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Abstract 25 

Recent developments in predicting and interpreting seismoelectric signals suggest a great 26 

potential for studying near-surface hydrogeological properties, particularly in the vadose zone. 27 

Previous studies have revealed that the seismoelectric spectral ratios obtained from earthquake-28 

triggered seismoelectric data contain valuable hydrogeological information concerning porous 29 

media (e.g., permeability, porosity, fluid viscosity, and salinity). This study introduces Multi-30 

Channel SeismoElectric Spectral Ratios (MC-SESRs) by considering an active seismic source 31 

acting on the ground surface. The frequency- and saturation-dependent excess charge density is 32 

adopted to calculate the cross-coupling coefficients. Applying a supervised learning task based 33 

on a flat neural network, the so-called “broad learning” model, to map and extract the features of 34 

MC-SESRs data, we seek to determine the permeability and the water table depth. Our results 35 

indicate that (1) MC-SESRs are sensitive to the water table depth and permeability; (2) using 36 

more traces of SESRs data for inversion can increase accuracy; (3) the changing water table can 37 

be rapidly determined by the MC-SESRs by resorting to the broad learning inverse model, and it 38 

can attain an excellent accuracy while disturbed by data noise and misspecified model 39 

parameters (e.g., porosity and permeability) with errors of up to 20%. The proposed MC-SESRs 40 

inversion has potential applications for non-invasive monitoring in shallow porous media (e.g., 41 

frost thawing and geothermal upwelling). 42 

Plain Language Summary 43 

A seismic source acting on the ground or occurring in porous materials containing water will 44 

generate seismic and electromagnetic field waves. The spectral ratios between the electric field 45 

and the seismic field are defined as SeismoElectric Spectral Ratios (SESRs), which are sensitive 46 

to physical properties’ contrasts at layer boundaries (e.g., water table and hydrogeological and/or 47 

lithological layer boundaries). Applying SESRs to reconstruct hydrogeological parameters 48 

eliminates the need to know the seismic source function, which greatly facilitates quantitative 49 

interpretation. However, SESRs are often acquired by natural earthquakes in previous studies. It 50 

limits interpreting SESRs to one-trace data. This study uses an active seismic source to obtain the 51 

Multi-Channel SESRs (MC-SESRs). We conduct several experiments on synthetic MC-SESRs 52 

data by using a neural network to obtain water table depths and permeabilities for a layered Earth 53 

model. Our results show that the trained neural network can instantly predict the time-variant 54 
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water table depths accurately. This study indicates that the quantitative interpretation of MC-55 

SESRs data allows for effective and rapid characterization of near-surface hydrogeological 56 

properties and also provide a possible approach for the non-invasive monitoring of 57 

hydrogeological variations in shallow porous media by using controllable source. 58 

 59 

Keywords Hydrogeophysics; Seismoelectric coupling; Vadose zone; Water table monitoring; 60 

Seismoelectric spectral ratios; Broad learning 61 

1. Introduction 62 

In porous media, the surface of the solid grains (e.g., silicate minerals) is typically 63 

negatively charged due to fluid-mineral interactions (Glover & Jackson, 2010; Hunter, 1981; 64 

Revil et al., 2015). Considering the electrical double layer (EDL) model at the microscopic scale 65 

(1 - 10 nm) (Figure 1a), a portion of the counterions (cations for negatively charged mineral 66 

surfaces) coats the interface between the mineral surface and pore fluid forming the Stern layer 67 

while the remaining excess charges are distributed in the diffuse Gouy-Chapman layer (Glover & 68 

Jackson, 2010; Revil & Jardani, 2013). There is a shear plane in the diffuse Gouy-Chapman 69 

layer, beyond which the pore fluid and ions can move relative to the solid frame. As shown in 70 

Figure 1b, the electrical potential at the shear plane is defined as the Zeta potential (Hunter, 71 

1981; Jougnot et al., 2020). The Zeta potential is commonly used to estimate the electrokinetic 72 

coupling coefficient, which characterizes the relationship between electrical and hydraulic 73 

potential differences associated with fluid flow within a porous medium (Hunter, 1981). Note 74 

that all acronyms used in this paper are listed in Table A1 of Appendix A. 75 

Relative motions occur during the passage of seismic wavefields. Due to the 76 

electrokinetic effect, this process may generate streaming currents and natural electric fields 77 

(Pride, 1994; Revil et al., 2015; Revil & Linde, 2006). This process is commonly called 78 

seismoelectric (SE) conversion. The SE signals contain valuable information concerning the 79 

physical properties of both the pore fluid and the solid skeleton. The SE method can be used to 80 

determine hydrogeological properties provided the data measured on the ground surface or in 81 

boreholes are properly interpreted (Revil et al., 2012). During the past two decades, the SE 82 

method has seen significant development through (1) theoretical studies (e.g., Huang, 2002; 83 

Jougnot & Solazzi, 2021; Monachesi et al., 2018; Solazzi et al., 2022; Thanh et al., 2022), (2) 84 
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numerical modeling approaches (e.g., Garambois & Dietrich, 2002; Grobbe & Slob, 2016; 85 

Haines & Pride, 2006; Hu & Gao et al., 2011; Jougnot et al., 2013; Ren et al., 2016a, b; Zheng et 86 

al., 2021), (3) physical laboratory experiments (e.g., Bordes et al., 2015; Devis et al., 2018; 87 

Wang et al., 2020; Zhu & Toksöz, 2013), and (4) field measurements (e.g., Butler et al., 2018; 88 

Dupuis & Butler, 2006; Garambois & Dietrich, 2001; Rabbel et al., 2020; Thompson & Gist, 89 

1993). As the understanding of SE signals grows, this method is of increasing interest to 90 

researchers in near-surface geophysics (e.g., Grobbe et al., 2020). The electromagnetic (EM) 91 

wave fields originating from seismic excitations are regarded as a superposition of three types of 92 

patterns (Figure 1c): (1) localized SE field waves accompanying seismic waves in porous media, 93 

which are also commonly referred to as coseismic electric field waves (Bordes et al., 2015; 94 

Jougnot et al., 2013; Pride & Garambois, 2002); (2) radiation waves induced on interfaces or 95 

directly converted from a seismic source (Dupuis et al., 2007; Haartsen & Pride, 1997; 96 

Garambois & Dietrich, 2002; Pride & Haartsen, 1996) and (3) evanescent waves generated on 97 

interfaces if the seismic incident angle is larger than the critical angle (Butler et al., 2018; 98 

Dzieran et al., 2019; Ren et al., 2016a; Yuan et al., 2021; Zheng et al., 2021). The generation of 99 

interfacial radiation and evanescent SE waves results from property contrasts at an interface 100 

(Garambois & Dietrich, 2002; Ren et al. 2016a, b). Interfacial radiation SE waves and 101 

evanescent SE waves offer a way to examine permeability or porosity contrasts (Dzieran et al., 102 

2019, 2020), parameters determining the soil moisture characteristic (Zyserman et al., 2017), 103 

strong saturation contrasts such as the water table (Bordes et al., 2015; Warden et al., 2013), and 104 

other parameters (e.g., Archie’s parameters, density, bulk, and shear modulus).  105 
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 106 

Figure 1. Schematic illustration of the generation of electromagnetic waves by seismoelectric 107 

conversion. (a) and (b) Electrical double layer and the corresponding electrical potential 108 

distribution. (c) Generation of localized, interfacial radiated, and evanescent electromagnetic 109 

wavefields due to an active seismic source. 110 

Based on numerical simulation studies, Ren et al. (2016b) put forward the idea that 111 

evanescent SE waves could be the main contribution to EM signals observed during earthquakes. 112 

This idea was later adopted by Dzieran et al. (2019) to investigate earthquake-triggered SE 113 

signals in data from Northern Chile. They show that the SeismoElectric Spectral Ratios (SESRs), 114 

defined as the ratios between the absolute values of the electric field and the seismic acceleration 115 

in the frequency domain, have a site-specific frequency dependence with a decreasing amplitude 116 

with increasing frequency. Dzieran et al. (2019) explain this trend by the fact that the amplitudes 117 

of evanescent SE waves decay approximately with exp(−ωpΔz), where ω is the angular 118 

frequency, p is the EM wave slowness, and Δz is the separation in depth between the receiver 119 

and the interface (Ren et al. 2018). Dzieran et al. (2019, 2020) successfully apply the SESRs to 120 

interpret shallow layered porous media's porosity and fluid salinity. However, Dzieran et al. 121 
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(2020) state that the SESRs are less sensitive to permeability variations. Inspired by Dzieran et 122 

al. (2019, 2020), this study extends the applications of SESRs data in several ways. 123 

First, we change the strategy of calculating the SE coupling coefficient. Dzieran et al. 124 

(2019, 2020) calculate the electrokinetic coupling coefficient defined by Pride (1994), 125 

accounting for the Zeta potential. Instead, we rely on the effective excess charge density to 126 

calculate the electrokinetic coupling coefficient (e.g., Revil & Mahardika, 2013; Revil et al., 127 

2015). Both in saturated and partially-saturated conditions, the effective excess charge density is 128 

highly correlated with permeability (Guarracino & Jougnot, 2018; Jougnot et al., 2020; Soldi et 129 

al., 2019). At low frequencies, the ratio of the effective excess charge density at partial water 130 

saturation to the excess charge density at full saturation is proportional to the reciprocal of water 131 

saturation under the assumption of a thick EDL model (Linde et al., 2007a; Revil et al., 2007). 132 

To account for frequency dependence, we adopt an approximate empirical formulation by using 133 

the relaxation time to relate the quasi-static to dynamic electrokinetic coupling coefficient 134 

proposed by Revil & Mahardika (2013), which has been tested by experimental measurements 135 

and other approaches (Jougnot & Solazzi, 2021).  136 

Second, we consider the case of having both the seismic source and sensors located near 137 

the ground surface, which is very common in active-source SE field measurements (e.g., Butler 138 

et al., 1996, 2018; Dupuis et al., 2007; Garambois & Dietrich, 2001; Mikhailov et al., 1997; 139 

Thompson & Gist, 1993). Three-dimensional SE forward modeling algorithms using the 140 

reflectivity method (e.g., Garambois & Dietrich, 2002; Grobbe & Slob, 2016; Haartsen & Pride, 141 

1997; Ren et al., 2007, 2010) to calculate full waveform simulations for layered media suffer 142 

from highly time-consuming computations when the source and receivers both lie very close to 143 

surface. As the computation of full waveforms relies on numerical integration in the 144 

wavenumber domain, the integrand oscillates strongly with the wavenumber when the depth 145 

difference between the source and the receiver is small, which may cause a slow convergence. 146 

Zheng et al. (2021) solved this convergence problem by adopting the peak-trough averaging 147 

method (Zhang et al., 2001, 2003), which selects peak and trough values in a stably oscillating 148 

sequence to apply the repeated average method (Dahlquist & Björck, 1974). Hence it offers an 149 

accurate and efficient tool for active-source SE forward modeling. This allows us to deal with 150 

any source-receiver geometries, particularly ground-based seismic sources. The Amplitude 151 

Variation versus Offset (AVO) method based on multi-channel observation has been widely 152 
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applied in oil and gas exploration (Rutherford & Williams, 1989). Multi-channel measurements 153 

can also be implemented in SE field experiments for stratified sediments. For example, Butler et 154 

al. (2018) presented that the multi-channel high-resolution EM field data, illustrating multiple 155 

modes of SE signals, providing information on subsurface porous materials complementary to 156 

that provided by multi-channel seismic reflection data. Moreover, Rabbel et al. (2020) document 157 

the potential of using the interfacial SE responses to map the water table by comparing the multi-158 

channel SE measurements with other geophysical measurements, such as ground-penetrating 159 

radar and traditional seismic recordings. Inspired by AVO and SESRs, we propose a Multi-160 

Channel SESRs (MC-SESRs) method that, in addition to frequency variations, makes use of the 161 

variations of SESRs with respect to the source-receiver offsets. Thus, we can use more spatial 162 

information of SESRs data in the inversions and obtain an improved reconstruction accuracy. 163 

Third, the SESRs are determined by different parameters in different complicated non-164 

linear ways. For example, the water table variations affect the water saturation distribution, 165 

which determines the effective permeability (e.g., Mualem, 1976; van Genuchten, 1980), the 166 

permittivity (e.g., Linde et al., 2006), the electrical conductivity, the electrokinetic coupling 167 

coefficient (e.g., Warden et al., 2013; Revil & Mahardika, 2013; Zyserman et al., 2017), the bulk 168 

density, the elastic moduli, the seismic velocity (e.g., Mao et al., 2022; Solazzi et al., 2021) and 169 

so on. Dzieran et al. (2019) mentioned that inverse modeling of SESRs may need a more 170 

advanced approach compared to the conventional linearized inversion algorithm used in their 171 

work. Machine learning, which is enjoying increasing interest in geophysics, may offer a 172 

corresponding option.  173 

In this study, we rely on the broad learning (BL) model to invert hydrological parameters 174 

using MC-SESRs data. The BL system proposed by Chen and Liu (2017) is a flat neural network 175 

with a single lateral layer neural network, in contrast to deep structured neural networks. It is 176 

developed from the Random Vector Functional Link Neural Network (RVFLNN) (Pao et al., 177 

1994) to apply an enhancement layer to link the input and output. Broadly expanding the 178 

enhancement nodes may enhance the capacity to approach non-linear problems. It only needs to 179 

learn the matrix weights of the link between the enhancement layer and output. Other matrix 180 

weights are randomly generated. Thus, the RVFLNN is a flat net without hidden layers, which 181 

avoids overtraining the neural network with many adjustable hyperparameters (Pao et al., 1994). 182 

Correspondingly, the BL structure improves the RVFLNN by adding a mapping feature layer to 183 
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replace the original input based on the sparse autoencoder. Hence the BL structure first captures 184 

the features of input data in the mapping feature layer. Since the BL network structure is fixed, 185 

its main advantage is that it avoids elusive complicated deep architectures and iterative training 186 

processes (Gong et al., 2022). Its efficient capacities for processing noisy time series and text 187 

classifications have been verified (Chen & Liu, 2017; Du et al., 2020; Feng et al., 2019; Gong et 188 

al., 2022). 189 

Most recently, Yang et al. (2022, 2023) applied the BL neural network to Rayleigh wave 190 

inversion. Considering a 1-D Earth model, Yang et al. (2022) examined the thickness and shear-191 

wave velocity ranges of each layer by the well-trained BL neural network. Then they used the 192 

optimal ranges as the search space of a Bayesian approach to complement the parameter 193 

optimization. Their results indicated that this two-stage approach can provide more accurate 194 

shear-wave velocity models than without using a priori search space estimated by a BL model. 195 

Yang et al. (2023) also verified that using the BL approach to Rayleigh wave inversion may 196 

achieve a comparable accuracy but consume less training time than deep convolutional neural 197 

networks. In this study, we aim to determine hydrogeological parameters (water table depth and 198 

shallow layer permeabilities) under partially-saturated conditions by MC-SESRs data. For a 199 

specific investigated area whose layered structure had been determined, the well-trained BL 200 

model can, if fed with MC-SESR data, estimate the water table depth and update the 201 

permeability in the shallow layer in a quasi-instantaneous manner. Due to its high training 202 

efficiency, BL can easily be retrained to optimize the network when more MC-SESRs data is 203 

obtained. This study may provide a new monitoring strategy for obtaining the water table depths 204 

using the time-lapse MC-SESRs data. It also has the potential application in long-term 205 

observations for assessing groundwater storage and monitoring volcanic activities. 206 

This paper is structured as follows. Section 2 describes the basic SE coupling equations, 207 

numerical simulation of the SE data, and our inversion framework. Section 3 focuses on 208 

analyzing the sensitivity of permeability and depth of water table (dwt) to MC-SESRs. Section 4 209 

tests the performance of the BL neural network and presents the inversion results. Section 5 210 

discusses the inversion results, and we provide conclusions in Section 6. 211 
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2. Methodology 212 

2.1. Cross-coupling equations 213 

For fluid-saturated isotropic porous media, the cross-coupled constitutive transport 214 

equations, including macroscopic Ohm’s and Darcy’s Law, can be expressed in the frequency 215 

domain through the following governing equations (Pride, 1994; Pride & Haartsen, 1996; Revil 216 

& Mahardika, 2013):  217 

 𝐉 =  𝜎∗(𝜔)𝐄 + 𝐿∗(𝜔)(−𝛁𝑝୤ + 𝜔ଶ𝜌୤𝐮ୱ), (1) 

 −𝑖𝜔𝐰 = 𝐿∗(𝜔)𝐄 + ௞∗(ఠ)
ఎ౭

(−𝛁𝑝୤ + 𝜔ଶ𝜌୤𝐮ୱ), (2) 

 −𝑝୤ = 𝐶∇ ∙ 𝐮ୱ + 𝑀∇ ∙ 𝐰, (3)

 𝐓 = ቂቀ𝐾ୋ − ଶ
ଷ

𝐺ቁ ∇ ∙ 𝐮ୱ +  𝐶∇ ∙ 𝐰ቃ 𝐈 + 𝐺(∇𝐮ୱ + ∇𝐮ୱ
୘), (4)

 −𝜌௕𝜔ଶ𝐮ୱ − 𝜌୤𝜔ଶ 𝐰 = ቀ𝐾ீ + ସ
ଷ

𝐺ቁ ∇(∇ ∙ 𝐮ୱ) − 𝐺∇ × ∇ × 𝐮ୱ + 𝐶∇(∇ ∙ 𝐰) + 𝐅, (5)

where Equations 1-2 describe the electrokinetic cross-coupling relationship between the electric 218 

field 𝐄  (V/m) and the volume-averaged fluid filtration displacement 𝐰 (m) = 𝜙(𝐮୤ − 𝐮ୱ) , 219 

which is defined by the porosity 𝜙  ( mଷ / mଷ ) and the volume-averaged fluid and solid 220 

displacements (𝐮୤  and 𝐮ୱ ). The subscripts ‘f’ and ‘s’ designate fluid and solid properties, 221 

respectively. We consider a time-harmonic disturbance varying as 𝑒ି௜ఠ௧  with  𝑖 = √−1  the 222 

imaginary unit,  𝜔 = 2𝜋𝑓  the angular frequency in rad/s, and 𝑓  (Hz) the frequency. The 223 

superscript ‘*’ indicates that a property is frequency-dependent and hence complex. 𝑘∗(𝜔) thus 224 

denotes the frequency-dependent permeability (mଶ). Permeability reflects the ability of porous 225 

media to allow fluid to flow through the pores. Equations 3 and 4 describe the poroelastic 226 

relations (Biot, 1956, 1962a, b) with 𝐈 denoting the identity matrix. The parameters C (Pa) and M 227 

(Pa) are associated with the elastic moduli (Pride, 1994). 𝐾ୋ (Pa)  and G (Pa)  denote the 228 

undrained bulk modulus and shear modulus of the solid skeleton. 𝜌௕  (kg/mଷ) and 𝐅  (N) in 229 
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Equation 5 are the mass density of the porous material and the body force applied on the bulk 230 

material, respectively. All parameters and their units used in this study are listed in Table A2 of 231 

Appendix A.  232 

Due to harmonic variations of the bulk-stress tensor 𝐓 (N/mଶ) and the pore fluid pressure 𝑝୤ 233 

(Pa), the flow changes from the viscous laminar regime to the inertial laminar regime beyond the 234 

critical or transition frequency (Revil & Mahardika, 2013; Solazzi et al., 2020, 2022). The 235 

permeability becomes frequency-dependent and complex-valued beyond the critical frequency, 236 

and its absolute value decreases with increasing frequency (Solazzi et al., 2020).  𝜂୵ denotes the 237 

dynamic viscosity of pore water (1.002× 10ିଷPa∙ s). The macroscopic electrical current density 238 

𝐉 (A/mଶ) is the superposition of the conduction current density 𝜎∗(𝜔)𝐄 and the streaming current 239 

density 𝐉ୣ୩
∗  written by: 240 

 𝐉ୣ୩
∗ = 𝐿∗(𝜔)(−∇𝑝୤ + 𝜔ଶ𝜌୤𝐮ୱ), (6)

in which 𝜎∗(𝜔), and 𝜌୤ = (1 − 𝑆୵)𝜌ୟ + 𝜌୵  denote the complex electrical conductivity (S/m) 241 

and the fluid density (kg/mଷ), respectively. 𝑆୵ , 𝜌ୟ = 1.21 (kg/mଷ) and 𝜌୵ = 1000 (kg/mଷ) 242 

are the water saturation, the density of the air and pore water. Note that we consider pore water 243 

as a dilute solution with low salinities (commonly around 0.002 mol/L) and, hence, the solute 244 

density is neglected. For highly saline solutions (e.g., seawater, contaminated water), the mass 245 

density of the solute would need to be included. Unless mentioned otherwise, the parameters 246 

used in this paper refer to standard ambient conditions (1 atm and 20 ℃). The presence of 247 

harmonic electric fields usually makes the electrical conductivity of porous materials vary with 248 

frequency due to polarization effects of electrically conductive mineral grains, interfacial 249 

electrochemistry, or colloidal chemistry (Revil, 2013). The effective electrical conductivity in the 250 

frequency domain can be expressed by (Revil et al., 2015): 251 

 𝜎∗(𝜔, 𝑆୵) = 𝐹ିଵ𝑆୵
௡ 𝜎୵ + 𝜎ୱ୳୰ + 𝑖൫𝜎୯୳ୟୢ − 𝜔𝜀଴𝜅൯. (7)

Therein, 𝑛 denotes the saturation exponent and 𝐹 = 𝜙ି௠  is the electrical formation factor in 252 

Archie’s first and second laws with cementation exponent m (Archie, 1942). 𝜀଴ = 8.85418 ×253 
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10ିଵଶ F/m is the vacuum permittivity. 𝜅 denotes the static effective dielectric constant, which is 254 

the function of the water saturation: (Linde et al., 2006): 255 

 𝜅(𝑆୵) = (ிିଵ)఑౩ାௌ౭
೙఑౭ା(ଵିௌ౭

೙)఑౗
ி

. (8)

The range of the dielectric constant for most rock-forming minerals is 4-6 and is commonly 256 

assumed to be 𝜅ୱ = 4 for dry sand grains in near-surface measurements (e.g., Fitterman, 2015; 257 

Knight & Endres, 2005). 𝜅୵ = 80.1 and 𝜅ୟ = 1 represent the dielectric constants of the pore 258 

water and the air, respectively. Based on a volume-averaging method, Equation 8 is derived from 259 

a two-phase model (i.e. pore fluid and solid grains) by Pride (1994), accounting for the effective 260 

pore fluid formed by water and air and combining Archie’s first and second laws (Linde et al., 261 

2006). This equation assumes that the two fluid phases in the pore space are immiscible. The 262 

physical relationship (Equation 8) has been previously used to simulate seismoelectric signals 263 

(e.g., Rosas-Carbajal et al., 2020). The surface electrical conductivity 𝜎ୱ୳୰ and the quadrature 264 

electrical conductivity 𝜎୯୳ୟୢ in Equation 7 are related to the fraction and mobility of counterions 265 

in the diffuse layer and in the Stern layer, respectively (Revil, 2013; Revil et al., 2015). Both 266 

conductivities are functions of water saturation. More details of these coefficients calculated by 267 

material properties and saturation levels, can be found in Table A3 of Appendix A. 268 

Based on the EDL model (Figure 1a), Equations 1 and 2 express that the poromechanical 269 

influence contributes to the streaming source current, and the electric field contributes to the 270 

pore-fluid flow under the electroosmosis effect (Revil & Mahardika, 2013). The critical dynamic 271 

parameter 𝐿∗(𝜔) reflects the cross-coupling relationship. Due to the significance of frequency-272 

dependent cross-coupling coefficient 𝐿∗(𝜔) in transport equations, its calculation has attracted 273 

considerable attention in the recent decade (Jougnot & Solazzi, 2021; Jouniaux & Zyserman, 274 

2016; Soldi et al., 2020; Thanh et al., 2022; Warden et al., 2013). A popular approach is using 275 

the Zeta potential to describe the cross-coupling coefficient (Dukhin & Derjaguin, 1974; Pride, 276 

1994; Warden et al., 2013; Zyserman et al., 2017). An alternative is to use the movable 277 

(effective) excess charge density 𝑄෠୴
∗ (C/mଷ) and permeability to directly relate the relative flow 278 

to streaming current generation (Revil & Linde, 2006). The cross-coupling coefficient calculated 279 

by both approaches explains some experimental measurements (Bordes et al., 2015; Revil & 280 
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Mahardika, 2013; Zhu & Toksöz, 2013). In terms of partially-saturated conditions considering 281 

only water and air in the pore space, the latter approach conveniently relates 𝐿∗(𝜔)  to the 282 

effective permeability and 𝑄෠୴
∗ as functions of the water saturation by (Revil & Mahardika, 2013; 283 

Soldi et al., 2020): 284 

 𝐿∗(𝜔, 𝑆୵) = ௞∗(ఠ,ௌ౭)ொ෠౬
∗(ఠ,ௌ౭)

ఎ౭
. (9) 

The frequency-dependent (dynamic) characteristics of permeability and effective excess charge 285 

density are approximately described by the relaxation time or the angular transition frequency 286 

𝜔୲ (rad/s), which determines the transition from the viscous (low frequency) to inertial laminar 287 

flow (high frequency) (Revil & Mahardika, 2013). 𝜔୲(𝑆୵) is expressed as a function of water 288 

saturation by Revil and Mahardika (2013) and Solazzi et al. (2020): 289 

 𝜔୲ = ఎ౭థௌ౭
ఘ౭௞బ(ௌ౭)ఛ౭(ௌ౭)

, (10) 

where 𝜏୵  denotes the tortuosity related to the topology of the pore space. The saturation-290 

dependent tortuosity is equivalent to 𝜙𝐹𝑆୵
(ଵି௡)  based on Archie’s law (e.g., Niu & Zhang, 291 

2019; Jougnot et al., 2018; Revil et al., 2007; Revil & Jougnot, 2008). Since 𝑛 ≥ 1 (1 − 𝑛 ≤ 0), 292 

the tortuosity increases with the decrease of water saturation (e.g., Ghanbarian et al., 2013; 293 

Jougnot et al., 2018), while the transition frequency increases with the decrease of water 294 

saturation. Here, 𝑘଴(𝑆୵) denotes the quasi-static (𝜔 = 0) effective permeability as a function of 295 

saturation. When the frequency-dependent effective permeability and excess charge density are 296 

considered, Equation 9 is written by (Revil & Mahardika, 2013): 297 

 𝐿∗(𝜔, 𝑆୵) =
௞బ(ௌ౭)𝑄෡v,0(ௌ౭)

ఎೢටଵି೔ഘ
ഘ౪

. (11) 

There are two main approaches to describe this effective excess charge density 𝑄෠୴,଴: either by 298 

volume-averaging (Linde et al., 2007a) or flux-averaging (Jougnot et al., 2012). In this work, the 299 

excess charge density at a saturated state is estimated from permeability using (Jardani et al., 300 

2007): 301 
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 log10 (𝑄෠୴,଴
ୱୟ୲) = −0.82log10(𝑘଴

ୱୟ୲) −9.23. (12) 

The superscript ‘sat’ denotes a fully saturated condition. This empirical relationship has been 302 

applied to various samples ranging from different salinities and lithologies even if it did not 303 

consider the effect of salinities of pore water on the excess charge density (Jardani et al., 2007; 304 

Jougnot et al., 2015).  305 

Another empirical relationship between the voltage coupling coefficient under saturated 306 

conditions 𝐶଴
ୱୟ୲ (mV/m) and the electrical conductivity of pore water 𝜎୵ (S/m) is expressed as 307 

(Linde et al., 2007b): 308 

 log(|𝐶଴
ୱୟ୲|) = −0.895 − 1.319 log(𝜎୵) − 0.1227[log(𝜎୵)]ଶ, (13) 

where 𝜎୵ is estimated by the salinity 𝐶୵ (mol/L) (Sen & Goode, 1992): 309 

 
𝜎୵ = (5.6 + 0.27𝑇 − 1.5 × 10ିସ𝑇ଶ)𝐶୵ − (ଶ.ଷ଺ା଴.଴ଽଽ்)஼౭

య
మ

ଵା଴.ଶଵସ஼౭
, 

(14) 

where 𝑇 is the temperature in Celsius (oC). Thus, the voltage coupling coefficient 𝐶଴
ୱୟ୲ varies 310 

with pore water salinity. Compared with laboratory and field measurements, Equation 13 works 311 

well in a range of 10-2 – 100.5S/m for 𝜎୵, which covers typical pore water environments (Linde et 312 

al., 2007b, Jougnot et al., 2015; Hu et al., 2020). By changing the unit of  𝐶଴
ୱୟ୲ to V/m, it can be 313 

transformed from the static coupling coefficient 𝐿଴
ୱୟ୲ (A/mଶ) by: 314 

 𝐶଴
ୱୟ୲ = − ௅బ

౩౗౪

ఙబ
. (15)

Further, 𝐶଴
ୱୟ୲ can be used to express the 𝑄෠୴,଴

ୱୟ୲ with: 315 

 𝑄෠୴,଴
ୱୟ୲ = − ஼బ

౩౗౪ఙబఎೢ
௞బ

౩౗౪ .  (16)
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We may use Equation 12 to estimate 𝑄෠୴,଴
ୱୟ୲  under a known 𝑘଴

ୱୟ୲ or we may derive 𝑄෠୴,଴
ୱୟ୲  by 316 

Equations 13-16 using the salinity of pore water (Jougnot et al., 2015). Otherwise, 𝐶଴
ୱୟ୲ can be 317 

obtained by measuring the voltage differences and hydraulic pressure differences of samples to 318 

calculate values of 𝑄෠୴,଴
ୱୟ୲ by Equation 16. 319 

For partially saturated conditions, we applied the volume-averaging method to scale 𝑄෠୴,଴ by 320 

the effective saturation 𝑆ୣ = ௌ౭ିௌ౭౨
ଵିௌ౭౨

 (Linde et al., 2007a; Revil & Cerepi, 2004; Revil et al., 321 

2007):  322 

 𝑄෠୴,଴(𝑆w)=ொ෠౬,బ
౩౗౪

ௌ౛
, (17)

where 𝑆୵୰ (unitless) denotes the residual (irreducible) water saturation. Alternative formulations 323 

have been derived to explicitly describe the dynamic process of 𝑄෠୴,଴  varying with water 324 

saturation based on the characteristic pore-size distribution (Jackson, 2010; Jougnot et al., 2012; 325 

Soldi et al., 2020; Solazzi et al., 2022). Furthermore, the frequency-dependent effective excess 326 

charge density is calculated by applying a scaling factor ට1 − ௜ఠ
ఠ೟

 (Revil & Mahardika, 2013), 327 

which also has been further developed by Jougnot and Solazzi (2021) and Thanh et al. (2022).  328 

Apart from the effective permeability and excess charge density, other effective 329 

parameters (e.g., the electrical conductivity 𝜎∗, the mass density of fluid 𝜌୤) in Equations 1 and 2 330 

strongly depends on the water saturation as well. Besides, the two fluid phases in the pore space 331 

affect the mechanical properties (e.g., the effective bulk moduli) that need to be considered in 332 

hydromechanical modeling of the volumetric strain of porous media and the infiltration 333 

displacement (Equations 3-5). This indicates that seismic signals could respond to variations in 334 

water saturation. We summarize the frequency-dependent (dynamic) and saturation-dependent 335 

parameters in Table A3 of Appendix A. More details with regard to the parameters mentioned 336 

above as well as the derived equations can be found in Revil & Mahardika (2013). 337 

2.2. Multi-Channel SeismoElectric Spectral Ratios (MC-SESRs) 338 

For isotropic layered media, as the SE field and the seismic particle acceleration field are 339 

triggered by the same seismic source, the seismic source function can be canceled when we 340 
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calculate the ratios of SE fields to the seismic acceleration fields in the frequency domain 341 

(Dzieran et al., 2019). Therefore, the SESRs can be represented by the ratio of their Green’s 342 

functions 𝐺𝐸(𝜔) and 𝐺𝑎(𝜔), which is expressed as (Dzieran et al., 2019): 343 

 SESR(𝜔) = 𝐄(ఠ)
𝒂(ఠ)

= ீா(ఠ)
ீ௔(ఠ)

, (18) 

where 𝐄(𝜔) denotes the SE field spectra. 𝒂(𝜔) denotes the seismic ground acceleration field 344 

spectra, which also can be replaced by the components of seismic ground velocity spectra with 345 

𝑖𝜔𝐯(𝜔)  or displacement spectra with −𝜔ଶ𝐮(𝜔) . The SESR indicates the ratio of Green’s 346 

functions, which contains the information of stratified porous media. The modulus of SESRs 347 

varies with position, or offset from the seismic source, represented by: 348 

 MC-SESR(𝜔,𝑥௜) = หாೣ,೔(ఠ)ห
ห௔ೣ,೔(ఠ)ห

, 𝑖 = 1, 2, … , 𝐵 (19) 

where 𝑖 denotes the measured points and B is the total number of measured points. Here, 𝐸௫,௜ and 349 

𝑎௫,௜ denotes the horizontal electric field and seismic ground acceleration in the frequency domain 350 

at point 𝑖. 351 

2.3. Inversion framework 352 

Deterministic inverse modeling (e.g., Gauss-Newton, Conjugate Gradient, Levenberg-353 

Marquardt) algorithms need to construct an objective function, including the data misfit and a 354 

regularization term. The latter depends on prior and empirical information. In weakly non-linear 355 

problems, the iterative adjustment of model parameters using gradient-based information enables 356 

a minimum objective function to be attained. However, it is time-consuming when we deal with 357 

high-dimension parameter estimation, and these parameters affect the SESRs in a non-linear way. 358 

Furthermore, such deterministic inversions might fail to recover the true model, although the 359 

modeling data well match the observed data (Wu et al., 2021).  360 

In this study, we aim to reconstruct the permeability and water table depth using the near-361 

surface MC-SESRs data. As the water table is affected by land-management practices, 362 

precipitation, evapotranspiration, and other environmental changes, its depth may change with 363 
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time. Machine learning techniques may allow us to efficiently monitor the dynamic water table. 364 

A large number of samples are employed to train a neural network, which can construct the 365 

mapping process between the input data (MC-SESRs) and the output data (water table depth and 366 

permeability). Once the neural network is well trained, we can adapt it to a specific region to 367 

monitor variations of its water table and permeability efficiently. Deep-structured neural 368 

networks have been employed in solving geophysical inverse problems (e.g., Laloy et al., 2021; 369 

Wu et al., 2021), which are alternatives for the SESRs inversion. But the many hidden layers 370 

included in such networks produce a large quantity of hyperparameters, which need large data 371 

sets and many training epochs to be estimated. Complicated deep architectures empower the 372 

neural network to project a more complex relationship between the input and output layers. 373 

However, the computing time is increased due to the iterations of training epochs, and 374 

overtrained networks could result. Chen and Liu (2017) propose a broad learning (BL) neural 375 

network that adopts a flat architecture without a complex multilayer structure. Its network 376 

structure does not change within the training process (Figure 2). It avoids adjusting elusive 377 

hyperparameters in the network, and its design largely decreases the training time compared with 378 

deep networks. Broadly expanding the mapping layer enhances the capacity of the neural 379 

network to approach complicated projecting relationships. More important, the broadly 380 

expanding structure can be used for incremental learning without retraining the network when 381 

additional data are available in input data (Chen & Liu, 2017). Compared with the performance 382 

of deep structured neural networks (e.g., deep convolutional neural networks, deep Boltzmann 383 

machines, and deep belief networks) on MNIST and NORB data sets, Chen and Liu (2017) 384 

demonstrated that the BL system can ensure a comparable classification accuracy while vastly 385 

reducing the training time. Recently, the BL approach has been applied to effectively and 386 

efficiently process classification and regression problems (Gong et al., 2022). Therefore, the BL 387 

approach is considered here to perform water table depth and permeability inversions using MC-388 

SESRs data.  389 

As a supervised machine learning task, we need to generate a large number of training 390 

samples. We assume the number of samples is N for training the network and the number of 391 

inverted layers of permeability is L. If there are A frequencies and B measured points (traces) in 392 

Equation 19, the input matrix X is MC-SESRs data (Figure 2a). The output matrix Y is made up 393 

of N depths of the water table written by a vector 𝐝𝐰𝐭ே×ଵ and 𝑁 × 𝐿 permeability matrix written 394 
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by 𝐊ே×௅  (Figure 2c). Using the neural-network architecture of the BL model (Chen & Liu, 395 

2017), we first need to extract the features of MC-SESRs data as the input layer (Figure 2b):  396 

 𝐅௜ = 𝜑௜(𝐗𝐖௜ + 𝛃௜), 𝑖 = 1, 2, … , 𝑄 (20) 

where 𝐅௜ denotes the 𝑖th mapped feature matrix. 𝐖௜ and 𝛃௜ denote the random weighting matrix 397 

and bias term, which are initially generated by standard uniform distributions in a range of [-1,1]. 398 

Assuming 𝐴 × 𝐵 = 𝐶, the sizes of matrices of 𝐖௜ and 𝛃௜ are 𝐶 × 𝑃 and 𝑁 × 𝑃, respectively. As 399 

shown in Figure 2b, P is the number of feature nodes in each mapping feature group 𝑖. 𝑄 is the 400 

number of mapping features. The function 𝜑௜ maps the sum of matrices 𝐗𝐖௜ + 𝛃௜ to [-1,1] by 401 

normalizing the minimum and maximum value each row (1,2, …, N). The sparse autoencoder is 402 

employed to shrink the input data and extract its mapping features by adapting 𝐖௜ (Chen & Liu, 403 

2017). As shown in Equation 20, this feature extracting step of the input data can be replaced by 404 

other extracting approaches from popular artificial neural networks (e.g., deep convolutional 405 

neural networks) (Gong et al., 2022). 406 

The features of input data extracted by mapping feature groups 𝐅ொ = [𝐅ଵ, 𝐅ଶ, … , 𝐅ொ] are 407 

broadly expanded by M enhancement nodes with: 408 

 𝐄௝ = 𝜉௝([𝐅ଵ, 𝐅ଶ, … , 𝐅ொ]𝐖௘௝ + 𝛃௘௝), 𝑗 = 1, 2, … , 𝑀 (21) 

where 𝐄௝  denotes the matrix of jth enhancement node. 𝐖௘௝  and 𝛃௘௝  are randomly generated 409 

similar to Equation 20. In this study, we used the hyperbolic tangent sigmoid transfer function as 410 

the non-linear activation function 𝜉௝(∙). Each enhancement node is integrated to an enhancement 411 

layer with 𝐄ெ = [𝐄ଵ, 𝐄ଶ, … , 𝐄ெ].  412 

The output-layer hydrogeological parameters Y = [dwt, K] and the last layer integrated 413 

by input features and the enhancement layer are connected by a weighting matrix 𝐖ெ:  414 

 𝐘 = ൣ𝐅ଵ, 𝐅ଶ, … , 𝐅ொห𝐄ଵ, 𝐄ଶ, … , 𝐄ெ൧𝐖ெ,  (22) 

Therefore, the training process only needs to estimate the connected-link matrix 𝐖ெ  through 415 

solving the pseudoinverse matrix [𝐅ொ|𝐄ெ]ା: 416 
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 𝐖ெ = [𝐅ொ|𝐄ெ]ା𝐘. (23) 

Following Chen and Liu (2017), the ridge regression approximation is employed to optimize 𝐖ெ 417 

by fulfilling: 418 

 arg min: ‖[𝐅ொ|𝐄ெ]𝐖ெ − 𝐘‖ଶ
ଶ + 𝜆‖𝐖ெ‖ଶ

ଶ, (24) 

where 𝜆 denotes a tradeoff regularization factor and ‖[𝐅ொ|𝐄ெ]𝐖ெ − 𝐘‖ଶ
ଶ is the error term of the 419 

training set. Except for the connected matrix 𝐖ெ, the remaining weight matrices in the network 420 

are randomly generated. Consequently, we can use the well-trained network with the optimal 421 

connected weights 𝐖ெ to invert MC-SESRs data. For example, if we acquired more MC-SESRs 422 

data, we just need to replace Input X with the new (untrained) data in Equation 20. By following 423 

similar computations to the training process by Equations 20-22, we then extract the mapping 424 

features of the inversion data and use an activation function to learn these features in the 425 

enhancement layer. Thus, we obtain the newly mapped feature matrices and enhancement 426 

matrices. Multiplied with the weight matrix derived from the training process (Equations 23 and 427 

24), we can obtain the estimated water table depth and permeability (Equation 22). 428 
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 429 

Figure 2. Broad learning (BL) procedure including (a) the input (MC-SESRs data) layer, (b) the 430 

mapping feature layer and the enhancement layer, and (c) the output (permeability with water 431 

table) layer employed in this study. 432 
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3. Sensitivity Analysis 433 

3.1. Basic test model 434 

We first design a basic test model (Figure 3). It consists of five horizontal layers of 435 

porous materials. It is assumed that the shallow two layers (layers 1-2) are mainly made up of 436 

loamy sands, and the deeper two-layer soils (layers 3-4) with lower permeabilities considered as 437 

silty sands. The bottom layer 5 is assumed as a known layer with lower permeability (0.01 D), 438 

porosity (0.05), and electrical conductivity (16 μS/cm). These hydrogeological parameters are 439 

chosen based on Carsel and Parrish (1988). The initial water table is set at 3 m, implying that the 440 

shallowest layer is partially saturated (Figure 3a). The Richards’ equation (Richards, 1931) is 441 

used to solve the hydraulic problem in the vadose zone. The Mualem-van Genuchten (MVG) 442 

empirical model (Mualem, 1976; van Genuchten, 1980) is used to estimate the relationship 443 

between the water saturation and the effective permeability with the pore pressure. Based on the 444 

MVG model by introducing the soil-water characteristic parameters 𝛼௏ୋ (m-1), 𝑛୚ୋ and 𝑚୚ୋ =445 

1 − 1/𝑛୚ୋ, the effective water saturation 𝑆ୣ  and the static permeability 𝑘଴ at partially saturated 446 

conditions are expressed by: 447 

 𝑆ୣ = ଵ
ൣଵା(ఈೇృหு౦ห)೙౒ృ൧೘౒ృ, (25)

 𝑘଴ = 𝑘଴
ୱୟ୲𝑆ୣ

భ
మ ቈ1 − ൬1 − 𝑆ୣ

భ
೘౒ృ൰

௠౒ృ

቉
ଶ

. (26)

Here, we assume that the absolute pressure head ห𝐻୮ห (m) in the vadose zone is equal to the 448 

vertical distance between its elevation and the position of the water table (Zyserman et al., 2017). 449 

The effective electrical conductivity is calculated by Equation 7, whose formulas and the used 450 

parameters are given in Table A3 of Appendix A and Table S1 of the Supporting Information). 451 

The water saturation, the effective permeability, and the effective electrical conductivity of the 452 

top four layers are presented in Figures 3b-d under the assumption that the pore water salinity is 453 

homogeneous at 2 × 10ିଷ mol/L at 293.15 K, respectively. Note that the effect of the salinity at 454 

this level on the fluid mass density is negligible. In contrast, the mass density of the fluid solute 455 

should be considered in a highly saline environment (e.g., Hu et al., 2023). The specific 456 

parameters of each layered material are given in Table 1, whose descriptions can be found in 457 

Table A2 of Appendix A. 458 
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 459 

Figure 3. Basic test model and its observations. (a) Geometry, (b) water saturation, (c) effective 460 

permeability, and (d) effective electrical conductivity in the top four layers 461 

There is a vertical force point source at the ground marked with a red square in Figure 3a. 462 

We assume that the seismic source function 𝑓ୱ(𝑡) (N) presents as a Ricker wavelet with a peak 463 

frequency 𝑓୮ of 20 Hz: 464 

𝑓ୱ(𝑡) = −2.506 × 10ହ ቈ1 − 2(𝜋𝑓୮)ଶ ൬𝑡 − ଶ
௙౦

൰
ଶ

቉ exp[−(𝜋𝑓୮)ଶ(𝑡 − ଶ
௙౦

)ଶ]. 
(27)

The spectrum of this zero-phase wavelet is in a range of ~ 70 Hz. This wavelet and its frequency 465 

band are usually considered in seismoelectric simulations (e.g., Jardani et al., 2010). Equation 27 466 

is applied to calculate the body force of Equation 5 in forward modeling. Receivers are installed 467 

at 0.1 m below the ground surface. The offset ranges from 5 – 105 m with 101 horizontal 468 

acceleration sensors and 101 horizontal point dipoles. The offset represents the distance between 469 

the source and each accelerometer or central point of each dipole. The interval of two adjacent 470 

receivers is 1 m (Figure 3a). Please note that the seismic particle velocity 𝐯(𝜔) obtained by 471 

geophones could also be used to calculate SESRs by transforming 𝐚(𝜔)  to 𝑖𝜔𝐯(𝜔) . As 472 

mentioned in Section 2.2, measuring SESRs does not require knowledge of the seismic source 473 
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function, so we would not need to know the amplitude of the seismic source. Additionally, the 474 

SE responses are proportional to the amplitude of seismic sources, either for explosive sources or 475 

weight drops, demonstrated in the field tests (Butler et al., 1999). Therefore, according to the 476 

specific prospecting conditions, this seismic source function can be replaced with other source 477 

functions. However, the seismic strength and waveform used here are adopted to illustrate that 478 

the predicted electric fields are expected to be measurable for a reasonable seismic source.  479 

Based on Section 2.1, with the dynamic and saturation-dependent parameters chosen, 480 

especially the cross-coupling coefficient 𝐿∗(𝜔, 𝑆୵) in Equation 11, the peak-trough averaging 481 

approach based on Luco-Apsel-Chen Generalized Reflection and Transmission Method (LAC 482 

GRTM) (Zheng et al., 2021) is applied to obtain the frequency solution of the governing 483 

equations. The wave-field components are derived from the numerical integral over the 484 

wavenumber domain. The integrand includes the Bessel function and exponential terms of fast 485 

and slow P, S, and EM waves. Compared with the seismic wavelength, the relatively small 486 

source-receiver vertical differences make integrands more intensively oscillate. Therefore, this 487 

situation may cause a slow convergence computationally (Zheng et al., 2021). The peak-trough 488 

averaging approach uses a certain wavenumber interval in a stably oscillating range to determine 489 

peaks and troughs of integrands and subsequently apply the repeat average method to efficiently 490 

compute the numerical integration (Dahlquist & Björck, 1974). Thus, it allows us to consider 491 

more flexible source-receiver geometries. All used dynamic and saturation-dependent parameters 492 

and corresponding formulations are given in Table A3 of Appendix A, and we summarize a flow 493 

chart of the model generation in Figure 4. We assume that the data recorded from 0 to 0.5 s is 494 

digitized by 4096 samples with a sample interval of 0.1221  ms. After the full-waveform 495 

computation of this model, we display the horizontal components of seismic ground acceleration 496 

and SE wave fields (Figure 5). Since a zero-phase wavelet was applied to simulate the seismic 497 

source (Equation 27), a time delay is shown in the waveforms (Figure 5). In addition, due to a 498 

low saturation (𝑆୵ =0.12) occurring on the near-surface (~0.3 m), the corresponding S-wave 499 

velocity is 1242.5 m/s. The surface waves can have a high apparent velocity to present in longer 500 

source-receiver offsets than the offset range shown in Figure 5. In this case, the maximum 501 

absolute horizontal electric field is 26.27 μV/m. Although the electric-field signals are vulnerable 502 

to noise, the environmental noise level can be managed to below the order of 0.1 μV/m (see 503 
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Butler et al., 2007; Dupuis et al., 2007; Thompson & Gist, 1993). The near-surface electric field 504 

of this case is, hence, sufficient to be observed. 505 

 506 

Figure 4. Framework of MC-SESRs generation 507 

 508 

Figure 5. Horizontal components of wave fields under the basic test model (a) seismic ground 509 

acceleration and (b) seismoelectric wave fields 510 

The horizontal components of seismic ground acceleration and SE wave fields recorded 511 

in the time domain are subsequently transformed into the frequency domain. Then the MC-512 

SESRs over the full 0.5s time window are calculated by Equation 19. Here, we take the 513 
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frequency in the range of 2-72 Hz. The MC-SESRs’ contour map of this numerical model is 514 

shown in Figure 6a. The SESRs with greater strength are mainly distributed in a short-offset 515 

range (10 - 40 m) and a low-frequency range (~ 10 Hz). Since the SESR concept under the 516 

assumption of the localized (coseismic) SE field waves are linear with the ground acceleration, 517 

the frequency-dependent behaviors depend on the evanescent and radiated SE field waves 518 

(Dizeran et al., 2019). The generation of the radiated SE field waves is commonly regarded as 519 

caused by the seismic waves nearly vertically arriving at interfaces and the ground surface. 520 

Although the radiated EM waves generated by the direct SE conversions at the source also 521 

depend on the frequency, their strength is weak. The subsurface properties’ variations barely 522 

affect the component of MC-SESRs originating from the direct SE conversions. 523 

Once the seismic incident angle is larger than the critical angle 𝜃ୡ: 524 

 𝜃ୡ = arcsin ൬
𝑉ୱୣ୧

𝑉୉୑
൰,  (28) 

where 𝑉ୱୣ୧  (m/s) and 𝑉୉୑  (m/s) denote the seismic wave velocity and EM wave velocity, 525 

respectively, the SE conversion leads to the generation of evanescent SE waves. Actually, 𝜃ୡ 526 

approaches zero due to 𝑉୉୑ ≫ 𝑉ୱୣ୧. The existence of physical properties’ contrasts causes the 527 

interfacial SE responses, mainly containing evanescent SE field waves. The superposition of 528 

different modes of SE conversions makes the spectral ratios between the SE responses and the 529 

ground acceleration are of frequency dependence. Thus, the SESR modulus decreasing with the 530 

increasing frequency mainly attributes to the evanescent SE waves, which approximately decay 531 

with a factor exp(−ωpΔz) (Ren et al., 2018). The horizontal EM wave slowness p relies on the 532 

incident angle of the seismic waves arriving at the interface and inducing the localized SE waves. 533 

The spatial variations of SESRs presumably are complicated due to the presence of a vadose 534 

zone. The multi-channel SE field waves combined with the ground acceleration field waves are 535 

sensitive to water table variations (e.g., Rabbel et al., 2020). Using MC-SESRs facilitates the 536 

inversion of hydrogeological parameters due to without reconstructing the seismic source 537 

function. Selecting SESRs from near- and far-offset receivers, we show the SESRs varying over 538 

frequency for three receivers with different offsets of 5 m, 30 m, and 50 m, respectively. As 539 

shown in Figures 6b-d, the SESRs at different offsets have a similar frequency dependence. The 540 

SESR generally increases as the frequency decreases, and their log-scale variations show an 541 
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approximately linear correlation in the low-frequency domain (~10 Hz), and it oscillates at 542 

higher frequencies. Notably, the oscillating signatures are more notable in the far-offset range 543 

(Figures 6c-d). These oscillatory characteristics may originate from the electric field induced by 544 

the guided P-wave traveling in the upper two layers.  545 

 546 

Figure 6. The MC-SESRs of the basic test model with (a) the contour map of MC-SESRs in 547 

logarithmic scale showing variations both with frequency and offsets. Sample SESR curves as a 548 

function of frequency at different offsets: (b) 5 m, (c) 30 m and (d) 50 m. 549 

550 
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Table 1  551 

Parameters of the basic test model 552 

Property Units Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 

Thickness m 6 9 5 15 Inf. 

𝜙 mଷ/mଷ 0.41 0.43 0.46 0.38 0.05 

𝛼୚ୋ mିଵ 12.4 - - - - 

𝑛୚ୋ - 1.89 - - - - 

𝑆୵୰ - 0.1585 - - - - 

𝜌ୱ kg/mଷ 2650 2650 2650 2650 2700 

𝜌୵ kg/mଷ 1000 

𝜌ୟ kg/mଷ 1.21 - - - - 

𝜌ୠ
ୱୟ୲ kg/mଷ 1973.5 1940.5 1891 2023 2615 

𝐶୵ mol/L 2× 10ିଷ 

𝜎଴
ୱୟ୲ S/m 0.0073 0.0077 0.0083 0.0067 0.0016 

𝜂୵ Pa∙s 1× 10ିଷ 

𝜂ୟ Pa∙s 1.8× 10ିହ - - - - 

T K 293.15 
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𝜅ୱ - 4 

𝜅୵ - 80.1 

𝜅ୟ - 1 

m - 1.35 

n - 1.85 

𝐾ୱ GPa 35 35 35 35 36 

G GPa 2.49 2.49 14.08 14.08 15 

𝐾୤୰ GPa 2.84 2.84 14.4 14.4 20 

𝐾୵ GPa 2.25 

𝐾ୟ Pa 1.43× 10ହ - - - - 

  553 
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3.2. Analysis of permeability 554 

First, we test the sensitivity of SESRs with respect to permeability. The considered 555 

typical ranges in the critical zone refer to Carsel and Parrish (1988). The saturated permeability 556 

𝑘௝
ୱୟ୲ of the top four layers (𝑗 = 1,2,3,4) in the basic test model is 5.67, 8.51, 1.42, and 4.26 D, 557 

respectively (Figure 3c). By changing the saturated permeability of shallow layers ( 𝑗 =558 

1,2,3,4) ± 50%, we calculated the absolute MC-SESRs difference concerning the original model 559 

by: 560 

∆SESR(𝜔, 𝑥௜, 𝑗) = ቚSESR(𝜔, 𝑥௜)௞ೕ
౩౗౪ାହ଴%−SESR(𝜔, 𝑥௜)௞ೕ

౩౗౪ିହ଴%ቚ, (29)

where the horizontal offset 𝑥௜  ranges from 5 to 105 m with the number of receivers 𝑖 =561 

1,2, … , 101.  The short-offset (~20 m) SESRs have more changes when the permeability of 562 

shallow layers has been changed than the permeability of deep layers has been changed (Figure 563 

7). Their maximum absolute differences with changing the saturated permeability of each layer 564 

decrease in depth, which is 0.0877, 0.0636, 0.0377, and 0.0069 (Figures 7c, 7e, 7h, and 7l), 565 

respectively. The MC-SESRs mainly change in near-offset traces (𝑥௜<45 m) and low frequencies 566 

(f< 10 Hz). The absolute differences of SESRs are less when the permeability in the lower zone 567 

changes (Figure 7l), whose maximum absolute difference of SESRs is an order of magnitude 568 

smaller than for layers 1 and 2. As shown in Figure 7, by changing the permeability of different 569 

layers, the absolute differences of SESRs produce different variations either in frequency or 570 

laterally. 571 
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 572 

Figure 7. The MC-SESRs in logarithmic scale with respect to (a-d-g-j) 50% decrease and (b-e-h-573 

k) 50% increase the basic test model of (a-c) layer 1, (d-f) layer 2, (g-i) layer 3, and (j-l) layer 4. 574 

(c-f-i-l) The absolute MC-SESRs difference in logarithmic scale of the corresponding layers 575 

calculated by Equation 29. 576 

To test the behaviors of SE wave-fields by changing the permeability of each layer, we 577 

compare the differences between the original waveforms with the changed waveforms in Figure 578 

8. As shown in Figures 8e-h, the variations of SE wave fields are largest when the permeability 579 

of layer 2 changes (Figures 8b and 8f). Layer 2 is saturated and provided with the highest 580 

saturated permeability in the basic test model. Interestingly, the differences by changing the 581 

permeability of layer 1 (Figure 8e) show a very different trend within 0.06 – 0.14 s in contrast 582 

with other layers (Figures 8f-h). Layer 1 is a partially saturated zone, which produces a different 583 

behavior on waveforms compared with other layers. 584 
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 585 

Figure 8. (a-d) Horizontal components of SE wave fields for the basic test model (black solid 586 

lines) and for cases of 50% increase (red lines) and decrease (blue lines) in the permeability of 587 

layers 1-4 respectively. (e-h) Differences between SE wave fields obtained for cased of 50% 588 

increased (red lines)/decreased (blues lines) permeability in layers 1-4 respectively compared to 589 

those obtained for the original model, at three particular offsets, whose amplitudes are amplified 590 

by a factor of 8 compared to those in (a-d). 591 

3.3. Analysis of water table 592 

Second, we test how the different depths of the water table or partially-saturated 593 

conditions influence the distributions of MC-SESRs. Accounting for a static partially-saturated 594 

state, the VG model is used to determine the water saturation (van Genuchten, 1980). The water 595 

table of the basic test model is assumed to vary seasonally in a year. In this case, we assume the 596 

rainy season is from September to November with higher water levels, and the period of March 597 

to May is the dry season with lower water levels (Figure 9a). Correspondingly, the water 598 

saturation and the effective permeability at the shallow layer change with the water table 599 

(Figures 9b-c). As the used parameter 𝛼୚ୋ (12.4 mିଵ)  of the VG model is large, the 600 

permeability is rather low at low saturations. Note that the contour map of permeabilities shown 601 
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in Figure 9c is an interpolation result in the time and space domain. Permeabilities below the 602 

water level in each layer are different constants, as the basic test model presented in Figure 2c. 603 

The SESRs with the short (5 m), medium (30 m), and long (50 m) source-receiver offset are 604 

collected to show their responses to the variations of the water table (Figures 9d-f). The absolute 605 

ratios increase in the rainy season with higher water levels and decrease in the dry season with 606 

lower water levels.  607 

Furthermore, the strength of SESRs in the high-frequency domain is increased when the 608 

water table is in the shallow zone (e.g., September-November). The amplitudes of evanescent SE 609 

signals decay exponentially with the normal direction of the interfaces (Ren et al., 2016b; Ren et 610 

al., 2018). This implies that deep water tables cause weaker SE signals than shallow water tables. 611 

This characteristic is also embodied in the SESRs data obtained at the source-receiver offset of 612 

30 m (Figure 9e). Nevertheless, the sensitivity of the SESRs obtained at a more extended offset 613 

(50 m) responding to the dynamic water table depth is considerably weakened (Figure 9f). This 614 

test implies we may use the time-lapse MC-SESRs data in short source-receiver traces to monitor 615 

the water table depth variations.  616 

 617 
Figure 9. The modeling results with the water table vary over time. (a) The depth of the water 618 

table, (b) the time-lapse variations of the water saturation with depth, (c) the effective 619 

permeability, and the SESRs in logarithmic scale collected at a source-receiver distance of (d) 5 620 

m, (e) 30 m and (f) 50 m. 621 
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4. Inversion Results 622 

Employing synthetic seismic and SE data generated for the basic test model introduced in 623 

Section 3.1, we carry out a three-step strategy to perform MC-SESRs inversion. We assume that 624 

the depth and properties of the bottom layer 5, and all other layer depths and properties except 625 

for the water table depth and the permeabilities of layers 1-4 are known. The prior information 626 

could have been determined by drilling and other geophysical methods (e.g., Dzieran et al, 627 

2019). This could represent a scenario where there was interest to monitor temporal changes in 628 

depth to the water table and to determine permeabilities of the near surface layers (to 35 m 629 

depth) for hydrogeological applications. 630 

To begin, we generated random samples by drawing permeabilities for each of layers 1 - 631 

4 from predefined reasonable ranges, and drawing a water table depth in layer 1 randomly from 632 

the range of 1 - 5 m. We account for the ranges of hydraulic conductivity 𝐾௝
ୱୟ୲ of layers 1-2, 633 

referring to materials consisting of loamy sands. Layers 3-4 with a lower range of the soil 634 

permeabilities are considered to contain more silty sands (Carsel & Parrish, 1988). The hydraulic 635 

conductivity of layers 1-2 ranges from 3 to 35 cm/h and layers 3-4 ranges from 0.02 to 15 cm/h, 636 

which can be transformed to the ranges of permeability 𝑘௝
ୱୟ୲  by is equal to ௄ೕ

౩౗౪ఎ౭

ఘ౭୥
, where g 637 

(m/sଶ) denotes the gravitational acceleration (9.81 m/sଶ). Following the flowchart of the model 638 

generation (Figure 4), we calculated MC-SESRS of 7000 random samples. Therefore, the first 639 

step is to obtain the 7000 input-output pairs. 640 

4.1. Performance of the BL neural network 641 

In the second step, we randomly selected 5000 from the 7000 input-output pairs for 642 

training the BL neural network (Figure 2). In addition, 1500 randomly generated samples were 643 

split into the original validation dataset (500 samples) and the original testing dataset (1000 644 

samples). The input MC-SESRs data of the training samples are noise-free synthetic data, and 645 

output data are the dwt and the permeability of layers 1-4 (k1, k2, k3, k4) (Figure 2c). First, to 646 

accurately extract and map features of the input data, we need to set the number of mapping 647 

groups (Q) and feature nodes (P) of each group and their corresponding enhancement nodes (M) 648 

based on the BL architecture (Figure 2) introduced in Section 2.3. After that, the BL network is 649 
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fixed. We tested different configurations of the BL neural network to present the root-mean-650 

squared errors (RMSEs) of training models (water table depth and permeability): 651 

 𝑅𝑀𝑆𝐸௝=ට∑ (୓୳୲୮୳୲_௒೔
ೕି୘୰୳ୣ_௒೔

ೕ)మ೙
భ

௡
,  (30)

where j denotes the corresponding numbers of different parameters (j = 1 for dwt, and j = 2 - 5 652 

for k1-4 respectively). n is the number of samples for training the network, which is 5000 in this 653 

case. Output_𝑌௜
௝  and True_𝑌௜

௝ are the reconstructed and true output of the jth parameter of the 654 

ith sample. Here, we separately present the RMSEs of different parameters since the output 655 

dataset indicate different properties and in different scales. The ranges of P, Q and M are 656 

[10:5:100], [10:5:100], and [10:10:500], respectively. The regularization coefficient is set to 657 

10ି଼ (see Chen & Liu, 2017). The optimum sets of parameters for training models are given in 658 

Table 2. The RMSEs of water table depth can be limited to 0.034 m. The RMSEs of permeability 659 

of layer 1 are much higher than layers 2-4. In contrast with deep layers, the permeability of the 660 

top layer is easier to be directly investigated in situ. k2 and k3 reach their optimum under P=15, 661 

Q=10 and M=500, and correspondingly, the RMSEs for estimating the dwt and k4 are 662 

satisfactory with the same setting.  663 

Table 2  664 

RMSEs of training data set with different configurations of the BL model (bold numbers denote 665 

the corresponding minimum RMSEs) 666 

Parameters of BL model RMSE of training models 

P Q M dwt (m) k1 (D) k2 (D) k3 (D) k4 (D) 

100 100 500 0.0210 2.4174 0.1462 0.1899 0.1526 

80 40 500 0.0271 2.4090 0.1713 0.2005 0.1644 

15 10 500 0.0339 2.4274 0.1415 0.1603 0.1616 

10 10 500 0.0336 2.4239 0.1473 0.1628 0.1500 

As the parameters’ estimation accuracy is the highest when the number of enhancement 667 

nodes (M) reaches the maximum in the search range, we expanded this range to search for an 668 

appropriate neural network. The neural network gets more complex structures with a large 669 

number of groups, mapping feature nodes, and enhancement nodes, which may empower the BL 670 

model to describe the approximate mapping relationship between the input and output data from 671 



manuscript submitted to Journal of Geophysical Research: Solid Earth 

 

the training data set. As shown in Figure 2b, M directly reflects the complexity of the connected 672 

matrix for linking the integration of the feature mapping layer and the enhancement layer with 673 

the output layer. To examine whether the RMSEs would be reduced by keeping increasing the 674 

enhancement nodes and fixing P = 15 and Q = 10, we display the RMSEs varying with the 675 

number of enhancement nodes (Figure 10). In addition, we utilized 500 untrained samples from 676 

the validation dataset to test the inverted performance with increasing M. Further, the measured 677 

data in practice ineluctably contain some noise. With the improvement of pre-and post-678 

processing techniques on near-surface SE applications, the signal-to-noise ratio (SNR) can be 679 

achieved to 20 – 45 dB (Butler & Russel, 2003; Butler et al., 2007). Thereby, to account for the 680 

possible interferences from self-noise and background noise, we add 5% random noise of the 681 

mean amplitude of synthetic SESRs at each trace (SNR≈26 dB) to the initial validation and 682 

testing datasets without noise contamination. Similar to the treatment of the training dataset, the 683 

RMSEs of the validation dataset are calculated by replacing the number of samples in Equation 684 

30 to 500 and updating the corresponding output dataset. Slightly though, the RMSE set keeps 685 

decreasing with M increasing (Figures 10a, 10c, 10e, and 10g), which indicates the neural 686 

network has been adapted to the training data set. However, there are different trends shown in 687 

untrained samples (Figures 10b, 10d, 10f, and 10h).  688 

The parameter estimation using untrained noisy data as input performs better when M is 689 

lower than 300 (Figures 10b, 10d, 10f, and 10h). The number of enhancement nodes of each 690 

parameter reaching a minimum RMSE is given in Table 3. To show the influence of chosen M 691 

on the inversion accuracy, we contrast the true and reconstructed models by inputting noisy MC-692 

SESRs of the validation dataset under the BL neural networks trained by M = 50, 200, 500, and 693 

1000, respectively. Taking the water table depth as an example to display (Figure 11), the 694 

majority of reconstructed models are visually closer to the true models with increasing M, but the 695 

RMSE increases when M≥200 (Figures 11c-d). The reconstructed permeability also presents a 696 

similar trend (see Figures S1-S3 of Supporting Information). It can be attributed to the large 697 

departure of a few estimations from the true models. Finally, to detect the dynamic water table, 698 

we choose M = 240 as the number of enhancement nodes to train the BL model. 699 
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 700 

Figure 10. RMSEs of output data (a-b: water table depth, c-d: permeability of layer 1, e-f: 701 

permeability of layer 2, and g-h: permeability of layers 3-4) vary with the number of 702 

enhancement nodes (P=15, Q=10). Panels in the left column (a, c, e, g) represent the training 703 

data set and panels in the right column (b, d, f, h) represent the validation noisy dataset.  704 

Table 3  705 

RMSEs of validation data set with the optimum number of enhancement nodes (bold numbers 706 

denote the corresponding minimum RMSEs) 707 

Enhancement node RMSE of validation models 

M dwt (m) k1 (D) k2 (D) k3 (D) k4 (D) 

240 0.0895 2.7884 0.8879 0.5321 0.4339 

20 0.1839 2.6092 0.4798 0.6212 0.5654 

300 0.1945 4.5221 0.3084 0.9505 0.8540 

220 0.1196 2.7551 0.6383 0.4510 0.4140 

200 0.1117 2.8753 0.5839 0.4730 0.4101 

 708 
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 709 

Figure 11. Comparisons of the true and reconstructed depth of water table (dwt) of the validation 710 

dataset with (a) M = 50, (b) M = 200, (c) M = 500, and (d) M = 1000 711 

4.2. Comparisons of reconstructed and true models 712 

After the 500 validation samples validated the BL model obtained by the 5000 training 713 

samples, we took the third step to attain MC-SESRs inversion. We applied this BL neural 714 

network configured by P=15, Q=10, and M=240 to invert the water table depth and permeability 715 

of 1000 testing samples with the same amount of noise contamination as the original testing MC-716 

SESRs dataset. The testing dataset is independent of the training or validation datasets. The 717 

RMSEs of the testing dataset are calculated similarly to the validation dataset (Equation 30). The 718 

reconstructed depth of the water table has great consistency with corresponding true values 719 

(Figure 12a), whose RMSE is 0.09 m. The inversion results can nicely reconstruct the 720 

permeability of layer 2 (Figure 12c), whose RMSE is 0.46 D. the reconstructed permeability of 721 

layers 3 and 4 deviates more from true values than layer 2 (Figure 12d), while their RMSEs are 722 

acceptable (0.56 D and 0.43 D, respectively). Nevertheless, the permeability of the partially 723 
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saturated layer 1 cannot be reconstructed, which concentrates around 5 D. It reflects that the 724 

SESRs data did not constrain the permeability of the unsaturated layer well since the low 725 

saturation makes a very low effective permeability to obtain a small SE coupling coefficient 726 

(Equation 11).  727 

 728 

Figure 12. Comparisons of the true and reconstructed (a) depth of water table, (b) permeability 729 

of layer 1, (c) permeability of layer 2 and (d) permeability of layers 3-4 using noisy MC-SESRs 730 

data (SNR ≈ 26 dB). 731 

Based on the settings of the basic test model, we used the SESRs data introduced in 732 

Section 3.3 to characterize variations in the water table depth. As the data uncertainty not only 733 

can originate from the noise but also possibly contains the errors of the model parameters, here, 734 

we assumed five-percent errors of dwt, permeability, and porosity included in the basic test 735 

model. Still, the data are assumed to be contaminated by five-percent random noise in the 736 

following tests. Meanwhile, as the sensitivity analysis of SESRs to the dwt in Section 3.3 shows, 737 

the short-offset SESRs are more sensitive than the long-offset SESRs to the variations of dwt, we 738 

test to apply the different number of channels to reconstruct the dynamic dwt. All 101 channels’ 739 

or 26 short-offset channels’ SESRs data used to invert the dwt can obtain comparable accuracy 740 
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under five-percent errors in model parameters (Figure 13). This test indicates that we can 741 

reconstruct dynamic shallow dwt by using less short-offset MC-SESRs data. Since higher errors 742 

may occur in realistic measurements, we compare the inversion accuracy under five-percent, ten-743 

percent, and twenty-percent errors in the pre-defined model using 26 short-offset channels’ 744 

SESRs in Figure 14. The inverted water table depths are more deviated from the true values by 745 

enhancing errors. However, the overall inverted values are consistent with the true values with 746 

twenty-percent errors in the known model parameters, except for the result in September (Figure 747 

14c). 748 

 749 

Figure 13. Detection of the water table depth using noisy MC-SESRs data collected from (a) 101 750 

traces (5 - 105 m) and (b) 26 traces (5 - 30 m). The blue diamonds represent the inverted value 751 

without the model errors; The red diamonds represent the true values with 5%-misspecified 752 

errors in pre-defined model parameters; The circles represent the inverted values, whose 753 

misspecified levels are indicated by the shaded areas and error bars. 754 
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 755 

Figure 14. Detection of the water table depth using the noisy 26-channel SESRs data with 756 

misspecified errors of (a) 5%, (b) 10%, and (c) 20% in pre-defined model parameters. Diamonds 757 

represent the true values; The circles represent the inverted values, whose misspecified levels are 758 

indicated by the shaded areas and error bars. 759 

As the absolute pressure head in the vadose zone is assumed to be the distance between 760 

its elevation and the water table level, the effective permeability and water saturation are 761 

calculated by the MVG model. We show that the true and the inverted permeabilities vary with 762 

time in Figure 15. The permeability can still be reconstructed in the time-lapse profiles (Figure 763 

15a). The predicted accuracy is also reduced when errors added to the model are enhanced 764 

(Figures 15b and 15c). Particularly, the inverted errors of permeability increase in layer 4 due to 765 

the increasingly attenuated seismic and SE signals strength. The model parameters may be 766 

misspecified by larger errors, which causes lower inverted accuracy in deep layers due to the 767 

fragile signals. 768 
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 769 

Figure 15. Comparison of true (black lines) and inverted (pink) permeability with the changing 770 

water table depth by accounting for errors of (a) 5%, (b) 10% and (c) 20% in pre-defined model 771 

parameters.  772 

5. Discussion 773 

To test the capability of this neural network in the presence of noise, we decrease the 774 

SNR to 20 dB, 16 dB, and 14 dB by considering different random noise levels (10%, 15%, and 775 

20%) into synthetic MC-SESRs data. Based on the assumptions in Section 4.3, we attempt to use 776 

the SESRs data at different noise levels to detect the changing water table levels. As shown in 777 

Figure 16, the inverted accuracy is reduced when the noise is enhanced from 5% to 10% and 778 

more. In this case, the water table detection can be achieved at a 10% noise level when 26-779 

channel SESR data (5 – 30 m) have been involved in the inversion (Figure 16a). This scenario 780 

can be improved by increasing the data by using more traces. The RMSE reaches 0.1671 m at a 781 

20%-noise level when the used channels increase to 101. Correspondingly, the source-receiver 782 

offset ranges from 5 to 105 m (Figures 16b, 16d, and 16f). The inverse modeling may be able to 783 

perform well for stronger noise levels when the used MC-SESR data are sufficient. Note that the 784 
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monitoring test in Section 4.2 discussed the influence of different levels of errors in model 785 

parameters (Figures 13-15). Ideally, although the water table and permeability changed with time 786 

and contained model perturbations, the well-trained network (Figure 2) can recover their true 787 

values for a specific site. Therefore, the inverted values are still close to the true values using 26-788 

channel data with mixing the noise level of 5% (Figure 13). However, the porosity of each layer 789 

is also assumed to be misspecified. Thus, the increased errors in the pre-defined model decrease 790 

the inverted accuracy of the water table depth and permeability. 791 

792 
Figure 16. Comparison of true (blue) and predicted (purple) water table depth by adding (a-b) 793 

10%, (c-d) 15% and (e-f) 20% random noise into data. The left panels (a, c, and e) use 26-794 

channel SESRs data and the right panels (b, d, and f) use 101-channel SESRs data. The shaded 795 

areas indicate the misspecified levels. 796 

As aforementioned sensitivity of permeability and water table depth in Sections 3.2-3.3, 797 

the SESRs at different source-receiver offsets respond to the variations of different layers. The 798 

number and locations of sensors used for inversion may affect the inverted results. We test the 799 

inverted RMSEs using MC-SESRs with different offsets by 1000 untrained random models. The 800 

interval distance of adjacent sensors is kept at 1 m. It starts from offset = 10 m, which means that 801 

MC-SESRs data obtained by 6 traces in the range of 5 – 10 m are used for inversion (see Section 802 

2.3 𝐗: 𝐒𝐄𝐒𝐑ହ଴଴଴×ଷ଺×଺). Figure 17 shows that the RMSEs dropped considerably when the used 803 

offsets increased to 30 m, but they continued reducing to a lesser extent. Generally, more SESRs 804 

data used for inversion should obtain higher inverted accuracy.  805 
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Picking a model to contrast the true with reconstructed parameters, the predicted 806 

permeability can reconstruct the effective permeability above the capillary fringe based on the 807 

water table estimation. However, the predicted saturated permeability of layer 1 deviates from its 808 

true value (Figure 18a). The inverted saturated permeability of the top layer poorly fits the true 809 

value embodied in the whole test set (Figure 12b). As the effective permeability drops 810 

considerably at low water saturations, the SE coupling coefficient is rather small. Thus, the 811 

information of the saturated permeability in layer 1 cannot be extracted by the mapping feature 812 

layer of input MC-SESRs data. The water table depth and permeability of layers 2-4 of the 813 

model are well estimated. Although the noisy MC-SESRs data for inversion are affected by 814 

disturbances (Figure 18c), the MC-SESRs data calculated by the predicted model (Figure 18d) 815 

well fit the synthetic MC-SESRs data (Figure 18b). The fitting errors concentrate in 10 – 25 m 816 

and low frequencies (~3 Hz) (Figure 18e). The inversion accuracy for this case is satisfactory by 817 

using data from 26 channels (~30 m) to train and invert the water table depth and permeability. 818 

One estimation with lower accuracy is presented in the Figure S4 of Supporting Information, 819 

whose modeling result from the inverted parameters can recover the overall shape and trend of 820 

the original data, but the maximum absolute difference is one order of magnitude larger than 821 

Figure 18e.  822 

 823 

Figure 17. RMSEs between inverted and true models vary with the offset (SNR ≈ 26 dB). (a) 824 

water table depth, (b) permeability of layers 1-2 and (c) permeability of layers 3-4 825 
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 826 

Figure 18. Comparisons of the true model and the reconstructed model using 26-channel SESR 827 

data. (a) The blue (solid) and cyan (dashed) lines represent the true and predicted water table 828 

depth, respectively. The black (solid) and pink (dashed) lines represent the true and reconstructed 829 

permeability, respectively. (b-d) display the 26-channel synthetic and noisy SESR data modeling 830 

by (b-c) the true model and (d) the inverted model. (e) shows SESRs difference between the data 831 

modeling by the true model and the inverted model. 832 

6. Conclusions 833 

In this paper, we propose using MC-SESRs to process multi-channel SE signals and 834 

seismic signals recorded at the ground surface. By analyzing the sensitivity of MC-SESRs to the 835 

water table depth and permeability, the results indicate that MC-SESRs data obtained by 836 

different offsets respond to the variations of different water table depths and permeability. 837 

Moreover, we introduce a simple and efficient BL approach to interpret MC-SESRs data to 838 

quantitatively infer the water table depth and permeability of layered-porous materials. As a type 839 

of non-invasive measurement, MC-SESRs obtained by surface observations can supplement 840 

traditional piezometer installations. It can be applied to rapidly and accurately detect the water 841 

table for a specific investigated field even though pre-defined model parameters are misspecified 842 

by 20%. This feature of monitoring the water table has potential applications for assessing 843 

groundwater storage and studying frost thawing and volcanic eruption. Nevertheless, as 844 
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aforementioned, the dynamic effective excess charge density using the scaling factors by 845 

volumetric average and relaxation time suffers several limits as predictions, particularly at the 846 

pore scale. We suggest considering explicit frequency- and saturation-dependence in the future 847 

(Jougnot & Solazzi, 2021; Solazzi et al., 2022; Thanh et al., 2022). 848 

 849 

Appendix A  850 

Tables A1 and A2 list the acronyms as well as the notation and description of symbols 851 

used in the manuscript, respectively. The formulations of frequency-dependent (dynamic) and 852 

saturation-dependent parameters are summarized in Table A3. 853 

Table A1. Acronyms and meaning  854 

Acronyms Meaning 

SE SeismoElectric 

SESR SeismoElectric Spectral Ratio 

MC-SESR Multi-Channel SeismoElectric Spectral Ratio 

EDL Electrical Double Layer 

AVO Amplitude variation Versus Offset 

BL Broad Learning 

RVFLNN 
Random Vector Functional Link Neural 

Network 

EM ElectroMagnetic 

MVG Mualem-van Genuchten 

VG van Genuchten 

LAC GRTM 
Luco-Apsel-Chen Generalized Reflection and 

Transmission Method 

dwt Water table depth 
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Table A2. Nomenclature of the Material Properties 855 

Symbol Unit Description 
𝜔 rad/s Angular frequency 
f Hz Frequency 

𝜔୲ Hz Angular transition frequency 

𝜃ୡ rad/s The critical angle of evanescent 
electromagnetic waves 

𝑆୵ - Water saturation 
𝑆୵୰ - Residual water saturation 
𝑆ୣ - Effective water saturation 
𝜎∗ S/m Complex electrical conductivity 
𝜎୵ S/m Electrical conductivity of pore water 
𝜎଴ S/m Static bulk electrical conductivity 
𝐄 V/m Electric field 
𝐉 A/mଶ Total current density 

𝐿∗ A/mଶ Streaming cross-coupling coefficient 

𝐿଴
ୱୟ୲ A/mଶ Streaming cross-coupling coefficient at 

the saturated condition in low frequency 

𝑄෠୴,଴
ୱୟ୲ C/mଷ Saturated effective excess charge density 

in low frequency 

𝑄෠୴,଴ C/mଷ Effective excess charge density in low 
frequency 

𝑄෠୴
∗ C/mଷ Complex effective excess charge density 

CEC C/kg Cation exchange capacity 

𝛽ା mଶ/sV Mobility of the counterions in the diffuse 
layer 

𝛽ା
ୱ୳୰ mଶ/sV Mobility of the counterions in the Stern 

layer 
𝑓  - Fraction of counterions in the Stern layer

𝐶଴
ୱୟ୲ V/m Streaming voltage coupling coefficient 

𝐶୵ mol/L Salinity of pore water 
𝐹 - Electrical formation factor 
𝑚 - Cementation exponent of Archie’s law 
𝑛 - Saturation exponent of Archie’s law 
𝑝୤ Pa Pore-fluid pressure 
𝜌୤ kg/mଷ Mass density of fluid 
𝜌ୱ kg/mଷ Mass density of solid 

𝜌ୠ
ୱୟ୲ kg/mଷ Saturated bulk mass density 

𝐮ୱ m/s Averaging solid displacement 
𝐮୤ m/s Averaging pore-fluid displacement 
𝐰 m/s Averaging filtration displacement 
𝑘∗ mଶ Frequency-dependent permeability 
𝑘଴ - Effective permeability in low frequency 
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𝑘଴
ୱୟ୲ mଶ Saturated permeability in low frequency 
𝜙 mଷ/mଷ Porosity 

𝛼୚ୋ mିଵ Parameters of van Genuchten model 
𝑛୚ୋ - Parameters of van Genuchten model 
𝜏୵ - Tortuosity 
𝜂୵ Pa∙s Dynamic viscosity of pore-water 
𝛼 - Biot coefficient 

𝛼ୱୟ୲ - Saturated Biot coefficient 
T oC or K Temperature 
𝜀଴ F/m Vacuum permittivity 
𝜅୵ - Dielectric constant of water 
𝜅ୟ - Dielectric constant of air 
𝜅ୱ - Dielectric constant of solid phase 
𝐾ୱ Pa Bulk modulus of solid phase 
G Pa Frame shear modulus 

𝐾୤୰ Pa Frame bulk modulus 
𝐾୵ Pa Bulk modulus of water 
𝐾ୟ Pa Bulk modulus of air 
𝐾ୋ Pa Undrained bulk modulus 
C Pa Biot modulus 
M Pa Biot modulus 

Table A3. Frequency- and saturation-dependent parameters and corresponding formulations 856 

Parameter Unit Expression References 

Angular 

transition 

frequency  
𝜔୲(𝑆୵) 

Hz 
𝜂୵𝜙𝑆୵

𝜌୵𝑘଴(𝑆୵)𝜏୵(𝑆୵)
 

Revil & Mahardika, 

2013; Solazzi et al., 

2020 

Tortuosity 

𝜏୵(𝑆୵) 
- 𝜙𝐹𝑆୵

ଵି௡ 

Revil & Jougnot, 

2008; Jougnot et al., 

2018 

Dynamic 

permeability 

𝑘∗(𝜔, 𝑆୵) 

- 
𝑘଴(𝑆୵)

1 − 𝑖𝜔
2𝜔t

 Revil & Mahardika, 

2013 

Effective water 

saturation  

𝑆ୣ(𝑆୵) 

- 
𝑆୵ − 𝑆୵୰

1 − 𝑆୵୰
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Quasi-static 

effective 

permeability 

𝑘଴(𝑆୵) 

- 
𝑘଴

ୱୟ୲𝑆ୣ
ଵ
ଶ ቈ1 − ቆ1 − 𝑆ୣ

ଵ
௠౒ృቇ

௠౒ృ

቉
ଶ

 

𝑚୚ୋ = 1 − 𝑛୚ୋ
ିଵ 

Mualem, 1976; van 

Genuchten, 1980 

Specific 

moisture 

capacity 𝐶୫(𝑆୵) 

mିଵ 𝛼୚ୋ𝑚୚ୋ𝜙(1 − 𝑆୵୰)𝑆ୣ

ଵ
௠౒ృ ቆ1 − 𝑆ୣ

ଵ
௠౒ృቇ

௠౒ృ

1 − 𝑚୚ୋ
 

Richards, 1931; van 

Genuchten, 1980 

Frequency-

dependent 

effective excess 

charge density 

𝑄෠୴
∗(𝜔, 𝑆୵) 

- 𝑄෠୴,଴(𝑆୵)ඨ1 −
𝑖𝜔
𝜔t

 
Revil & Mahardika, 

2013 

Complex 

electrical 

conductivity 

𝜎∗(𝜔, 𝑆୵) 

S/m 𝑆୵
௡𝜎୵

𝐹
+ 𝜎ୱ୳୰(𝑆୵) + 𝑖[𝜎୯୳ୟୢ(𝑆୵) − 𝜔𝜀଴𝜅(𝑆୵)] Revil et al., 2015 

Effective surface 

conductivity 

𝜎ୱ୳୰(𝑆୵) 

S/m 2
3

𝑚
(𝐹 − 1)

𝐹
𝑆୵

௡ିଵ𝛽ା൫1 − 𝑓 ൯𝜌ୱ𝐶𝐸𝐶 
Revil, 2013; Revil & 

Mahardika, 2013 

Effective 

quadrature 

conductivity 

𝜎୯୳ୟୢ(𝑆୵) 

S/m −
2
3

𝑚
(𝐹 − 1)

𝐹
𝑆୵

௡ିଵ𝛽ା
ୱ୳୰𝑓 𝜌ୱ𝐶𝐸𝐶 

Revil, 2013; Revil & 

Mahardika, 2013 

Dielectric 

constant 𝜅(𝑆୵) 
- (𝐹 − 1)𝜅ୱ + 𝑆୵

௡𝜅୵ + (1 − 𝑆୵
௡)𝜅ୟ

𝐹
 Linde et al., 2006 

Biot coefficient 
𝛼(𝑆୵) 

- 
𝑆୵ − 𝑆୵୰

1 − 𝑆୵୰
𝛼ୱୟ୲ 

Revil & Mahardika, 

2013 

Mass density of 

fluid 𝜌୤(𝑆୵) 
kg/mଷ 𝑆୵𝜌୵ + (1 − 𝑆୵)𝜌௔  

Bulk modulus of 

fluid 𝐾୤ 
Pa 

1
𝑆୵
𝐾୵

+ 1 − 𝑆୵
𝐾௔

  

 857 
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