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Mechanistic insights into bacterial metabolic reprogramming
from omics-integrated genome-scale models
Noushin Hadadi 1*, Vikash Pandey2, Anush Chiappino-Pepe2, Marian Morales1, Hector Gallart-Ayala3, Florence Mehl3,
Julijana Ivanisevic3, Vladimir Sentchilo1 and Jan R. van der Meer1

Understanding the adaptive responses of individual bacterial strains is crucial for microbiome engineering approaches that
introduce new functionalities into complex microbiomes, such as xenobiotic compound metabolism for soil bioremediation.
Adaptation requires metabolic reprogramming of the cell, which can be captured by multi-omics, but this data remains formidably
challenging to interpret and predict. Here we present a new approach that combines genome-scale metabolic modeling with
transcriptomics and exometabolomics, both of which are common tools for studying dynamic population behavior. As a realistic
demonstration, we developed a genome-scale model of Pseudomonas veronii 1YdBTEX2, a candidate bioaugmentation agent for
accelerated metabolism of mono-aromatic compounds in soil microbiomes, while simultaneously collecting experimental data of
P. veronii metabolism during growth phase transitions. Predictions of the P. veronii growth rates and specific metabolic processes
from the integrated model closely matched experimental observations. We conclude that integrative and network-based analysis
can help build predictive models that accurately capture bacterial adaptation responses. Further development and testing of such
models may considerably improve the successful establishment of bacterial inoculants in more complex systems.
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INTRODUCTION
Microbiome engineering is an upcoming discipline that aims to
manipulate, complement or restore the functionality of existing
damaged communities, e.g., contaminated soils, by adding
specific new metabolic capabilities.1 A rational engineering
approach requires a detailed understanding of general principles
of the functioning of the microbial community and its physiolo-
gical adaptations to perturbations, but such understanding is
currently lacking and fragmentary.1,2 The technically most simple
way to provide new metabolic capacities to an existing microbial
community is by strain addition (what one could call an N+ 1
scenario).3,4 After an initial screening of the existing capacity of
the microbial community, one or more preselected and well-
characterized strains with the intended complementation could
be prepared, formulated and inoculated into the community.
Depending on the aims, such inoculants should maintain and
reproduce for longer-term inside the resident community or only
deploy their metabolic capacity transiently.3,4

Inoculation of preselected strains has been widely practised for
pollutant bioaugmentation, using bacteria with particular meta-
bolic capabilities that enable them to efficiently degrade and grow
on common pollutants such as toxic aromatic compounds.5

However, even the simplest inoculations and N+ 1-strategies are
rarely effective because it is insufficiently understood what
inoculants need to establish successfully within a (new) existing
community, and how they need to adjust their physiology to meet
the requirements of the new environment and degrade the
desired toxic compound(s). Modeling strategies based on the
integration of a variety of (nowadays more easily) accessible
condition-specific omics data, would help to better understand
and predict how cellular regulation and physiology at different
growth conditions and environments interplay. However, the
impact and advantage of such integrative analysis are not yet

explored to its full extent.6 We propose and demonstrate here that
combining comprehensive genome-wide transcriptomics, exome-
tabolomics and metabolic modeling can better predict physiolo-
gical adaptation.
Metabolic modeling has largely advanced through the devel-

opment of GEnome-scale Metabolic models (GEMs) and
constraint-based modeling techniques such as Flux Balance
Analysis (FBA). GEMs can be built from the annotated genomes
and they describe an organism’s metabolism as completely as
possible, linking genotype to metabolic phenotypes.7 GEMs
encompass metabolites, metabolic reactions, and genes coding
for the enzymes catalyzing the reactions. Together with FBA, GEMs
predict steady-state fluxes,8,9 and therefore, they can predict
cellular physiology. While the genome specifies the complete set
of biochemical reactions which the cell can potentially carry out,
the actual enzymatic capacity at each physiological condition is
orchestrated by regulatory networks in the cell. GEMs do not
explicitly consider regulation, whose effects are better reflected in
the global transcriptome and the metabolome.10–14 FBA
approaches have been extended with RNAseq and metabolomics
data to capture cell regulation and more accurately describe
cellular metabolic behavior.15 For example, transcriptional regula-
tion of gene expression has been linked to GEMs, either by taking
into account the absolute expression values, scoring genes and
subsequently reaction fluxes as active or non-active based on their
expression,16–18 or by incorporating relative gene-expression.14,18

Use of relative gene expression is assuming that the relative
changes between two conditions correlate with the resulting
differential flux profiles. Both approaches can lead to condition-
specific GEMs that are more effective for inferring the actual
biochemical activity and the observed physiology of the
microorganism.
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As a study system for predicting physiology from an integrated
GEM-transcriptome-metabolome approach, we here use Pseudo-
monas veronii 1YdBTEX2. Strain 1YdBTEX2 is capable of degrading
a variety of mono-aromatic hydrocarbons such as benzene,
toluene, ethylbenzene, and m- and p-xylene (BTEX).20–22 The
ability of P. veronii 1YdBTEX2 to grow in contaminated environ-
ments makes it a promising candidate for rational complementa-
tion of microbial communities in contaminated soils.23 Based on
an available manually curated high-quality genome,22 we
reconstructed the first GEM for P. veronii 1YdBTEX2 (iPsvr).
Genome-wide transcription changes and exometabolome com-
pounds were measured during growth of P. veronii on toluene, in
exponential and in stationary phase. Transcriptome and exome-
tabolome data were integrated into the iPsvr using the recently
developed tool REMI (Relative Expression and Metabolomics
Integrations).19 REMI integrates gene expression, thermodynamic,
and metabolite abundance data into metabolic models, and then
maximizes the consistency between differential gene expressions,
metabolite concentrations and levels of metabolic fluxes for any
given pair of conditions. Therefore, by building a context-specific
model for each condition, it allows elucidating metabolic states
and predicting cellular phenotypes and flux distributions of
condition-specific differences e.g., wild type vs mutation. Two
obtained metabolic models representing exponential and sta-
tionary physiologies were then used to evaluate growth rates and
the production of biomass precursors, and model predictions were
compared to the experimentally observed values. Although the
temporal variations of the growth rate cannot be predicted using
GEMs,24 we showed that introducing the additional regulatory
information from gene expression and metabolomics data into
GEMs allows for consistently estimating growth rates at different
growth phases. Finally, we incorporated into iPsvr previously
published transcriptomics data of P. veronii transits from liquid
culture to sand22 to understand its physiological adaptation in soil.
Our work shows strong consistency of model outputs with the
experimental data, manifesting that integration of condition-
specific omics data into a curated GEM constitutes a major
improvement for prediction of metabolic reprogramming during
adaptation.

RESULTS
Developing an integrated genomic-transcriptomic-metabolomic
workflow
To develop a pipeline that integrates genomics with transcrip-
tomic and metabolomic data we advanced in three stages: (1)
Quantify the cellular states at each phenotype, by genome-wide
transcriptomics and exometabolomic data from spent media
composition (Fig. 1a); (2) Construct a GEM for P. veronii strain
1YdBTEX2 (iPsvr), gap-fill missing parts of the metabolism
(compounds and reactions), complement genome annotation
using the transcriptomics and exometabolomic data and estimate
the steady-state growth rate using FBA (Fig. 1b); and (3) Link the
interrelationships between growth phases and the differentially
expressed genes and metabolite abundances by statistical
inference and by REMI.
In this work, we used the pipeline to: (i) generate two growth-

phase-specific models of P. veronii growing on toluene, iPsvr-EXPO
and iPsvr-STAT, which correspond to the exponential and the
stationary phase, respectively, and employ them to predict
quantitative and dynamic readouts of P. veronii metabolism in
the two conditions (Fig. 1c); and (ii) build two context specific
models, iPsvr-LIQ and iPsvr_SAND, for the growth on liquid
medium and in a sand environment, respectively, by integrating
previously published gene expression data22 into iPsvr. The
models were then used to predict the physiology in a liquid-to-
sand transition.

Genome-wide gene expression and metabolite formation over
time
Whole-genome gene expression profiles and metabolite forma-
tion in the spent medium were analyzed in P. veronii cultures
growing in liquid minimal medium with toluene as sole carbon
and energy source, sampled at 0 h (T0h), 4 h (T4h, EXPO) and 24 h
(T24 h, STAT) after inoculation.
Based on growth kinetics of P. veronii 1YdBTEX2 on toluene, we

identified 4h and 24 h to be representative time points for
P. veronii 1YdBTEX2 metabolic activity at the early exponential
growth and late stationary phase, respectively. Genome-wide
gene expression was quantified by mapping Illumina 100
nucleotide long single–end sequencing reads from deeply
sequenced cDNA libraries to the protein coding genes in
P. veronii genome (read numbers indicated in Table S1). For each
sampling time point, four replicates clustered closely together,
with slightly higher variability observed among the T24h replicates
(Fig. S1A). A pair-wise comparison of expression levels showed
that 1458 (818 up-regulated and 640 down-regulated) out of the
total 6943 genes (21%) were significantly differentially expressed
between EXPO and STAT phase cells, with at least 2-log fold-
change induction (false discovery rate [FDR] < 0.05) (Fig. 2a, b).
A priori, based on the genome annotation, a subset of 1241

“metabolic genes” were used in the GEM reconstruction (iPsvr).
Out of these 1241, 300 (21%) were significantly differentially
expressed in EXPO vs. STAT phase cells (FDR < 0.05) (Table S2).
The transition to STAT phase in bacteria is characterized by
growth arrest in response to several factors, such as carbon and
nutrient depletion, the accumulation of toxic compounds and
environmental stress, which decrease ribosomal activity and
therefore protein synthesis. This is consistent with toluene
becoming depleted in STAT phase. As anticipated, enriched GO
terms for the category “Biological Process” among the differen-
tially expressed genes between EXPO and STAT included
“protein folding” (GO:0006457), “tRNA aminoacylation for protein
translation” (GO:0006418), “intracellular protein transmembrane
transport” (GO:0065002) and “regulation of transcription, DNA-
templated” (GO:0006355) (Table S3), thus indicating cells to be
more active in EXPO phase, as expected. Consistent with
nutrients becoming depleted in STAT phase, the terms “benzo-
ate catabolic process via hydroxylation” (GO:0043640) and
“tricarboxylic acid cycle” (GO:0006099) (Table S3), important for
aromatic compound catabolism, were under-represented in the
STAT phase transcriptome.
The untargeted metabolomic analyses of the spent medium

detected 1630 (positively charged) and 3509 (negatively charged)
distinct ion species or metabolite features. Unsupervised principal
component analysis yielded three distinct clusters indicating
metabolic phenotype differentiation over time, from inoculum to
stationary phase (Fig. S1B). Similar to the transcriptomics data, a
greater variability was observed among the T24h replicates.
Temporal patterns of annotated metabolites by HMDB database

(accurate mass) matching25 showed a significant increase in the
spent media over time of the majority of the metabolites
implicated in the toluene and benzene degradation pathways
and central carbon pathways, including glycolysis, purine and
pyrimidine metabolism and amino acid metabolism (Fig. 2c). This
implies their production by the bacteria and progressive release
into the media. One specific group of metabolites, including
citrate (C00158), glutamate (C00025), glutamine (C00064), and
aspartate (C00049), accumulated significantly in EXPO phase (T4h)
in comparison to T0h, followed by lower levels in STAT phase (Fig.
2c). This suggests their excretion in EXPO phase and subsequent
re-consumption when other nutrients became limiting (Fig. 2c).
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Genome-scale metabolic model (GEM) of P. veronii strain
1YdBTEX2 (iPsvr)
A draft GEM was generated from the curated P. veronii genome22

by using the RAVEN toolbox26 (Fig. 1b). The draft GEM was gap-
filled by iterative manual curation until we obtained a model able
to carry non-zero flux through the biomass reaction at steady
state. This signified cell ‘growth’, and indicated that the model was
performing as expected for a biological system. The cell biomass
composition and compartment information were derived from
two available models of other Pseudomonads species: P. putida27–29

and P. stutzeri30 (see Methods).
We used Biolog growth data of P. veronii 1YdBTEX2 incubated

with 26 different carbon substrates to further curate and refine the
model. In comparison to a no-carbon control, Biolog indicated
growth of strain 1YdBTEX2 on 15 out of the tested 26 substrates as
the sole carbon source (Table S4). We confirmed the experimental
observations using iPsvr for 20 substrates, whereas the model
could not grow on the remaining six substrates (D-Xylose, D-
Galacturonic Acid, L-Phenylalanine, D-Glucosaminic Acid, Itaconic
Acid, and Putrescine). We hence gap-filled the model to include
these additional metabolic tasks (Table S4). This gap-filling
improved the metabolic network connectivity, and it resulted in
a more versatile model that can be used for studies on an
extended range of substrates.

The scope of iPsvr GEM was further widened by restoring the
connectivity of the remaining ‘blocked’ reactions, i.e., isolated
reactions that carry zero flux at any condition. To this end, we
explicitly considered the empirical gene-expression and exome-
tabolomics data. We first used a graph-based algorithm (see
Methods) to decompose the iPsvr metabolic network into its main
subnetworks of 1370 reactions and 23 blocked reactions/path-
ways of different lengths, with the longest blocked pathway
consisting of seven reaction steps (Table S5). Out of 191 blocked
reactions/pathways, we identified those associated with differen-
tially expressed genes between the two growth conditions and
the ones whose participating metabolites were present in the
exometabolomic data. The identified reactions/pathways were
next unblocked by gap-filling as described in the Methods section.
Interestingly, we identified gap-filling reactions that had been
annotated to P. veronii genes with RAVEN but had a lower score
than the ones chosen as a baseline for the draft reconstruction of
iPsvr. The gap-filling algorithm introduced in total 71 new
metabolic reactions together with their corresponding 28 genes
to iPsvr (Table 1 and Table S6). The reconstructed and gap-filled
iPsvr accounted for 1243 genes, 1610 metabolic reactions and
1681 metabolites localized within two intracellular compartments,
the cytosol and periplasm, and the extracellular environment
(Table 1).
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Fig. 1 Schematic overview of the integrated genomic-transcriptomic-metabolomic pipeline applied in this study. a Stage 1: Relative gene
expression and exometabolomic data were determined and analyzed, and these data were used to gap-fill iPsvr at blocked reactions. b Stage
2: A genome-scale metabolic model (GEM) of P. veronii strain 1YdBTEX2, iPsvr, was reconstructed and flux-balance analysis (FBA) was
performed to simulate the growth of the cell. c Stage 3: Additional relative differential gene expression and metabolite abundance data were
integrated into the metabolic model with REMI and physiology-specific models were built. Here, the REMI methodology is illustrated on a
section of inferred iPsvr glycine, serine and threonine metabolism and iPsvr-EXPO (exponential phase) and iPsvr-STAT (stationary phase) as the
two physiology-specific models. Significantly differentially expressed genes (here, serB, glyA, DSD1 and GGAT) are outlined in boxes. The
thickness of arrows designates the fold-change in estimated fluxes, where green arrows indicate consistency with the gene-expression fold-
change values, and the red ones inconsistencies. Measured metabolite concentrations (here: pyr, sarcs, gly and glx) are indicated in green if
the values are consistent with estimated fluxes and in red otherwise. Phosphoserine phosphatase, SerB; Serine hydroxymethyltransferase,
GlyA; D-serine dehydratase, DSD1; Glyoxylate aminotransferase, GGAT; Pyruvate, pyr; Sarcosine, sarcs; Glycine, gly; Glyoxylate, glx.
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The experimentally determined maximal specific growth rate of
P. veronii strain 1YdBTEX2 in minimal medium with toluene as the
sole carbon source was in the range of 0.25 h−1 to 0.35 h−1. In
absence of proper empirical measurements of toluene uptake
rate, we estimated a maximal uptake rate of toluene from a
constrained maximal specific growth rate to 0.35 h−1 in the
thermodynamics-based flux balance analysis (TFA).8,31,32 We
computed that a toluene uptake rate of 0.45 mmol gDW–1 h–1 is
required to achieve this growth rate.

Omics-based curation and gap-filling in iPsvr for toluene
degradation and phenylalanine metabolism
Given the importance of toluene degradation by P. veronii
1YdBTEX2, we manually curated the predicted toluene (Fig. 3a)
and phenylalanine metabolic pathways (Fig. 3b) to ensure they
were fully functional in iPsvr. In P. veronii, toluene is converted via
(1S, 2R)-3-methylcyclohexa-3,5-diene-1,2-diol to 3-methylcatechol,
which is further degraded, according to the KEGG pathway
database, through two pathways until the central carbon
metabolism compounds are reached (Fig. 3a and Fig. S2). One
of these pathways, which produces pyruvate and acetaldehyde in

four reaction steps (1.13.11.2, 3.7.1.-, 4.2.1.8 and 4.1.3.39 in Fig. S2),
has been experimentally shown to be the main toluene
degradation route based on gene expression data.22 The iPsvr
growth simulation on minimal media with toluene as the sole
carbon source showed that this pathway was functional. In
contrast, the second functional pathway (Fig. 3a),22 was blocked in
iPsvr because it lacked the enzyme 2.8.3.6 (highlighted in red in
Fig. 3a), and it was therefore disconnected from the main
metabolic subnetwork. We found that three out of the six genes
in this pathway (PVR_r1g5041, PVR_r1g5042, PVR_r1g1440) were
more than 2-fold differentially expressed between the two growth
conditions (highlighted in green in Fig. 3a), which further
suggested that this pathway is indeed active in P. veronii.
Homology-based BLAST searches33 of the gene sequences of
2.8.3.6 against the P. veronii genome identified the corresponding
gene for catalyzing this reaction (PVE_r1g3867, e-value of 10−20,
to scoA). Note that the default e-value in RAVEN is 10−50, which is
why the reaction was not initially captured in the model from the
genome annotation. Therefore, the missing reaction (2.8.3.6) was
added to iPsvr, and the toluene pathway (Fig. 3a) was connected
to the rest of the metabolic network through the Krebs cycle and
carried flux.
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Fig. 2 Genome-wide gene-expression and metabolite abundance differences in P. veronii 1YdBTEX in exponential (EXPO) relative to
stationary (STAT) phase. a Smear-plot of global gene expression intensity (2 log counts per kilobase per million, CPKM) versus expression
changes (2 log fold change) in EXPO vs. STAT. In gray, genes not statistically differentially expressed (logFC < 1, FDR > 0.05, P > 0.01); magenta,
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The phenylalanine metabolic pathway was gap-filled using the
exometabolomic data (Fig. 3b). Three out of the eight reaction
steps of this pathway (4.1.1.28, 1.14.14.54 and 1.14.13.-) were
initially missing in iPsvr, leading to a dead-end pathway without
flux. Four metabolites of phenylalanine metabolism were detected
in the exometabolomics data (colored in blue in Fig. 2b), one of
which, 2-hydroxyphenylacetate, was absent in the iPsvr GEM. This
suggested that phenylalanine metabolism should proceed via 2-
hydroxyphenylacetate in P. veronii (Fig. 3b). The enzyme produ-
cing 2-hydroxyphenylacetate from phenylacetaldehyde
(1.14.14.54) was found by BLAST (PVE_r1g94, e-value of 10−20 to
CYP504), added to iPsvr and could thus link both metabolites. The
next step (1.14.13.-), yielding homogentisate (Fig. 3b) was also
added, but no protein sequence could be assigned, as it
corresponds to an orphan reaction (KEGG reaction ID: R05450).
The first enzyme (4.1.1.28), which decarboxylates L-phenylalanine
to phenethylamine, must be present, given the detection of both
compounds in the exometabolomics data, although no P. veronii
protein sequence could be identified through BLAST search.

Omics integration into iPsvr
REMI (Relative Expression and Metabolomics Integrations) was
used to integrate the relative gene-expression and metabolite

abundance data between EXPO and STAT into iPsvr. We explored
three scenarios, depending on the type of data integrated into
iPsvr: (i) REMI-TGex for the integration of relative gene-expression
data only; (ii) REMI-TM for the integration of metabolomics data
only; and (iii) REMI-TGexM for the simultaneous integration of
both the gene-expression and metabolite abundance data into a
thermodynamically curated model. The “T” in the three methods
stands for the inclusion of thermodynamic constraints. Contex-
tualized metabolic models, iPsvr-EXPO and iPsvr-STAT, coherent
with omics data obtained at the exponential and stationary
growth phase, respectively, were built, and the growth rates were
again simulated (Table 2). 279 out of a total of 831 integratable
gene-expression and metabolite abundance data points could be
consistently included in REMI (Table 2, third row).
We analyzed the EXPO and STAT phase using iPsvr-EXPO and

iPsvr-STAT models. To this end, we used two variants of the REMI
method: REMI-TGex, where we integrate thermodynamics and
gene expression data, and REMI-TGexM, where we integrate
thermodynamics along with both gene-expression and metabo-
lomics data. Both REMI-TGex and REMI-TGexM analyses show that
the growth rates at the STAT phase are considerably lower than at
the EXPO phase, as observed experimentally. However, the
integration of exometabolomics data alone (REMI-TM) was
insufficient to predict a reduction in growh rate at the STAT
phase. Both REMI-TGex and REMI-TGexM correctly estimated near-
zero growth rates of 0.0056 h-1 and 0.0028 h-1, respectively, for
the stationary phase (Table 2).
One of the distinguishable characteristics of REMI is the

possibility of generating alternative solutions that correspond to
the observed physiology (Methods). In this study, the alternative
solutions allow investigating different flux distributions that result
in the same simulated growth rate. Since REMI-TGexM can
integrate the highest number of available experimental data as
constraints (Table 2), we used this model in the study of
alternative solutions.
REMI analysis revealed that there were 40 alternative solutions

with the maximal consistency score (MCS) of 279 (Supplementary
File. 1). We identified a set of 202 constaints, 162 from gene
expression and 40 from exometabolomics data (Table S7), that
were common amongst all alternative solutions. A total of 45
constaints varied amongst alternative outcomes (Table S7).
Interestingly, the 40 constraints from exometabolomics data were
common among all the 40 solutions and the difference (45
constraints) originated from the gene expression data.
We used the KEGG mapper tool to study those pathways that

deregulate during the transition from exponential to stationary
phase.34 The common reactions and metabolites amongst all the
alternative solutions generated by REMI were mapped to KEGG

Table 1. iPsvr components in the final GEM.

Genes

From annotation 1243

Added for gap-filing 26

Reactions

Metabolic reactions 1610

From annotation 1539

Added for gap-filing 71

Transport reactions 365a

Exchange reactions 173a

Metabolites

Intracellular compounds 1681

Extracellular compounds 173a

Cellular building blocks 62

aiPsvr includes more extracellular compounds, transport and exchange
reactions, which we kept blocked in this study. They are part of the model
that will allow studying different media composition in the future
metabolic studies of P. veronii

Catechol

Muconate

available exometabolomics data reactions exist in iPsvr

Muconolactone

5.3.3.4

3-Oxoadipate 
enol-lactone

3-Oxoadipate

2.8.3.6

3-Oxoadipyl-CoA

Succinyl-CoA

Citrate cycle

Phenylalanine metabolism

 Toluene degradation pathway

L-Phenylalanine

Phenethylamine

4.1.1.28 1.4.3.4

Phenylacetaldehyde

1.2.1.5

Phenylacetate Homogentisate

1.13.11.5

4-Maleylacetoacetate

Propanoate 
metabolism1.14.14.54

2-Hydroxyphenylacetate

4-Fumarylacetoacetate

Citrate cycle

differentially expressed genes

a

b

Toluene

6 reaction-steps
1.13.11.1 5.5.1.1 3.1.1.24 2.3.1.16

1.14.13.- 3.7.1.25.2.1.2
Formate

Acetoacetate

Fig. 3 Gap filling of two blocked pathways in iPsvr based on the gene expression and exometabolomics data. a One of the two toluene
degradation pathways in P. veronii (from the KEGG pathway database53) involved one missing enzyme (highlighted in red), and three genes
(highlighted in green) differentially expressed between the exponential and stationary growth conditions. b The phenylalanine metabolic
pathway involved three missing enzymes (highlighted in red) and four metabolites (highlighted in blue) identified in the
exometabolomic data.
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pathways using KEGG mapper34 (Table S7). Biosynthesis of amino
acids (KEGG map01230) with 41 deregulated reactions and
metabolites scored as the most deregulated pathway. This was
followed by Carbon metabolism (KEGG map01200) with 28 and
Purine metabolism (KEGG map00230) with 21 deregulated
reactions and metabolites. The complete list of the deregulated
pathways is provided in Table S7. This analysis suggests that the
deregulation of central carbon meatbolism and amino acid
synthesis plays a critical role in growth arrest in the transition
from exponential to stationary phase.

Analysis of the biomass precursor production at different growth
phases
To further understand the underlying mechanisms of growth
reduction when cells transit from EXPO to STAT, we identified the
biomass precursors that may become limiting in the stationary
phase, therefore leading to growth arrest. The 62 biomass
precursors were grouped into seven groups of biomass building
blocks (BBBs), namely carbohydrates, cofactors and vitamins, DNA
nucleotides, lipids, minerals, amino acids, and RNA nucleotides.
For each metabolite, we calculated the fold-change of their
maximal production between EXPO and STAT using REMI-TGexM
(Table S8).
For the BBB analysis, we used REMI-TGexM and investigated the

variation of maximum possible BBB production across all the 40
alternative solutions (Supplementary Information 2), and through
sampling, we identified the most representative solution (see
Methods). Our results indicated large variations in the maximum
production of BBBs between the two phases (Fig. 4), with the
maximal relative change occurring in the production of cofactors
and vitamins. The production of 52 out of the 62 BBBs (83%), was
higher in iPsvr-EXPO than in iPsvr-STAT (Fig. 4, Table S8). The
production of minerals remained unchanged, and rather surpris-
ingly, it is possible to achieve higher production of 7 BBBs in STAT
conditions (Fig. 4, Table S8). The maximum production of 19 out of
the 20 precursors that were classified as cofactors and vitamins,
was higher in iPsvr-EXPO than in iPsvr-STAT (Fig. 4, Table S6), and
the only exception was Biotin. The maximum allowed production
of four amino acids; L-Methionine, L-Cysteine, L-Leucine and L-
Tyrosine was also higher in STAT (Fig. 4).

P. veronii adaptation from liquid culture to the soil as growth
environment
We analyzed the physiology for P. veronii during adaptation to the
soil environment, using a previously published genome-wide
transcriptome dataset of cells exposed for 1 h to liquid medium or
to sand, with either toluene or succinate as carbon substrate.22

Integrating previously obtained transcriptomic data from liquid
versus sand exposure22 into iPsvr using REMI-TGex, we produced
two models, iPsvr-LIQUID for the liquid media and iPsvr-SAND for

the sand environment. While TMCS was 612 for this dataset, we
obtained a MCS of 246 and 265 for toluene and succinate carbon
sources, respectively. We then generated alternative solutions for
the maximum consistency score and simulated growth for the two
media (Supplementary Information 1). In silico growth rates of
0.297 ± 0.002 h−1 and 0.44 ± 0.008 h−1 were predicted for toluene
and succinate in liquid medium, repectively. Remarkably, the
model predicted strong reduction of growth rate upon transition
to the sand, i.e., from 0.297 h−1 to 0.161 ± 0.0001 h−1 (toluene)
and 0.44 h−1 to 0.161 ± 0.002 h−1 (succinate). This suggests that
cells have to adapt to soil as their new environment and have to
reprogram their physiology before resuming growth.
To understand how the transition from liquid medium to sand

impacts the intracellular metabolic fluxes and growth of P. veronii,
we performed the analysis of alternative solutions. In the case of
succinate, among the 195 alternative solutions, 152 reactions were
in common and 88 reactions were varying between them,
whereas for toluene, 134 reactions were common and 97 reactions
varied across 84 different alternatives (Table S9). The KEGG
mapper tool34 was used to identify the most deregulated
pathways within the transition from liquid to sand, for both
succinate and toluene (Table S9). Similar to the previous pathway
analysis of transition from EXPO to STAT, the two most
deregulated pathways were Carbon metabolism (KEGG
map01200) and Biosynthesis of amino acids (KEGG map01230),
for both Toluene and Succinate (Table S9). Fatty acid metabolism
(KEGG map01212) was the third most deregulated pathway (with
20 deregulated reactions) for toluene, and the fifth (with 8
deregulated reactions) for succinate. Interestingly, fatty acid
metabolism was not amongst the 25 top ranked deregulated
pathways in transition from EXPO to STAT. Another difference
from the EXPO to STAT pathway analysis was the deregulation of
2-Oxocarboxylic acid metabolism (KEGG map01210) as the third
and the sixth deregulated pathways in toluene and succinate sand
exposures, respectively. This suggests that although lower growth
is observed in both transitions, i.e., from EXPO to STAT and from
liquid to sand, the deregulated pathways underlying the growth
reduction are not necessarily the same.
We further investigated the production of BBBs in both growth

environments (Table S10). In contrast to the EXPO to STAT

Table 2. Summary of the REMI results of the relative integration of
exometabolomics (REMI-TM), gene expression (REMI-TGeX) and both
datasets (REMI-TGeXM) into iPsvr.

Method Score Growth rate (h–1)

TMCS MCS EXPO STAT

REMI-TM 215 50 0.253 0.250

REMI-TGeX 616 235 0.2567 0.0056

REMI-TGexM 831 279 0.25 ± 0.0004 0.0028 ± 0.0016

Experimental — — 0.31 ± 0.05 0

Theoretical maximum consistency score, TMCS; Maximum consistency
score, MCS; Std, standard deviation
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Fig. 4 Differential in silico production (mmol/gDW/h) of seven
biomass building block groups between the exponential and
stationary growth phase. The result of the integration of relative
gene expression and metabolite abundance data (EXPO vs STAT)
using REMI-TGexM. Each dot in the graph represents the individual
biomass precursors within that category and all the dots represenet
statistically significant changes (p= value < 0.05). For BBB group
statistics, see Table S8.
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transition results, in the case of cells exposed to sand, the
production of the majority of precursors was higher in sand
compared to liquid media (Fig. S3a, b). This suggests that although
cells grow much less in sand than in liquid, they still actively
produce BBBs, and the maximum production can be even higher
in sand than liquid media for certain BBBs (Table S10). The higher
production of lipids and amino acids in sand for both toluene and
succinate might indicate that cells reshape their membrane
content and protein metabolism upon transition to sand.

DISCUSSION
This work demonstrates how a metabolic-model-based (multi)
omics data integration approach can accurately capture cell
physiology and adaptation during growth or environmental
transitions. Metabolic models are typically used for predicting
optimal cell growth, but not for growth transitions and adaptation.
We show here the usefulness of models with comprehensively
integrated transcriptomics and exometabolomic to capture
changes in growth rate during adaptation. As example, we
studied transition of the toluene-degrading bacterium P. veronii
1YdBTEX2 from exponential growth to stationary phase, and
during adaptation from liquid to a sand environment.
For the purpose of this study, we reconstructed and curated the

first genome-scale metabolic model of P. veronii, iPsvr. iPsvr is
useful for a wide range of applications in biological and
biotechnological research, such as the integration of omics data,
investigation of relationships among species in microbial com-
munities, bioremediation strategies, design of metabolic engineer-
ing strategies, hypothesis-driven discovery, and analysis of
metabolic network properties. As such, iPsvr may represent a
valuable resource for the study of complex microbiomes and
microbiome engineering.
GEMs usually contain inconsistencies that manifest as blocked

reactions, i.e., the reactions that carry zero flux. Most of the
available metabolic models are gap-filled to obtain a functional
model that produces all the BBBs. Nevertheless, many reactions in
GEMs are not directly connected to biomass formation and may
remain blocked even after routine gap-filling. Roughly, 20–50% of
the reactions of published GEMs are blocked reactions.35,36 For
example, in the most recently and best-curated published E. coli
model, iML1515, 10% of the reactions are blocked.37 We identified
the blocked reactions/pathways in iPsvr and introduced a novel
omics-based gap-filling approach, which targets the gap-filling of
reactions/pathways by looking at differentially expressed genes or
metabolites. We showed that the gap-filling step improved the
metabolic model connectivity, thus increasing the number of
functional pathways that can carry flux. The curation also
increased the consistency of the metabolic model with the omics
data, expressed as the number of genes/metabolites with
available omics data that can be integrated into iPsvr. We
illustrated through two gap-filling examples on toluene and
phenylalanine metabolism how we could add the missing parts of
metabolism and increase consistency. Gap-filling using metabo-
lomics data not only improved the network connectivity, but also
allowed integrating metabolites and uncovering missing reactions
that must be part of the metabolic network but are missing due to
unannotated and misannotated genes as well as promiscuous
enzymes.38

Statistical analysis of gene expressions and metabolite levels
revealed significant variations across the exponential and
stationary phase, exemplifying the known distinct physiologies
under these conditions. However, the system’s level physiology
and the underlying adaptation mechanisms remained unrevealed.
It should be highlighted that in FBA, the growth rate is

evaluated under the assumption that all metabolic fluxes in the
cell are geared towards the maximal production of biomass at
each moment of the cell growth and under any environmental

condition. Nevertheless, inclusion of REMI,19 a method for the
integration of omics data into metabolic models and for building
context-specific models, produced predictions of P. veronii growth
rates under dynamic conditions. Integration of the transcriptomic
data (REMI-TGex and –TGexM) proved to be vital for predictions of
growth rate dynamics, i.e., higher growth rate at exponential
versus almost a growth arrest at the stationary phase, whereas
inclusion of metabolomic data alone (REMI-TM) was insufficient.
This might be expected, because only a small subset of
metabolites could be putatively identified, such that their impact
on the predictions was comparatively smaller. Overall, these
results clearly demonstrated that integrating multi-omics data in
GEMs significantly increases the consistency of the model
predictions with experimental observations.
The analysis of alternative outcomes generated by REMI allowed

us to better characterize the intracellular state of P. veronii growth
by identifying the metabolic pathways whose fluxes were
consistently changed across all alternatives thus identifying where
the fluxome was mostly rewired. Interestingly, although the same
growth reduction phenotype was observed for both the transition
from EXPO to STAT and liquid to sand, the deregulated pathways
were not completely identical.
REMI analysis of iPsvr-EXPO and iPsvr-STAT suggested P. veronii

adapts to STAT phases primarily by limiting the metabolic fluxes
for the production of the majority of cofactors and vitamins
required for growth, with metabolism reshuffling being regulated
at the transcriptional level. In addition, an increased production of
specific amino acids in the STAT phase suggests the cell is
preparing for starvation and survival. In contrast to the EXPO to
STAT transition, REMI analysis of iPsvr-LIQUID and iPsvr-SAND
indicated that, surprisingly, the maximum production of most of
precursors from the cofactors and vitamins, and the BBBs amino
acids actually increased in cells transited to sand, consistent for
both sand with toluene or succinate as the sole carbon source. We
hypothesize that the production of these BBBs and the function of
their associated metabolic pathways are rewired to adapt to the
local sand conditions. This finding resonates with previous work of
Morales et al.,22 who concluded from Gene Ontology terminology
that P. veronii cells inoculated in sand readjusted their metabolism
during the first hour of contact.
Collectively, our results demonstrate the importance of

integrating into metabolic models the contextualization of
condition-specific gene-expression and metabolite-abundance
data. This increases the value of growth rate predictions and
improves the assessment of the relative changes of measurable
metabolic phenotypes. The method as demonstrated here is thus
an important advancement to explain, quantify or predict cellular
responses to environmental or genetic perturbations, which is
crucial for microbiome engineering.

METHODS
Culture conditions for P. veronii transcriptome and
exometabolomic studies
P. veronii 1YdBTEX2 was grown on solid 21C mineral medium39 with
toluene in the vapor phase at 30 °C for 3 days. Colonies were inoculated
into three 100ml screw-cap conical flasks containing 25ml of the mineral
medium amended with 0.5 ml of a 1:19 mixture of toluene:tetradecane
(Sigma-Aldrich ref: 34866; Aldrich ref: 87140). Flasks were incubated at
30 °C and at 180 rpm on an orbital shaker until a culture turbidity (OD600)
of 0.7 (mid-exponential growth phase). At this point, the three cultures
were pooled, and the bacterial cells were harvested by centrifugation
(swing-out rotor A-4-44, Eppendorf; 3220 g, 8 min, 30 °C). The cell pellet
was resuspended in the mineral medium and centrifuged again, as
described above, to remove any residual carbon. After that, the cells were
resuspended in mineral medium, diluted to obtain a starting OD600 of 0.16
and transferred into four replicate flasks, to which the toluene:tetradecane
mix was added, as described above. The cultures were incubated at 30 °C
and 180 rpm and regularly sampled for OD measurements. For
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transcriptomics, ~1 × 109 cells were harvested from an appropriate volume
of the culture by centrifugation at 3500 g, for 6 min at 30 °C; snap-frozen in
liquid nitrogen and stored at −80 °C until RNA extraction. Three
quadruplicate sample sets were produced: the inoculum at time 0 (T0h),
that is cells starved for ~30 min at 25 °C in mineral medium without a
carbon source; exponentially growing cells (at OD600 ≈ 0.5, harvested after
4 h of incubation in the toluene-amended mineral medium); stationary
phase cells (at OD600 ≈ 1.8–1.9 harvested after 24 h incubation). To study
the composition of the exometabolome (metabolites in the culture
medium excreted or leaked out of cells), 1 ml of the culture was sampled at
the same time points. Cell culture was transferred into a 1.5 ml
polypropylene microcentrifuge tube, which was clarified by 20min
centrifugation at 21,100 × g and 4 °C, after which 0.5 ml of spent media
was transferred to a new polypropylene tube, stored at −80 °C and
shipped on dry ice to the metabolomics facility.

Biolog data
P. veronii 1YdBTEX2 was plated from –80 °C on LB agar and incubated at
30 °C for 16 h to obtain isolated colonies. A single colony was subsequently
restreaked on a minimal medium agar plate, which was incubated in a
closed glass jar with a vial of toluene. Single colonies grown on toluene
were transferred to closed glass bottles with 20ml minimal medium to
which 20 µl of toluene dissolved in 1ml of tetradecane was added.
Cultures were incubated with agitation at 30 °C and cells were harvested
after 24 h by centrifugation, removing tetradecane carefully. Cells were
resuspended in minimal medium to a density of 106 per 75 µl. Wells of
BIOLOG EcoplatesTM containing triplicates of 31 carbon sources and one
no-carbon control were filled with 75 µl minimal medium, after which 75 µl
of P. veronii cell suspension was added and mixed. In total five Ecoplates
were inoculated, covered with a sterile seal and incubated in the dark for
16 days at room temperature. Absorbance at 590 nm, representative for
the respiration activity of the cells, was measured by spectrophotometry
every second day.

RNA extraction, RNA-seq library preparation and sequencing
Total RNA from the frozen cell pellets was extracted using the RNA
PowerSoil Total RNA Isolation Kit (MoBio Laboratories) as recommended by
the manufacturer. Contaminating genomic DNA was removed by two
cycles of TURBO DNase (Invitrogen) digestion and RNeasy MinElute
Cleanup kit (QIAGEN) column purification. The quantity, purity and
integrity of RNA samples were assessed using agarose gel electrophoresis,
NanoDrop spectrophotometer (ThermoFisher Scientific) measurements
and Agilent 2100 Bioanalyser (Agilent Technologies) profiling.
The completeness of DNA removal was verified by PCR using primers

Pv_chr2_fw, ATCGGCTGTCCGACATCGGACG and Pv_chr2_rev, TCGAAG
AGCTCCACCGAGAGCCGCC) and 1 pg of genomic DNA as a positive
control, as described previously.22 Next, 4 µg of each RNA sample were
depleted from ribosomal RNAs, converted to the reverse-complement
stranded Illumina sequencing library using the ScriptSeq Complete Kit
(Bacteria, Illumina) and indexed with ScriptSeq™ Index PCR primers set 1
(Epicentre, Illumina) following the standard protocol. The resulting
directional RNA-seq libraries were sequenced using single-end 100-nt
read chemistry on an Illumina HiSeq 2500 platform (Illumina) at the
Lausanne Genomic Technologies Facility.

Untargeted LC-HRMS metabolomics
The spend media (100 µL) samples collected at different time points were
extracted with 400 µL of ice-cold methanol to quench the metabolism,
precipitate proteins and extract a broad range of polar metabolites. The
extracted media were analyzed by HILIC-HRMS using an electrospray
ionization source operating in both positive and negative mode. Pooled
QC samples (representative of the entire sample set) were analyzed
periodically (every 4 samples) throughout the entire analytical run in order
to assess the quality of the data, correct the signal intensity drift and
remove the peaks with poor reproducibility (CV > 30%) that can be
considered chemical or bioinformatic noise. Data were acquired using a
1290 UHPLC system (Agilent Technologies) interfaced with a 6550 iFunnel
Q-TOF mass spectrometer operating in a full-scan MS mode. In addition,
pooled QC samples were analyzed in auto MS/MS mode (i.e., Data
Dependent Analysis [DDA]) to acquire the MS/MS data for metabolite
identification. In positive mode, chromatographic separation was carried
out using an Acquity BEH Amide, 1.7 μm, 100mm× 2.1 mm I.D. column
(Waters, Massachusetts, US). The mobile phase was composed of

A= 20mM ammonium formate and 0.1% formic acid in water and B=
0.1% formic acid in acetonitrile. A linear gradient elution from 95% B
(0–1.5 min) down to 45% B (17–19min) was applied followed by 5min for
column re-equilibration to the initial gradient conditions. The flow rate was
400 μL/min, column temperature 30 °C and sample injection volume 2 µl.
ESI source conditions were set as follows: dry gas temperature 290 °C and
flow 14 L/min, fragmentor voltage 380 V, sheath gas temperature 350 °C
and flow 12 L/min, nozzle voltage 0 V, and capillary voltage 2000 V. In
negative mode, a SeQuant ZIC-pHILIC (100mm, 2.1 mm I.D. and 5 μm
particle size; Merck, Damstadt, Germany) column was used. The mobile
phase was composed of A= 20mM ammonium acetate and 20mM
NH4OH in water at pH 9.3 and B= 100% acetonitrile. The linear gradient
elution ran from 90% (0–1.5 min) to 50% B (8–11min) down to 45% B
(12–15min). Finally, the initial chromatographic conditions were estab-
lished during a 9min post-run for column re-equilibration. The flow rate
was 300 μL/min, column temperature 30 °C and sample injection volume
2 µl. ESI source conditions were set as follows: dry gas temperature 290 °C
and flow 14 L/min, fragmentor voltage 380 V, sheath gas temperature 350 °
C, nebulizer 45 psi and flow 12 L/min, nozzle voltage 0 V, and capillary
voltage 2000 V. The fragmentor voltage of 380 V has been optimized in
both negative and positive using pure chemical standards in order to
improve metabolite signal and minimize in-source fragmentation. Thus,
this value is found as the best compromise between sensitivity and in-
source fragmentation.
In the MS-only mode, the instrument was set to acquire over the m/z

range 50–1200, with the MS acquisition rate of two spectra/s. Targeted MS/
MS data for dysregulated metabolite features were acquired using the
inclusion list with narrow isolation window (≈1.3m/z), MS acquisition rate
of 500ms, and MS/MS acquisition rate of 500ms.

Data processing and statistical analysis
Transcriptomics. Read mapping, sorting and formatting of the raw reads
was done with Bowtie240 and Samtools,41 using the finalized gapless P.
veronii 1YdBTEX2 genome sequence as in Morales et al.22 Mapped reads
were counted with HTSeq,42 then further processed and analyzed with
edgeR.43 Only reads counted more than once per million in at least three
replicates were kept. After normalization of the counts, transcript
abundances were compared in pairwise conditions in a modified Fischer
exact test (as implemented in edgeR). Genes were called significantly
differentially expressed between two EXPO and STAT when their false-
discovery rate was <0.05 and their fold-change >2 and were subsequently
interpreted using Gene Ontology (GO) analysis. GO terms of P. veronii
genes were inferred using the program BLAST2GO.44 The same software
was then used to analyze GO datasets of significantly differentially
expressed genes in each pair-wise comparison, under the TopGO “Weight”
algorithm.

Metabolomics. Raw LC–MS data were converted to mzXML files using
ProteoWizard MS Convert. mzXML files were uploaded to XCMS for data
processing including peak detection, retention time correction, profile
alignment, and isotope annotation. Data were processed as a multi-group
experiment, and the parameter settings were as follows: centWave
algorithm for feature detection (Δm/z= 20 ppm, minimum peak width
= 5 s and maximum peak width= 30 s, S/N threshold= 6, mzdiff= 0.01,
integration method= 1, prefilter peaks= 3 prefilter intensity= 1000, noise
filter= 0), obiwarp settings for retention time correction (profStep= 1),
and parameters for chromatogram alignment, including mzwid= 0.015,
minfrac= 0.5 and bw= 5.5. Preprocessed data (following the signal-
intensity drift correction and noise removal with the “batchCorr” R
package) were filtered according to the p-value (<0.05) and signal intensity
(>1000 ion counts). The remaining table of metabolite features together
with the most significant ion features selected from the loadings plot of
the multivariate models in positive and negative ionization mode were
subjected to metabolite identification as described below.
In the first instance, putative metabolite identification was performed by

accurate mass and retention time (AMRT) matching against an in-house
database (containing information on 600 polar metabolites from the Mass
Spectrometry Metabolite Library Supplied by IROA Technologies, Sigma-
Aldrich, characterized under the same analysis conditions). For that, raw
data files (.d) were processed using Profinder B.08.00 software (Agilent
Technologies) with the following parameter settings: mass tolerance 10
ppm, retention time tolerance 0.2 min, height filter 1000 counts, and peak
spectrum obtained as an average of scans at 10% of the peak. In parallel,
the XCMS output table of significantly different metabolite features was
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matched against the Human Metabolome Database (HMDB)25 based on
accurate mass (AM) with Δppm= 10. The list of hits was further manually
curated by taking into account the biological relevance of the hit
(endogenous vs. exogenous metabolites) and a presence of the “true” peak
shape (using the interactive XCMS Online interface45). Short listed ions of
interest together with the metabolites identified by the in-house database
were further subjected to targeted MS/MS validation. The metabolite
identifications were validated by matching the MS/MS46 data acquired in
the pooled samples (for each experiment in each LC–MS analysis mode)
against the in-house PCDL database, METLIN (https://metlin.scripps.edu/)
standard metabolite database47 or mzCloud (https://www.mzcloud.org/).
Otherwise, if the MS/MS data quality did not allow for metabolite ID
confirmation, the metabolite IDs remained putative, based only on
accurate mass matching.

Genome-scale model reconstruction
The P. veronii 1YdBTEX2 genome-scale metabolic reconstruction process
combines the automated draft metabolic network process with several
manual refinements and curation procedures, in total involving four main
steps: (i) functional annotation of the genome: functional annotation of the
genome is required prior to the reconstruction of the GEMs, and
consequently, the quality of a GEM highly depends on the availability of
a gapless genome. The protein sequences (FASTA files) of P. veronii
1YdBTEX2 were acquired from a previously published study22 and were
annotated to identify the associated reactions that enzymes catalyze to
determine the stoichiometric matrix, done using the RAVEN Toolbox.26 The
generation of the draft metabolic network followed the protocol detailed
previously,26,48,49 and the output of this annotation process is summarized
in Table S6. Version 1.07 of the RAVEN Toolbox and the version of KEGG
database as of September 2017 were used. (ii) Compartmentalization, the
definition of biomass reaction and uptakes and secretions: In the absence
of information or experimental evidence about the compartmentalization
and the cell content in P. veronii 1YdBTEX2, the cell compartment
information (i.e., cytosol and periplasm), the transport mechanism between
the compartments and the extracellular environment, the uptakes and
secretions, and the biomass composition were obtained from two available
models of closely related Pseudomonads: Pseudomonas putida27–29 and
Pseudomonas stutzeri.30 The biomass reaction in a GEM designates the
metabolic precursors that build the BBBs, i.e., DNA, RNA, amino acids, lipids
and carbohydrates and their corresponding stoichiometric coefficients. (iii)
Thermodynamic curation: In a thermodynamically curated model, the
standard Gibb’s free energy of a reaction and consequently the
directionality of the reactions, i.e., reversible or irreversible, are associated
with the reaction as additional constraints, which allow the performance of
TFA. We followed the established protocol to thermodynamically curate
metabolic models31,32 to add thermodynamics constraints to iPsvr, where
we could estimate the standard Gibb’s free energy of formation of 76%
metabolites, using the group contribution method (GCM)50 and the
standard Gibb’s free energy of 84% of metabolic reactions in iPsvr. This
allowed us to perform TFA, simulate the growth and determine whether
iPsvr was functional, with further evaluations if it correctly predicted the
expected growth-associate phenotypes. (iv) Gap-filling of iPsvr: The draft
metabolic network of iPsvr did not contain all the necessary reactions for
the production of all the biomass building blocks, and thus, the model did
not show any growth. This is a very common observation in the
reconstruction process of GEMs, since the (automatic) genome annotations
are often incomplete or erroneous, with significant proportion of predicted
proteins having no functions attributed.51 Therefore, reactions without
associated genes were included in order to obtain a functional model that
simulates non-zero growth, done using a procedure called gap-filling. We
followed the gap-filling procedure introduced previously,48 wherein the
production of each biomass precursor is defined as a metabolic task26 and
a mixed-integer linear programming (MILP) formulation is used to
generate alternative groups of minimal number of reactions (borrowed
from KEGG) that enable the production of the biomass precursor. The draft
GEM was gap-filled by iterative manual curation until a model was
obtained that was able to carry non-zero flux through the biomass
reactions at steady state (i.e., signifying ‘growth’). Although gap-filling is a
routine procedure in the curation of GEMs and most of the available GEMs
are gap-filled to obtain a functional model that is able to grow under
defined conditions, gaps in pathways not involved with biomass
production are, however, mostly overlooked in GEM analysis. We
performed a complementary second gap-filling step apart from the
biomass reaction, where as a result, the consistency of iPsvr with the

obtained experimental data on gene expression and metabolomics was
increased. Available GEMs usually contain a large well-connected subnet-
work, which encompasses the most of the central carbon metabolism and
a part of the secondary metabolism, and many isolated reactions (or sets of
reactions) are probably disconnected from the rest of the network because
of misannotations or insufficiently known pathways. Such isolated
reactions/pathways are blocked, i.e., cannot carry flux under any condition,
and therefore one or more reactions must be added to connect the
blocked reactions with the rest of the metabolic network. To this end, the
metabolic network structure of iPsvr was decomposed to the main
component and to the isolated (disconnected) reactions/pathways using a
MATLAB graph-based built-in function (conncomp). Using the same gap-
filling approach, the blocked reactions/pathways that were associated with
differentially expressed genes (in the pair-wise comparison of exponential-
and stationary-phase datasets) or measured metabolites in exometabo-
lomic data were gap-filled to become functional in the model (carry non-
zero flux). (v) Quality control of iPsvr: To assure the quality of the model,
especially reaction balances, we used Memote,52 an automated genome-
scale metabolic model test suite. Memote pinpointed reactions that were
not balanced, and we manually balanced them, and commented the
reasons for the reactions’ imbalance (Table S11).

Omics data integration
REMI19 was used for the integration of transcriptomics and exometabo-
lomics data into iPsvr. REMI assumes that reaction fluxes associated with
genes that are significantly differentially expressed are deregulated.
Moreover, REMI also considers that the in vivo metabolite abundance
ratios between the two conditions, e.g., the two growth phases can be
used to constrain reaction fluxes associated with the metabolites that are
differentially regulated. Expression/abundance-based ratios between the
two conditions are formulated as flux perturbations for each reaction and
are imposed as constraints on individual fluxes. Based on the data used, it
translates into three different methods: (i) REMI-TGex allows the
integration of relative gene expression data into a thermodynamically
curated GEM, (ii) REMI-TM allows the integration of metabolomics data and
(iii) REMI-TGexM integrates simultaneously both the gene expression and
metabolite abundance data as additional constraints into the
metabolic model.
REMI aims to maximize consistency between differential expression and

fluxes as well as differential metabolite concentrations and fluxes. To study
condition-specific differences in metabolism between two conditions
(perturbed vs reference), REMI considers a separate metabolic model for
each condition. Then, to integrate differential expression, REMI enforces a
higher flux through a reaction in the perturbed condition (perturbed
model) as compared to a reference condition (reference model) if the
genes of the reaction are upregulated. For downregulated reactions, REMI
enforces a lower flux as compared to a reference. To integrate extracellular
metabolite concentrations, REMI assumes that if a metabolite is
upregulated, then the production of the metabolite is forced to be higher
as compared to a reference condition, and similarly, a lower production of
a metabolite is forced if a metabolite is found to be downregulated. Then,
an optimization problem is formulated to maximize the number of
constraints imposed by the relative gene expression and metabolite
abundances that can be integrated into the model while preserving a
growth phenotype. Two scores are calculated: a theoretical maximum
consistency score (TMCS), representing the number of genes/metabolites
with available omics data, and the maximum consistency score (MCS),
representing the number of genes/metabolites whose relative omics data
are consistent with relative network fluxes and therefore can be integrated
in the model.
The MILP formulation enables enumerating alternative sets (size equal to

MCS) from a given set of constraints. The most consistent models are built
by activating constraints that are overlapping and consistent between all
the alternatives. Alternative solutions were computed for the maximal
consistency score with the MILP solver in IBM CPLEX 12.7.2, and the time
limit for the optimization was set to 3 h.
We used the transcriptomics and/or exometabolomics datasets mea-

sured at the exponential and stationary phase and also at the sand versus
liquid environment, to derive additional flux constraints for the TFA
problem, which were applied using REMI.
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Thermodynamics-based flux analysis (TFA) and the analysis of the
biomass building blocks
To determine fluxes and subsequently the growth rate at different growth
and environmental conditions using iPsvr, we employed FBA, the most
widely used constraint-based modeling technique for studying biochem-
ical networks and cellular physiology. Previous studies show that the
integration of appropriate thermodynamic constraints leads to more
accurate metabolic model predictions and also a significant reduction in
the ranges of the predicted fluxes (solution space).8,31 We perform TFA for
estimating the growth rate before and after the integration of omics data.
We further identified the biomass building blocks (BBB), wherein a low/

zero production limits growth upon the transition of cells from the
exponential to stationary phase or from liquid to the soil environment (two
examples that were discussed in this work). Each BBB was tested by
defining the TFA objective function as the maximum production of that
metabolite under the defined media condition (the same for all the BBBs).
Then, the BBB production was compared and the limiting BBBs for each
case were identified.
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