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An elastic-biphasic model for the simulation of the periodontal ligament (PDL) and the adja-
cent tooth is presented and investigated. The PDL is modelled as a biphasic material following
the work of Ehlers and Markert (2001) whereas the tooth is modelled as a linear elastic body.
A spatial discretisation scheme is proposed based on mixed finite elements for the spatial
discretisation. Due to non-linearity in the model, a predictor-corrector scheme is employed as
a temporal discretisation scheme. In order to validate the PDL model in-vitro measurements
are compared to numerical simulations. The numerical simulations are performed using ge-
ometries resulting from µ-CT of the same porcine tooth which was employed for the in-vitro
measurements.
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1. Introduction

The numerical simulation of biological materials is a demanding task. This is due
to the inherent complexity of many biological materials, which often are strongly
heterogeneous in nature. This holds in particularly true for the periodontal ligament
(PDL), which is a thin layer of dense soft connective tissue located between tooth
root and the jaw bone (see Berkowitz et al. (2009) for a detailed description). The
PDL consists of a solid phase, formed by collagen fibres, and a liquid phase, filling
up the tissue with interstitial liquid. As a consequence, any mathematical model
which might be employed for the numerical simulation of the PDL, should take the
biphasic nature of this material into account. In particular, the model should be
able to render the elastic behaviour of the solid phase as well as the incompressible
nature of the mixture constituting the PDL.

Mathematical models for biphasic materials are well-known in engineering related
applications such as ground water flow (Verruijt 1970). On the other hand, in the
last decades biphasic materials were also employed in the context of biological
materials. For example Mow and Hung (2001) and Ehlers and Markert (2001) used
it to model the mechanical behaviour of cartilage.

However, a challenge in modelling the mechanical behaviour of the PDL are the
stresses induced by the interstitial liquid and the incompressible nature of the PDL.
To this end, the PDL often is modelled by anisotropic, non-linear or viscoelastic
material laws. In particular, some of these models describe the incompressible na-
ture of the PDL employing a “penalty term”, e.g. (Pietrzak et al. 2002). On the
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other hand, Natali et al. (2007) proposed a nonlinear anisotropic material law in
order to take the orientation of the collagen fibres into account. A third class of
models aims for the description of the temporal (non-linear) stress-strain relation-
ship in the PDL employing viscoelastic laws, see for instance (Toms et al. 2002;
Justiz 2004). In these models the influence of the interstitial liquid is implicitly
given by means of abstract material parameters which can be adjusted in order to
improve the approximation strength of the numerical simulations to the outcome
of in-vitro measurements.

In the present article, we propose the (to our knowledge new) idea of using
biphasic materials for the mathematical modelling and numerical simulation of
the PDL. As we will describe, the employed biphasic model is a “smeared model”
which explicitly takes the fibres-fluid ratio into account, as described by Ehlers
and Markert (2001). Beside this, also the incompressible nature of the material is
described.

To this end, we will present a biphasic model for the application in the context
of PDL simulations. In particular, we will derive a coupled biphasic-elastic model
describing the behaviour of a tooth and its surrounding PDL under external loading
conditions. In our context, we model the tooth as a second domain where a linear
elastic material law is applied. In this article we are in particular concerned with the
numerical results to in-vitro measurements of porcine teeth for which we employ
the same, realistic three-dimensional porcine geometries obtained by µ-CT scans.

2. Mathematical Modelling

As pointed out before, the PDL can be interpreted as a biphasic material, which is
formed by a fibrous network of collagen, surrounded by interstitial fluid. Therefore,
in this section we describe the biphasic model which is employed for modelling the
PDL.

The basic idea of the biphasic theory is to use a macroscopic approach, which is
not resolving the complicated micro-structure of the collagen fibres. Instead, the
material is modelled as the mixture of a homogeneous solid S and a fluid F , which
are both assumed to coexist at each material point. The relative volume fractions
nS and nF then specify the local composition of the material. Thus, all quantities,
such as deformations or stresses, exists for both the fluid and the solid phase.
Both the collagen and the fluid then influence the stress response of the biphasic
material.

In the present article, we are following an approach presented in the context of
porous media, which goes back to the work of Bowen (1976, 1980). During the
last decades, these ideas have been extended and employed in the framework of
biological materials (Ehlers 1995; Ehlers and Markert 2001).

2.1 A Biphasic Model for the PDL

The model we will use for describing the mechanical behaviour of the PDL was
first presented by Ehlers and Markert (2001). A fundamental assumption in mix-
ture theory, on which the model is based, is the idea of superimposed continua:
instead of geometrically resolving the liquid and solid distributions, the distribu-
tions are obtained by averaging over a representative volume. Therefore, instead
of introducing a microscopic model, one assumes that at each material point both
phases coexist. Therefore, we have to treat physical quantities associated to the
respective phases separately and will thus introduce the superscripts S and F in
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order to distinguish between them.
From the kinematical point of view, each material point p ∈ ΩPDL is moving

according to two deformations ϕS(p, t) and ϕF (p, t), where ΩPDL ⊂ R3 denotes
the PDL domain in its reference configuration. Here, we emphasize that in general
we cannot expect that both deformations coincide, i.e., generally we have

xS = ϕS(p, t) 6= ϕF (p, t) = xF p ∈ ΩPDL, ∀t ∈ (0, Tf ]

where Tf denotes the final simulation time. However, the image of the reference
configuration ΩPDL is the same under both deformations

ϕS(ΩPDL, t) = ϕF (ΩPDL, t) for all t ≥ 0.

cf. also Figure 1. Moreover, each component has its own velocity field

ẋα =
∂ϕα(p, t)

∂t

Now, the local structure of the mixture is given by the volume fractions nα =
nα(x, t) (α ∈ {S, F}) that describe the ratio of the fluid and solid phase at each
spatial point x. A fundamental assumption of the model is that no empty space is
allowed between the phases, i.e., that the saturation condition

nS + nF = 1 (1)

holds. Denoting by ραR the realistic physical density of the phase α, its contribution
to the total density therefore is ρα = nαραR.

The motion of the solid part is described in terms of the displacements
uS = ϕS(p, t) − p. Furthermore, under normal loading conditions, only small
strains will arise in the PDL. Thus, we can assume linear elastic behaviour of the
solid part of the stress tensor, which allows us to use the linearised Green-St-Venant
strain tensor, i.e.,

ε(uS) =
1

2

(
∇uS + (∇uS)t

)
(2)

where At denotes the transposition operator of a tensor A. Within the framework
of linear elasticity, the volume fraction nS = nS0 / det(∇ϕS) of the solid part can
be approximated as

nS ≈ nS0 (1 +∇ · uS)−1 ≈ nS0 (1−∇ · uS).

Furthermore, as a consequence of the saturation condition (1), we have

nF = nF0 + nS0∇ · uS .

Here nS0 and nF0 denote the initial volume fractions which satify the saturation
condition.

The equation system describing the biphasic model is:

−∇ ·
(
T S + T F

)
= (ρS + ρF )g on ΩPDL

∇ ·
(
u̇S − ζ(nF )∇p

)
= −∇ ·

(
ζ(nF )ρFRg

)
on ΩPDL (3)
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Here, ραg denotes the volume forces and ζ(nF ) is the deformation dependent Darcy
parameter, proposed by Mow et al. (1982) as

ζ(nF ) =
kF (nF )

γFR
. (4)

Here the denominator is the effective fluid-solid specific weight

γFR = (ρS + ρF )g

and the numerator is a power function that describes the influence of the perme-
ability on the the fluid ratio

kF (nf ) = kF0

(
nF

nF0

)κ
(5)

where κ > 1 and kF0 is the initial permeability.
Equation (3.1) is the linear momentum balance for the global mixture. Here,

T α denotes the respective Cauchy stress tensors. Hassanizadeh and Graya (1980)
showed that T α are symmetric if microscopically non-polar constituents are as-
sumed. The Cauchy stress tensors can be written as

T α = −nαpI + T αE (6)

where p is the effective fluid pressure. By neglecting frictional stresses in the fluid
(T FE = 0), the equilibrium of forces reads

−∇ ·
(
T SE − pI

)
= (ρS + ρF )g.

We note that in this equation the pressure p plays the role of a Lagrange multiplier
for the incompressibility constraint. The equation (3.2) is derived by balances of
mass for the two constituents and the Darcy law. Let us finally remark that ζ(nF )
is the only non-linear term present in the biphasic model (3).

2.2 Coupled Model for Tooth and Periodontal Ligament

We now complement the above introduced biphasic model for the PDL with a linear
elastic model for the adjacent tooth. Our final aim is the formulation of a coupled
model, which allows for describing the mechanical properties of the coupled PDL-
tooth system. As we did for the PDL, we also identify the tooth in its reference
configuration with the bounded domain ΩTooth ⊂ R3 and denote all associated
quantities with the superscript T . Starting from the equilibrium equation

−∇ · T TE = ρTg on ΩTooth (7)

where uT is the displacement vector on ΩTooth, i.e., on the tooth. We also impose

the following compatibility conditions on the interface ΓI = ΩTooth∩ΩPDL between
the tooth and the PDL:

uT = uS on ΓI

T TE · νT = −(T SE − pI) · νPDL on ΓI
(8)
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Here, νPDL and νT denote the outward normals to ΩPDL and to ΩTooth, respec-
tively. By exploiting the compatibility conditions (8), and equations (7) and (3),
we obtain the following coupled system of PDEs for the PDL-tooth system

−∇ · T = ρg on Ω
∇ ·
(
u̇S − ζ∇p

)
= −∇ ·

(
ζρFRg

)
on ΩPDL

u = û on ΓD

T · ν = t̂ on ΓN

ζ(nF )(∇p− ρFRb) · νPDL = f on ∂ΩPDL

(9)

where Ω = ΩTooth ∪ ΩPDL. In (9), we have also indicated by ΓN ⊂ ∂Ω and ΓD ⊂
∂Ω, ΓN ∪̇ΓD∪̇ΓI = ∂Ω, the Neumann and Dirichlet boundaries and by û and t̂
the corresponding boundary values in equations (9.3) and (9.4). The function f
denotes the flux of the fluid through the surface of ΩPDL. Moreover, u|ΩPDL = uS ,
u|ΩTooth = uT , Ω = ΩPDL ∪ΩTooth, are the displacements, p the fluid pressure, and
ν is the outward directed normal of Ω. In (9.1) the stress tensor T and the density
ρ are defined as follows:

T = T (u, p) =

{
T TE(uT ) on ΩTooth

T SE(uS)− pI on ΩPDL (10)

and

ρ =

{
ρT on ΩTooth

ρF + ρS on ΩPDL (11)

We also employ the symbol TE = TE(u) to refer to the elastic part of the stress
tensor T .

Owing to our assumption of linear elastic materials, the Cauchy tensors T αE ,
α ∈ {S, T}, can be written as

SαE = 2µαε(u) + λα(∇ · u)I (12)

where ε(u) is the linearised strain tensor as defined in (2).
Let us remark that also anisotropic material laws can be employed in this frame-

work, as long as SαE is a symmetric tensor. Furthermore, in the context of the
presented biphasic model, T SE might also render a non-linear or viscoelastic mate-
rial law.

3. Discretisation in Space and Time

In order to carry out the numerical simulations and evaluation studies in Sec-
tion 4.2, we have to discretise the coupled model (9). In the context of our coupled
biphasic material laws, this means that we have to discretise the PDE in time and
in space. Here, we employ the method of lines i.e., we first discretise the PDEs
in space and then in time. However, Rothe’s method might be employed as well,
allowing for adaptively refining meshes from time step to time step.

Multiplying the first line of (9) with a sufficiently smooth vector valued test
function v and the incompressibility constraint in the second line of (9) with the
scalar test function q, we obtain after integration by parts the following weak
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formulation of (3): find (u, p) ∈ (L2((0, Tf ];V )× L2((0, Tf ];Q) such that

a(u,v)− b(v, p) + b(u̇, q) + c(p, q) = F (v) +G(q) (13)

for all v ∈ V and for all q ∈ Q, where V = [H1
ΓD

(Ω)]3 and Q = H1(ΩPDL) and

a(u,v) =
∫

Ω TE(u) : ε(v) dΩ

b(u, q) =
∫

ΩPDL ∇ · uq dΩ

c(p, q) =
∫

ΩPDL ζ∇p · ∇q dΩ

F (v) =
∫

Ω ρb · v dΩ +
∫

ΓN
t̂ · v dΓ

G(q) =
∫
∂ΩPDL fq dΓ +

∫
ΩPDL ζρ

FRb · ∇q dΩ

(14)

The weak formulation (13) is the basis for our discretisation in space and time
which is done by means of low order finite elements in space and finite differences
in time.

Since the two unknown functions u and p belong to the same functional space
H1 we can use the same finite element for the spatial discretisation. We choose P1
elements for both the vectorial space V and the scalar space Q, and we denote by
Vh and Qh respectively the finite element spaces.

The two finite dimensional spacesQh and Vh are originated from a (shape regular)
mesh Th with mesh size h > 0 for which we denote by Nh the set of vertices of
the mesh. If we assume further that the meshes for the two domains coincide at
the interface, we arrive at the following non-linear system of Differential Algebraic
Equations (DAEs):

ATTu
T ATSu

S 0 = fT

ASTu
T ASSu

S −Btp = fS

0 Bu̇S C(uS)p = g(uS)

(15)

with uT = uT (t), uS = uS(t) and p = p(t), t ∈ (0, Tf ]. The matrices A,B,C are
the representation operators on Vh and Qh of the bilinear forms (14.1),(14.2),(14.3).

Here, the superscript T refers to all nodes x ∈ Nh∩ΩTooth \ΓI of the tooth domain
ΩTooth which are not on the interface ΓI and the superscript S to the vertices
belonging to the the PDL domain ΩPDL and to the interface ΓI between the two
domains.

For the discretisation of (15) in time we subdivide the time interval I = [0, Tf ]
into K intervals of of constant time step size τ = Tf/K by means of the constant
time step size τ > 0. We set tj = τ · j and denote by (uα)j the approximation of
(uα)(tj) at time tj , j = 0, 1, 2, . . . ,K, where α ∈ {S, T}. The same notation will
be used for the pressure, as well.

Since, for stability reasons, an implicit discretisation is favourable for solving
the non-linear Cauchy problem (15), we employ the following predictor-corrector
scheme, cf. (Quarteroni et al. 2008): at each time step j we first compute the
predictor (uj+1/2, pj+1/2) according toATT ATS 0

AST ASS −Bt

0 B τC((uS)j)

(uT )j+1/2

(uS)j+1/2

pj+1/2

 =

 fT

fS

g((uS)j) +B(uS)j

 .
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Then, the following corrector step for determining (uj+1, pj+1) is carried outATT ATS 0
AST ASS −Bt

0 B τC((uS)j+1/2)

(uT )j+1

(uS)j+1

pj+1

 =

 fT

fS

g((uS)j+1/2) +B(uS)j

 .

As a consequence, in each time step we have to solve two linear systems of equations.
For the solution of the both systems, we employ a Krylov space method (GMRES)
in combination with a block diagonal Jacobi preconditioner. We note that also
more elaborate techniques as multilevel preconditioners might be applied, see the
work of Berrenberg and Krause (2007).

4. Experimental Studies and Validation

4.1 Setup of the In-vitro Measurements

We used a novel measurement set-up (see Figure 2) to determine the force-deflection
characteristics of a porcine specimen. A piezoelectric actuator is used to apply
displacements on the tooth’s crowns via a thrust die. The point of displacement
application is chosen in the centre of the labial side of the tooth’s crown. Result-
ing forces are simultaneously recorded by an ultra miniature force sensor. Two
cylindrical magnets are attached on the top of the tooth’s crown. The movement
of these magnets is detected using an array of eight Hall effect sensors for each
magnet, and the movement of the loaded tooth is derived from the movement of
the magnets.

The employed tooth in the present article is a premolar from a pig jaw bone
segment. It was used for this investigation as the omnivore diet of pigs as well as
the size (here, 21.5 mm height) of the pig’s two-rooted premolars allow an easy
transfer of the results to the human masticatory system.

As presented in the work of Berkowitz et al. (2009) the solid-fluid ratio is not
uniform in the PDL and is in a range from 53% to 74%. Because it is not possible
to know the effective distribution of the phases in the PDL we employ (see Table 1)
a constant value nF0 = 0.4.

We loaded the tooth by applying displacements of 0.16 mm with varying loading
velocities. After experimentation we scanned the jaw bone segment in an in-house
µ-CT scanner (SkyScan 1174, Belgium) and created a FE mesh of the relevant
geometries (tooth and PDL) using the software ADOR3D (Rahimi et al. 2005).
Figure 3 shows the resulting mesh which was used to validate our biphasic material
model of the PDL by comparing the numerical results with the measured force-
deflection behaviour of the same specimen, as described in the next sections.

4.2 Setup of the Numerical Simulations

The aim of our numerical simulations is the reproduction of the in-vitro measure-
ments described in Section 4.1. In these experiments, time-dependent displace-
ments are applied to the tooth and concurrently the force response on the tooth is
measured. In Figure 4, a schematic representation of the two domains ΩTooth and
ΩPDL, and the subdivision of the boundary into Dirichlet and Neumann boundaries
is shown. The simulations themselves were carried out employing the software tool-
boxes ObsLib++ (Krause 2007; Groß and Krause 2008) and UG (Bastian et al.
1997).
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In these numerical simulations, the contact between the bolt and the tooth on
ΓTooth
D = ΓD ∩ ∂ΩTooth is modelled by the following Dirichlet boundary condition

u(x, t) =
t

Tf
umax on ΓTooth

D

where in this case umax = 0.16 mm represents the maximum displacement reached
in the normal direction x.

As described in Section 4.1, in the in-vitro experiments the force response of the
system is measured by on the surface ΓTooth

D at the position of the bolt. Thus, in
order to investigate the influence of the material parameters (cf., Section 4.3) we
evaluate the boundary forces as follows

∫
ΓTooth

D

T (u)ν · ν dΓ

Let us recall that for the in-vitro measurements we consider the system as com-
posed by the tooth, the surrounding PDL, and the jaw bone. In the present in-
vestigation we consider short-time experiments so that orthodontic movements of
the jaw bone do not occur. Therefore, on the external surface ΓPDL

D (see Figure 4),
where the PDL is in contact with the jaw bone, we apply Dirichlet boundary con-
dition imposing a null displacement.

Finally, on all the remaining boundaries ΓN = ∂Ω \ (ΓTooth
D ∪ ΓPDL

D ) we pre-
scribe homogeneous boundary conditions. In our studies, we furthermore neglect
the flow of the interstitial fluid through the surface between the PDL and the bone.
Therefore, in Equations (9) and (14) we choose f = 0.

The objective of the next section is to study the influence of the parameters κ
and kF0 on the resulting displacement-force curve. All other parameters employed
in the numerical simulations are reported in Table 1.

4.3 Study of Parameters: Towards a Validation of the Model

In this section we will employ the model presented in the previous sections to study
the stress evolution under incremental loading. In particular, we study the influence
of the zero displacement permeability kF0 and the power κ on the forces in the tooth.
Furthermore, we compare the obtained numerical results with those obtained from
the in-vitro measurements. In these experiments the maximum displacement umax

is reached after 0.8 s, 2.0 s, and 4.0 s, respectively.
We remark that in case of deformations over 0.16 mm the stress curve shows

an increasingly non-linear behaviour. Therefore, if large displacements above this
value are prescribed, non-linear material laws should be employed in order to model
the behaviour of the PDL.

4.3.1 Influence of the power κ

To show the influence of κ we focus on Tf = 0.8 second experiments where
we choose different initial permeabilities for each κ : kF0 = 1 × 10−6 m·s−1,
1 × 10−7 m·s−1, 1× 10−8 m·s−1. The results are shown in Figure 6.

As can be expected from the power law (5), larger choices of κ have increasing
impact on the force-time curve, as can be seen in Figure 5. On the other hand,
small choices of κ, e.g., κ ∈ [1.0, 20.0], yield a sequence of very similar curves and
will here be represented by κ = 20.
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For initial, small deformations, a varying κ has almost no effect. But, after 0.3
seconds of our numerical simulations, the displacements become large enough such
that kF (nF ) > 1 and different choices of κ yield different force-time curves. But, as
can be seen in Figure 5, increasingly larger choices of κ yield higher final stresses
at Tf but do not change the shapes of the stress curves.

Let us remark that in the simulations, beginning from κ ≥ 38.0, stress oscillations
(see Figure 5(b)) occur which are due to the fact that the values in the matrix C
in equation (15) become smaller.

4.3.2 Influence of the zero displacement permeability kF0 and the final time Tf

The choice of the zero-displacement permeability is relevant both as initial force
response and as long-term response. In Figures 6(a) and 6(b), we can see how the
choice of kF0 within equation (5) affects the behaviour of the stress-time curve. As
can be seen in these plots, small values for kF0 yield larger forces and vice-versa. In
fact, since the initial permeability is a multiplicative constant within the operator
C in (15), its influence should be comparable with choosing different time scales
in the in-vitro measurements (Figure 6(c)).

The choice of a very small kF0 , i.e., kF0 = 1 × 10−8 m·s−8 yields forces that are
very similar to the measured ones. On the other hand, the influence of such a small
kF0 is a significant change in the initial response of the system, in particular, we
obtain larger stresses. Moreover, for small initial permeabilities, the shape of the
time-stress curve significantly changes in comparison to larger choices of kF0 , as can
be seen in Figure 6(b).

4.3.3 A Comment on a Final Parameter Choice

Within the presented, different simulations, we employed different choices for
the parameters in the Mow power law (5). As it turns out, the parameters that
seem to give the best accordance between the numerical results and the in-vitro
measurements are κ ≈ 35 and kF0 ≈ 1×10−8 m·s−1. In Figure 7, we compare the in-
vitro measurements with numerically computed results where employing the above
reported parameters but different final computation times Tf . However, a more
precise data fitting would be too specific and would mask the behaviour of the
model. Finally in Figure 8 we report the evolution of the normal stresses and of
the pressure in two different time steps. In particular we can note increasing values
of the normal stresses in the contact area with the bolt but with different sign in
the superior and inferior part. High changes in the pressure are observed in the
buccal side of the PDL. In Figure 9 we can see how in the areas of high pressure
the fluid ratio decreases over time while the high fluid concentration in the upper
part of the labial side can be noticed.

5. Conclusions

In this article, we considered a coupled biphasic-elastic material model for the
simulation of a tooth-PDL system. A spatial and temporal discretisation with linear
finite elements of the coupled system was presented.

The geometry employed in the numerical simulations results from a µ-CT scan
of the same porcine tooth which was employed for the in-vitro measurement. More-
over, using our model, we were able to numerically reproduce the in-vitro experi-
mental setup and obtain comparable stress-time curves. In this work, we were able
to estimate a suitable range of parameters for Mow’s power law. In fact, the model
produces reasonable accordance for the resulting range of forces.

Further investigations are necessary since, in fact, our in-vitro measurements
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but also the results in e.g, (Durkee 1996; Toms et al. 2002; Komatsu 2010) seem to
reveal a viscoelastic behaviour of the tooth-PDL system. In particular, we observe
a delay in the response to the initial displacements and a plateau at the end of the
measurements. Therefore, in the focus of future investigations stands the extension
of the biphasic material model by employing non-linear, anisotropic and viscoelastic
material laws.

Acknowledgements

This study was in part supported by the German Research Foundation (DFG,
Clinical Research Unit KFO208). We also thank Johannes Steiner (University of
Lugano) for his help in creating the PDL and tooth geometry.

References

P. Bastian, K. Birken, K. Johannsen, S.Lang, N. Neuß, H. Rentz-Reichert, and C.Wieners. UG – a flexible
software toolbox for solving partial differential equations. Computing and Visualization in Science, 1:
27–40, 1997.

B. K. B. Berkowitz, G. R. Holland, and B. J. Moxham. Oral anatomy, Histology and Embryology. Mosby,
4th edition, 2009. ISBN 9780723434115.

S. Berrenberg and R. Krause. Efficient parallel simulation of biphasic materials in biomechanics. Sixth
International Congress on Industrial Applied Mathematics (ICIAM07) and GAMM Annual Meeting,
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Parameter value units

ES 0.2e6 N m−2

νS 0.3 #
ET 20e9 N m−2

νT 0.31 #

ρRS 1, 060 kg m−3

ρRF 1, 000 kg m−3

ρT 6,000 kg m−3

nS0 0.6 #

nF0 0.4 #

Table 1.: Physical parameters in (3) used in the numerical experiments
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Figure 1.: At each material point the two phases coexist and result in two different
deformations ϕS and ϕF .

Figure 2.: Measurement setup used for the in-vitro measurements.
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(a) Labial side (b) Buccal side

Figure 3.: Geometries used for the simulations of the tooth-PDL system. In Figure
(a) the labial side is shown and the contact area between the tooth and the bolt is
highlighted. The contact surface is centred and 19 mm away from the root.

Figure 4.: Section of the employed domains: ΩTooth is the tooth domain and ΩPDL

denotes the PDL domain. The black line marks ΓI , the interface between ΩPDL

and ΩTooth. Furthermore the regions where Dirichlet values are applied are marked
by ΓTooth

D and by ΓPDL
D .

(a) kF0 = 1 × 10−6 m·s−1 (b) kF0 = 1 × 10−7 m·s−1 (c) kF0 = 1 × 10−8 m·s−1

Figure 5.: Comparison of the influence of κ on the stress-time curves with different
initial permeabilities kF0 .
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(a) κ = 30 (b) κ = 30 (c) In-vitro measurement

Figure 6.: The influence of small (a) and large (b) changes in kF0 . In (c) the in-vitro
measurements with different Tf are reported: the influence of small kF0 has the
same effect as accelerated in-vitro experiments.

Figure 7.: Comparison between measured force responses and simulated force re-
sponses for different Tf . Here we chose the parameters, as described in Section 4.3.3.

(a) Front side after 2 s (b) Back side after 2 s

(c) Front side after 4 s (d) Back side after 4 s

Figure 8.: Temporal evolution of the normal stresses in the tooth and of the pressure
in the PDL.
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(a) Front side after 0.7 s (b) Front side after 1.3 s (c) Front side after 2 s

(d) Back side after 0.7 s (e) Back side after 1.3 s (f) Back side after 2 s

Figure 9.: Temporal evolution of the fluid ratio in the PDL.


