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ABSTRACT

We propose a segmentation method based on the geometric repre-

sentation of images as surfaces embedded in a higher dimensional

space, handling naturally multichannel images. The segmentation is

based on an active contour embedded in the image manifold, along

with a set of image features. Hence, both data-fidelity and regularity

terms of the active contour are jointly optimized minimizing a sin-

gle Polaykov energy representing the hyper-surface of this manifold.

Compared to previous methods, our approach is purely geometrical

and does not require additional weighting of the energy functional

to drive the segmentation to the image contours. The potential of

such a geometric approach lies in the general definition of Rieman-

nian manifolds, validating the proposed technique for scale-space

methods, volumetric data or catadioptric images. We present here

the segmentation technique called Harmonic Active Contours, give

an implementation for multichannel images including gradient and

region-based segmentation criteria and apply it to color images.

Index Terms— Image segmentation, Riemannian manifolds,

Active Contours, Harmonic maps

1. INTRODUCTION

Image segmentation is a fundamental step in many areas of computer

vision, including object recognition, image compression and stereo

vision, as it simplifies the understanding of the image from thou-

sands of pixels to a few regions. In general terms, the goal of image

segmentation is to cluster pixels into salient image regions corre-

sponding to individual surfaces or objects with a particular charac-

teristic. The segmentation can thus be based on different measure-

ments taken from the image including grey level or colour values,

texture features and depth or motion relative to the camera.

In natural images, however, the value of the segmenting features vary

significantly over a single object, the region’s contours are hard to

distinguish at pixel level and the segmentation becomes an ill-posed

problem. To overcome such issues, regularity constraints are usu-

ally imposed on the segmentation in terms of the region’s size or the

length of its contour. Image segmentation methods are then formu-

lated as an optimization problem whose cost function includes a data

and a regularity term. The optimization procedure considers the seg-

mentation and image features as functions in a 2-dimensional space

and obtains the optimal segmentation as the zero level set of the min-

imizing function. Active contours, for instance, define a data term

encoding the image edges [1] or region-similarity information [2],

while the regularity terms penalizes the length of the region’s con-

tours. In that context, we propose a new cost function based on the
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geometric interpretation of images as manifolds embedded in high-

dimensional spaces, providing a more general framework for image

segmentation and defining the optimal segmentation function as the

harmonic map minimizing the hyper-surface of the manifold. The

proposed technique is therefore called Harmonic Active Contour.

Harmonic Active Contours are formulated in the framework

introduced by Sochen, Kimmel and Malladi in [3], which is based

on geometrical ideas borrowed from high-energy physics and can

be summarized in two key points. First, images are represented as

Riemannian manifolds embedded in a higher dimensional spatial-

feature manifold, where an adequate metric is defined. Second,

the Polyakov action, a functional norm weighting embeddings

in a geometric way (i.e. the representation is invariant by re-

parametrization), is chosen as optimization criteria and variational

methods are used to minimize this action with respect to the man-

ifold metric or embedding coordinates. The potential of this geo-

metric framework lies in the general definition of the space-feature

manifold and the choice of its metric. The features are not restricted

to scalar values but include vector features encountered in color,

texture or multispectral image analysis [4]. Similarly, the embed-

ding is not limited to 2-dimensional image surfaces and generalizes

naturally to n-dimensional manifolds associated to volumetric or

time varying images or videos. Moreover, the choice of the metric

enables the study of complex geometries inherent to scale-space

methods [5] and non-flat images generated by catadioptric or om-

nidirectional cameras [6]. Consequently, the segmentation method

we propose can be equally applied to color, texture or multispectral

image features on flat or curved spaces of any dimensionality. Com-

pared to previous segmentation methods proposed in that context

[5], we provide a purely geometric approach where no additional

weighting of the Polyakov action by an edge detector is required to

drive the segmenting function to the image contours.

The rest of the paper is organized as follows. In section 2 we re-

view the Beltrami framework and Polyakov action and particularize

it for flat images. In section 3 we introduce the proposed embedding

and define the optimal level set segmentation function as the har-

monic map minimizing the hyper-surface of the manifold for differ-

ent segmentation criteria. In section 4, numerical implementations

for the proposed technique are given and in section 5 experimen-

tal results with color images are presented. Finally, conclusions are

drawn in section 6.

2. GEOMETRIC FRAMEWORK

We shortly review the geometrical framework in which images are

considered as 2-dimensional Riemannian manifolds [3]. In next sec-

tions we will limit our analysis to Euclidean spaces, but we present

here a general version of the framework including non-flat high-

dimensional manifolds.



An n-dimensional manifoldΣwith coordinates σ =
(

σ1, . . . , σn
)

is embedded in an m-dimensional manifold M with coordinates

X1, . . . Xm, where m > n. The embedding map X is an injection

given bym functions of n variablesX (σ) =
(

X1 (σ) , . . . , Xm (σ)
)

,

whose Jacobian has rankm.

In order to provide the manifold with a Riemannian structure we

need to define its geometry by means of a metric, i.e. a description

of how to measure distances on the manifold independent of the

parametrization. In Σ, the metric [gµν ] measures the squared dis-

tance between close points p and p+ dσ on general curvilinear and

non-orthogonal coordinates as

ds
2 = gµνdσ

µ
dσ

ν 1 ≤ µ, ν ≤ n, (1)

where Einstein’s notation is assumed (summation is implied on iden-

tical sub- and super-indices). Similarly onM distances are measured

with the corresponding metric [hij ].
Naturally we can use the metric [hij ] on M and the embedding

map to induce the corresponding metric on Σ, i.e. impose the dis-

tance measured on M by the local coordinates to be equal to the

distance measured inΣwith the embedding coordinates. This proce-

dure, known as pull-back relation and resulting from the chain-rule,

leads to the following expression for the induced metric:

gµν = hijX
i
µX

j
ν where X

i
µ =

∂Xi

∂σµ
. (2)

The Polyakov action is introduced in this context as a natural

generalization of the L2-norm, providing a measure on the space of

embedding maps between Riemannian manifolds. It is defined as

S
(

X
i
, gµν , hij

)

=

∫

dm
σ
√
gg

µν
X

i
µX

j
νhij (X) , (3)

where g is the determinant of the metric tensor [gµν ] and [gµν ] its
inverse. If we choose the induced metric in Σ, the Polyakov energy

(3) shortens to

S
(

X
i
, hij

)

=

∫

dm
σ
√
g (4)

and represents the hyper-surface of the embedded manifold. Note

that the Polyakov action is parametrization invariant and depends

only on the geometrical objects, not on the way we describe them.

The Euler-Lagrange equations can be applied to minimize this

action with respect to the embedding coordinate Xl. For manifolds

Σ and M in general, the map that minimizes the action (3) with

respect to the embedding is called harmonic map and corresponds to

the natural generalization of geodesic curves and minimal surfaces

in higher dimensional manifolds and different embedding spaces.

Harmonic maps are often used in image processing, in form of the

geodesic active contour model in image segmentation, for instance.

For expression (4) of the Polyakov action, the harmonic mapXl can

be iteratively obtained with a gradient descent strategy leading to the

following flow forXl

X
l
t = − ∂S

∂Xl
= − 1

2
√
g

(

∂g

∂Xl
+

1

2g

∂g

∂σµ

∂g

∂Xl
µ

− ∂

∂σµ

∂g

∂Xl
µ

)

.

(5)

In terms of implementation, the gradients ∂
∂σµ are estimated numer-

ically by finite differences and only explicit formulas for ∂g

∂Xl and
∂g

∂Xl
µ
must be derived explicitly for the chosen embedding and met-

ric.

2.1. Images as manifolds

In the following, we present some results of the application of the

previous framework to image processing, where images are seen as

two-dimensional manifolds embedded in higher dimensional spaces

with coordinates σ = (x, y). We will show that the proposed frame-

work generalizes existing image processing techniques and provides

a strong theoretical frame to derive new geometric approaches.

In their seminal work [3, 4], Sochen, Kimmel and Malladi em-

bed grey and color images in the feature space
(

x, y, I1, . . . , I l
)

,

where Ii = Ii (x, y) is the grey or color intensity value for pixel

(x, y). They consider the metric tensor [hij ] = diag(1, 1, β, . . . , β),
with β > 0 a constant controlling the scale of the feature dimension

independently of the spatial dimensions, and induce the corre-

sponding metric on Σ. In the grey level case, the Polyakov action

reduces to a regularization term on the intensity pixel values given

by

∫

Σ

√

1 + β|∇I |2, where the metric’s parameter β allows us

to consider different norms. If β → ∞, the summand 1 in the

Polyakov energy becomes negligible, and the energy approaches the

TV-norm commonly used in image denoising. On the other hand, if

β → 0 the minimizing flow approaches the isotropic heat diffusion.

In the case of color images, the Polyakov action includes a term

controlling the coupling of the different color channels and trying to

align their contours.

In the case of image segmentation, this geometric framework

has been used to introduce equivalent regularization constraints in

the function φ (x, y) defining the level set segmentation function [5].

The embedding map is then naturally given by (x, y, φ (x, y)) and
a weighting of the Polyakov action is introduced in order to attract

the contours of φ (x, y) to the desired gradients of the image. It is

in fact a generalization of the geodesic active contours of Caselles

[1], where the curve defining the segmentation is considered a 1-
dimensional manifold embedded in the 2-dimensional image space

and the Polyakov action, measuring here the length of the segment-

ing curve, is weighted by an edge detector function. A similar ge-

ometric approach and weighted Polyakov action has also been used

for image registration [7].

It is to note, however, that no purely geometrical framework for

segmentation has been defined yet as the proposed embeddings in-

clude either information on the image features I(x, y) or the seg-

menting function φ (x, y) and require an additional weighting of the
Polyakov action to drive the level set function to the image contours.

The proposed Harmonic Active Contours address these limitations

by defining a new embedding map and corresponding metric includ-

ing both image features and segmenting function in the manifold

geometry. The need of a edge detector is here suppressed as the

minimization of the manifold surface directly aligns the contour of

the level set with the main image contours.

3. PROPOSED EMBEDDING ANDMETRIC

In this work we define a novel image segmentation scheme using

a purely geometric approach, where data and regularization terms

are naturally included in the embedding and Riemannian metric. In-

deed, the Polyakov energy provides both a regularity constraint on

the segmenting level set function and a data term, represented as the

coupling of the gradients in the surface element, which attracts the

contours of the level set function to the image contours.

In our technique, the segmentation is defined by the zero level

set of a function φ (σ) defined on the image manifold Σ. The seg-
mentation criterion is given by the contours of features f1, . . . , fk ,



also defined on Σ and which might eventually depend on φ i.e f i =
f i (σ, φ) for 1 ≤ i ≤ k.

A new embedding map M is defined to include both image fea-

tures and segmentation function φ in the image manifold. It is given

by

X :
(

σ
1
, . . . , σ

n
)

7→
(

σ
1
, . . . , σ

n
, f

1
, . . . , f

k
, φ

)

. (6)

InM we consider the metric [hi,j ] = diag(1, . . . , 1, α1, . . . , αk, β),
which induces the following metric on Σ

gµν = δµν + αif
i
µf

i
ν + βφµφν , (7)

where δµν is the Kronecker delta. Note that in the proposed embed-

ding and metric, both the image features and segmenting functions

are included in the induced manifold metric with terms weighted αi

and β respectively. Previous geometric schemes would only include

one of those terms and are therefore forced to weight the Polyakov

action by an edge detector in order to drive the segmenting function

to the images contours. We avoid it by introducing an additional

dimension on the embedding, which however does not affect the di-

mension of our minimization function, as the intrinsic dimension of

the image manifold Σ does not depend on the embedding.

In the following paragraphs we limit ourselves to planar images,

i.e σ = (x, y), but the proposed method can be easily extended to

higher image dimensions and scale spaces. The determinant of the

metric tensor is then computed as g = g11g22 − (g12)
2
and the

squared hyper-surface element corresponds to

g = 1+αi|∇f
i|2+β|∇φ|2+1

2
αiαj

[

∇f
i
,∇f

j
]2

+αiβ
[

∇f
i
,∇φ

]2

,

(8)

where
[

∇f i,∇f j
]

= f i
xf

j
y − f i

yf
j
x is the magnitude of the cross

product of the vectors ∇f i and ∇f j . In the surface element of the

defined manifold, therefore, the terms
[

∇f i,∇f j
]

and
[

∇f i,∇φ
]

measure the coupling of the different features f i and the segmenta-

tion function φ.
The optimal segmentation function φ corresponds then to the

harmonic map minimizing the Polyakov action defined by the in-

duced metric, considering f1, . . . , fk as fixed functions of φ. In-

deed, as can be seen in equation (8), minimization of the Polyakov

energy aligns the gradients of the level set function φ with the gradi-

ents of the embedded features, eliminating the necessity of an edge

detector function, while keeping the level set variations small. The

trade-off between gradient fidelity and level set regularity is here

controlled by the ratio of the metric parameters β versus αi.

In the following, we particularize these expressions defining dif-

ferent features f i to obtain both contour- and region-based segmen-

tation.

3.1. Contour and region-based segmentation

Purely contour-based segmentation is obtained by choosing the fea-

tures to be local image descriptors: f i = Ii(σ) for i = 1, . . . , l
each channel on the image. In the easiest case, we simply embed the

pixel’s grey-level or color intensities, but more elaborate features

such as semi-local texture descriptors, Wavelet or Gabor coefficients

could be used.

At the same time, in order to detect objects that are not clearly

defined by closed gradients, we introduce region-based features. We

adopt the criterion proposed by Chan and Vese [2] and try to approx-

imate the image by a two-valued piece-wise constant function. The

two image regions corresponds to φ < 0 and φ > 0 and are charac-

terized by specific mean values µi
+, µ

i
− of the local features, which

are given by

µ
i
+ =

1

m+

∫

Σ

I
i (σ)H (φ (σ)) with m+ =

∫

Σ

H (φ (σ))

µ
i
− =

1

m−

∫

Σ

I
i (σ)H (−φ (σ)) with m− =

∫

Σ

H (−φ (σ)) ,

(9)

where H corresponds to the Heaviside function. We can define then

region features measuring the distance between the local image fea-

tures and each region of its piece-wise decomposition by

f
j =

{

(

Ii (σ)− µi
+

)2
j = i+ l, 1 ≤ i ≤ l

(

Ii (σ)− µi
−

)2
j = i+ 2l, 1 ≤ i ≤ l

. (10)

In the proposed geometric framework we can easily combine the

contour and region-based segmentations by including both contour

and region-based features in the embedding. We simplify the metric

then to αi =
α1

si
for the contour features and αi =

α2

vi for the region

ones, where si = max Ii −min Ii and vi variance of Ii normalize

the feature range of each channel. We have now three parameters

controlling the segmentation: α1 controls the contour criterion as-

sociated to the edge detector of the image features, α2 controls the

region criterion corresponding to a piece-wise constant decomposi-

tion of the image and β regularizes the segmentation function φ.

3.2. Level Set Constraint

Adopting a level set method to represent the region contours as the

zero level set of the function φ, we must constrain this function to

be a level set function during its evolution. A common practice in

this case is to perform reinitialization with existing fast-marching or

level set methods [8], that is, periodically stopping the evolution of

φ and reshaping the degraded function as a signed distance func-

tion. Signed distance functions are characterized by the property

|∇φ| = 1, ensuring that the level set function is smooth and not

too steep or too flat. In practice, signed distance functions lead to

a stable evolution of the level set function and accurate numerical

computations.

In general, however, reinitialization is not a desirable approach as

it might move the zero level set away from the expected position

and slows down the optimization process. To avoid it, we adopt the

variational formulation proposed in [9] and introduce a distance reg-

ularization termR (φ) driving the evolution of φ to a signed distance

function, reducing the need of reinitialization.

The evolution of the segmenting function φ is now derived from

the minimization of the energy functional

E (φ) = S (φ) + µR (φ) with R (φ) =

∫

Σ

1

2
(1− |∇φ|)2, (11)

where S (φ) is the previous Polyakov action and µ a positive con-

stant. Introducing the level set term R (φ) encourages the property
|∇φ| = 1 characteristic to signed distance functions and avoids the

use of reinitialization techniques.

4. NUMERICAL IMPLEMENTATION

The evolution of the segmenting function φ is derived as a gradient

flow that minimizes the combined energy functional (11), including

both the Polyakov action and the level set penalty. The combined

flow presents thus two terms φt = − ∂S
∂φ

− µ∂R
∂φ

.



For the level set constraint, the flow corresponds to the following

divergence operator

∂R

∂φ
= −div

((

1− 1

|∇φ|

)

∇φ

)

. (12)

While for the flow associated to the Polyakov action ∂S
∂φ

, we use

expression (5), where Xl = φ and ∂g

∂Xl and ∂g

∂Xl
µ
correspond to

∂g

∂φ
=2αi

(

f
i
x + αj

[

∇f
i
,∇f

j
]

f
j
y + β

[

∇f
i
,∇φ

]

φy

)

∂f i
x

∂φ

+ 2αi

(

f
i
y − αj

[

∇f
i
,∇f

j
]

f
j
x − β

[

∇f
i
,∇φ

]

φx

) ∂f i
y

∂φ
(13)

and

∂g

∂φµ

= 2β

((

1 + αi

(

f
i
ν

)2
)

φµ − αif
i
µf

i
νφν

)

. (14)

In particular, for the segmenting features given in expression (10),
∂fi

µ

∂φ
takes the form (15), where δ is the Dirac distribution.

∂f j
µ

∂φ
=



















0 1 ≤ j ≤ l

− 2Iiµ
m+

∫

Σ

(

I
i (σ)− µ

i
+

)

δ (φ (σ)) j = i+ l, 1 ≤ i ≤ l

2Iiµ
m

−

∫

Σ

(

I
i (σ)− µ

i
−

)

δ (φ (σ)) j = i+ 2l, 1 ≤ i ≤ l

,

(15)

As it is common in level set methods, in the numerical imple-

mentation we have substituted the Heaviside and Dirac distributions

by smooth approximations Hǫ and δǫ verifying H ′
ǫ = δǫ [2].

5. EXPERIMENTAL RESULTS

We present results with the proposed method for grey and color im-

ages. The value of the region and gradient parameters were roughly

adapted to the image properties, while the level set and regularity

constraints were fixed to β = 10−4 and µ = 10−2. The segmenting

function φ was always initialized as a signed distance function with

no prior knowledge about the image, see figure 1.

The method was first applied to a simple grey-level image of

two cells with equal weight for the region and gradient features

α1 = α2 = 1. Figure 1 shows the evolution of φ for 500 itera-

tions of the gradient descent step, where we observe that φ evolves

from a signed distance function to a level set function with gradi-

ents defined by the original image. We also test our method with

natural color images, where two color regions can be distinguished,

see figure 2. For the airplane image more weight was given to gra-

dient features with α1 = 2 and α2 = 1, whereas the region term

dominated the segmentation of the beans’ image with α1 = 1 and

α2 = 5. The obtained segmentations were equally successful with

grey and color images, experimentally validating the proposed seg-

mentation technique for single and multichannel images.

6. CONCLUSIONS AND FUTUREWORK

We presented a general method for image segmentation which can

naturally handle multichannel images and non-Euclidean spaces.

The proposed Harmonic Active Contours are developed by a purely

geometric criterion minimizing the hyper-surface of a Riemannian
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Fig. 1. Evolution of φ for ’cells’ images.

Fig. 2. Segmentation obtained as the level set of φ.

manifold containing data and regularity terms on its metric, and

avoiding the necessity of an edge detector defined in high dimen-

sional or non Euclidean spaces.

In this paper numerical implementations are proposed for multi-

channel image segmentation and successful experimental results are

presented for flat color images. Future work, therefore, includes the

extension of the proposed technique to spherical images and faster

implementations of the numerical schemes for color and texture

segmentation.
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