
A Vision for User-Defined Semantic Markup
Michael Piotrowski

michael.piotrowski@unil.ch
University of Lausanne

Department for Language and Information Sciences
Lausanne, Switzerland

ABSTRACT
Typesetting systems, such as LATEX, permit users to define custom
markup and corresponding formatting to simplify authoring, ensure
the consistent presentation of domain-specific recurring elements
and, potentially, enable further processing, such as the generation
of an index of such elements. In XML-based and similar systems, the
separation of content and form is also reflected in the processing
pipeline: while document authors can define custom markup, they
cannot define its semantics. This could be said to be intentional
to ensure structural integrity of documents, but at the same time
it limits the expressivity of markup. The latter is particularly true
for so-called lightweight markup languages like Markdown, which
only define very limited sets of generic elements. This vision paper
sketches an approach for user-defined semantic markup that could
permit authors to define the semantics of elements by formally
describing the relations between its constituent parts and to other
elements, and to define a formatting intent that would ensure that
a default presentation is always available.

CCS CONCEPTS
• Applied computing → Markup languages; Format and nota-
tion; Document scripting languages.

KEYWORDS
markup semantics, document models and structures, document
authoring, scholarly publishing

ACM Reference Format:
Michael Piotrowski. 2019. A Vision for User-Defined Semantic Markup. In
ACM Symposium on Document Engineering 2019 (DocEng ’19), September
23–26, 2019, Berlin, Germany. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3342558.3345414

1 INTRODUCTION
The first occurrence of a technical term is often highlighted, typi-
cally by setting it in italics. While visually indistinguishable from
other uses of italics (e.g., book titles, foreign words, or general em-
phasis), it clearly has a different meaning. In traditional typesetting
systems, such as LATEX, it is easy for authors to make a distinction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DocEng ’19, September 23–26, 2019, Berlin, Germany
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6887-2/19/09. . . $15.00
https://doi.org/10.1145/3342558.3345414

between emphasis and the first mention of a term in the document
source, even if they are rendered in the same way:

\newcommand {\term }[1]{\ emph {#1}}

Making this seemingly trivial distinction allows authors to change
the presention of one of them without impacting the other, or to
apply further processing, e.g., generate an index of terms. In typical
XML-based workflows authors can theoretically introduce new
markup elements, but XML does not provide the means to specify
their semantics or, as authors generally do not have access to later
stages of processing, their rendering.

This problem is even more acute in so-called lightweight markup
languages, such as Markdown1 and Org-mode [11]. Originally in-
tended as just an easier way to write HTML, the capabilities of
lightweight markup languages and the corresponding processors
have grown significantly. Multi-format converters, such as Pandoc,2
make lightweight markup languages also attractive for scholars:
they allow them to write in a concise format and then easily pro-
duce the format required for submission, be it PDF, LATEX, Microsoft
Word, or JATS. This also makes it easier to resubmit papers to a
different publication venue or to reuse content [5]. One signifi-
cant drawback, however, is that authors are effectively limited to
a small, fixed set of generic markup elements, and thus to using
italics indifferently for emphasis, terms, book titles, etc.

The structural aspects of markup—sections, subsections, para-
graphs, etc.—are more or less identical across markup vocabularies
and can be mapped well by tools like Pandoc. What is lost, however,
are the elements specific to particular domains, such as those spe-
cific to philology in TEI or to software documentation in DocBook.
The standardization on the lowest common denominator helps in-
terchange and conversion of documents, but prevents the use of
“semantic” markup, which ensures consistent formatting and may
express a meaning beyond formatting.

Whatever the discipline, research is characterized by analyzing
specific topics in depth, combining existing knowledge with new
ideas, defining new concepts and methods, and requiring new ter-
minology and new notations. At the same time, different disciplines
and areas of research also have very different requirements. It is
thus illusionary to ever create a comprehensive markup vocabulary
for scholarly publications; authors would thus ideally be able to
define custom semantic markup in a declarative fashion; better yet,
the definition would be understandable to different processors and
could be automatically mapped to different target formats.

In the next section we introduce our conceptual approach to
user-defined semantic markup. We will then briefly review related
work, before we discuss the proposal and the required future work.

1https://daringfireball.net/projects/markdown/
2https://pandoc.org

https://doi.org/10.1145/3342558.3345414
https://doi.org/10.1145/3342558.3345414
https://doi.org/10.1145/3342558.3345414
https://daringfireball.net/projects/markdown/
https://pandoc.org

DocEng ’19, September 23–26, 2019, Berlin, Germany Michael Piotrowski

2 USER-DEFINED SEMANTIC MARKUP
2.1 Goals and Desiderata
As stated above, our primary goal is to give document authors a
way to declaratively define custom markup so that it can both be
sensibly formatted and semantically processed. The most important
aspects are thus:
User-definable. Authors should be able to define custom markup

on a per-document basis.
Declarative. The specification should be declarative rather than

procedural, unlike macro definitions in traditional typeset-
ting systems.With respect to formatting, authors should thus
be able to specify a “formatting intent” that is sufficiently
precise to permit a useful default rendering and sufficiently
abstract to be adapted to different concrete layouts.

System-independent. Ideally, the same definition should be us-
ablewith XML, LATEX, Pandoc, Org, etc., and only the concrete
syntax would depend on the system used.

2.2 Conceptual Approach
As an example, consider glosses of foreign words, such as (under-
lined):

. . . the French word chaise ‘chair’ is a feminine noun.
Such constructs occur frequently in linguistic discussions, but are
not limited to linguistic texts; they can occur in all kinds of texts,
from discussions of international law, philosophy, history, or engi-
neering. However markup vocabularies rarely provide authors with
dedicated elements; it is thus a good candidate for a user-defined
element. If we start from the typography, a basic definition in LATEX
could be as simple as:

\newcommand {\gloss }[2]{\ emph {#1} `#2'}

Since the term to be glossed is likely to be in a different language
than the rest of the text, a better definition could be:

\newcommand {\gloss }[3]{

\emph{\ selectlanguage {#1}#2} `#3'}

This defines a macro that accepts three arguments:
(1) the language of the term to be glossed,
(2) the term itself, and
(3) the gloss.

The markup for the above example chaise ‘chair’ would thus look
like:

\gloss{french }{ chaise }{chair}

As already noted by Renear et al. [9], the meaning of document
elements is to a large extent defined through their relations be-
tween their constituent parts, to other document elements, and to
document-external entities. In this simple example we can observe
the following relations between the three arguments (using the
same numbering of arguments):

• arд2 has-language arд1
• arд2 has-translation arд3

In addition, one could say that the name of the language specified
in arд1 refers to some entitiy external to the document (a language),
so one could add the relation

• arд1 refers-to ⟨lanдuaдe⟩

If these relations were defined in a machine-readable way, and if
the possible types of relations were known (i.e., there existed a con-
trolled vocabulary of relations), a system could already recognize
two different definitions of such an element as identical, regardless
of names and order of arguments.

2.3 Describing the Formatting Intent
When we consider authoring, there is a an important type of pro-
cessing that is often neglected: formatting. If users are permitted
to define new elements, it is also necessary to have at least a sensi-
ble basic rendering. Again, this is easy to achieve in a typesetting
system (such as LATEX), but very difficult in an XSLT-based XML
processing pipeline. Even when users are permitted to specify a
“user stylesheet,” it requires potentially very detailed knowledge of
the standard processing. It would also be unlikely to be portable to
other processing pipelines for the same document type. Processors
for Markdown and other lightweight markup languages typically
do not even have stylesheets but the conversion to the target for-
mat is embedded in the processor’s code and neither visible nor
alterable by authors.

What is needed, therefore, is also a way to describe a formatting
intent that abstracts from the implementation details of a particular
processor, but is detailed enough to permit a processor to create a
useful rendering matching the rest of the document design. Ideally,
such a description would be portable between different processors:
one might map it to XSLT, another to CSS, yet another to LATEX, etc.
This task may at first be daunting, but the two-dimensional visual
language of print-like documents is based on a very small number
of basic elements, many of which already appear on this page: in the
end, almost all semantically marked elements are rendered using
some combination of type size and type style changes with respect
to surrounding material and horizontal and vertical placement
relative to surrounding material. The formatting of an element is
thus similarly defined through relations to other elements.

In the example above, the formatting intent could specify that
the element is to be rendered as an inline element consisting of the
sequence of arд2 and arд3 (both inline elements as well), with arд3
enclosed in inner quotes; the italicization of arд2 could be derived
from the fact that it is identified as being in a different language.
While other ways of formatting are possible, such as

. . . the French word “chaise” (chair) is a feminine noun.

in the absence of a more specific formatting (which could be identi-
fied as applicable by the semantics of the element) the suggested
formatting would be perfectly adequate.

2.4 Putting It All Together
The above discussion suggests an interpretation of markup element
as functions with a certain number of arguments whose semantics
(or “type”) is specified by relations between them (e.g., a translation
of a string must also be a string) or to external entities (e.g., the
value of an argument declared as a reference to a language must
be one of the set of legal languages), yielding a formatting intent,
i.e., a sequence of formatting elements. In a Lisp-like notation, this
could be expressed roughly as follows:

A Vision for User-Defined Semantic Markup DocEng ’19, September 23–26, 2019, Berlin, Germany

(defelem gloss (lang foreign gloss)

"Documentation of custom `gloss ' element"

((has -language foreign lang)

(has -translation foreign gloss)

(refers -to lang iso639 -language))

((inline -seq foreign (inner -q gloss))))

This example is merely for illustration and not meant to imply a
specific implementation. Given the declarative approach and the
central role of controlled vocabularies, we believe RDF could be a
suitable framework for a concrete implementation.

Document processing systems would provide authors with a way
to associate such definitions with a syntax specific to their markup
languages, such as <gloss> in an XML-based system. They would
parse this definition and map it to their internal representations
and, for example, generate a corresponding stylesheet fragment,
which is then included by the master stylesheet.

3 RELATEDWORK
Related work is mainly found in two areas: (1) semantic markup, i.e.,
markup that aims to express a meaning beyond a particular presen-
tation, and (2) markup semantics, i.e., the study of the meaning of
markup and how this meaning can be formalized. The concept of
semantic markup started to emerge in the late 1960s with the ideas
of generic coding by William W. Tunnicliffe and Stanley Rice’s text
format models [10], which ultimately lead to the development of
SGML [4] and thus XML. SGML and XML applications, however,
only define the syntax of a markup language in a formal way; as
Sperberg-McQueen et al. point out, “[i]n practice, the semantics of
markup is most of the time specified only through human-readable
documentation. Most existing colloquial markup languages are
documented in prose, sometimes systematically and in detail, some-
times very sketchily.” [14] This also applies to LATEX markup, which
is based on the same ideas; however, as its markup language is
defined as macros in the TEX typesetting language, it does have
executional semantics. Lightweight markup languages are typically
defined by a mapping to some other markup language (most often
HTML), so they inherit their semantics and only define a different
syntax.

The vision of the Semantic Web and the needs of search engines
have motivated research on the “semantic enhancement” of docu-
ments using RDF and OWL to provide formally defined semantics
for selected content. Particularly noteworthy is the work based on
the EARMARK markup language Peroni et al. [7, 8] and the Seman-
tic Publishing and Referencing (SPAR) Ontologies [6], a modular
suite of OWL ontologies for describing many aspects of semantic
publishing and referencing in a machine-readable way using RDF.
In our context, the Document Components Ontology (DoCO) [1]
is of particular interest, as it defines a general-purpose structured
vocabulary of document elements to describe both structural (e.g.,
block, inline, paragraph, section, chapter) and rhetorical (e.g., in-
troduction, discussion, acknowledgements, reference list, figure,
appendix) document components in RDF. This line of research has
notably be applied in the context of the RASH framework [2] for
semantic scholarly publishing.

The first and probably the most comprehensive theoretical in-
vestigation into markup semantics for XML was the BECHAMEL

Markup Semantics Project [3, 9, 12, 13]. Noting that “there is no
established machine-processable formalism that would support,
for example, automatic inferences or checks on the satisfaction of
semantic constraints,” [3, p. 40] the project created a series of Prolog-
based experimental systems for defining and reasoning about the
meaning of markup. Dubin et al. [3, p. 41–42] give five examples
of problems caused by the lack of formally described semantics for
markup:

(1) Class relationships: there is no way to subtype elements, for
example, to indicate that <bold> is-a emphasis.

(2) Propagation: there is no way to formally specify which prop-
erties of elements are propagated to child elements. For ex-
ample, the XML Specification defines that the value of the
xml:lang attribute is propagated, but there is no way for
schema designers to define this behavior for other attributes.

(3) Context and reference: there is no way to specify semantic
relations between elements; for example, that a <title>
child element of a <chapter> element is meant to give the
title of the chapter (and may give the title of a book or of a
person in a different context).

(4) Ontological variation in reference: This refers to the fact
that, if <a>, , and <c> are meant to convey a certain prop-
erty of their content, what is the meaning of something like
<a><c>x</c>? There is no way to tell whether
x has the properties a, b, and c, or whether x has only c, and
b qualifies c.

(5) Full and partial synonymy: There is no way to formally
indicate or determinewhether two elements are full or partial
synonyms, i.e., whether they have the same or almost the
same meaning.

The Darwin Information Typing Architecture3 (DITA) is an XML-
based approach for large-scale technical documentation authoring,
management, and delivery. The most notable feature of DITA in
our context is specialization, which allows for the derivation of
new element types and attributes from existing ones. This feature
addresses point (1) above with the goal of facilitating interchange of
content and ensuring a minimum level of common processing for all
DITA documents, while permitting specialization-aware processors
to add specialization-specific processing to the generic processing.
However, specialization is not designed for use by authors, but to
permit “information architects” to create company- or industry-
specific versions of the DITA schemas. The specialized processing
also has to be defined and implemented separately in the XML
pipeline.

The work summarized above provides us with important founda-
tions for our vision but addresses different use cases; in particular,
we are not aware of any approaches that (1) permit authors to de-
fine custom elements in a semantic fashion and (2) to also specify
the intended formatting in a declarative way.

4 DISCUSSION
While motivated by some of the same considerations as the work
discussed in Section 3, our approach differs in that it considers
syntax, semantics, and presentation as closely related rather than
strictly separated. Rather than annotating a pre-existing syntactic
3https://www.oasis-open.org/committees/dita/

https://www.oasis-open.org/committees/dita/

DocEng ’19, September 23–26, 2019, Berlin, Germany Michael Piotrowski

structure with semantics, we seek to come up with a way to allow
document authors to formally define the semantics and the intended
rendering of document elements, which can then be associated with
an arbitrary syntax.

Our approach consequently places less importance on syntac-
tic structures and validation. Syntactic validity is important for
some types of applications, but for most narrative document types,
notably scholarly publications, the structures tend to be trivial: sec-
tions and subsections with titles, paragraphs, lists, figures, and a
couple of other elements, which carry little meaning on their own.

Instead, our proposed approach relies on three controlled vocab-
ularies to formalize the relations that describe the semantics and
the formatting intent of elements:

(1) A vocabulary of relations between the arguments of markup
elements;

(2) a vocabulary of relations of arguments to external entities
such as languages, scripts, notations, URIs, person, or places.

(3) an abstract layout vocabulary to describe the relations be-
tween layout elements.

For all three vocabularies, the Document Components Ontology
(DoCO, see Section 3) and the Pattern Ontology,4 which it imports,
could serve as a basis and starting point.

As outlined above, our approach currently focuses on individual
custom elements. Conceptually, it is straightforward to integrate
custom elements into the default processing; for example, if an ele-
ment has an argument identified as label, cross-referencing should
work in the same way as for standard elements. However, we have
intentionally excluded further processing, as this would raise ques-
tions that cannot be reasonably discussed in a short paper.

For example, if one can define a <term> element to mark tech-
nical terms, it seems reasonable to expect that a glossary (i.e., a
list of terms) can be generated. This may be done by defining a
<glossary> element whose semantics are defined in relation to
individual <term> elements (e.g., is-list-of), with a corresponding
formatting intent. However, even the creation of basic indexes
requires various types of sorting and possibly text and structure
transformations. While certainly useful, a general implementation
might quickly approach the capabilities of languages like XSLT.

On the other hand, formatted documents are built from a rela-
tive small set of basic structures; index-like lists of items could be
considered such a structure. This would permit a user to simply
define a <glossary> as a kind of index, which collects <term> ele-
ments according to one of a number of predefined schemes. While
somewhat less general, this approach might offer a better balance
between expressiveness and complexity.

A key question is thus how to identify the optimal balance, the
“sweet spot.” Among the potential factors to consider we want to
hightlight just three. (1) Security: if documents containing custom
elements are exchanged—and this is part of our motivation—it must
be guaranteed that they are computationally well-behaved and
that custom elements do not open new attack vectors. (2) Appli-
cation domain: our approach is intentionally “document centric”
and based on knowledge about documents. (3) Target users: we aim
to enable authors to define custom markup. This is obviously not

4https://essepuntato.github.io/po/current/pattern.html

a complete assessment, but in our opinion, these factors at least
strongly suggest a strictly declarative approach.

5 CONCLUSION
We have outlined a vision for user-defined semantic markup as
a basis for discussion in the document engineering community
in order to gather feedback and further potential use cases. In
particular, the definition of common vocabularies for both semantic
and layout relations can only be successful if it is based on a wide
consensus.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback.

REFERENCES
[1] Alexandru Constantin, Silvio Peroni, Steve Pettifer, David Shotton, and Fabio

Vitali. 2016. The Document Components Ontology (DoCO). Semantic Web 7, 2
(2016), 167–181. https://doi.org/10.3233/sw-150177

[2] Angelo Di Iorio, Andrea G. Nuzzolese, Francesco Osborne, Silvio Peroni,
Francesco Poggi, Michael Smith, Fabio Vitali, and Jun Zhao. 2015. The RASH
Framework: Enabling HTML+RDF Submissions in Scholarly Venues. In Proceed-
ings of the ISWC 2015 Posters & Demonstrations Track, Serena Villata, Jeff Z. Pan,
and Mauro Dragoni (Eds.). CEUR, Aachen, 4. http://ceur-ws.org/Vol-1486/paper_
72.pdf

[3] David Dubin, Allen Renear, C. M. Sperberg-McQueen, and Claus Huitfeldt. 2003.
A Logic Programming Environment for Document Semantics and Inference.
Literary and Linguistic Computing 18, 1 (2003), 39–47. https://doi.org/10.1093/
llc/18.1.39

[4] Charles F. Goldfarb. 1997. SGML: The reason why and the first published hint.
Journal of the American Society for Information Science 48, 7 (1997), 656–661. https:
//doi.org/10.1002/(sici)1097-4571(199707)48:7%3C656::aid-asi13%3E3.0.co;2-t

[5] Albert Krewinkel and Robert Winkler. 2017. Formatting Open Science: agilely
creating multiple document formats for academic manuscripts with Pandoc
Scholar. PeerJ Computer Science 3 (May 2017), e112. https://doi.org/10.7717/
peerj-cs.112

[6] Silvio Peroni. 2014. The Semantic Publishing and Referencing Ontologies. In
Semantic Web Technologies and Legal Scholarly Publishing. Law, Governance
and Technology Series, Vol. 15. Springer, Cham, Switzerland, 121–193. https:
//doi.org/10.1007/978-3-319-04777-5_5

[7] Silvio Peroni, Aldo Gangemi, and Fabio Vitali. 2011. Dealing with Markup
Semantics. In Proceedings of the 7th International Conference on Semantic Systems
(I-Semantics ’11). ACM, New York, NY, USA, 111–118. https://doi.org/10.1145/
2063518.2063533

[8] Silvio Peroni, David Shotton, and Fabio Vitali. 2012. Faceted documents: describ-
ing document characteristics using semantic lenses. In Proceedings of the 2012
ACM symposium on Document engineering (DocEng ’12). ACM, New York, NY,
USA, 191–194. https://doi.org/10.1145/2361354.2361396

[9] Allen H. Renear, David Dubin, and C. M. Sperberg-McQueen. 2002. Towards
a semantics for XML markup. In Proceedings of the 2002 ACM symposium on
Document engineering (DocEng ’02). ACM, New York, NY, USA, 119–126. https:
//doi.org/10.1145/585058.585081

[10] Stanley Rice. 1978. Book Design: Text Format Models. Bowker, New York, NY,
USA.

[11] Eric Schulte, Dan Davison, Thomas Dye, and Carsten Dominik. 2012. A Multi-
Language Computing Environment for Literate Programming and Reproducible
Research. Journal of Statistical Software 46, 3 (25 1 2012), 1–24. https://doi.org/
10.18637/jss.v046.i03

[12] C. M. Sperberg-McQueen, David Dubin, Claus Huitfeldt, and Allen H. Re-
near. 2002. Drawing inferences on the basis of markup. In Proceedings of
Extreme Markup Languages 2002, B. Tommie Usdin and Steven R. Newcomb
(Eds.). 20. http://conferences.idealliance.org/extreme/html/2002/CMSMcQ01/
EML2002CMSMcQ01.html

[13] C. M. Sperberg-McQueen, Claus Huitfeldt, and Allen H. Renear. 2000. Meaning
and interpretation of markup. Markup Languages: Theory & Practice 2, 3 (2000),
215–234. http://cmsmcq.com/2000/mim.html

[14] C. M. Sperberg-McQueen, Yves Marcoux, and Claus Huitfeldt. 2010. Two rep-
resentations of the semantics of TEI Lite. In Digital Humanities 2010 Conference
Abstracts. ADHO, 244–245. http://dh2010.cch.kcl.ac.uk/academic-programme/
abstracts/papers/html/ab-663.html

https://essepuntato.github.io/po/current/pattern.html
https://doi.org/10.3233/sw-150177
http://ceur-ws.org/Vol-1486/paper_72.pdf
http://ceur-ws.org/Vol-1486/paper_72.pdf
https://doi.org/10.1093/llc/18.1.39
https://doi.org/10.1093/llc/18.1.39
https://doi.org/10.1002/(sici)1097-4571(199707)48:7%3C656::aid-asi13%3E3.0.co;2-t
https://doi.org/10.1002/(sici)1097-4571(199707)48:7%3C656::aid-asi13%3E3.0.co;2-t
https://doi.org/10.7717/peerj-cs.112
https://doi.org/10.7717/peerj-cs.112
https://doi.org/10.1007/978-3-319-04777-5_5
https://doi.org/10.1007/978-3-319-04777-5_5
https://doi.org/10.1145/2063518.2063533
https://doi.org/10.1145/2063518.2063533
https://doi.org/10.1145/2361354.2361396
https://doi.org/10.1145/585058.585081
https://doi.org/10.1145/585058.585081
https://doi.org/10.18637/jss.v046.i03
https://doi.org/10.18637/jss.v046.i03
http://conferences.idealliance.org/extreme/html/2002/CMSMcQ01/EML2002CMSMcQ01.html
http://conferences.idealliance.org/extreme/html/2002/CMSMcQ01/EML2002CMSMcQ01.html
http://cmsmcq.com/2000/mim.html
http://dh2010.cch.kcl.ac.uk/academic-programme/abstracts/papers/html/ab-663.html
http://dh2010.cch.kcl.ac.uk/academic-programme/abstracts/papers/html/ab-663.html

	Abstract
	1 Introduction
	2 User-Defined Semantic Markup
	2.1 Goals and Desiderata
	2.2 Conceptual Approach
	2.3 Describing the Formatting Intent
	2.4 Putting It All Together

	3 Related Work
	4 Discussion
	5 Conclusion
	Acknowledgments
	References

