288-07 (b) demonstrating the masking
approach defininginfiltration of CD3"CD8' double-positive T cells expressing GrzB
within tumor and stroma. ¢, The mIF quantification per patient (n = 8). Infiltrated
samples (n=3) have higher GrzB expression (dot size and inlay plot) and more
CD3'CD8' T cells intumor thaninstroma (one-sided Student’s ¢-test, P= 0.036).

d, Micro-regions manually selected without independent repetition and classified
into tumor, stroma, TLSs, CD45"-rich and ‘other’. Five micro-regions of sample 02671,
representing 95 micro-regions, are shown. e, CD45 expression in tumor and stroma
micro-regions calculated from the GeoMx transcriptome. The blue-red line and
color scale denote the threshold classifying immune-high and immune-low tumors.
Inset: CD45 expression inimmune-high (n =44 stroma and tumor micro-regions)
orimmune-low (n =26 stromaand tumor micro-regions). f, Scheme of our relative
classification. g, Expression in tumor micro-regions ofimmune activation markers
calculated from the GeoMx transcriptome (excluded-high: n =14; excluded-low:
n=1%;infiltrated-high: n = 11; infiltrated-low: n = 7). h, The transcriptomes of all micro-
regions (n =95, GeoMx) were correlated with all macro-regions (n = 53, bulk RNA).

The black boxes highlight correlations considering tumoral micro-regions per
patient. i, The mean variance of these correlations in the boxes calculated as variance
of correlation coefficients per patient.j, Increasing variance from tumors marked as
infiltrated-low (02290, n =7 tumor micro-regions), infiltrated-high (03023, 02672,
n=11tumor micro-regions), excluded-high (02289, 02671 and 03421, n = 14 tumor
micro-regions) and excluded-low (02287,02288, n =11 tumor micro-regions).

k, LUSC tumors exhibiting a higher variance., In excluded tumors, the variance of
correlation between tumoral micro-regions shown to be similar in LUADs (02287,
02671and 03421, n =14 tumor micro-regions) and LUSCs (02288 and 02289,
n=11tumor micro-regions). m, The variance of correlation between macro-and
micro-regions in excluded tumors. n, LUADs showing a significantly higher variance
between micro-and macro-regions in excluded tumors (n =14 micro-regions) rather
thanininfiltrated tumors (n=11micro-regions). Apart from ¢, one-sided Wilcoxon’s
nonparametric tests were used. Allboxplots show the median (line), the interquartile
range (IQR) between the 25th and 75th percentiles (box) and 1.5 the IQR + the upper
and lower quartiles, respectively. No adjustments were made for multiple testing.
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in the micro-regions. We correlated their expression with the relative
amount of immune cells (Pearson’s correlation coefficient; Fig. 5d-i
and Extended Data Fig. 6) in each of the four groups separately. For
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example, the expression of stroma-, TLS-and CD45"-related CD79B gene
correlated highly with the B cellabundance across all the micro-regions
of the T cell-infiltrated-high patient samples (02672 and 03023), and
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the expression of the stroma-, TLS- and CD45"-related CD14 gene cor-
related highly with macrophages in excluded-high patients (03421,
02289 and 02671) (Fig. 5h,i, respectively). Last, to assess whichimmune
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celltypes were most associated with the HLA-Il peptidome, we summed
up, per cell type, the HLA-Il presentation sampling scores (whichis an
approximation of the presentation level) of all genes with Pearson’s
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Fig. 4| Overview of HLA-Il expression. a, Expression of genes of the HLA-II
presentation machinery (HLA-DRA, HLA-DRB, HLA-DRB-3/4/5, HLA-DOA, HLA-
DOB, HLA-DQA-1/2, HLA-DQB-1/2, HLA-DPAI, HLA-DPBI1, HLA-DMA, HLA-DMB,
CTSS and CD74) across all measured GeoMx regions (n = 95 micro-regions).

b, Quantification of HLA-DRB expression in stroma and tumor regions by mIF.
¢, HLA-DR molecules expressed on the surface of cancer cells detected only in
03421and 02672 samples with these tumors assigned as HLA-II", representing
n=2patients. Sample 02288 is shown as an example of an HLA-II" tumor,
representing n = 6 patients. d, Expression of the transcription factor NKX2-1in
stroma (LUADs: n = 28; LUSCs: n = 9; LCNECs: n = 5) and tumor micro-regions
(LUADs: n=25;LUSCs:n=11; LCNECs: n=7) in LCNEC, LUAD and LUSC tumors.
e, Expression of NKX2-1in stroma, TLS and the CD45" micro-regions (depicted
here are stroma) and in tumor micro-regions in HLA-II* (tumor: n =12; stroma:

n=16), HLA-II" (tumor: n =16, stroma: n =9) and LUAD tumors. f,g, HLA-II
sampling scores of source genes not found to be presented in any of the healthy
tissues and found presented exclusively in HLA-II" tumors (f) and their GO
enrichment analysis (g). TOR, target of rapamycin. h, GO analysis of genes with
higher expressionin HLA-II* (n =12 tumor micro-regions; n = 16 stroma, TLS and
CD45" micro-regions) versus HLA-II” (n = 16 tumor micro-regions; n =19 stroma,
TLS and CD45" micro-regions). ER, endoplasmic reticulum; NMDA, N-methyl-
D-aspartate; UV, uiltraviolet light. Top terms, according to the Pvalue (Fisher’s
exact test), are displayed. All statistical tests have been performed as one-sided
Wilcoxon’s nonparametric test. All boxplots show the median (line), the IQR
between the 25th and 75th percentiles (box) and 1.5x the IQR + the upper and
lower quartiles, respectively. No adjustments were made for multiple testing.

correlation coefficient >0.5 (Methods, Fig. 5j,k and Extended Data
Fig. 6). It is interesting that the HLA-Il peptidome (represented by
the presentation of these source genes) of infiltrated-high samples
was associated with the presence of CD8" T cells, cytotoxic T cells and
exhausted CD8" T cells in the tumor micro-regions, as well as most of
theotherimmunecelltypesinthe stroma, TLS and CD45" micro-regions
(Fig. 5j). By contrast, in excluded-high tumors, most of the immune
cell types were contributing almost exclusively due to their presence
in stroma, TLS and CD45" micro-regions (Fig. 5k). These results high-
light the influence that CD3*CD8"* T cell infiltration has on the HLA-II
immunopeptidome.

HLA-1 antigenic landscape and TAA presentation efficiency

The global HLA-I peptidome repertoire eluted from bulk tumor tis-
suesisnot expected torevealimmune-editing processes because pep-
tides mainly derive from normal proteins and HLA-I molecules are
ubiquitously expressed on nontumoral cells. Therefore, we focused
on potentially immunogenic source antigens and we matched the
mass spectrometry data against customized reference databases
thatincluded patient-specific genomic variants (SNPs and somatic
mutations), as well as expressed noncanonical genes including long
noncoding (Inc)RNAs, transposable elements and a publicly available
ribo-seq-derived database of new open reading frames and pseudo-
genes (nuROFs)* (see Methods for more information and Supplemen-
tary Table 9). Although we predicted 812-3,399 HLA-I-and 2,570-10,674
HLA-II-mutated neoantigens (MixMHCpred binding rank <2%) across
the different samples, we could not detect any by mass spectrometry
after manualinspection of tandem mass spectrometry (MS-MS) spec-
tra. Similarly, HLA-II peptides from noncanonical sources were not
confidently identified. We identified 18,342 and 12,856 HLA-land HLA-II
peptides, respectively, derived from canonical proteins that were not
detectedintheimmunopeptidomes of adjacent healthy macro-regions
and of other benign tissues after re-analysis of the HLA atlas®’ (Supple-
mentary Tables2and 3). Nevertheless, almost all of them were found to
be expressed in the adjacent healthy tissues. We detected 218 unique
peptides fromtransposable element sources and 773 unique peptides

from other noncanonical sources such as IncRNAs and pseudogenes,
but these were uniformly expressed in all tumor macro-regions as
well as in the adjacent healthy tissues, indicating no tumor speci-
ficity (Extended Data Figs. 7 and 8 and Supplementary Table 9).
Inaddition, most of the 1,409 nuORF-derived peptides were also found
presented in the healthy macro-region tissues, withafraction of those
in addition detected in the HLA atlas® (Extended Data Fig. 9 and Sup-
plementary Table 9). The detection of the above noncanonical peptides
was associated with HLA allotypes having basic amino acidsin the car-
boxy terminus of their binding motifs, hence, in this small cohort, it
was not feasible to associate the presentation level of such anew class
of peptides with T cell infiltration.

Alternatively, we defined a set of 893 tumor-associated genes
derived from canonical and noncanonical sources, collectively named
TAAs, which were expressed (>1 transcript per million (TPM)) in at
least one tumor macro-region but not in any of the nonmalignant tis-
sues in the Genotype-Tissue Expression (GTEx) database (retaining
genes with GTEx expression <1 TPM, except in testis) or in any of the
adjacent healthy macro-regions (retaining genes with expression
<1TPM) (Fig. 6a, Extended Data Fig. 10 and Supplementary Table 10).
Of these, 31 source TAAs were found to be presented by HLA-I in at
least 1 macro-region in any of the patients. Presented-source TAAs
were defined asthose detected in the respective macro-region’s HLA-I
immunopeptidome, whereas non-presented-source TAAs were those
thatwerenotdetected, potentially due to lack of presentation resulting
from too low expression or limited sensitivity of the immunopeptid-
omics analyses. Across patients, the expression of presented-source
TAAs was higher in tumor macro-regions than in the adjacent
healthy macro-regions (Fig. 6b) and higher than the expression of
nonpresented-source TAAs (Fig. 6¢,d). Furthermore, presented-source
TAAs were expressed more abundantly on CD3*CD8" T cell-excluded
tumors (Fig. 6d) and source TAAs were presented mainly by HLA-lcom-
plexes (Wilcoxon’s test P=1.7 x 107%; Fig. 6¢). To infer the propensity
of atumor to present TAAs, we computed the mean presentation effi-
ciency of TAAs by normalizing the HLA-I sampling score with TAA gene
expression and HLA-I expression levels (Methods). Remarkably, the

Fig.5|CD3"CD8"T cellinfiltration impacts the HLA-Ilimmunopeptidome.
a-c, Contribution of immune cells to the HLA-1Ilimmunopeptidome based
onsampling scores of immune cell markers in tumors annotated as excluded
(n=29 tumor macro-regions) (a) and infiltrated (n = 15 tumor macro-regions),
nonsmokers (n =21tumor macro-regions) and smokers (n = 23 tumor macro-
regions) (b) and immune-high (n = 27 tumor macro-regions) and immune-low
(n=17 tumor macro-regions) (c) per cell type. Pvalues were calculated using
one-sided Wilcoxon’s test. The boxplots show the median (line), the IQR
between the 25th and 75th percentiles (box) and 1.5x the IQR + the upper and
lower quartiles, respectively. No adjustments were made for multiple testing.
d, The z-score distribution of the gene expression comparisons of tumor versus
stroma + TLS + CD45" micro-regions in the infiltrated-high samples. Genes
inthe upper quartile are more highly expressed in tumor micro-regions whereas
those in the lower quartile are highly expressed in stroma micro-regions.

e, Example of correlation of CD79B expression and B cell abundance in
infiltrated-high samples (n = 26 stroma + TLS + CD45" and tumor micro-regions).
The error bands represent the 95% CI. f, The z-score distribution of the gene
expression comparisons of tumor versus stroma + TLS + CD45" micro-regions

in excluded-high samples. g, Example of correlation of CD14 expression and
macrophage abundance in excluded-high tumors (n = 34 stroma + TLS + CD45"
and tumor micro-regions). The error bands represent the 95% CI. h,i, Correlation
ofall genes attributed to stroma + TLS + CD45" micro-regions (lower quartile)

or with tumor micro-regions (upper quartile) with cell-type abundance in
infiltrated-high (h) and excluded-high (i) samples. DCs, dendritic cells; NK cells,
naturalkiller cells; T, cells, regulatory T cells. j,k, Sum of sampling score for
genes correlates with differentimmune cell type (Pearson’s correlation r > 0.5)
ininfiltrated-high (n = 2 patients and n =163 genes) (j) and excluded-high (n=3
patients and n = 168 genes) (k).

Nature Cancer | Volume 4 | May 2023 | 608-628

615


http://www.nature.com/natcancer

https://doi.org/10.1038/s43018-023-00548-5

Article

samples and smokers (Wilcoxon’s test P values of 0.0041, 0.045 and

mean presentation efficiency was higher in macro-regions of tumors

classified as immune-low or CD3"CD8" T cell excluded, and those of  0.27, respectively) (Fig. 6f-h). This suggests limited immune surveil-

nonsmokers relative to inflamed-high, CD3*CD8" T cell-infiltrated

lance that may result in a rather more antigenicimmunopeptidome
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landscapein cohortnonsmokersand CD3°CD8' T cell-excluded tumors,
and vice versain smokers and infiltrated tumors.

We further retained source TAAs that were not found to be pre-
sented in any of the adjacent healthy macro-regions, resulting in 14
HLA-land 4 HLA-Il peptides (Fig. 6i). Ten HLA-Ibound peptides derived
from the melanoma-associated gene family sources MAGE-Al and
MAGE-A4, which are known to be expressed in many tumor types but
notinnormaltissues except for testis and placenta, were expressed and
presented mainly inthe CD3"CD8" T cell-excluded LUSC tumors (that s,
02288 and 02289), supporting aprevious study showing an association
of MAGE-A4 expression in LUSCs compared with LUADs*®. MAGE-A4
was the most abundantly expressed and presented TAA, from which
six peptides in total were found in four patients and mostly in patient
02288. Furthermore, we found a new tumor-specific, noncanonical
peptide in the tumor macro-regions of the CD3*CD8" T cell-excluded
and nonsmoker patient 02287, derived from the LINC02261 IncRNA.

Pruning of neoantigens from HLA-I presentation hotspots
We defined intratumor heterogeneity by calculating the prevalence
of clonal mutations (observed in all macro-regions) and subclonal
mutations (observed in a subset of the macro-regions) and inferred
each tumor’s phylogeny (Fig. 7a)*'. We found a positive correlation
across TMB, expression of GrzB in tumors and the detection of smok-
ing mutational signatures (Student’s t-test Pvalues 1.3 x 10 ¢and 0.13,
respectively; Fig. 7b—d). Furthermore, we found that CD3*CDS8" T cell
infiltration (in patients 03023, 02672 and 02290), as well as smoking
mutational signatures (in patients 02671, 03023, 02672 and 02290),
were significantly associated with higher fractions of truncal muta-
tions (Student’s ¢-test P values of 0.0066 and 0.019, respectively;
Fig. 7b,e,f). Indeed, tuksza et al. demonstrated recently that rare
long-term pancreatic cancer survivors, who had stronger T cell activity
intheir primary tumors, developed recurrent tumors with less genetic
heterogeneity and fewer high-quality immunogenic neoantigens,
despite having more time to accumulate mutations*. They modeled
neoantigen quality by the antigenic distance required for aneoantigen
to differentially bind to the HLA or activate a T cell compared with its
wild-type peptide and by the similarity to known antigens (Fig. 7g). In
our cohort, we found that the most prominent difference in the quality
of neoantigens was found among the truncal and private mutationsin
the two infiltrated-high patients 03023 and 02672, in whom truncal
mutations had lower quality (Fig. 7h-j and Supplementary Table 11).
Theseare evidences of neoantigen-mediated immune editing resulting
in truncal tumors in smokers and is consistent with earlier results™.
By mining ipMSDB, a large collection of immunopeptidomics
databases we acquired in recent years across a variety of tumor and
healthy samples, we have previously observed that immunogenic
mutated neoantigens accumulate in HLA-I presentation hotspots™,
thatis, regionsinsource proteins that are more frequently detected in
immunopeptidomics datasets. Somatic mutationsin theseregionsare
therefore morelikely to be presented than mutationsin other regions
or proteins that are rarely naturally presented. We theorized that,
because of theimmune-pressure taking place during tumor evolution,

cells expressing mutations within HLA-I presentation hotspots willbe
more frequently eliminated. We predicted in silico HLA-I neoantigen
binding to the respective HLA-I allotypes of each patient (rank <2%),
and examined for each predicted mutated peptide whether its exact
wild-type counterpart peptide was included in the HLA-I presenta-
tion hotspot in ipMSDB (Supplementary Table 11). We exemplify this
concept in Fig. 8a. The predicted neoantigen covering EXOSC8F7K is
an‘exact’ HLA-I presentation hotspot mutation, whereas the predicted
neoantigens IDHI**N and IGFBP1"*®Y do not have a matched ‘exact’
wild-type peptide in ipMSDB. As controls, for each patient we calcu-
lated the presence of ‘exact’ matches covering synonymous variants,
because these variants are not expected to be affected by immune pres-
sure (Fig. 8a). A higher fraction of ‘exact’ nonsynonymous-predicted
neoantigens was found for CD3"CD8" T cell-excluded tumors ver-
sus infiltrated, whereas no difference was found in the fraction of
synonymous mutations (P=0.001and 0.8, respectively; Fig. 8b,c).
We normalized the fraction of nonsynonymous mutations with the
fraction of synonymous mutations per patient to eliminate any inher-
ent bias related to the overall representation of the patient’s HLA
allelesinipMSDB. The normalized fractions of ‘exact’ matches almost
reached significance (Fig. 8d). A significantly lower fraction of ‘exact’
nonsynonymous-predicted neoantigens was detected also in tumors
of smokers (patients 02671, 02290 and 03023, yet not in 02672) rela-
tive to nonsmokers (P=2.3 x107%, Fig. 8e), whereas no difference was
found inthe fraction of synonymous mutations (P = 0.14, Fig. 8f). The
normalized fractions of ‘exact’ matches were still significantly lower
among smokers (P=9.6 x 107, Fig. 8g). These results suggest that
excessive immune pressure in T cell-infiltrated tumors and smokers
may have led to the development of tumors expressing relatively fewer
neoantigens within HLA-I presentation hotspots.

To validate these results, we first analyzed samples from 63
patients from the TRACERx lung cancer cohort for which both WES and
RNA-seq data were published by Rosenthal et al.' (Methods). Initially,
wedirectly used theimmune score classification reported by Rosenthal
etal.!, who also used the Danaher et al. method" to estimate immune
cell populations. With this larger dataset, we again found a higher frac-
tion of ‘exact’ neoantigen matches (enrichment of nonsynonymous/
synonymous) in tumors classified as having alow immune score com-
pared with highimmune score tumors (Student’s t-test P= 0.026; Fig. 8h
and Supplementary Table 12). Furthermore, as expected, T cells,
exhausted CD8" T cells and cytotoxic cells were positively associ-
ated with the smoking status documented for these patients (Fig. 8i).
Remarkably, a higher enrichment of nonsynonymous/synonymous
‘exact’matches was observed for never-smokers compared with smok-
ers (Student’s t-test P= 0.054; Fig. 8j). In addition, when we re-classified
the patients into ‘light’, ‘intermediate’ and ‘heavy smokers’, accord-
ing to the cumulative smoking severity, considering both the level of
mutational signature of tobacco smoking and pack-years, we found
a significantly higher enrichment of nonsynonymous/synonymous
‘exact’matchesinthe‘light’ group (Student’s t-test P= 0.02; Fig. 8k, ).

Finally, to assess to what extent predicted mutated neoanti-
gens matching ‘exact’ peptide sequences in ipMSDB can mediate

Fig. 6 | Expression and presentation of tumor-associated genes. a, Tumor-
associated source genes from canonical and noncanonical sources (n =893
genes), collectively named TAAs, expressed in any of the tumor macro-regions
but notin the GTEx databases (GTEx <1 TPM, except in testis) and not in any of
the adjacent healthy macro-regions (<1 TPM) defined by Wilcoxon’s one-sided
test P=2.22 x107°. No adjustments were made for multiple comparison.

b,c, Across patients, there was higher expression of presented-source TAAs
intumor macro-regions thanin the adjacent healthy macro-regions (n =29
TAAs) (b) and higher expression of nonpresented-source TAAs (n =31 TAAs) (c).
d,e, Presented-source TAAs (n = 31 TAAs) expressed more abundantly across
CD3*CDS8’ T cell-excluded macro-regions (nonpresented_excluded: n =148;
presented_excluded: n=45; nonpresented_infiltrated: n = 86; presented_

infiltrated: n = 22; nrefers to aggregated TAAs expression per macro-region) (d)
and presented mainly by HLA-I complexes (averaged across n = 41 HLA-I versus
n=43HLA-Ilmacro-regions, respectively; P=1.7 x 107®) (e). f-h, The presentation
efficiency of TAAs seen as higher in macro-regions of tumors assigned as
immune-low (n =12 macro-regions) versus immune-high (n = 22 macro-regions)
(f), nonsmokers (n =17 macro-regions) versus smokers (n =17 macro-regions) (g)
and CD3*CD8" T cell excluded (n = 20 macro-regions) versus infiltrated (n = 14
macro-regions) (h), with Pvalues of 0.0041, 0.045 and 0.27, respectively. i, Heat
map of source TAAs found to be presented exclusively in tumor macro-regions.
Non-normalized log,(peptide intensity values) from the DIA analyses are shown.
All statistical tests were performed as one-sided Wilcoxon’s nonparametric test.
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of mutations in tens of patients across tumor types. Importantly,
this screening method is unbiased because it is not dependent on

HLA-binding affinity prediction and, inaddition, immunopeptidomics

O Presented-source TAAs
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O Nonpresented-source TAAs

O Nonpresented-source TAAs
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spontaneous CD8 T cell responses in patients, we reanalyzed a large

dataset published recently by Gartner et al.”*, where immunogenicity

was assessed by the mini-gene screening approach for thousands

healthy

source TAAs;
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and HLA presentation hotspots information were not considered as
selection criteria and therefore could not bias the results. We down-
loaded data for 77 patients, for which WES, RNA-seq and at least one
confirmed immunogenic mutation were available. We analyzed the
WES and RNA-seq datasets and flagged the mutations as: ‘immuno-
genic’, ‘'nonimmunogenic’and ‘not tested’ by the mini-gene approaches
(when applicable and as reported by Gartner et al.**). We found that
mutations predicted to be covered with at least one ‘exact’ match
neoantigen have afivefold higher probability of inducing spontaneous
CD8' T cell responses compared with all other mutations (Fig. 8m). We
therefore derived the probabilities of a mutation being immunogenic,
with P, = 0.0195and P, o exacc = 0.00392, and with these probabilities
we calculated the relative immunogenicity for each macro-region of
our eight patients (see Methods for more details; Fig. 8n). After normal-
izing for the total number of mutations, the relativeimmunogenicity of
tumors was higher in the nonsmokers thanin the smokers, and higher
inCD3*CD8' T cell-excluded thanin CD3*CD8" T cell-infiltrated tumors
(Student’s t-test P=2.3 x10"8and 0.001, respectively, Fig. 80-q). These
results supportour conclusion that ‘exact’ neoantigens are associated
withCD3*CD8' T cell-mediated recognition and that the lower fraction
of ‘exact’ matches in smokersis associated withimmune editing.

Discussion

Akey barrier forimproving efficacy of advanced personalized immu-
notherapies thatare tailored to specific tumor antigens or the patient’s
mutanome, such as neoantigen cancer vaccines and adoptive trans-
fer of neoantigen-enriched T cells, remains patient stratification and
the characterization of the antigenic landscape. We therefore aimed
to deeply characterize the tumor antigenic landscape and the TME
using multiple -omics and imaging approaches. Characterization of
the TME from bulk RNA-seq data in lung cancer tissues is challeng-
ing, not only in the small cohort we studied here, but also in larger
cohorts of tens of samples, as reported by Rosenthal et al.', where
lung cancer samples with high inflammation scores were finally clas-
sified by pathologists as having low infiltration of cytotoxic T cells
and vice versa. Technical variability related to sampling of mirrored
formalin-fixed paraffin-embedded (FFPE) tissue sections for staining,
and snap-frozen tissues for RNA extraction, which may also include
variable amounts of adjacent nonmalignant lung tissue, as well as the
natural wide tissue heterogeneity, can be sources of such discrepan-
cies. To overcome this, we applied mIF imaging techniques in combi-
nation with GeoMx spatial transcriptome analyses to define nichesin
the tissues. This approach facilitated the annotation of the samples
in a 2D space. On the horizontal axis we ordered the patients on the
scale of CD3'CD8" T cell infiltration as excluded and infiltrated, and
on the vertical axis we ordered them based on overall inflammation
level indicative of immune-low and -high tumors. Importantly, mIF
and GeoMx data were generated for one macro-region per patient,
whereas bulk RNA-seq was done on all macro-regions. However, as

the bulk RNA-seq approachwasinconsistent for defining theimmune
compartment using the immunoscore, we did not focus on studying
variability between macro-regions of each patient, and instead we com-
pared the groups of patients, considering the different macro-regions
as multiple biological replicates per patient.

TAAs were rarely found to be presented by HLA-Il complexes. In
addition, HLA-Il molecules were found to be expressed directly by
tumor cells only in samples 03421 and 02672. We therefore hypoth-
esized that the HLA-Il peptidome could represent the tumor-immune
compartment. Higher or similar gene expression of the HLA-Il machin-
ery was found in stroma and tumor micro-regions of T cell-infiltrated
samples, whereasin excluded samples, as expected, the machinery was
more abundantin the stromathaninthe tumor. Activated anti-tumor
CD3'CD8' T cells secrete interferon-y that enhances HLA-Il expression
on neighboring cells in the TME. Hence, insights into the composi-
tion of the immune compartment can be uniquely captured by the
HLA-II peptidome. We demonstrated that CD8" and CD4" cells were
represented in the HLA-Il immunopeptidome and even more pro-
foundly in their activated states, specifically in tumors annotated as
CD3'CD8' T cellinfiltrated and in smokers, whereas the presentation
of activated B cells and dendritic cells was associated with overall high
inflammation. Itisinteresting that, from the HLA-Il presentation level
of the source genes that were found to correlate most strongly with
different immune cell subtypes in stroma or tumor micro-regions,
the presence of CD3*CD8" T cells, cytotoxic and exhausted cells in
tumor micro-regions distinguished excluded-high and infiltrated-high
samples. We have revealed that the HLA-II peptidome was found to
capture the presence and activation of immune cells in the TME.
Furthermore, we demonstrated associated presentation of several
HLA-II peptides with T cell infiltration or inflammation. Therefore, if
validated in alarger cohort, the repertoire of HLA-Il peptides derived
fromimmune-related genes should allow the classification of a TME.
It may help the design of peptide-specific therapeutic modalities by
revealing potential tumor-specific targets and reflecting the anti-tumor
immune activation state.

So far, it was unclear whether CD3*CD8" T cell-excluded tumors
expressand present TAAs to the same extent as infiltrated tumors. From
ourresultsin eight patients with lung cancer, we concluded that, rather
unexpectedly, CD3'CD8" T cell-excluded tumors express TAAs more
abundantly and they have a higher presentation efficiency of TAAs.

Furthermore, we found that the most prominent differenceinthe
quality of neoantigens®? was present in infiltrated-high tumors, where
truncal mutations had alower quality. Ininfiltrated tumors and smokers,
mutations were probably edited during tumor evolution". Inaddition,
a significantly higher frequency of predicted neoantigen sequences
withinHLA-I presentation hotspots was detected in the excluded tumors
and in nonsmokers, potentially due to the absence of immune surveil-
lance. This was further validated in the TRACERx cohort. We further
demonstrated that the probability to induce spontaneous CD8* T cell

Fig.7|Evidence of neoantigen-mediated immune editing leading to a higher
fraction of truncal mutation yet with lower quality. a, Phylogenetic trees
based onall high-confidence mutations found across all regions per patient.

b, The number of private, shared and truncal mutations in each patient plotted
and fraction of truncal mutations calculated per patient (white numbers).

For each patient, GrzB expression in tumor subregions based on mIF analysis
and the defined CD3'CD8" T cell infiltration status is indicated. Smoking

status was defined based on deconvolution of the eight different mutational
signatures and comparison to known mutational signatures from Alexandrov
etal.®*withathreshold of >50% for tobacco smoking signature. ¢,d, Positive
correlations found between the TMB and the smoking status (smokers n =24
macro-regions; nonsmokers: n =26 macro-regions; one-sided Student’s

t-test P=1.3 x107°) (c), as well as between the expression of GrzB in tumor
subregions (smokers: n = 4 patients; nonsmokers: n = 4 patients; mIF, one-sided
Student’s t-test P= 0.13) (d). e,f, A higher fraction of truncal (clonal) mutations
was found to be significantly associated with smoking status (smokers: n =4

patients; nonsmokers: n = 4 patients; one-sided Student’s t-test P= 0.019) (e)

and with CD3*CD8" T cellinfiltration (infiltrated: n = 3 patients; excluded:n =35
patients; one-sided Student’s t-test P= 0.0066) (f). g, Schematic overview of

the predicted neoantigen quality model from kuksza et al.*>. h, Neoantigen
quality score distributions of private and truncal mutations in each patient
(02287:n=99/121; 02288: n = 26/92; 02289: n =79/130; 03421: n = 68/24; 02290:
n=21/225;02671:n=59/187;02672: n =38 0of 489; 03023: n = 32/191 (private
neoantigens/truncal neoantigens)).i,j, The ratio between the neoantigen quality
of truncal versus private mutations in excluded and infiltrated tumors (excluded:
n =5 patients; infiltrated: n = 3 patients; boxplot lines show the mean) (i), as

well asin nonsmokers (n = 4 patients) and smokers (n = 4 patients) (j). Unless
indicated otherwise, all statistical tests were performed as one-sided Wilcoxon’s
nonparametric test and boxplots show the median (line), the IQR between the
25th and 75th percentiles (box) and 1.5x the IQR + the upper and lower quartiles,
respectively. No adjustments were made for multiple testing.
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responses against mutations predicted to be covered with at least one
‘exact’ match neoantigen was about fivefold higher compared with
mutations covered by ‘nonexact’ predicted neoantigens. Accordingly,

inour cohort, therelativeimmunogenicity of tumors was higherinthe
nonsmokersand CD3"CD8"T cell-excluded tumors thanin the smokers
and T cell-infiltrated tumors, respectively. We therefore propose that
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Fig. 8 | Evidence of neoantigen-mediated immune editing. a, EXOSC8F75K,
an example of ‘exact’ HLA-I presentation hotspot neoantigen. IDH1**N

and IGFBP1"'*%" are examples of ‘nonexact’. b, The fraction of predicted
neoantigens with nonsynonymous mutations matching ‘exact’ wild-type
peptides inipMSDB that is significantly higher in excluded (n = 31 macro-
regions) thanininfiltrated (n =17 macro-regions) tumors (P = 0.001). ¢, No
difference found when considering predicted neoantigens with synonymous
mutations (P=0.8, nasinb).d, Enrichment of ‘exact’ neoantigens in
excluded tumors of nonsynonymous versus synonymous mutations per
patient (P=0.054). e, The fraction of nonsynonymous ‘exact’ neoantigens
shown to be significantly higher in nonsmokers (n = 24 macro-regions)

than in smokers (n = 24 macro-regions; two macro-regions were excluded
because of lack of neoantigens) (P =3.1x 107%). f, No difference found when
considering synonymous mutations (P = 0.2, n as above). g, In smokers
versus nonsmokers, significant enrichment per patient (P=4.3x10"%, nas
above). h, Similar enrichment inimmune-high (n = 38 samples), -low (n =52
samples) and -mixed (n = 46 samples) tumors of the TRACERX cohort.

i, Mean expression of immune markers” in TRACERX cohort grouped

by smoking status’ (never-smokers: n = 11; ex-smokers: n = 73; recent
ex-smokers: n = 48; current smokers: n = 10; nrefers to samples). j, The
enrichment per smoking status'. k, TRACERx cohort re-classified (light:
n=39; intermediate: n = 76; and heavy smokers: n = 21; nrefers to samples),
considering mutational signature of tobacco smoking and pack-years'.

1, The enrichmentin the refined classification. m, Probability of inducing
spontaneous CD8" T cell responses to ‘exact’ and ‘nonexact’ neoantigens
calculated using Gartner et al.’s cohort of validated immunogenic
mutations®. n, Parameters used to calculate the relative immunogenicity
per macro-region. o, The relative immunogenicity of our eight patients.

p.q, Relative immunogenicity shown to be higher in nonsmokers (n = 24)
versus smokers (n =24) (p) and in excluded (n = 31) versus infiltrated tumors
(n=17) (q), P=2.3 x10®and 0.001, respectively (n refers to macro-regions).
One-sided Wilcoxon’s nonparametric test was used for b-g, p and q and
one-sided Student’s t-test for h—j and I. Boxplots show the median (line), IQR
between the 25th and 75th percentiles (box) and 1.5x the IQR + the upper and
lower quartiles. No multiple testing adjustments were made.
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accumulation of mutations in presentation hotspots reflects limited
immune pressure and lower infiltration of T cells, leading to develop-
ment of rather heterogeneous and branched tumors.

Nonsmoker patients with lung cancer respond poorly to ICB®and
it has been suggested that the low responsiveness is associated with
low TMB and lower expression of PD-L1. However, our results from the
present study suggest that, even when low in number, neoantigens in
nonsmokers and CD3*CD8" T cell-excluded tumors have potentially a
better chancetobepresentedto T cells. Consequently, adoptive trans-
fer of neoantigen-enriched autologous T cells, in combination with
immune modulators that can revertinhibitory signals in the TME and
facilitate homing and persistence of the T cells, could potentially have
atherapeuticimpact. Onthe other hand, inCD3*CD8" T cell-infiltrated
tumors or smokers, too few immunogenic tumor antigens may be
presented probably due to prolonged immune editing. In this case,
additional therapeuticinterventions, for example, epigenetic modula-
tion, targeted therapy, DNA-damaging chemotherapy, irradiation or
even hypoxia-inducing anti-angiogenesis therapy, may be needed to
induce the expression of new tumor-specific antigens. An integrated
exploration of the tumor antigeniclandscape and the TME composition
would advance the development of personalized immunotherapies
that are more effective by tailoring them to clinically relevant tumor
antigens for each patient, and identifying which patients are most likely
to benefit from these treatments.

Methods

Tissue specimens

Lung cancer and adjacent healthy lung tissue samples from eight
patients were collected by the International Institute of Molecular
Oncologyin Poznan, Poland. The different tissue regions were arbitrar-
ily sampled and snap-frozen at -80 °C on surgery.

HLA typing

High-resolution four-digit HLA-l1 and HLA-II typing was performed
on extracted genomic DNA using the HLA amplification method with
the TruSight HLA v.2 Sequencing Panel kit (CareDx). Sequencing
was performed on the lllumina MiniSeq System using a paired-end
2x150-bp protocol. The datawere analyzed with Assign TruSight HLA
v.2.1software (CareDx).

Multispectralimmunofluorescence staining

Multiplexed staining was performed on 4-um FFPE tissue sections
on an automated Ventana Discovery Ultra staining module (Ventana,
Roche). Detailed information on the antibodies used in each round of
multiplex staining is available in the Nature Research Reporting Sum-
mary linked to this article.

Multispectral imaging and data analysis

The mIF images were acquired using the Vectra Polaris, automated,
quantitative pathology imaging system (Akoya Biosciences), allow-
ing unmixing of spectrally overlapping fluorophores and tissue auto-
fluorescence of whole-slide scans. For the optimal IF signal unmixing
(individual spectral peaks) and the subsequent multiplex analysis, a
spectral library containing the individual emitting spectral peaks of
all fluorophores was created and validated using the inForm v.2.4.8
Analysis software (Akoya Biosciences). The phenotyping analysis was
also performed usinginForm. Theimages were segmented into specific
tissue categories of tumor, stromaand notissue, based on CK and DAPI
staining using the inForm Tissue Finder algorithms. Individual cells were
segmented using the counterstain-based, adaptive cell, segmentation
algorithm. Quantification of theimmune cells was performed using the
inFormactive learning phenotyping algorithmby assigning the differ-
entcell phenotypesacross severalimages representing the whole scan.
InForm software was trained to recognize cell phenotypes according
to the panel. This algorithm was then applied on the selected regions

fromthe whole scan by batch to quantify all the different cell types and
anin-house R script was then used to retrieve all combined phenotype
cellsinan output Excel file. For the analysis, we used cell-type density,
whichis the above-mentioned abundance per area.

GeoMx DSP RNA profiling in situ hybridization

Highly multiplexed, spatially resolved profiling experiments were
performed with digital optical barcoding technology using the GeoMx
Digital Spatial Profiler (DSP) and the CTA (Nanostring) in combination
with standard IF according to the manufacturer’s protocol.

Entire slides wereimaged at x20 magnificationand morphological
markers were used to select the region of interest (ROI) using either
circularor organic shapes. ROIs were classified according to CD45 and
CKwith the supervision of pathologist. Five categories were defined:
CD45" (highly enriched in CD45), stroma (CD45 and CK"), necrosis
(CD457, CK’, loss of nuclear staining), TLS (CD45™, CK") and tumor
(CK*,CD45%).Then, 95ROIs were exposed to 385-nm light (ultraviolet),
releasing the indexing oligonucleotides, which were collected with a
microcapillary and deposited ina 96-well plate for subsequent process-
ing. The indexing oligonucleotides were dried down overnight and
resuspended in10 pl of diethylpyrocarbonate-treated water.

Sequencing libraries were generated by PCR according to the
manufacturer’s protocol fromthe photo-released indexing oligos and
ROI-specific lllumina adapter sequences, and uniquei5 and i7 sample
indices were added. PCR reactions were pooled and purified twice
using AMPure XP beads (Beckman Coulter, catalog no. A63881). Pooled
libraries were pair sequenced at 2x 27 bp and with the single-index
workflow on an Illumina HiSeq 3000/4000 instrument. FastQ files
were converted into digital count conversion (DCC) files. DCC files
were imported back into the GeoMx DSP instrument for quality control
and data analyses using the GeoMx DSP analysis suite v.2.2.0.111. Raw
counts were imported into the GeoMx software and adjusted first for
technical variability, thenscaled by area, and background subtracted,
whereby protein targets with a signal:noise ratio <2 were removed. The
background probes used were rabbit immunoglobulin (Ig)G, mouse
IgG1 and mouse IgG2a. Of 94 regions sampled across patients, only
1region had <20 nuclei and was automatically excluded from down-
stream analyses. ROIs were categorized manually based on immuno-
histochemistry staining and previous knowledge of tumor histology.

Immunoaffinity purification of HLA peptides

We performed HLA immunoaffinity purification of HLA-I- and
HLA-II-bound peptides with W6/32 and HB145 monoclonal antibodies
crosslinked to protein A Sepharose 4B (Pro-A) beads according to our
previously established protocols®®. Recovered HLA-1 and -1l peptides
were dried using vacuum centrifugation (Concentrator plus, Eppen-
dorf) and stored at —20 °C. Before mass spectrometry analysis, dried
peptides were resuspended in 12 pl of iRT (indexed retention time;
Biognosys) peptides diluted 1:10in 2% acetonitrile and 0.1% formicacid.

LC-MS/MS analyses

The liquid chromatography-tandem mass spectrometry (LC-MS/
MS) system consisted of an Easy-nLC 1200 connected to a Q Exactive
HF-X mass spectrometer (Thermo Fisher Scientific). Peptides were
separated ona450-mm analytical column (8-umtip, 75-pminner diam-
eter, PicoTipTMEmitter, New Objective) packed with ReproSil-Pur
C18 (1.9-um particles, 120-A (12-nm) pore size, Dr. Maisch GmbH). The
separation was performed at a flow rate of 250 nl min™ by a gradient
from 0.1% formic acid to 80% acetonitrile + 0.1% FA.

For DDA, full mass spectrometry spectra were acquired in the
Orbitrap fromm/z=300-1,650 with aresolution of 60,000 (m/z=200)
and an ion accumulation time of 80 ms. The auto gain control (AGC)
was set to 3 x 10° ions. MS/MS spectra were acquired on the 20 most
abundant precursor ions with a resolution of 15,000 (m/z=200), an
ion accumulation time of 120 ms and an isolation window of 1.2 m/z.
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The AGC was set to 2 x 10° ions, the dynamic exclusion was set to 20 s
andanormalized collision energy (NCE) of 27 was used for fragmenta-
tion. No fragmentation was performed for HLA-I peptides with assigned
precursorion charge states of >4 orion charge state of 1or >6 for HLA-II
peptides. The peptide match option was disabled.

For DIA, the cycle of acquisition consisted of a full mass spectrom-
etryscanfrom300 m/zt01,650 m/z(R= 60,000 andion accumulation
time of 60 ms) and 21 DIA MS/MS scans in the Orbitrap. For each DIA
MS/MS scan, a resolution of 30,000, an AGC of 3 x10° and a ramping
NCE =25.5,27 and 30 were used. The maximum ion accumulation was
settoautoand the overlap between consecutive MS/MSscanswas1m/z.

RNA extraction and sequencing

RNA was extracted using the Total RNA Isolation RNeasy Mini Kit with
the DNAse I (QIAGEN), on-column digestion step. Snap-frozen pieces
of tumor and normal tissue samples (=30 mg) were directly submerged
in350 pl of RLT buffer (second RNA wash buffer with ethanol) supple-
mented with 40 pM dithiothreitol. Tissues were completely homog-
enized onice using a pestle and passed through a 26G needle syringe
5%, Centrifugation was performed in a table-top centrifuge at 4 °C for
3 minat18,213gbefore the supernatant was removed and directly used
for RNA extraction.

RNA quality was assessed on a Fragment Analyzer (Agilent
Technologies). RNA-seq libraries were prepared from 500 ng of total
RNAwiththelllumina TruSeq Stranded mRNA reagents using a unique
dualindexing strategy and following the official protocol automated on
aScicloneliquid handling robot (PerkinElmer). Libraries were quanti-
fied by a fluorimetric method (QublT, Life Technologies) and their
quality assessed on a Fragment Analyzer.

Cluster generation was performed with the resulting libraries
using lllumina HiSeq3000/4000 PE Cluster Kit reagents. Libraries were
sequenced onthe lllumina HiSeq 4000 with HiSeq3000/4000 SBS Kit
reagents for 2x150 cycles. Sequencing data were de-multiplexed with
the bcl2fastq Conversion Software (v.2.20, lllumina).

DNA extraction and exome sequencing

DNA was extracted with the commercially available DNeasy Blood &
Tissue Kit (QIAGEN). Either fresh snap-frozen tissue or pelleted DNA
was used. Pelleted DNA was obtained from the pellet collected after
centrifugation of the lysed tissue used for the HLA immunoaffinity puri-
fication. Pelleted DNA was then resuspended in phosphate-buffered
saline using a pestle before DNA extraction.

Genomic DNA (250-500 ng) was fragmented to150-350 bp using
aCovaris S2.Sequencinglibraries were then prepared using the KAPA
Hyper Prep Library Kit (Roche Sequencing Solutions, Inc.) with xGen
UDI-UMI Adapters (Integrated DNA Technologies Inc.). Target enrich-
ment was performed with the Exome research panel v.2 and the xGen
reagents according to the manufacturer’s recommendations.

Cluster generation and library sequencing were performed as
described above.

Generation of personalized reference databases

Exome sequence reads were aligned to the Genome Reference Con-
sortium Human Build 37 assembly (GRCh37) with BWA-MEM v.0.7.17
(ref. 37). The resulting SAM format was sorted by chromosomal
coordinate and converted into a BAM file, then PCR duplicates were
flagged, using the Picard AddOrReplaceReadGroups and MarkDu-
plicates utilities, respectively (from http://broadinstitute.github.
io/picard). Quality metrics were assessed using the Picard MarkDu-
plicates, CollectAlignmentSummaryMetrics and CalculateHsMetrics
utilities. GATK BaseRecalibrator (within GATK v.4.1.3.0) was used to
recalibrate base quality scores before variant calling®?°. The recali-
brated tumor and germline BAM files were used as input for ploidy
and tumor content estimation by Sequenza (https://pubmed.ncbi.
nlm.nih.gov/25319062) and for each of the four variant callers:

HaplotypeCaller, MuTect v1, Mutect v2 and VarScan 2 (v.2.4.3).
Sequenza was run with default parameters and values of ploidy and
tumor content of the model with the highest log(posterior probabil-
ity score) were selected. HaplotypeCaller®®**° was run in genomic
variant call format (GVCF) mode on each tumor and
germline-recalibrated BAM file to detect SNV and indel (insertion/
deletion) variants. The resultant GVCF files were combined using
GATK GenotypeGVCF to produce raw variant calls for tumor and
germline within asingle VCF. Subsequent variant quality score recali-
brationwas performed separately for SNVs and indels using the GATK
variant Recalibrator tool to identify high-confidence calls. Variant
quality was assessed by the GATK VariantEval tool. Patient-specific
SNPs were defined as variants present in both tumor and germline,
whereas variants present only in tumor were defined as somatic
mutations. The MuTect v.1 variant-calling algorithm was run with
default values (--interval_padding 100) and identified somatic muta-
tions were exported in VCF format. The MuTect v.2 variant-calling
algorithm was run with default values (--genotype-germline-sites
true) and identified variants were exported in VCF format. The mul-
tisample pileup file required for VarScan 2 input was generated using
SAMtools***, VarScan 2 was run using default parameters (estimated
tumor content from Sequenza was used as --tumor-purity and
--min-var-freqwas calculated as min (0.4 x estimated tumor content, 0.2)
and generated a VCF containing SNVs and indels for both somatic
mutations and SNPs. Varscan 2 identified variants were filtered with
fpfilter (--dream3-settings).

Variants were combined into a single VCF that contains the union
of the variants of all callers. Ambiguous calls were resolved by a sim-
ple majority rule, or the call was rejected. GATK WhatsHap v.0.18
(ref. 42) was used to retrieve the phasing information of all variants in
the combined VCF***°, The functional effect of the variants was anno-
tated by SnpEff. To maximize variant annotation we used annotations
from the hgl9 (Refseq) and GRCH37.75 (Ensembl) databases* . From
thisnonredundant annotated VCF for every macro-region, we created
a separate PEFF fasta file for which residue mutation information
was added to the header of the affected, translated, protein-coding
transcripts*.

RNA-seq analysis and noncanonical sequence database
generation

RNA-seq reads were aligned to the GRCH37/hg19 reference genome
using RNA-Star (v.2.7.3a; https://github.com/alexdobin/STAR). Raw
counts were transformed into TPM values. The comprehensive gene
annotation v.32 was downloaded from the GENCODE website (https://
www.gencodegenes.org/human/release_32lift37.html) and chro-
mosome position, transcript structure and transcript. and protein
sequences were selected to define protein-coding and noncoding
genes. For all plots including RNA-seq data we use a log, transforma-
tion with a pseudocount of 1. In addition, we mapped RNA-seq reads
on transposable elements as previously described”’. Normalization
for sequencing depth was performed for both genes and transpos-
able elements using the trimmed mean of M values method with the
limmav.3.36.5 package of Bioconductor*® and the counts on genes as
thelibrary size.

Expressed (TPM > 0.0) noncanonical (IncRNA, polymor-
phic_pseudogene, processed_pseudogene, pseudogene, TEC, tran-
scribed_processed_pseudogene, transcribed_unitary_pseudogene,
transcribed_unprocessed_pseudogene, translated_processed_pseu-
dogene, translated_unprocessed_pseudogene, rRNA_pseudogene,
unitary_pseudogene, unprocessed_pseudogene) genomic sequences
andthe transposable elements were translated in three forward read-
ing frames as identified through a stop-to-stop strategy. Reference
sequences, personalized protein-coding sequences and expressed
noncanonical and transposable elements entries were merged in a
single, sample-specific, personalized proteome.
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MS-based searches

First, for each macro-region, we searched the corresponding raw
file against the personalized proteome reference using Comet with
precursor mass tolerance 20 p.p.m., MS/MS fragment tolerance of
0.02 Da, peptide length of 8-15 for HLA-I and 8-25 for HLA-II pep-
tides and no fixed modifications, whereas methionine oxidation and
phosphorylations onserine, threonine and tyrosine were included as
variable modifications. Agroup-specific, 3% false recovery rate (FDR)
for protein-coding, noncanonical sources and transposable elements
was calculated by NewAnce v.1.7.1as previously described”’. We next
generated asingle comprehensive reference database containing all
the sources of the detected personalized variant and noncanonical
peptides from all the patients, and concatenated these to a generic
GENCODE database. Then, Comet and NewAnce were run again
against this database using the entire cohort immunopeptidomics
dataset, and yet separately for HLA-1 and HLA-II files, with the same
parameters as above. The outputs of this search were used to cre-
ate spectral libraries for targeted DIA analyses using Spectronaut.
The spectral libraries were generated by parsing the PSMs into the
BGS generic format by Spectronaut (v.14.6.2, Biognosys). The exact
Spectronaut parameters are available via ProteomeXchange, acces-
sion no. PXD034772. For identification, a FDR threshold of 0.01
and unspecific digestion rule were used. For targeted DIA-based
identification of the peptides, the library was matched against the
immunopeptidomics DIA raw files with a g-value cut-off of 0.01and
1, respectively, for precursor and protein. Results from Spectronaut
were exported in peptide-centered file formats. These data were
used for Figs. 1and 4-6 and for calculating the sampling scores
(Supplementary Tables 2 and 3).

For more extended analysis of HLA-I peptides derived from
noncanonical sources, we used the database of translated nuORFs
across tissues (nuORFdb)?® (concatenated with the human refer-
ence proteome; 323,848 entries, PA_nuORFdb_v1.0.fasta) and a
reduced version of the above-mentioned personalized references
per patient, where the ORF noncanonical sources were restricted to
methionine-to-stop, in silico translated, transcript entries, result-
ingin fastafiles with overall asimilar size per patient (ranging from
521,779 entries for patient 02672 to 599,300 entries for patient
02287). We used the hybrid DIA approach with Spectronaut v.16.3.
Peptide identification was performed by Pulsar on DIA and DDA
files separately per patient using unspecific digestion and with a
peptide length from 8 amino acids to 15 amino acids. Acetylation
at the protein amino terminus and oxidation of methionine were
considered as variable modifications. For annotation of nuROF
sources, in case a peptide matched multiple nuORF hits, the priority
was given with the following order: 5’-uORF, out-of-frame, 3’-dORF,
noncoding (nc)RNA and ‘others’. For noncanonical sources, we
used the gencode annotation with the following order of priorities:
IncRNAs, processed transcripts, pseudogenes, retained introns,
noncanonical ORFs and ‘others’ (Supplementary Table 9). In addi-
tion, we downloaded the HLA-I1 and HLA-II files of the HLA atlas®
and searched them against the above nuORF fasta file concatenated
with all the entries from which we identified noncanonical peptides
inour initial analyses, to obtain information about their detection
in benign tissues. In the present study, we used the NewAnce tool
as mentioned above on an HPC cluster. Identified peptides were
aligned against the National Center for Biotechnology Information’s
human reference proteome that contains 845,586 entries, includ-
ing nonidentical sequences from GenBank CDS (protein coding
sequence) translations (ncbi.nlm.nih.gov/genbank), Protein Data
Bank (PDB; rcsb.org), Uniprot, PIR (proteininformationresource.
org) and PRF (prf.or.jp). Weregarded leucine and isoleucine as equal.
Only entries that did not match any protein in this larger reference
were used for further analyses. These data were used for Extended
DataFigs. 7-9 and Supplementary Table 9.

HLA-binding prediction for mass spectrometry-identified
peptides

Thebinding affinity of HLA-land HLA-Il peptides was predicted by the
MixMHCpred.v.2.0.2 and MixXMHC2pred.v.1algorithms, respectively,
using patient-specific allotypes as determined by HLA typing**~". HLA-I
9-mers and HLA-I1 15-mers were supplied as input for this prediction.
Peptides withapredicted binding rank <2% were considered as binders.
Clustering was performed using MixMHCp 2.1 (refs. 50,52) on 5,000
randomly selected HLA-19-mers from protein-coding sources, and for
allnoncanonical 9-mersinsamples with>100 peptide identifications.

GTEx RNA expression analyses and listing TAA genes
Tissue-specific gene expression data were downloaded from the
GTEx project v.7 (ref. 53). The 90th percentile per tissue type in GTEx
was reported in TPM values. For the selection of cancer-specific, TAA
protein-coding and noncanonical genes, we first listed genes with
expression level <1 TPM in any healthy tissues in GTEx (except tesies)
and thenretained genes with an expression level <1 TPM in any of the
healthy macro-regions of our cohort and expression >1 TPMin any of
the cancer macro-regions.

PCA and cancer types. We used a curated list of known genes that
define the three different cancer types (Supplementary Table 4). The
PCA was carried out using the ‘svd’ function of base R decomposing
the expression matrix of selected genes: X = UDV’, with two vectors U
and V’ containing the left and right singular vectors of X, and the matrix
Dwithnon-negative eigenvalues d; the fraction of explained variance
. . &
(FOV)isthen calculated as: FOV = S

i=1"i

Phylogenetic trees and mutational signature deconvolution
For each patient, high-confidence somatic mutations (detected by
at least two of the variant callers) were selected and the presence
of all mutations and their noncorrected VAFs were assessed in each
sample-specificalignment file (BAM) with pysam, minimum_base_qual-
ity =30, minimum_mapq = 20 (https://pysam.readthedocs.io/en/lat-
est/index.html). Tumor content and copy numbers were estimated
with Sequenza (v.3.0.0)** and used with noncorrected VAF for the
calculation of the cancer cell fraction (CCF) by Palimpsest®. CCF/2
was used as the VAF input for LICHeE* and the best scoring tree was
selected for each sample.

For each sample, contributions of mutational signatures were
deconvoluted using Palimpsest R package (https://github.com/
FunGeST/Palimpsest; deconvolution_fit algorithm) on all detected
high-confidence somatic mutations. Mutational signature contribu-
tions were calculated as the mean contribution of each signature of all
samples. Patients with a contribution of SBS4 (associated with tobacco
smoking) >50% were categorized as smokers. Hierarchical clustering
of the patients was based on the proportions of private, shared and
truncal mutations, using R packages dist (method =‘euclidean’) and
hclust (method = ‘ward.D2’).

HLA sampling density score
HLA sampling density was calculated using the list of identified pep-
tides based on refs. 57,58 of each source protein as D = % for HLA-I

andD = L_%for HLA-llwith[ thelengthof the protein, K = Y);_, P(XIN (x))
with Pthe probability to obtain peptide x: P(x|N) =1+ (1 — ¢)" and Nix
the number of protein sequences sharing peptide x; g is the a priori

expected value of peptides that can be generated by a protein and is
setto0.2.

Correlations and variance

For correlations of linear models we use the standart ‘cor’, ‘cor.test’
and ‘Im’ function of the R package ‘stats’. For the correlation matrixin
Fig.3h and Extended Data Fig. 3c we used the standard settings of the
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R package ‘corrplot’ Variancein Fig. 3i and Extended Data Fig. 3d,j was
calclulated across all cancer bulk RNA-seq samples per patient with the
standard R ‘var’ function and then for the final quantification in Fig. 3j
and Extended DataFig.3e averaged across all micro-regions per patient.

Calculation of inflammation scores and cell-type abundance

We computed an inflammation score based on the procedure out-
lined in Danaher et al.”. This signature is used in Fig. 2¢,d for each
macro-region based on bulk RNA expression. For the quantification
of immune cell types, we used the signature of Danaher et al.”, and
defined the cell-type abundance as the mean of the log,(expression
values) of all annotated and selected genes per cell type, which were

also measured in the GeoMx transcriptome atlas.

HLA presentation hotspots and prediction of neoantigens
The ipMSDB database® from assembly of 1,102 immunopeptidomic
raw files searched with Comet (PSM FDR of1%) was used as previously
described"’. None of raw files of the investigated eight patients withlung
cancer fromthe present study wereincluded in this version ofipMSDB.
For neoantigen prediction, only ‘high-confidence’ calls were
selected, defined as the set of variants containing all somatic nonsyn-
onymous, synonymous mutations and phased SNPs detected by at
least two of the variant callers described above. MixMHCpred.v.2
(ref.49) wasrunonall predicted 9-mer to 12-mer neoantigen peptides
covering nonsynonymous and synonymous somatic mutationsin each
macro-region using patient-specific HLA allotypes. Neoantigens with
apredicted binding rank <2% were considered as binders. The overlap
ofthe wild-type counterparts of the predicted neoantigen with allother
HLA-I peptides in ipMSDB was determined. Neoantigens identical to
wild-type sequences in SwissProt® or found in the reference GRCh37
(ref.43) proteome werefiltered out. We calculated the fraction of ‘exact’
matchesas F, = ﬁt with N,, the number of ‘exact’ match peptides

and N, thetotal number of neoantigens passing the filter for binding.
To correct for potential biases due to the availability of some HLA alleles
inipMSDB, we used the same approach to analyze synonymous muta-
tions. These are assumed to not be subjected toimmune pressure. For
those, we calculated the same fraction as before, Fey oy = Nexan_ this

‘total,syn
time with N, the totalnumber of predicted binders covering synony-
mous mutationsand N,, ., the fraction of peptides that are binders and
also map to ‘exact’ matches. The enrichment was then defined
as Fex/Fex,syn'

Forthe enrichmentin Fig. 8h—-nwe calculated the fraction of ‘exact’
matches of neoantigens predicted for nonsynonymous and synonymous
mutations per sample. Missing values wereimputed as the minimal value
of each annotated group. We excluded macro-regions 02289-08 and
02289-09 because no synonymous mutations were found.

Analysis of published datasets

The TRACERx data files were downloaded from the European
Genome phenome Archive (EGA) archive (accession numbers
EGAD00001004591and EGAD00001003206). Weincluded all patients
forwhomboth WES and RNA-seq datawere available. The mapped bam
files were converted to fastq with samtools and mapped to GRCh37
with bwa. We reduced the file size of the resulting fastq files to 50%
of the original size. HLA typing was predicted using arcasHLA®. The
data were analyzed in the same way as the lung cohort described
above. We excluded samples CRUK0079-R3 due to RNA-seq pipeline
errors, CRUKO004 because no synonymous mutations were found and
CRUKO0O12because only three alleles were available for predictions and
no synonymous mutations predicted to be binders to the patient’s HLA
were found. Light smokers were assigned as those with a contribution
oftobacco smoking signature of amaximum 30%, whereas heavy smok-
ers were those with at least a 70% smoking signature. Heavy smokers
additionally were required to have >70 pack-years.

We similarly downloaded and analyzed the dataset from the
National Cancer Institute (NCI) Surgery Brunch published by Gartner
etal.” where mutations were screened forimmunogenicity with the
mini-gene approach. Out of 81 patients, 77 with at least one mutation
were found to beimmunogenic. We filtered out four patients—2098,
3309,1913 and 2224 —according to Gartner et al.”. In total, 132 muta-
tions were annotated as ‘immunogenic’. For all high-confidence-called
somatic mutations, neoantigens were predicted and filtered for
binders as described above. Predicted neoantigens were annotated
as ipMSDB ‘exact’ and ‘nonexact’. We further calculated the frac-
tion of ‘exact’ and ‘nonexact’ matches in ‘immunogenic’ and ‘nonim-
munogenic’ mutations to learn the probability of mutations being
immunogenic, depending on their classification into ‘exact’ (f,,) or
‘nonexact’ (fyonex)-

To estimate the immunogenic potential of a mutation in our
cohort, we calculated the relative immunogenicity, whichis the prob-
ability of amutation beingimmunogenic whensampled randomly for
agiven patient: Relative immunogenicity = YeoYectNonerfones yyiehy v the
total number of mutations, N, and NV, the number of ‘exact’ and
‘nonexact’ matches per macro-region and f,, and f, ..., the learned
values above. We quantified the significance of the differencein relative
immunogenicity using a standard Wilcoxon’s test between smokers
and nonsmokers.

Correlation ofimmune cell abundance and GeoMx gene
expression

For all source genes detected in the HLA-Il peptidome in each tumor
group that were also measured in the GeoMx CTA, we calculated a
z-score for each gene i between tumor and stroma, CD45* and TLS

regions (called stroma) related: z; = % withR ;and R;the
var(R.;)+var(R;

log,(expression values) of gene i in tumor (t) or stroma (s) regions. We
then subselected those genes with a z-score that falls into the 25th
(stroma) and 75th (tumor) percentiles. We correlated the expression
of those genes with the previously estimated immune cell-type abun-
dance, across all micro-regionsin the respective tumor group, to find
genes withexpressionassociated with theimmune compartment. For
correlations, we used the standard ‘cor’ function of base R, with the
default method ‘Pearson’. To further associate immune cells with the
presentation of those genes, we summed up the meansampling scores
ofallgeneswitha correlation>0.5percelltype. S, = Ejlﬂ é Zggzl Pgwith
Pthe presentation score of genejin group G.

One- and two-dimensional GO analysis

GO enrichment analysis was carried out on all genes using the R package

‘TopGO’. Our gene universe contained all genes expressed and meas-

ured in the GeoMx CTA. We selected genes to be highly expressed in
(HLAI")—(HLAII")

HLA-II" or HLA-II" samples by calculating az-score z =
var(HLAII™)+var(HLAII")

(HLAII")
(HLAII™)
geneexpression data. Our selection of genes for the enrichment analy-
sis contained the genes that differ significantly between the groups
based onthe z-score: z>2(HLA-II") or z < -2(HLA-II").

For the 2D GO analysis® log,(fold-changes) (log,(FC)) between
two groups of tumor samples (high, low and infiltrated, excluded) were
calculated along with differential gene expression analysis using the
R package ‘edgeR’ on the bulk RNA-seq expression data (raw counts).
Source genes were ranked according to their log,(FC) (high-low) and
(infiltrated-excluded). We then annotated all source genes with GO
categories without thresholds using the R package TopGO (2.40.0).
The scores s, and s, for both comparisons were then calculated for all
GO categories: s, = = 2RFo) \yith R,the meanrankinthe respective GO
categoryand R, the rankinall the other GO categories. Tosimplify the
display, we selected terms that fall into -= s2+52> 03 For 2D GO

and afold-change (FC) FC = onthelog,transformed GeoMx CTA
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analysis onthe HLA sampling scores in Extended Data Fig. 4b, we used
the same approach but the differences between both groups were

assessed by calculating az-score for two comparisons zp = —Sa/=62) __
var(Scp)+var(S.)

with S,and S, the groups of both comparisons, that is, S. = high,
S =low and infiltrated/excluded, on the sampling scores. We then
ranked the genes by the z-score and applied the GO analysis in the same
manner as for the RNA expression analysis. For simplicity we here

displayed only terms with adistancetoorigin>0.2: -, =, /s2 + §2 .
play y g e \/Si+$;>02

Selection of marker genes in the HLA-II peptidome

We sselected all GO categories from the 2D space above with adistance
fromorigin>0.2 and filtered them according to their sampling score.
We retained genes for both of our comparisons: genes presented in
>50% of replicates in immune-low or immune-high samples (inflam-
mation), and genes presented in >50% of the replicates in excluded or
infiltrated samples (infiltration).

Presentation efficiency
We selected all macro-regions that were measured both by RNA-seq
and HLA-IDIA peptidomics and filtered for expressed TAAs within each

macro-region. Then, we calculated, for each TAAin each macro-region,
P.

E'X(l_ EHLL*‘)
pling density score, E;the expression of TAA, iand e the detection limit
inthe GeoMx CTA atlas, setto the 0.1th percentile of the detected values
for all measured genes. TAAs with sampling score equal zero were
includedto factorin expressed yet nonpresented TAAs. We normalize
thisfractionby £, ,, the meanexpression of the three HLA genes HLA-A,
HLA-B and HLA-Cin the GeoMx CTA (tumor micro-regions). To obtain
the mean presentation efficiency for each macro-region, we then cal-
culated (Peg) = % 21:1 P (i), where Nis the total number of expressed
TAAs inamacro-region.

the presentation efficiency P as: P (i) = ,with P,the sam-

Neoantigen quality model
We calculated the quality Q, for all predicted binders per region i as
outlined in kuksza et al.*”. Neoantigens were grouped according to
their respective mutations being truncal (found in at least (no. of
regions — 1) regions), private (maximum 2 regions) and clonal (if not
assigned to any of these two categories). Due to low mutational load
the following samples were treated differently. A mutation was assigned
as truncal when found in no. of regions — 2 in 02672 and 02287, or no.
of mutations - 3in 02671and 02289. We calculated the quality changes
gdue toimmune editing: g; = —<(Q1”“““f'""> withiiterating over eachregion.
private,i
Statistics and reproducibility
No statistical method was used to predetermine sample size. No
patients or macro-regions of the eight lung cohort patients were
excluded throughout the analysis. From the TRACERXx cohort, we
excluded from the analysis samples CRUK0079-R3 due to RNA-seq
pipeline errors, CRUK0O004 because no synonymous mutations were
found and CRUKO0O12 because only three alleles were available for
predictions and no synonymous mutations predicted to be binders to
the patient’s HLA were found. In the NCl dataset, we excluded patients
1913,2098,2224 and 3309 because, for those, onlyimmunogenic muta-
tionswereincluded in the dataset®. Data collection and analysis were
not performed blind to the conditions of the experiments. Data were
notrandomized. Data distribution was assumed to be normal but this
was not formally tested. The mIF, GeoMx, WES, RNA-seq and immun-
opeptidomic experiments were performed only once.

Statistical analyses were performed where applicable using stand-
ardapplicationsinR4.0.2. For all boxplots, we used the standard setting
of the package ‘ggplot2’. Boxplots do not display confidence intervals
(CIs), the degrees of freedom are standard for two sample tests, n —2
with n the sample size. Effect sizes were not considered. Correlation

and corresponding PvaluesinFig. 5e,g were assessed with standard cor
and cor.test functions of the R ‘stats’ package. The correlation matrices
in Figs. 3h and 5h,i were calculated and plotted using the R package
‘corrplot’. All corresponding tests that supply a Pvalue were mentioned
inthe figure legends. Further information on research design is avail-
ableinthe Nature Research Reporting Summary linked to this article.

Ethicalregulation

Informed consent was obtained from the participants in accordance
with the requirements of the institutional review board (Ethics Com-
mission, Centre hospitalier universitaire vaudois (CHUV), Lausanne,
Switzerland and Bioethics Committee, Poznar University of Medical
Sciences, Poznari, Poland).

Reporting summary
Furtherinformation onresearchdesignisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The datasets generated and analyzed during the present study
are available in the EGA and can be accessed with accession no.
EGAS00001006298. mass spectrometry data and Spectronaut
parameters are available via ProteomeXchange with accession no.
PXD034772. The TRACERXx NSCLC WES and RNA-seq data files were
downloaded from the EGA archive (accessions EGAD00001004591
and EGAD00001003206). The WES and RNA-seq data of Gartner etal.”
were downloaded from dbGap accessionno. phs001003v1.pl. All other
data supporting the findings of the present study are available from
the corresponding author on reasonable request. Source data are
provided with this paper.

Code availability

An executable jar file of NewAnce has been deposited to PRIDE with
dataset accession no. PXD013649. The NewAnce code is available on
the following GitHub link: https://github.com/bassanilab/NewAnce.git.
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Extended Data Fig. 1| See next page for caption.
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Extended Data Fig. 1| Mass spectrometry based immunopeptidomics
performed on the different macro-region tissues. a, HLA-land b, HLA-II. DIA
(light bars) analyses increased the number of identified peptides by up to 100%
compared to DDA (solid bars). Peptide counts in the adjacent healthy macro-
regions fall into the same range as the cancer samples. The average percentage
of peptides predicted to bind the respective HLA allotypesin each patients
areindicated above the bars. Peptide length distributions of ¢, HLA-land

d, HLA-llimmunopeptidomics datasets. e Clustering of randomly selected 5000
HLA-I peptides per patient revealed the expected consensus binding motifs.
Multiple specificity was observed for allele HLA-B*08:01 in patient 03421. The

number of identified f, HLA-I (n =102323 peptides) and g, HLA-llbound peptides
(n=53343 peptides) correlated with the starting tissue amount per patient (n=53
macro-regions) but not across patients (p values 0.027 and 0.845, respectively).
Across patients (N = 8 patients), a positive significant correlation was found
between the number of identified h, HLA-1and i, HLA-II peptides with expression
levels of HLA-A (p value 0.0003, Pearson cor=0.54) and HLA-DRB1 (p value
7.3e-06, Pearson cor=0.62), respectively (n = 46 macro-regions with RNAseq

and DIA data). For the correlation shown in f-i only macro-regions with DIA
measurements were included (n=53 macro-regions).
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Extended Data Fig. 2 | mIF imaging of all patient samples. The masking approach used to define infiltration of CD3*CD8" double-positive T cells expressing

granzyme B (GrzB) within tumor and stroma niches is shown for all patients.
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3, nrefers to tumor micro-regions. Statistical tests have been performed

(line), the interquartile range (IQR) between the 25" and 75" percentile (box) and

as aone-sided Wilcoxon non-parametric test and, boxplots show the median
1.5*IQR +/-the upper and lower quartile respectively.

low: n

14,

12, infiltrated-

7andb, stroma

11, infiltrated-low: n
12, infiltrated-high: n

11, infiltrated-high: n
15, excluded-low: n
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Extended Data Fig. 3 | Expression of various immune activation markers

calculated from RNA GeoMx transcriptome atlas data. a, Expression of
immune activation makers in tumor micro-regions (Excluded-high: n
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inflammation. 2D Gene-Ontology enrichment analysis on a, the gene level associated with infiltration, which are exclusively present in tumors from

(bulk RNAseq) and on b, the HLA-I presentation sampling score of source genes ¢, eitherinfiltrated or excluded samples and d, those associated with

(HLA-Il peptidomics). Immune associated terms were highlighted in color. GO inflammation, that were found exclusively in either immune-high or -low
categories with acombined rank (distance to origin) smaller than 0.3 and 0.2 samples. Only source genes detected in >50% of the macro-regions were retained.
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Extended Data Fig. 6 | See next page for caption.
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Extended DataFig. 6| CD3*CD8" T cell infiltration impact the HLA-II
immunopeptidome. a, The relative amount ofimmune cells in each micro-region
calculated on the gene list of Danaher et al. using the GeoMx transcriptome

data. Z-score distribution of the gene expression comparisons of tumor versus
stroma, TLS, and CD45" micro-regionsinb, excluded-low (n = 2and 256 genes)
and ¢, infiltrated-low (n=1and 369 genes) samples. Correlation of all genes

attributed to stroma, TLS, and CD45" micro-regions (lower quartile) or with tumor
micro-regions (upper qurtile) withd, cell type abundance in excluded-low and

e, infiltrated-low samples. Sum of sampling score for genes correlating with any
immune cell type (Pearson Correlationr > 0.5) per cell type inf, excluded-low
(n=2patientsand n = 62 genes) and g, infiltrated-low samples (n =1 patient and
n=169 genes).
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Extended Data Fig. 8 | Expression and presentation of non-canonical and TE sources across the macro-regions. Non-canonical and TE sources (n = 992 peptides
and n =842 source-genes) that were found to be presented were uniformly a, presented and b, expressed across tumors (n = 44 macro-regions) as well asin the
adjacent healthy tissues (n = 8 macro-regions).
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Extended Data Fig. 9 | See next page for caption.

Nature Cancer


http://www.nature.com/natcancer

Article https://doi.org/10.1038/s43018-023-00548-5

Extended Data Fig. 9| Overview of HLA-I peptides nuORF sources identified categories. ¢ Distribution of HLA alleles per patient that have the best binding
by hybrid DIA mass spectrometry based immunopeptidomics. Peptides prediction for all nuORF peptides (n =1383 peptides). d Most important motifs
mapping uniquely to nuORF sources were analyzed a numbers of peptides for all nuORF peptides for four patients. including the percentage of binders and
(n=1383 peptides) from nuORF, shading indicates peptides also found in the peptide clustering to reveal the binding motifs are shown in the panel.

HLA-atlas. b Distribution of identified peptides with respect to seven genomic
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX O O OX O OOS

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used for data collection.

Data analysis Softwares used in this study are publically available and stated in the Methods section where applicable.
-mlF: inForm 2.4.8 Analysis software
-gEOmMX: GeoMx DSP analysis suite version 2.2.0.111
- WES analysis: BWA-MEM version 0.7.17 (GRCh37), Picard v2.18.11, GATK v4.1.3.0
-Tumor content: Sequenza 3.0.0
-Mutation calling: HaplotypeCaller (GATK v4.1.3.0); MuTect v1.1.7; Mutect v2 (GATK v4.1.3.0); and VarScan 2 (v2.4.3), SAMtools v1.8
-HLA typing: Assign TruSight software v2.1
-RNA sequencing analyses and postprocessing: RNA-Star v2.7.3a, GTEx v7, limma v.3.36.5 (Bioconductor), GENCODE annotation 32.
-MS analyses: Comet 2019015, NewAnce v1.7.4 (see below), Spectronaut v14.6.2. Spectronaut v16.3
-HLA-peptide binding prediction: MixMHCpred v2.1, MixMHC2pred v1.2
-TE analyses: limmav3.36.5
-Smoking Signatures: Palimpsest (v2.0.0)
-Tree construction: LICHEe v1.0
-NewAnce v1.7.1 : An executable jar file of NewAnce has been deposited to PRIDE with the dataset identifier PXD013649. The NewAnce code
is available on the following GitHub link https://github.com/bassanilab/NewAnce.git.
-General: R 4.0.2 and Python 3.6, STRING-db v11, GTEx v7, RStudio 1.3.959
R packages:
geforce_0.4.1, ved_1.4-11, ggsignif_0.6.4, corrplot_0.92, biomaRt_2.46.3, ggh4x_0.2.2, edgeR_3.30.3, limma_3.44.3, mixOmics_6.12.2
lattice_0.20-45, MASS_7.3-56, ggpubr_0.4.0, forcats_1.0.0, stringr_1.4.1
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purrr_0.3.4, readr_2.1.2, tibble_3.1.8, tidyverse_1.3.2, topGO_2.40.0, SparseM_1.81, GO.db_3.11.4, AnnotationDbi_1.52.0, IRanges_2.22.2
S4Vectors_0.26.1, Biobase_2.48.0, graph_1.66.0, BiocGenerics_0.36.1, RColorBrewer_1.1-3, jsonlite_1.8.0, rjson_0.2.21, gplots_3.1.3,
cowplot_1.1.1, tidyr_1.2.0, ggplot2_3.3.6, dplyr_1.0.10,ggh4x_0.2.2

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The datasets generated and analyzed during this study are available in the European Genome phenome Archive (EGA), and can be accessed with the ID
EGAS00001006298. Mass spectrometry data and Spectronaut parameters are available via ProteomeXchange with identifier PXD034772.

The TRACERx NSCLC WES and RNAseq data files were downloaded from the EGA archive (EGAD0O0001004591 and EGADO0001003206). Gartner et al. WES and
RNAseq data were downloaded from dbGap accession number phs001003v1.p1. Source data have been provided as Source Data files. All other data supporting the
findings of this study are available from the corresponding author on reasonable request.

Databases can be accessed through:

ProteinAtlas: www.proteinatlas.org/about/download

TCGA: www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga/using-tcga/citing-tcga
NCBI (Virus): support.nlm.nih.gov/knowledgebase/article/KA-03391/en-us
GTEx: www.gtexportal.org/home/datasets

ENSEMBL: https://www.ensembl.org/info/about/publications.html
COSMIC: cancer.sanger.ac.uk/cosmic/license

SNPeff: pcingola.github.io/SnpEff/

GENCODE: www.gencodegenes.org/human/release_32lift37.html

Refseq: www.ncbi.nim.nih.gov/assembly/GCF_000001405.13/

nuORFdb: www.nature.com/articles/s41587-021-01021-3#MOESM4
GenBank CDS translations: ncbi.nlm.nih.gov/genbank

PDB: rcsb.org

Uniprot: https://www.uniprot.org/

PIR: proteininformationresource.org

PRF: prf.or.jp

The source data underlying the Figures and Supplementary Figures, where applicable, are provided as a Source Data file

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Male/female infomration was collected based on informed concent. In this small cohort separate analysis based on sex and
gender was not performed. No correlations with sex or gender were performed or analyzed.

Population characteristics This information is available in Supplemental Table 1.
Sample_name Cancer_Type Sex Grade
C3N-02672 LUAD female G3
C3N-02671 LUAD female G2
C3N-02287 LUAD male G3
C3N-02288 LUSC female G2
C3N-02289 LUSC male G2
C3N-02290 LUAD male G2
C3N-03023 LCNEC female G3
C3N-03421 LUAD female G2

Recruitment Tissues were collected and biobanked. We selected all available tissues from these patients. The sample material was in all
cases large enough to conduct immunopeptidomics, DNA and RNA extraction and FFPE staining. The selection of samples
should not have any impact on the results obtained.

Ethics oversight Informed consent of the participants was obtained following requirements of the institutional review boare (Ethics
Commission CHUV, Bioethics Committee, Poznan University of Medical Sciences, Poznan, Poland).
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Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We surveyed 8 Patients and in total 61 regions. Samples were collected and included in this exploratory study only Thased on their availability.

Data exclusions  No patients or macro-regions of the 8 Lung cohort patients were excluded throughout the analysis. From the TRACERx cohort, we excluded
from the analysis samples CRUKOO79-R3 due to RNAseq pipeline errors, CRUKOO04 because no synonynmous mutations were found, and
CRUKO0012 because only 3 alleles were available for predictions and no synonymous mutations predicted to be binders to the patient’s HLA
were found. In the RosenbergNCl dataset, we excluded patients 1913, 2098, 2224 and 3309 were as for those only positive n mers were
included in the dataset.

Replication Technical replicates were performed on the MS measurment of DDA or DIA samples. No oarticular measures were set to test reproducibility
of methods.

Randomization  Data was not randomized.

Blinding Data collection and analysis were not performed blind to the conditions of the experiments.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study

] Antibodies XI|[] chip-seq

|:| Eukaryotic cell lines |Z |:| Flow cytometry

|:| Palaeontology and archaeology |:| MRI-based neuroimaging
g |:| Animals and other organisms

XI|[] clinical data

g |:| Dual use research of concern

Antibodies

Antibodies used Multiplex staining consisted in multiple rounds of staining. Each round of multiplex staining included: non-specific sites blocking
(DISCOVERY Goat Ig Block (#760-6008) and DISCOVERY Inhibitor (#760-4840), Roche Diagnostics), primary antibody incubation,
secondary HRP-labeled antibody incubation for 16 minutes (DISCOVERY OmniMap anti-Rb HRP (#760-4311, Roche Diagnostics) or
DISCOVERY OmniMap anti-Ms HRP (#760-4310, Roche Diagnostics)), OPALTM reactive fluorophore detection (Akoya Biosciences,
Marlborough, MS, USA) that covalently label the primary epitope (incubation time of 12 minutes) followed by antibodies heat
denaturation (100°C for 8 minutes).

Sequence of antibodies fFor the first panel:, the following sequence of antibodies was used in the multiplex staining with the
associated OPAL: mouse monoclonal anti-human PD1 antibody (clone NAT105, Biocare, # ACI3137C, 1hour, RT), OPAL570 (Akoya
Biosciences, # FP1488001KT); rabbit polyclonal anti-CD3 antibody (0.4 g/I, Dako, # A0452, 32 minutes, 37°C), OPAL480 (Akoya
Biosciences, # FP1500001KT); mouse monoclonal anti-GranzymeB antibody, Clone GrB-7, Monosan, # MON7029-1, 1hour, RT),
OPALG620 (Akoya Biosciences, # FP1495001KT); rabbit monoclonal anti-Ki67 antibody (1 pg/ml, Clone SP6, Cellmarque, # 275R-16,
lhour, 37°C), OPAL520 (Akoya Biosciences, # FP1487001KT); mouse monoclonal anti-Cytokeratin antibody (1 pg/ml, Clone AE1/AE3,
Dako, # M3515, 1hour, RT), OPAL690 (Akoya Biosciences, # FP1497001KT); rabbit monoclonal anti-CD8 antibody (76.9 pg/ml, clone
SP16, Cellmarque, # 108R-16-RUQ, 1hour, 37°C), OPAL780 (Akoya Biosciences, # FP1501001KT). Sequence of antibodies fFor the
second panel, the following sequence of antibodies was used with the associated OPAL: rabbit polyclonal anti-CD3 antibody,
OPAL570; rabbit monoclonal anti-human FoxP3 antibody (clone SP97, Spring, # M3974, 1hour, 37°C), OPAL520; rabbit polyclonal
anti-CD20 antibody (126 mg/l, Dako, # M0755, 1hour, 37°C), OPAL620 ; mouse monoclonal anti-HLA-DR antibody (Clone TAL-1B5,
Dako, # M0746, 1hour, 37°C), OPAL480; mouse monoclonal anti-Cytokeratin antibody, OPAL690; rabbit monoclonal anti-CD8
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antibody, OPAL780. Nuclei were visualized by a final incubation with Spectral DAPI (1/10, # FP1490, Akoya Biosciences) for 12
minutes. Slides were mounted with Fluorescence Mounting Medium (Agilent Technoligies, # S302380-2) and coverslipped.

Anti HLA-I antibody : from hybridoma “HB-95”
Company name : ATCC

Catalog number : HB-95

Lot number: 7001294

Clone name: W6/32

Antigenic determinant: HLA-A, B, C

Isotype: IgG2a

Host: mouse

Cell type: Hybridoma: B lymphocyte

Clonality: monoclonal

Amount used: 1mg per 1ml of Protein A beads.

Anti HLA-Il antibody : from hybridoma “HB-145"
Company name : ATCC

Catalog number : HB-145

Lot number:59681660

Clone name: ival2

Amount used: 1mg per 1ml of Protein A beads.

Validation Validation by vendor following ATCC guidelines. Certificate of Analysis can be found here:https://www.lgcstandards-atcc.org/
Products/All/HB-95.aspx?geo_country=ch#documentation and https://www.lgcstandards-atcc.org/Products/All/HB-145.aspx?
geo_country=ch#documentation
Additionally, anti-HLA-I and -1l antibodies were validated directly in our laboratory, through the use of these antibodies for
immuno-affinity purification of HLA-I and -1l peptides from cell lines and tissue samples. These peptides were measured by mass
spectrometry, and their characteristics fit that of HLA-I and -1l peptides, respectively.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s)

Authentication

Mycoplasma contamination

Commonly misidentified lines
(See ICLAC register)

nti HLA-I antibody : from hybridoma “HB-95”
Company name : ATCC

Anti HLA-II antibody : from hybridoma “HB-145"
Company name : ATCC

Validation by vendor following ATCC guidelines. Certificate of Analysis can be found here:https://www.lgcstandards-atcc.org/
Products/All/HB-95.aspx?geo_country=ch#documentation and https://www.lgcstandards-atcc.org/Products/All/
HB-145.aspx?

geo_country=ch#documentation

All cell lines were tested negative for mycoplasma.

Not applicable.
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