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Abstract 

Mantel-Haenszel is a fixed-effect meta-analysis method, which performs quite 
well under the assumption of a homogeneous treatment effect, even in the 
presence of very rare events. However, this method fails to account for the 
information contained in single-arm and double zero studies. In this paper, we 
developed a pseudo-likelihood approach, which allows the inclusion of both 
single-arm and double-zero studies in the combined effect size estimate. Using 
Monte-Carlo simulations, we evaluated the behaviour of these two methods 
when subject to an increasing proportion of single-arm and double-zero studies. 
We found that the exclusion of double-zero studies did not impact the 
performance of the Mantel-Haenszel method, whereas the exclusion of single-
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arm studies reduced its efficiency compared to the pseudo-likelihood approach. 
We thus recommend using the pseudo-likelihood approach when the meta-
analysis includes single-arm studies. With only double-zero studies, the Mantel-
Haenszel can safely be used. 

1. Introduction 

Meta-analysis is concerned with the synthesis of information 
contained in independent but related studies, called “primary studies” 
(Normand [12]). With homogeneous treatment effects (i.e., under the 
“fixed-effect model”), each primary study seeks to estimate the same 
population parameter, commonly referred to as “effect size” (ES), and the 
objective of a meta analysis is to combine all the available evidence into 
one single and more precise estimate. Under this framework, Piaget-
Rossel and Taffé [13] have shown that the Mantel-Haenszel (MH) method 
without continuity correction (CC) performs very well, even in the 
presence of very rare events. However, this method excludes double-zero 
(i.e. studies reporting zero event in both control and treatment arms; DZ) 
and single-arm (i.e., studies that report results for only one arm; SA) 
studies from the computation of the combined ES. 

DZ studies are typically encountered in rare events settings, where 
the probability of the event of interest can be so small that it might be 
unfeasible to design a study with proper sample size, (i.e., so that at least 
a couple of events are observed). Using a CC allows the inclusion of DZ 
studies (Sweeting et al. [15]). However, this method is usually not 
recommended (Efthimiou [4]). Indeed, not only do the resulting estimates 
depend on the choice of correction used (Kuss et al. [7]; Keus et al. [6]), 
but this also introduces a bias in the estimates (Piaget-Rossel and Taffé [13]). 

Although almost never discussed in the literature, the issue of SA 
studies is an important one, especially when considering the meta-
analysis of observational studies. For example, a systematic review on 
the surgical management of phyllodes tumors of the breast found that 3 
out of 11 studies only included patients with a resection margin above or 
equal to 10mm, (i.e., these studies did not have any patients with a 
margin below 10mm) (Toussaint [16]). 
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Intuitively, SA and DZ studies do carry some information regarding 
the probability of the event. Consequently, it is useful to devise statistical 
methods, which allows the inclusion of this information in the 
computation of the ES estimate. In this paper, to tackle this issue, we 
have adopted a pseudo-likelihood (PL) approach, which allows the 
inclusion of SA and DZ studies, without the use of a CC. The basic idea 
was to adopt a working model for the counts in each arm and treat the 
(heterogeneous) baseline prevalences as random nuisance parameters. 
The distribution of the nuisance parameter was not assumed to be 
known, hence the denomination “pseudo-likelihood”. 

In this paper, we investigated the performance of this PL approach, 
which explicitly includes SA and DZ studies, and compared it with the 
MH method. By means of Monte-Carlo simulations, we evaluated the 
behaviour of these two methods when subject to an increasing proportion 
of DZ and SA studies. ES of interest were the odds ratio (OR), the 
relative risk (RR), and the risk difference (RD), which are the three most 
commonly-used ES in meta-analyses of binary data. We focused on the 
specific framework of a homogeneous treatment effect, as the MH method 
can be seen as the gold standard when there are no SA and DZ studies 
(Piaget-Rossel and Taffé [13]). Baseline prevalences were assumed to be 
heterogeneous, as the setting of homogeneous baseline prevalences is 
more restrictive. The remainder of this paper is structured as follows. In 
Section 2, we present the PL approach. Section 3 describes our 
simulation model and presents the results obtained. Section 4 outlines 
the main findings and makes some recommendations regarding the best 
method to use when conducting a FE meta-analysis in the presence of SA 
or DZ studies. 

2. The Pseudo-likelihood Approach 

Under the assumption of heterogeneous baseline prevalences, the 
binomial likelihood writes: 
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where jnk  is the sample size of arm j ( j = c for control and t for 

treatment) in study jxkk,  is the number of events occurring in arm j of 

study jkk π,  ( )kα  is the inverse of the link function (i.e., the probability 

of the event) in arm j of study ,k  and kα  is a nuisance parameter. To 

deal with the nuisance parameters, one can either treat them as fixed or 
random quantities. Particularly with rare events, it is advantageous to 
treat these quantities as random parameters to limit as much as possible 
the number of parameters to be estimated and allow SA and DZ studies 
to contribute to the estimation: 
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where ( )kk απ j  is the probability of event in study k  and treatment arm j 

defined as a function of ,kα  and ( )kαf  is the density function of the 

random variable .kα  Usually, the density function ( )kαf  is unknown 

and to cope with it we have adopted a pseudo-likelihood approach. 

For estimating the OR, the following pseudo-likelihood may be used: 
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with link function ( ( )) ,logit jj Tkkkk β+α=απ  where jTk  is an indicator 

for treatment arm (i.e., 1=jTk  if tj =  and 0 if cj = ), and ( )2, σα⋅φ  

is the normal density with mean α  and variance .2σ  Note that β  

corresponds to the log(OR). This is a pseudo-likelihood since in Equation 

( ) ( )2,,1 σα⋅φ  is not assumed to be the true density function, it is only a 

“working” density function. 
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To estimate the RR, one may adopt the log link function ( ( ))kk απ jlog  

.jTkk β+α=  However, to insure probabilities contained within 0-1, one 

has to constrain the kα  parameter during the optimization procedure 

(Marschner and Gillett [10]). The main drawback of this approach is that 
the imposition of the parameter constraint may lead to biased estimates, 
particularly when the risk level is either low or high. Therefore, to cope 
with this issue, we proposed to approximate the binomial distribution by 
a Poisson distribution with parameter jjj nkkk ∗π=λ  and used the 

pseudo-likelihood function 

{ }

( ) ( ( ))
( ) .,!

exp 2

,1
kk

k

kkkk

k

k
ασααφ











 αλ−αλ
= ∏∫∏

∈

+∞

∞−=

dxL
j

j
x

j

ctj

K
p

j
 (3) 

The numerical advantages of this approach are obvious as the log link is 
canonical for the Poisson likelihood. In this model, β  corresponds to the 

log(RR). 

Similarly, for the RD, we used the canonical identity link function 
and approximated the binomial distribution of the counts by a normal 
distribution for the proportions: 
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where ( ) ,, jjjjjj TpEnxp kkkkkkk β+α=≡π=  and ( ) =≡τ jj pkk Var2  

( ) .1 jjj nkkk π−∗π  Given that the variances 2
jkτ  are unknown and 

difficult to estimate (the above model is highly nonlinear and 
computation of the integral with good precision is challenging, 
particularly with rare events), we decided to use instead the robust 
sandwich estimate of the variance-covariance matrix (White [17]). 
Moreover, to achieve appropriate empirical coverage rates, we selected 
the 98.5th quantile of the standard normal distribution to compute the 
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Wald CI for the RD. This yielded a “calibrated” CI in the spirit of that 
obtained by using the modified Hartung-Knapp-Sidik-Jonkman method 
(Röver et al. [14]). 

3. Simulation Study 

3.1. Model 

Given our objective (study the impact of SA and DZ studies), we 
decided to consider large meta-analyses to avoid fluctuations issues 
related to scarcity of primary studies. Therefore, we set the number of 
primary studies at K = 20. Although this scenario might seem optimistic, 
as many published meta-analyses, notably in the Cochrane Library, 
included less primary studies, it is nevertheless a realistic one (see, for 
instance, Moher et al. [11], which found a median number of 23 studies 
out of 88 systematic reviews analyzed). 

In each primary-study, treatment arms’ sample sizes ranged from 50 
to 150 (i.e., ~tnk  discrete-uniform {50; 150}). Control arms’ sample sizes 

were generated as ,rnn tc += kk  with ~r  discrete-uniform {– 15; 15}. 

Baseline prevalences ckπ  were obtained as random draws from a 

continuous uniform distribution with range [p – p/5; p + p/5], p being the 
mean of the distribution. This distribution provided a realistic level of 
heterogeneity in baseline prevalences under the assumption of a 
homogeneous treatment effect. Probabilities in the treated group tkπ  

were derived from the control probabilities and ES considered (i.e.,  

( ) ).;;1 RDRROROR ctctccct +π=π∗π=ππ−+∗π∗π=π kkkkkkkk  Finally, 

the number of events in both arms were generated by two binomial draws 
with respective sample sizes and event probabilities. Notice that our 
simulations models are different from the models described in (2), (3), or 
(4), hence the terminology “pseudo-likelihood”. We investigated the 
impact of both DZ and SA studies on the performance of the proposed 
approaches. To study the impact of DZ studies, we considered four 
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scenarios with different mean values for the baseline prevalences 
{ }.0015.0,0035.0,007.0,1.0=p  Under the null hypothesis of no 

treatment effect, these four probabilities yielded approximately 0, 25, 50, 
and 75% of DZ studies per meta-analysis, respectively. When studying 
the impact of SA studies, we set ,1.0=p  which ensured almost all meta-

analyses to be free of DZ studies. Each primary study was defined as SA 
or not-SA study by means of a Bernoulli draw with probability m. In the 
subset of SA studies, the arm to be removed was then designated by a 
Bernoulli draw with probability 0.5. We considered four different 
scenarios with respective m values { }.75.0,5.0,25.0,0  

The impact of SA and DZ studies was assessed for various values of 
the ES, which are reported in Table 1. Since the RD is an absolute 
measure, we had to derive it from the log(RR) and mean baseline 
prevalence p, to avoid generating probabilities in the treatment group 
below 0. For instance, for %15.0=p  and log(RR) = – 1.5, one obtained 

RD as ( ) .0012.00015.00015.05.1exp −≅−− ∗  

For each scenario considered, 10,000 meta-analyses were generated. 
For each of the generated meta-analyses, we estimated the ES of interest, 
its standard error and the 95% Wald confidence interval (CI). For the RD, 
we computed a calibrated CI using the 98.5th quantile; for the OR and 
RR, the usual 97.5th quantile was used. Performance of the MH and PL 
methods were assessed in terms of bias, coverage rate and width of the 
CI. We decided to compute median instead of mean values for the bias 
and CI’s width to avoid the influence of exceedingly large or small values. 
We also reported the proportion of converged runs. For the MH method, a 
run was reported as non-converged when either of the estimates obtained 
(i.e., the ES or its variance) where undefined. For the OR and the RR, 
this happened when either 0=txk  or kk ∀= ,0cx  (or both); for the RD 

this happened only when both 0=txk  and .,0 kk ∀=cx  Non-converged 

runs were also reported by the MH method when the K primary studies 
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were SA studies. Both OR and RR estimates were analyzed on the log 
scale because the sampling distribution was more symmetrical on this 
scale. 

Table 1. Size of the treatment effect considered in the simulations 

p log(OR)* log(RR)** RD (in %) Description of the effect 

0.0015 − 1.5 (0.22) − 1.5 (0.22) − 0.12 Large negative ES 

0.0035 − 1.5 (0.22) − 1.5 (0.22) − 0.27 Large negative ES 

0.007 − 1.5 (0.22) − 1.5 (0.22) − 0.54 Large negative ES 

0.1 − 1.5 (0.22) − 1.5 (0.22) − 7.77 Large negative ES 

0.0015 − 0.5 (0.61) − 0.5 (0.61) − 0.06 Moderate negative ES 

0.0035 − 0.5 (0.61) − 0.5 (0.61) − 0.14 Moderate negative ES 

0.007 − 0.5 (0.61) − 0.5 (0.61) − 0.28 Moderate negative ES 

0.1 − 0.5 (0.61) − 0.5 (0.61) − 3.93 Moderate negative ES 

0.0015 0 (1) 0 (1) 0 Null ES 

0.0035 0 (1) 0 (1) 0 Null ES 

0.007 0 (1) 0 (1) 0 Null ES 

0.1 0 (1) 0 (1) 0 Null ES 

0.0015 0.5 (1.65) 0.5 (1.65) 0.10 Moderate positive ES 

0.0035 0.5 (1.65) 0.5 (1.65) 0.23 Moderate positive ES 

0.007 0.5 (1.65) 0.5 (1.65) 0.45 Moderate positive ES 

0.1 0.5 (1.65) 0.5 (1.65) 6.49 Moderate positive ES 

0.0015 1.5 (4.48) 1.5 (4.48) 0.52 Large positive ES 

0.0035 1.5 (4.48) 1.5 (4.48) 1.22 Large positive ES 

0.007 1.5 (4.48) 1.5 (4.48) 2.44 Large positive ES 

0.1 1.5 (4.48) 1.5 (4.48) 34.82 Large positive ES 

Note. p = mean baseline prevalence;  
*ORs reported between brackets;  
**RRs reported between brackets. 
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3.2. Results 

3.2.1. Double-zero studies 

Reducing the mean baseline prevalence increased the proportion of 
DZ studies and, thus, the proportion of excluded studies by the MH 
method when computing the OR (Table 2). On the other hand, with the 
PL approach DZ studies are allowed and no study is excluded. We found 
that even when the proportion of discarded studies was very high (75%), 
the MH method still performed very well, and provided unbiased 
estimates and CIs with proper coverage rates. Likewise, the PL approach 
performed very well and provided results quite similar to those produced 
by the MH method. Except in the large negative ES scenario with 
extremely small baseline prevalences (i.e., p = 0.0015), where both 
methods reported large biases (median value > 0.75 for a log(OR) of – 1.5), 
estimates obtained by the two methods were good across all scenarios 
investigated. Both methods provided conservative CIs in case of 
extremely rare events. Finally, the proportion of converged runs 
indicated that PL was more computationally involved and could run into 
numerical issues, especially with very rare events. 

Regarding the RR, results obtained by the MH and PL methods were 
comparable to those obtained for the OR (Table 3). Both methods 
provided unbiased estimates and valid CIs in almost all settings 
investigated. Again, the fact that MH discarded DZ studies did not alter 
the performance of this method. 

For the RD, both methods included DZ studies and, thus, no study 
was excluded (Table 4). Similar to the OR and RR cases, biases obtained 
were small and coverage rates nominal. However, CIs provided by the PL 
approach were wider than those obtained with the MH method. 

 

 

 



 

Table 2. Impact of double-zero studies for the estimation of the OR 

 Excluded 
studies (in %) 

Median bias 
Coverage rate 

(in %) 
Median CI’s 

width 
Converged 
runs (in %) 

p (in %) MH PL MH PL MH PL MH PL MH PL 

Large 
negative ES 

          

10 0.02 0    0.001 0.001 95.20 95.18 0.64 0.64 100.00 98.97 

0.70 43.69 0 − 0.015 − 0.022 97.09 97.26 2.50 2.50 95.69 80.77 

0.35 64.26 0    0.145    0.125 96.33 96.40 3.28 3.28 79.19 73.67 

0.15 79.83 0    0.747    0.782 96.81 96.78 4.45 4.40 46.35 44.97 

Moderate 
negative ES 

          

10 0.00 0 − 0.001 − 0.000 95.24 95.20 0.47 0.47 100.00 99.21 

0.70 34.42 0 − 0.005 − 0.016 95.91 95.92 1.75 1.76 99.96 80.68 

0.35 57.62 0 − 0.018 − 0.024 97.59 97.74 2.53 2.54 98.50 87.21 

0.15 76.71 0    0.090    0.090 99.50 99.63 3.92 3.92 79.27 76.05 

Null ES           

10 0.00 0    0.002    0.001 95.04 95.04 0.41 0.41 100.00 99.29 

0.70 27.05 0 − 0.005 − 0.005 96.01 96.20 1.52 1.52 100.00 80.80 

0.35 50.78 0    0.001 − 0.000 96.91 96.87 2.19 2.19 99.76 84.93 

0.15 73.02 0    0.001    0.000 99.71 99.68 3.40 3.40 89.73 85.30 

 

 

 



 

Table 2. (Continued) 

 Excluded 
studies (in %) 

Median bias 
Coverage rate 

(in %) 
Median CI’s 

width 
Converged 
runs (in %) 

p (in %) MH PL MH PL MH PL MH PL MH PL 

Moderate 
positive ES 

          

10 0.00 0 − 0.000 − 0.000 95.39 95.41 0.38 0.38 100.00 99.29 

0.70 18.35 0    0.008    0.008 95.75 95.59 1.36 1.36 100.00 82.56 

0.35 41.17 0    0.016    0.019 96.17 96.05 1.94 1.96 99.89 81.78 

0.15 67.06 0 − 0.015 − 0.001 98.46 98.77 3.05 3.10 94.00 87.52 

Large 
positive ES 

          

10 0.00 0 0.000 0.000 95.27 95.13 0.35 0.35 100.00 99.12 

0.70 4.04 0 0.016 0.015 95.79 95.87 1.18 1.18 100.00 94.99 

0.35 17.32 0 0.021 0.022 96.42 96.34 1.67 1.66 99.86 82.46 

0.15 45.04 0 0.010 0.020 97.28 97.44 2.53 2.53 94.76 81.18 

Note: p = mean baseline prevalence, ES = effect size, MH = Mantel-Haenszel method, PL = pseudo-likelihood 
method, CI = confidence interval. See Table 1 for the ES’ values in the different scenarios. 

 

 

 

 

 

 



 

Table 3. Impact of double-zero studies for the estimation of the RR 

 Excluded 
studies (in %) 

Median Bias 
Coverage rate 

(in %) 
Median CI’s 

width 
Converged 
runs (in %) 

p (in %) MH PL MH PL MH PL MH PL MH PL 

Large 
negative ES 

          

10 0.02 0 − 0.003 − 0.003 95.17 95.60 0.64 0.65 100.00 99.27 

0.70 43.42 0 − 0.015 − 0.014 96.93 96.95 2.49 2.49 95.80 94.83 

0.35 64.28 0   0.149    0.128 96.55 96.52 3.28 3.28 78.73 78.68 

0.15 79.77 0   0.756    0.789 97.32 97.36 4.44 4.38 46.31 46.62 

Moderate 
negative ES 

          

10 0.00 0 − 0.001 − 0.001 94.69 95.52 0.44 0.45 100.00 99.15 

0.70 34.32 0 − 0.006 − 0.007 95.97 96.02 1.74 1.74 99.98 99.02 

0.35 57.81 0 − 0.013 − 0.014 97.96 97.92 2.54 2.53 98.34 97.68 

0.15 76.64 0    0.104    0.099 99.53 99.53 3.88 3.92 78.51 78.52 

Null ES           

10 0.00 0 − 0.001 − 0.000 95.50 96.35 0.37 0.39 100.00 99.03 

0.70 27.01 0    0.001    0.001 95.75 95.72 1.51 1.52 100.00 99.20 

0.35 50.96 0    0.000 − 0.001 96.90 96.93 2.19 2.18 99.75 98.81 

0.15 73.15 0    0.001    0.000 99.68 99.69 3.39 3.39 90.16 89.89 

 

 

 



 

Table 3. (Continued) 

 Excluded 
studies (in %) 

Median Bias 
Coverage rate 

(in %) 
Median CI’s 

width 
Converged 
runs (in %) 

p (in %) MH PL MH PL MH PL MH PL MH PL 

Moderate 
positive ES 

          

10 0.00 0   0.002   0.002 94.93 96.37 0.33 0.35 100.00 98.65 

0.70 18.27 0   0.012   0.011 95.17 95.20 1.34 1.35 100.00 99.62 

0.35 41.30 0   0.002   0.001 96.63 96.57 1.93 1.93 99.87 99.06 

0.15 67.08 0 − 0.014 − 0.004 98.44 98.54 3.06 3.06 94.12 93.77 

Large 
positive ES 

          

10 0.00 0    0.000 − 0.000 95.15 96.92 0.28 0.31 100.00 98.64 

0.70 4.02 0    0.008    0.008 95.49 95.63 1.16 1.17 100.00 99.57 

0.35 17.37 0    0.014    0.016 96.18 96.15 1.65 1.65 99.92 99.67 

0.15 44.98 0 − 0.002 − 0.004 97.08 97.04 2.51 2.51 94.49 94.06 

Note: p = mean baseline prevalence, ES = effect size, MH = Mantel-Haenszel method, PL = pseudo-likelihood method,     
CI = confidence interval. See Table 1 for the ES’ values in the different scenarios. 

 

 

 

 

 

 



 

Table 4. Impact of double-zero studies for the estimation of RD 

 Excluded 
studies (in %) 

Median Bias Coverage rate 
(in %) 

Median CI’s 
width (in %) 

Converged 
runs (in %) 

p (in %) MH PL MH PL MH PL MH PL MH PL 

Large 
negative ES 

          

10 0 0 − 0.010 − 0.004 94.66 95.44 2.917 3.344 100.00 99.99 

0.70 0 0  0.005  0.007 94.21 95.05 0.802 0.900 100.00 100.00 

0.35 0 0  0.005  0.006 94.16 94.14 0.567 0.632 99.97 99.95 

0.15 0 0  0.011  0.006 95.75 94.52 0.369 0.411 97.28 97.22 

Moderate 
negative ES 

          

10 0 0 − 0.013 − 0.007 94.66 95.48 3.344 3.819 100.00 99.98 

0.70 0 0   0.001 − 0.002 94.70 95.52 0.919 1.037 100.00 100.00 

0.35 0 0 − 0.003  0.002 94.73 95.63 0.648 0.726 100.00 99.99 

0.15 0 0   0.007  0.004 93.79 95.13 0.423 0.473 98.90 98.86 

Null ES           

10 0 0 − 0.021 − 0.029 94.73 95.35 3.700 4.225 100.00 99.99 

0.70 0 0 − 0.002 − 0.003 94.90 95.67 1.026 1.160 100.00 99.99 

0.35 0 0 − 0.001  0.001 94.92 96.02 0.722 0.815 100.00 100.00 

0.15 0 0 − 0.000  0.000 94.84 97.59 0.469 0.528 99.79 99.77 

 

 

 



 

Table 4. (Continued) 

 Excluded 
studies (in %) 

Median Bias Coverage rate 
(in %) 

Median CI’s 
width (in %) 

Converged 
runs (in %) 

p (in %) MH PL MH PL MH PL MH PL MH PL 

Moderate 
positive ES 

          

10 0 0 − 0.004 − 0.006 94.80 95.83 4.162 4.767 100.00 99.96 

0.70 0 0 − 0.012 − 0.011 94.90 95.90 1.178 1.334 100.00 99.98 

0.35 0 0 − 0.001    0.001 95.10 96.01 0.833 0.939 100.00 100.00 

0.15 0 0    0.001 − 0.001 94.92 95.81 0.542 0.608 99.99 99.99 

Large 
positive ES 

          

10 0 0     0.017     0.006 94.41 95.67 5.071 5.776 100.00 99.96 

0.70 0 0 − 0.000 − 0.002 94.93 95.98 1.683 1.914 100.00 99.95 

0.35 0 0 − 0.002 − 0.005 94.89 95.55 1.199 1.356 100.00 99.98 

0.15 0 0 − 0.009 − 0.008 94.60 94.92 0.784 0.885 100.00 100.00 

Note: p = mean baseline prevalence, ES = effect size, MH = Mantel-Haenszel method, PL = pseudo-likelihood 
method, CI = confidence interval. See Table 1 for the ES’ values in the different scenarios. 
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3.2.2. Single-arm studies 

Whatever the ES considered, the MH method excluded SA studies, 
whereas this was not the case with the PL approach. 

Regarding the OR, both methods provided unbiased estimates and 
nominal coverage rates in all scenarios considered (Table 5). However, as 
the proportion of SA studies increased, the MH method became less and 
less efficient and CIs provided by this method were wider than those 
obtained using the PL approach, especially for large negative ES. Finally, 
SA studies created less numerical issues than DZ studies (the proportion 
of converged runs was always above 98%). 

Results obtained for the RR were quite comparable to those obtained 
when estimating the OR (Table 6). In terms of bias, both methods 
provided virtually identical results and all values observed were below 
2% (in absolute terms). Coverage rates were always nominal. Again, the 
MH method was less and less efficient as the proportion of SA studies 
increased and provided CIs much wider than the PL method. 

Table 7 reports the results obtained by the MH and PL methods 
when estimating the RD. Median values of the bias were all below 0.05% 
in absolute terms. Regarding coverage rates, both methods provided valid 
CIs across all the scenarios, except when the proportion of SA studies 
was 75%, in which case the coverage rate of the PL’s CI was below 
nominal. Regarding precision of the estimates, similar to what was 
observed for the OR and RR, the PL approach outperformed the MH 
method for increasing proportions of SA studies. 

 

 

 

 

 



 

Table 5. Impact of single-arm studies for the estimation of OR 

 Excluded 
studies (in %) 

Median Bias Coverage rate 
(in %) 

Median CI’s 
width 

Converged 
runs (in %) 

SA (in %) MH PL MH PL MH PL MH PL MH PL 

Large 
negative ES 

          

0 0.03 0 − 0.004 − 0.004 95.14 95.15 0.64 0.64 100.00 98.79 

25 24.98 0 − 0.007 − 0.006 94.99 95.06 0.74 0.69 100.00 98.79 

50 49.98 0  − 0.001 − 0.002 95.30 95.09 0.92 0.75 100.00 98.63 

75 74.94 0  − 0.015 − 0.007 95.85 94.97 1.32 0.84 99.26 98.39 

Moderate 
negative ES 

          

0 0.00 0 0.002 0.002 95.03 95.05 0.47 0.46 100.00 99.22 

25 25.03 0  − 0.002 − 0.003 94.98 95.00 0.54 0.50 100.00 99.26 

50 49.97 0 − 0.003 0.000 95.06 95.13 0.66 0.55 100.00 99.19 

75 75.06 0  − 0.007 − 0.002 95.25 95.00 0.95 0.62 99.64 98.81 

Null ES           

0 0.00 0 0.002 0.002 95.27 95.19 0.41 0.41 100.00 99.26 

25 25.01 0 0.001 − 0.001 94.96 95.06 0.48 0.45 100.00 99.32 

50 50.09 0 0.000 0.001 94.93 94.63 0.59 0.49 100.00 99.29 

75 74.82 0 0.002 − 0.001 95.39 94.95 0.84 0.55 99.76 99.02 

 

 

 



 

Table 5. (Continued) 

 Excluded 
studies (in %) 

Median Bias Coverage rate 
(in %) 

Median CI’s 
width 

Converged 
runs (in %) 

SA (in %) MH PL MH PL MH PL MH PL MH PL 

Moderate 
positive ES 

          

0 0.00 0 0.001 0.001 94.85 94.94 0.38 0.38 100.00 99.29 

25 24.76 0 0.003 0.001 94.94 94.57 0.44 0.41 100.00 99.24 

50 50.11 0 0.001 0.002 94.96 95.03 0.54 0.45 100.00 99.42 

75 74.77 0 − 0.000 − 0.000 95.41 95.41 0.77 0.51 99.65 99.15 

Large 
positive ES 

          

0 0.00 0 0.003 0.003 95.01 94.99 0.35 0.35 100.00 99.29 

25 24.89 0 − 0.001 − 0.001 95.18 94.95 0.40 0.38 100.00 99.32 

50 49.86 0 − 0.001 − 0.001 95.37 94.89 0.49 0.41 100.00 99.31 

75 74.94 0 0.004 0.002 94.55 94.47 0.70 0.47 99.76 99.25 

Note: SA = proportion of single-arm studies, ES = effect size, MH = Mantel-Haenszel method, PL = pseudo-
likelihood method, CI = confidence interval. See Table 1 for the ES’ values in the different scenarios. 

 

 

 

 

 

 



 

Table 6. Impact of single-arm studies for the estimation of RR 

 Excluded 
studies (in %) 

Median Bias Coverage rate 
(in %) 

Median CI’s 
width 

Converged 
runs (in %) 

SA (in %) MH PL MH PL MH PL MH PL MH PL 

Large 
negative ES 

          

0 0.03 0 − 0.001 − 0.001 95.01 95.36 0.64 0.65 100.00 99.21 

25 25.02 0 − 0.005 − 0.004 95.63 95.66 0.74 0.70 100.00 99.42 

50 50.07 0 − 0.003 − 0.003 94.73 95.32 0.91 0.76 100.00 99.52 

75 74.87 0 − 0.015 − 0.007 95.61 95.72 1.32 0.84 99.32 99.53 

Moderate 
negative ES 

          

0 0.00 0 − 0.000 0.000 94.62 95.53 0.43 0.45 100.00 99.12 

25 25.14 0 − 0.001 − 0.001 95.32 95.97 0.50 0.49 100.00 99.55 

50 50.13 0 − 0.001 0.000 95.12 95.91 0.62 0.53 100.00 99.54 

75 74.79 0 0.001 0.001 95.37 95.96 0.88 0.59 99.69 99.56 

Null ES           

0 0.00 0 − 0.001 − 0.001 94.98 96.06 0.37 0.39 100.00 99.11 

25 25.03 0 − 0.002 − 0.002 95.35 96.21 0.43 0.42 100.00 99.45 

50 50.01 0 0.002 0.001 95.29 95.85 0.53 0.46 100.00 99.41 

75 74.95 0 − 0.005 − 0.001 95.19 95.43 0.76 0.52 99.61 99.62 

 

 

 



 

Table 6. (Continued) 

 Excluded 
studies (in %) 

Median Bias Coverage rate 
(in %) 

Median CI’s 
width 

Converged 
runs (in %) 

SA (in %) MH PL MH PL MH PL MH PL MH PL 

Moderate 
positive ES 

          

0 0.00 0 0.000 0.001 95.50 96.89 0.33 0.35 100.00 99.07 

25 24.95 0 0.001 0.001 94.66 96.01 0.38 0.38 100.00 99.18 

50 49.94 0 0.000 0.001 94.96 96.27 0.47 0.42 100.00 99.35 

75 74.97 0 0.001 − 0.001 95.29 95.83 0.67 0.46 99.64 99.43 

Large 
positive ES 

          

0 0.00 0 0.001 0.001 94.66 96.48 0.28 0.31 100.00 98.53 

25 25.03 0 − 0.001 − 0.000 95.25 96.92 0.32 0.33 100.00 98.99 

50 49.99 0 0.002 0.001 95.31 96.52 0.40 0.36 100.00 98.71 

75 74.84 0 0.004 0.003 94.91 95.75 0.57 0.40 99.64 98.80 

Note: SA = proportion of single-arm studies, ES = effect size, MH = antel-Haenszel method, PL = pseudo-
likelihood method, CI = confidence interval. See Table 1 for the ES’ values in the different scenarios. 

 

 

 

 

 

 



 

Table 7. Impact of single-arm studies for the estimation of RD 

 Excluded 
studies (in %) 

Median Bias Coverage 
rate (in %) 

Median CI’s 
width (in %) 

Converged 
runs (in %) 

SA (in %) MH PL MH PL MH PL MH PL MH PL 

Large 
negative ES 

          

0 0.00 0 0.004 0.009 94.83 95.66 0.029 0.033 100.00 99.98 

25 25.03 0 0.017 0.007 94.69 94.86 0.034 0.036 100.00 99.96 

50 50.08 0 0.006 0.013 95.11 94.05 0.041 0.039 100.00 99.89 

75 74.86 0 0.008 0.035 94.88 90.92 0.059 0.043 99.66 98.89 

Moderate 
negative ES 

          

0 0.00 0 0.001 − 0.011 95.34 95.66 0.033 0.038 100.00 99.99 

25 25.11 0 − 0.001 − 0.011 94.81 94.90 0.039 0.041 100.00 99.96 

50 50.11 0 − 0.033 − 0.014 94.92 94.07 0.047 0.044 100.00 99.95 

75 74.87 0 0.040 0.029 94.71 91.56 0.067 0.049 99.65 98.94 

Null ES           

0 0.00 0 − 0.012 − 0.006 95.01 95.53 0.037 0.042 100.00 99.97 

25 24.93 0 − 0.003 − 0.017 95.22 95.60 0.043 0.045 100.00 99.96 

50 49.90 0 − 0.006 0.009 94.84 94.95 0.052 0.049 100.00 99.95 

75 74.93 0 − 0.005 0.001 94.62 90.65 0.075 0.053 99.65 99.07 

 

 

 



 

 

Table 7. (Continued) 

 Excluded 
studies (in %) 

Median Bias Coverage 
rate (in %) 

Median CI’s 
width (in %) 

Converged 
runs (in %) 

SA (in %) MH PL MH PL MH PL MH PL MH PL 

Moderate 
positive ES 

          

0 0.00 0 − 0.004 − 0.023 95.01 95.70 0.042 0.048 100.00 100.00 

25 24.90 0 − 0.011 − 0.031 94.63 95.38 0.048 0.051 100.00 99.98 

50 50.21 0 − 0.020 − 0.007 94.83 94.47 0.059 0.055 100.00 99.88 

75 74.81 0 0.038 0.011 95.13 91.17 0.084 0.060 99.76 98.77 

Large 
positive ES 

          

0 0.00 0 0.006 0.016 94.87 95.64 0.051 0.058 100.00 99.95 

25 24.99 0 0.017 0.026 94.84 95.63 0.058 0.062 100.00 99.87 

50 50.11 0 − 0.008 − 0.021 94.62 94.23 0.072 0.066 100.00 99.91 

75 74.89 0 0.007 0.006 94.60 91.35 0.102 0.072 99.62 98.92 

Note: SA = proportion of single-arm studies, ES = effect size, MH = antel-Haenszel method, PL = pseudo-
likelihood method, CI = confidence interval. See Table 1 for the ES’ values in the different scenarios. 
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4. Discussion 

The MH method has been shown to perform extremely well under the 
assumption of a homogeneous treatment effect (Bradburn et al. [2]; 
Piaget-Rossel and Taffé [13]). It involves simple computations, can be 
applied to compute the three classical ESs, (i.e., OR, RR, and RD) and is 
readily available in most of the statistical packages. However, DZ and SA 
studies are excluded from the computation of the combined ES estimate. 
In this paper, we have developed a novel approach based on the 
formulation of a PL, which allows one to include both SA and DZ studies 
into the meta-analysis. Using simulations, we compared the performance 
of this PL approach to that of the MH method, in settings with increasing 
proportion of SA and DZ studies. 

Our proposed PL method performed very well for all three ESs. For 
the RD, we found that the calibrated Wald’s CI computed using the 98.5th 
quantile of the standard normal distribution provided nominal coverage 
rates, except in the settings with 75% of SA studies. This shows that 
using the normal distribution as a working distribution for the baseline 
prevalences does not impact the performance of this method. In 
additional simulations, we found that using an asymmetrical beta 
distribution to generate the baseline prevalences – instead of the uniform 
distribution described in Subsection 3.1 – did not alter this conclusion 
(results not shown). This finding challenges Dias and Ades’s statement 
[3] that “unless the baseline model is correctly specified, the relative 
effect estimates will be biased”. 

We found that both the MH and PL methods provided reliable 
results, whatever the proportion of DZ studies. Biases, coverage rates, 
and CIs’ width provided by these two methods were quite similar. The 
only noticeable difference was that the PL’s calibrated CIs for the RD 
were wider than the CIs obtained with the MH method. These results 
suggest that under the assumption of a homogeneous treatment effect, 
DZ studies do not contain relevant information for the meta-analysis. 
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This is quite unexpected given that, for instance, a DZ study of size 150 
does seem to convey more information regarding the low probability of an 
event compared to a DZ study of size 50. Moreover, Friedrich et al. [5] 
argued that deleting DZ studies in balanced trials might bias the 
treatment effect away from the null. Nevertheless, from our results, we 
conclude that MH is a valid FE meta-analysis method, even in the 
presence of DZ studies. The PL method is a good alternative, but it has 
the disadvantage of being more computationally-involved and may run 
into numerical issues, especially when the proportion of DZ studies is 
high. When the meta-analysis includes only DZ studies, none of the 
methods work. 

Regarding SA studies, results suggested that they contained more 
relevant information than DZ studies. Indeed, whereas bias and coverage 
rates obtained by the PL and MH methods were found to be similar, the 
latter provided CIs wider as the proportion of SA studies increased, 
suggesting a loss of precision related to the non-inclusion of the 
information contained in SA studies. Based on these results, PL should 
be favored in the presence of SA studies. With 100% SA studies, the MH 
method breaks down, whereas we found that the PL approach still 
performed very well (additional simulations; results not shown). 

In additional simulations, we compared our PL approach to the beta-
binomial model discussed by Kuss [8], which also allows including SA 
and DZ studies. We found that both methods performed similarly, 
whatever the proportion of SA and DZ studies and the ES considered 
(results not shown). However, the Beta-Binomial model encountered 
more numerical issues (e.g., the number of converged runs when 
estimating the OR was systematically below 90%). 

To sum up, in settings with DZ studies, we recommend using the MH 
method, although this method exclude the information contained in these 
studies. In settings with SA studies, we recommend using the PL 
approach, which was shown to be more efficient. However, when the ES 
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of interest is the RD and the proportion of SA studies is very high (75% or 
more), the meta-analyst should be aware that the CIs computed using the 
PL approach may have coverage rates slightly below nominal. 

The main limitation to these recommendations is that they only 
apply to the framework of homogeneous treatment effects. In practice, 
there are many situations where this assumption is likely to be violated 
(Kontopantelis et al. [9]) and the reader must keep in mind that the MH 
method is not valid when treatment effects are heterogeneous (Kuss [8]). 
As for the PL approach, it can easily be adapted to account for 
heterogeneity in treatment effects by including regressors (meta-
regression). Moreover, our simulations did not cover all the possible 
settings. For instance, we did not consider the case of study’s scarcity 
(i.e., small K), which can impact the methods’ performance. 

In a future research we will focus on adapting the PL approach to the 
framework of heterogeneous treatment effects. It would also be worth 
seeking alternatives to our calibrated CIs for the RD, such as the use of 
the profile likelihood method (Böhning et al. [1]). 
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