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Abstract We prove that the componentwise maximum of an i.i.d. triangular array
of chi-square random vectors converges in distribution, under appropriate assump-
tions on the dependence within the vectors and after normalization, to the max-stable
Hüsler–Reiss distribution. As a by-product we derive a conditional limit result.
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1 Introduction and main result

It is well-known that if X (1), X (2), . . . are independent standard Gaussian random
variables, then the maximum Mn := max1≤ j≤n X ( j) satisfies

lim
n→∞ P

{√
2 ln n

(
Mn −

(√
2 ln n − ln(4π ln n)

2
√

2 ln n

))
≤ t

}
= e−e−t

, t ∈ IR. (1.1)

The following multivariate version of this result has been obtained by Hüsler
and Reiss (1989). For every n ≥ 1 let Xn = (Xn1, . . . , Xnd)	 be a d-variate
Gaussian random vector with zero-mean, unit-variance margins and a covariance
matrix �n . Throughout, 	 stands for the transpose sign. Let X(1)

n , . . . , X(n)
n , where

X ( j)
n = (X ( j)

n1 , . . . , X ( j)
nd )	, 1 ≤ j ≤ n, be independent copies of the random vec-

tor Xn . Denote by Mn = (Mn1, . . . , Mnd)	, n ≥ 1, the d-variate vector of the
componentwise sample maxima given by

Mni := max
1≤ j≤n

X ( j)
ni , 1 ≤ i ≤ d.

Assuming that the sequence of covariance matrices �n , n ≥ 1, satisfies

lim
n→∞ 4 ln n · (11	 − �n) = � ∈ [0, ∞)d×d , 1 = (1, . . . , 1)	 ∈ IRd , (1.2)

Hüsler and Reiss (1989) have shown that we have the following convergence in
distribution

√
2 ln n

(
Mn −

(√
2 ln n − ln(4π ln n)

2
√

2 ln n

)
1
)

d→ M�, n → ∞. (1.3)

Here, M� is a d-variate vector having the so-called Hüsler–Reiss distribution, a
multivariate max-stable distribution with Gumbel margins; see Hüsler and Reiss
(1989) and Falk et al. (2004, Example 4.1.4). For extensions and related results, see
Brown and Resnick (1977), Hashorva (2008), Kabluchko et al. (2009) and Kabluchko
(2010).

Our aim is to prove an analogue of the Hüsler–Reiss result for χ2-random vectors.
Recall that a random variable ξ is said to have a χ2-distribution with m ∈ IN degrees

of freedom, if it can be represented as ξ
d= X2

1 + . . . + X2
m , where X1, . . . , Xm

are independent standard Gaussian random variables. It is well-known that the χ2-
distribution, being a special case of the gamma distribution, is in the max-domain of
attraction of the Gumbel distribution; see, e.g., Embrechts et al. (1997, p. 156). More
precisely, let ξ (1), ξ (2), . . . be independent χ2-random variables with m degrees of
freedom and define

bn = 2 ln n + (m − 2) ln ln n − 2 ln �(m/2). (1.4)
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It is easy to check that P {ξ > bn + 2t} ∼ e−t/n as n → ∞. Hence, the maximum
Mn := max1≤ j≤n ξ ( j) satisfies

lim
n→∞ P {Mn ≤ bn + 2t} = e−e−t

, t ∈ IR. (1.5)

Our aim is to prove a multidimensional version of Eq. 1.5. In the case m = 1, our
result will essentially reduce to that of Hüsler–Reiss. For every n ≥ 1 let ξn =
(ξn1, . . . , ξnd)	 be a d-variate χ2-random vector with m degrees of freedom whose
components are given by

ξni = X2
ni;1 + . . . + X2

ni;m, 1 ≤ i ≤ d, n ≥ 1, (1.6)

where Xn; j = (Xn1; j , . . . , Xnd; j )
	, 1 ≤ j ≤ m, are m independent copies of a

zero-mean, unit-variance d-variate Gaussian random vector Xn = (Xn1, . . . , Xnd)	
with covariance matrix �n , as defined above.

Note in passing that for every 1 ≤ i ≤ d, n ≥ 1, the margin ξni has χ2-distribution
with m degrees of freedom, and furthermore ξn1, . . . , ξnd are in general dependent
random variables. For every n ≥ 1 let ξ (1)

n , . . . , ξ (n)
n be independent copies of the

random vector ξn ; we write ξ
( j)
n = (ξ

( j)
n1 , . . . , ξ

( j)
nd )	, 1 ≤ j ≤ n. Let Mn =

(Mn1, . . . , Mnd)	, n ≥ 1, be the componentwise sample maxima given by

Mni := max
1≤ j≤n

ξ
( j)
ni , 1 ≤ i ≤ d.

Our main result describing the asymptotic distribution of Mn reads as follows.

Theorem 1.1 Assume that the sequence of covariance matrices �n, n ≥ 1, satisf ies
Eq. 1.2 and let the normalizing constants bn, n ≥ 1, be def ined by Eq. 1.4. Then, we
have the following convergence in distribution

1

2
(Mn − bn1)

d→ M�, n → ∞. (1.7)

Several authors have studied large deviations for the maxima of continuous-time
χ2-square processes; see Albin (1990) and the references therein. In our proof
of Theorem 1.1 we will rely on some ideas of Hüsler and Reiss (1989) and Albin
(1990).

2 Discussion

The crucial role in the triangular array scheme considered by Hüsler and Reiss (1989)
is played by the limit condition (Eq. 1.2) which specifies the rate of convergence
of the components of the covariance matrix �n to 1. In fact, it is known that if
the off-diagonal elements of �n remain bounded away from 1 as n → ∞, then
the components of the maximum Mn become independent in the limit. In this case,
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the off-diagonal elements of the matrix � in Eq. 1.2 are equal to +∞. On the other
hand, if the matrix � is equal to zero, then the components of the limiting distribution
are a.s. equal. The result of Hüsler and Reiss interpolates between these boundary
cases. The space of Hüsler–Reiss distributions may be “compactified” by allowing
the elements of the matrix � to be infinite (for a rigorous treatment, see, e.g., the
notion of a negative defined kernel in the extended sense in Kabluchko 2010).

Our result shows that also the maxima of triangular arrays of i.i.d. χ2-random vec-
tors are attracted by the Hüsler–Reiss distributions, thus extending the applicability
of the Hüsler–Reiss distributions beyond the Gaussian setup.

Due to the importance of conditional limit theorems and conditional extreme value
models (see Heffernan and Resnick 2007; Das and Resnick 2010) we provide a condi-
tional limit result for χ2-distributions. We focus for simplicity on the 2-dimensional
setup considering ξn = (ξn1, ξn2)

	, n ≥ 1, as in Eq. 1.6, where the underlying
covariance matrix �n has off-diagonal elements equal ρn ∈ (−1, 1), n ≥ 1, and its
main diagonal consists of 1’s.

Theorem 2.1 Let bn, n ≥ 1, be a sequence of constants such that limn→∞ bn = ∞
and limn→∞ 2bn(1 − ρn) = λ ∈ [0, ∞). Then for any x ∈ IR,

lim
n→∞ P

{
ξn2 > bn + 2x

∣∣∣ξn1 > bn

}
= P

{√
λZ − λ

2
+ S > x

}
,

where Z is a standard normal variable and S is a unit-mean exponential random
variable independent of Z.

3 Proofs

Proof of Theorem 1.1 First we introduce some notation. Given a vector x =
(x1, . . . , xd)	 ∈ IRd we define xK := (x2, . . . , xd)	 with K = {2, . . . , d}. If
A = (ai j ) ∈ IRd×d is a matrix, then we define A11 = a11, A1K := (a12, . . . , a1d),
AK 1 := (a21, . . . , ad1)

	, and AK K := (ai j )i, j∈K . Given x, y ∈ IRd write

x > y, if xi > yi for every 1 ≤ i ≤ d,

x + y := (x1 + y1, . . . , xd + yd)	, cx := (cx1, . . . , cxd)	, c ∈ IR,

x y := (x1 y1, . . . , xd yd)	, x2 := xx.

In view of Lemma 4.1.3 in Falk et al. (2004), the proof of the theorem follows if we
show that

lim
n→∞ nP

{
ξn > bn1 + 2x

}

=
∫ ∞

x1

P

{
W > xK − s1K + 1

2
�K 1

}
e−sds, x ∈ IRd , (3.1)
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where W is a (d − 1)-variate mean-zero Gaussian random vector with covariance
matrix � ∈ IR(d−1)×(d−1) defined by

� := (1K �1K + �K 11	
K − �K K )/2. (3.2)

Indeed, an application of Eq. 3.1 to the subvectors of ξn verifies the conditions of
Lemma 4.1.3 in Falk et al. (2004).

Since �n is a positive definite matrix, we can find a matrix An such that �n =
An A	

n . Let Z1, . . . , Zm , where Zl := (Z1;l , . . . , Zd;l)	, 1 ≤ l ≤ m, be m indepen-
dent standard Gaussian random vectors in IRd whose covariance matrix is equal to
the identity matrix in IRd . Further, let Bn ∈ IR(d−1)×(d−1) be a square matrix such
that

Bn B	
n = (�n)K K − σ nσ	

n , σ n := (�n)K 1. (3.3)

Note that the matrix (�n)K K − σ nσ	
n , being the Schur complement of (�n)11,

is positive definite. It follows that for any n ≥ 1 we have the joint stochastic
representation

ξn1
d=

m∑
l=1

Z2
1;l , (ξn2, . . . , ξnd)	 d=

m∑
l=1

(Bn ZK ;l + Z1;lσn)2,

where we set ZK ;l : = (Z2;l , . . . , Zd;l)	. Consequently, since Z1;l is independent of
ZK ;l for any 1 ≤ l ≤ m, for every x ∈ IRd and ε > 0 we obtain

P
{
ξn > bn1 + 2x

}

= P

{
m∑

l=1

Z2
1;l > bn + 2x1,

m∑
l=1

(Bn ZK ;l + Z1;lσn)2 > bn1K + 2xK

}

≤ P

{
m∑

l=1

Z2
1;l > bn + 2x1,

m∑
l=1

(Bn ZK ;l + Z1;lσ n)
2 > bn1K

+ 2xK ,

m∑
l=1

(Bn ZK ;l)2 ≤ ε1K

}

+ P

{
m∑

l=1

Z2
1;l > bn + 2x1

}(
1 − P

{
m∑

l=1

(Bn ZK ;l)2 ≤ ε1K

})

≤ P

{
m∑

l=1

Z2
1;l > bn + 2x1, 2

m∑
l=1

Z1;l(Bn ZK ;l)σ n

+
m∑

l=1

Z2
1;lσ

2
n > 2xK − ε1K + bn1K

}

+ P

{
m∑

l=1

Z2
1;l > bn + 2x1

}(
1 − P

{
m∑

l=1

(Bn ZK ;l)2 ≤ ε1K

})
. (3.4)
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Recall from Eq. 3.3 that σ n := (�n)K 1. Condition 1.2 implies that

lim
n→∞ σ n = 1K , lim

n→∞ bn[1K − σ 2
n] = lim

n→∞ 2bn[1K − σ n] = �K 1. (3.5)

Also, it follows from Eq. 1.2 and the definition of Bn in Eq. 3.3 that

lim
n→∞ bn Bn B	

n = (1K �1K + �K 11	
K − �K K )/2 = �. (3.6)

Let F be the χ2-distribution function with m degrees of freedom. By the choice of
the sequence bn in Eq. 1.4,

lim
n→∞ n(1 − F(bn + 2s)) = e−s, s ∈ IR. (3.7)

It follows from Eq. 3.6 that the elements of the matrix Bn converge to 0 as n → ∞.
Hence,

lim
n→∞ P

{
m∑

l=1

Z2
1;l > bn + 2x1

} (
1 − P

{
m∑

l=1

(Bn ZK ;l)2 ≤ ε1K

})
= e−x1 · 0 = 0.

Consequently, we have

lim sup
n→∞

ψn(x) ≤ lim inf
n→∞ nP

{
ξn > bn1 + 2x

} ≤ lim sup
n→∞

nP
{
ξn > bn1 + 2x

}

≤ lim inf
n→∞ ψn(x − (ε/2)1), (3.8)

where

ψn(x) := nP

{
m∑

l=1

Z2
1;l > bn + 2x1, 2

m∑
l=1

Z1;l(Bn ZK ;l)σ n

+
m∑

l=1

Z2
1;lσ

2
n > bn1K + 2xK

}
.

In the rest of the proof we compute limn→∞ ψn(x). The following stochastic
representation is crucial:

2
m∑

l=1

Z1;l(Bn ZK ;l)σ n +
m∑

l=1

Z2
1;lσ

2
n

d= 2

⎡
⎣

√√√√ m∑
l=1

Z2
1;l

⎤
⎦(Bn ZK ;1)σ n +

[
m∑

l=1

Z2
1;l

]
σ 2

n

d= 2
√

ξ(Bn ZK ;1)σ n + ξσ 2
n, (3.9)
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where the χ2-variable ξ := ∑m
l=1 Z2

1;l is independent of ZK ;1. Recall that the dis-
tribution function of ξ is denoted by F and write Fn(s) = n(1 − F(bn + 2s)) for
n > 1, s ∈ IR. By conditioning on ξ = s we obtain

ψn(x)

= n
∫ ∞

bn+2x1

P

{
2
√

ξ(Bn ZK ;1)σ n + ξσ 2
n > bn1K + 2xK |ξ = s

}
d F(s)

= −
∫ ∞

x1

P

{
2
√

bn + 2s(Bn ZK ;1)σ n + (bn + 2s)σ 2
n > bn1K + 2xK

}
d Fn(s)

= −
∫ ∞

x1

P

{√
bn + 2s(Bn ZK ;1)σ n > xK − sσ 2

n + bn[1K − σ 2
n]/2

}
d Fn(s)

=: −
∫ ∞

x1

qn(s) d Fn(s). (3.10)

It follows from Eqs. 3.5–3.7 that for any sequence of constants sn, n ≥ 1, such that
limn→∞ sn = s ∈ IR, we have

lim
n→∞ qn(sn) = P {W > xK − s1K + �K 1/2} and lim

n→∞ Fn(s) = e−s .

Also, we have qn(s) ≤ 1 for every n ≥ 1, s ∈ IR. Applying Lemma 4.4 of Hashorva
(2006) (or Theorem 3.27 of Kallenberg 1997) we obtain

lim
n→∞ ψn(x) =

∫ ∞

x1

P

{
W > xK − s1K + 1

2
�K 1

}
e−sds.

By the arbitrariness of ε in Eq. 3.8, we obtain Eq. 3.1. Restricting Eq. 3.1 to the
subvectors of ξn and applying Lemma 4.1.3 of Falk et al. (2004) completes the
proof. ��

Proof of Theorem 2.1 In view of Eq. 3.7, we need to show that for every sequence
sn, n ≥ 1, such that limn→∞ sn = s, where s ≥ 0, we have

lim
n→∞ P

{
ξn2 > bn + 2x

∣∣∣ξn1 = bn + 2sn

}
= P

{√
λZ − λ

2
+ s > x

}
. (3.11)

Here, Z is a standard Gaussian random variable. We have a joint stochastic represen-

tation ξn1
d= ∑m

l=1 Z2
1;l and ξn2

d= ∑m
l=1(ρn Z1;l + √

1 − ρ2
n Z2;l)2, where we use the

same notation as in the proof of Theorem 1.1. Utilizing Eq. 3.4, the claim (Eq. 3.11)
follows if we show that for every x ∈ IR,

lim
n→∞ P

{
2ρn

√
1 − ρ2

n

m∑
l=1

Z1;l Z2;l + ρ2
n

m∑
l=1

Z2
1;l > bn + 2x

∣∣∣
m∑

l=1

Z2
1;l = bn + 2sn

}

= P

{√
λZ − λ

2
+ s > x

}
,
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By assumption, limn→∞ ρn = 1, hence with the same arguments as in Eq. 3.9 the
limit on the left-hand side can be written as

lim
n→∞ P

{
2ρn

√
(bn + 2sn)(1 − ρ2

n)Z + 2ρ2
nsn − bn(1 − ρ2

n) > 2x

}

= P

{√
λZ − λ

2
+ s > x

}
,

and thus Eq. 3.11 follows since limn→∞ bn(1 − ρ2
n) = λ by assumption. ��
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