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Abstract

We consider a risk process Rt where the claim arrival process is a superposi-

tion of a homogeneous Poisson process and a Cox process with a Poisson shot

noise intensity process, capturing the effect of sudden increases of the claim

intensity due to external events. The distribution of the aggregate claim size is

investigated under these assumptions. For both light-tailed and heavy-tailed

claim size distributions, asymptotic estimates for infinite-time and finite-time

ruin probabilities are derived. Moreover, we discuss an extension of the model

to an adaptive premium rule that is dynamically adjusted according to past

claims experience.

Keywords: adative premium rule; adjustment coefficient; convex ordering;

Cramér-Lundberg approximation; exponential change of measure; Gärtner-
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1 Introduction

Let us consider the following risk model for the surplus process Rt of an insurance
portfolio:

Rt = u+ c t−

Nt∑

j=1

Xj, (1)

where u is the initial capital, c is the premium density which is assumed to be
constant, the claim amounts {Xj}j≥1 are positive i.i.d. random variables (with dis-
tribution function FX and kth moment µX,k), which are also independent of Nt, the

number of claims up to time t ≥ 0. Let St =
∑Nt

j=1Xj denote the aggregate claim
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size at time t. In this paper, we will investigate the risk process under the assump-
tion that Nt is a doubly stochastic Poisson process (Cox process) with a Poisson
shot noise intensity process of the form

λt = λ+
∑

n∈N

h(t− Tn, Yn) + νt, (2)

where {Tn}n∈Z is the sequence of occurrence times of a homogeneous Poisson process
of rate ρ, {Yn}n∈Z is an i.i.d. sequence of positive random variables (with distribution
function FY and kth moment µY,k) independent of the Poisson process, and the
function h(t, x) is non-negative with h(t, x) = 0 for t < 0. The term νt ≥ 0 represents
initial conditions and is a stochastic process, independent of

∑
n∈N

h(t − Tn, Yn)
(λ > 0 is assumed to be constant).
A particular simple example of (2) are multiplicative shots of the form

λt = λ+
∑

n∈N

Yn g(t− Tn) + νt, (3)

where g(t) is again a non-negative function with g(t) = 0 for t < 0, G(t) =
∫ t

0
g(s) ds

and (w.l.o.g.) G(∞) = 1. The main motivation for the introduction of νt in (2) is
the particular choice

νt =
∑

n∈Z−

h(t− Tn, Yn), (4)

which corresponds to the stationary version of (2). In this case νt carries the response
to Poisson shots from the past t < 0. However, νt can also represent some other
perturbations that do not matter asymptotically. For modelling purposes, the choice

νt = 0 a.s. ∀ t ≥ 0 (5)

might be considered appropriate in many situations (meaning that there are no
remaining claims from previous catastrophes when setting up a portfolio).
Following Dassios & Jang [7], one interpretation of this model is as follows: In
addition to the occurrence of ”normal” claims described by a homogeneous Poisson
process with rate λ, there are also claims triggered by external events (such as
natural catastrophes) occurring at times {Tn}n∈N (which are assumed to follow a
homogeneous Poisson process with rate ρ). The model captures the effect that these
events lead to a dramatic increase of the number of claims, whereas the individual
claim sizes are assumed to have the same distribution FX as the ”normal” claims
(at the expense of more cumbersome notation, one can easily extend the model
to a different distribution function for the latter). Due to reporting lags of the
claims that originate from a given external event, the resulting increase in intensity
will develop according to the function h(t − Tn, Yn). However, also less dramatic
interpretations are possible, and in particular, shot-noise modeling in a variety of
implementations occurs in the literature when dealing with the delay in settlement
of individual claims.
A survey of shot-noise modeling in risk theory and finance is given by Kühn [19].
Except for Dassios & Jang [7], who as here consider a Cox process with a shot-noise
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intensity, the risk process is most often modelled directly as a shot-noise process. In
this setting, Klüppelberg & Mikosch [17] gave a diffusion approximation, whereas
ruin estimates are in Bremaud [5] and Macci et al. [20, 21]. Dassios & Jang [7] stud-
ied the case g(s) = e−δs of the multiplicative model and used the theory of piecewise
deterministic Markov processes (PDMP) to obtain the distribution of the aggregate
claim amount under an equivalent Esscher measure. An estimation procedure for
λt in this specific setting is considered in [8]. Ruin estimates for Cox processes that
allow a PDMP approach can be found in Embrechts et al. [10].

The present paper deals both with ruin and the aggregate claims. In order to outline
the content, we need some definitions. Let H(t, y) =

∫ t

0
h(s, y) ds and H(t, Y ) =

H(∞, Y ) −H(t, Y ). From Campbell’s formula,

E(λt) = λ+ ρ

∫ t

0

Eh(t− s, Y1) ds+ E(νt) = λ+ ρEH(t, Y1) + E(νt),

and thus limt→∞ E(λt) = λ+ ρEH(∞, Y1) := β, which we will assume to be finite.
The limiting average claim amount arriving per unit time is µ := βµX , where µX :=
µX,1. Throughout the paper we will assume the net profit condition c > µ.
We start in Section 2 with some analytic identities for moment generating functions
which are useful for both ruin and the aggregate claims. Section 3 then deals with
the aggregate claims. For the stationary case, we show that the standard Cramér-
Lundberg risk process with arrival intensity β is a lower bound in the sense of convex
ordering; the formulation is in a more general stationary Cox process setting. We
find alternative forms of the distribution of St and sketch some applications. Finally,
a saddlepoint approximation is outlined.
The rest of the paper is then devoted to the ruin problem. Let τ(u) = inf{t ≥
0 : Rt < 0} be the ruin time for the risk process and let ψ(u) = P(τ(u) < ∞) be
the infinite horizon ruin probability, ψ(u, t) = P(τ(u) ≤ t) the corresponding finite
horizon one. The analysis is carried out both for light-tailed claims (Section 4) and
heavy-tailed claims (Section 5).
In the light-tailed case, a fast route to the aymptotics of both ψ(u) and ψ(u, t)
is provided by large deviations theory as implemented in Glynn & Whitt [13] and
Nyrhinen [24]. In particular, given the analytic estimates from Section 2, it is almost
immediate to establish the existence of a γ which plays the role of the adjustment
coefficient in the sense that logψ(u)/u → −γ, u → ∞. We relate this γ to the
adjustment coefficient of the Cramér-Lundberg process with intensity β mentioned
above both in terms of inequalities and asymptotics. Then the finite horizon case is
discussed.
It is basic to note that γ coincides with the adjustment coefficient of a Cramér-
Lundberg risk process R̃t with arrival intensity λ+ρ and a claim size distribution F eX
which is a mixture of FX and a mixed compound Poisson sum of theXi, with Poisson
parameter H(∞, Y1). This is intuitive, since R̃t is obtained from Rt by collecting
all claim arrivals triggered by a catastrophic event to the moment where this event
occurs. In particular, a sample path comparison immediately yields ψ(u) ≤ ψ̃(u), in

obvious notation, and thus by Lundberg’s inequality applied to R̃t we have ψ(u) ≤
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e−γu. Less trivial is a lower bound: we show that ψ(u) ≥ C−e
−γu for some C−.

This also strengthens the logarithmic asymptotics obtained via large deviations and
in particular excludes prefactors to e−γu like uα with −∞ < α < ∞, ec1uα

with
0 < α < 1 etc.
The process R̃t, referred to as the batch process in the rest of the paper, also plays
a major role in the heavy-tailed case, where we are able to show a result slightly
stronger than for the light-tailed case, namely that both ψ(u) and ψ(u, t) have
exactly the same asymptotics as for the batch process. This is achieved by bounding
ψ(u) from below using another batch process R̆t with all the claims originating from
the same catastrophic event shifted to some suitable later point in time.
One should note that the stationary version of (2) is a Poisson cluster process and
hence, in particular, for the stationary model the infinite-time ruin estimate for
heavy tails given in Theorem 5.2 is a consequence of Theorem 3.1 in Asmussen et
al. [4], see Theorem 12.6.3 of Rolski et al. [25]. However, the explicit structure of
our model allows a direct approach that also covers the non-stationary case as well
as a finite time horizon, see Section 5.
Finally, in Section 6 we outline one further application of large deviations theory
for a modification of the model where the premimum rate is not fixed at c but
dynamically adjusted according to past claims experience.

2 Moment-generating functions

The integrated process Λt =
∫ t

0
λs ds is given by

Λt = λ t+
∑

n∈N

H(t− Tn, Yn) +

∫ t

0

νs ds .

For the stationary case (i.e. with (4)), this amounts to

Λt = λ t+
∑

n∈N

H(t− Tn, Yn) +
∑

n∈Z−

(H(t− Tn, Yn) −H(−Tn, Yn)).

From the definition of a Cox process with integrated intensity process Λt, the mo-
ment generating function (MGF) of the aggregate claims St is given by

E(eαSt) = EΛt(e
(MX(α)−1)Λt).

Let us first look at a slightly more general situation, where the distribution of a claim
Xj is allowed to depend on the time Tj when it actually occurs, i.e. Xj = Xj(Tj).

Proposition 2.1. Suppose (5) and Xj = Xj(Tj), j = 1, 2, . . . Then the MGF of the
aggregate claim size at time t with underlying Poisson shot noise intensity process
(2) is given by

E(eα St) = E(eα
PNt

j=1 Xj(Tj)) = exp
(
λ

∫ t

0

(MX(w)(α) − 1) dw + ρ

∫ t

0

(µ(s) − 1) ds
)

with µ(s) = EY

(
e

R t
s

h(w−s,Y )(MX(w)(α)−1) dw
)
.
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Proof. We decompose the intensity process (2) into a sum of inhomogeneous Poisson
intensities, each corresponding to the response h of a particular shot. Let Zi (i =
1, 2, . . .) denote the MGF of the aggregate claims up to time t that are due to
the intensity response to the shot at Ti. Then Zi (i = 1, 2, . . .) are independent.
Fixing the time t, E(Zi) = µ(s), where s = Ti < t (note that µ(s) depends on t).

Denote Vs :=
∏Ns

i=1 Zi and f(s) := E(Vs). Clearly, E(eα St) = eλ
R t

0
(MX(w)(α)−1) dw f(t),

since the summand λ in (2) corresponds to an additional independent compound
Poisson process with time-dependent claims. It remains to determine f(t). The
usual conditioning on whether an event occurs in (s, s+ h] or not gives

f(s+ h) = (1 − ρ h)f(s) + ρ hf(s)µ(s),

so the logarithmic derivative of f is ρ(µ(s) − 1), i.e. f(t) = exp(ρ
∫ t

0
(µ(s) − 1)ds).

2

Corollary 2.2. For the aggregate claim size St in model (1) with (5), we have

log E(eαSt) = λ t (MX(α) − 1) + ρ

∫ t

0

(
EY (e(MX(α)−1)H(s,Y )) − 1

)
ds (6)

(see also Daley & Vere-Jones [6]). For a general process νt, (6) extends to

log E(eαSt) = λ t (MX(α) − 1) + ρ

∫ t

0

(
EY (e(MX(α)−1)H(s,Y )) − 1

)
ds

+ log E

(
e(MX (α)−1)

R t
0 νs ds

)
. (7)

For later use, we emphasize the following consequence:

Corollary 2.3. Assume that νt satisfies

lim
t→∞

1

t
log E

(
e(MX(α)−1)

R t

0
νs ds

)
= 0, (8)

then 1
t

log Eeα(St−c t) → κ(α) as t→ ∞ where

κ(α) = λ(MX(α) − 1) − α c+ ρ
(
EY (e(MX(α)−1)H(∞,Y )) − 1

)
. (9)

Proof. From (7) we have

κt(α) := log E(eα(St−c t)) = (λ(MX(α) − 1) − α c) t

+ ρ

∫ t

0

(
EY (e(MX(α)−1)H(s,Y )) − 1

)
ds+ log E

(
e(MX(α)−1)

R t
0 νs ds

)
. (10)

Thus κ(α) := limt→∞ κt(α)/t is given by (9). 2

Proposition 2.4. If E

(
H(t, Y ) e(MX(α)−1)H(∞,Y )

)
<∞ for some t > 0 and

∫ ∞

0
(EY (e(MX(α)−1)(H(t+w,Y )−H(w,Y ))) − 1) dw < ∞ for all t > 0, then the stationary

version of the intensity process λt with (4) fulfills (8).
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Proof. Let

m(s, t) = E

∏

n∈Z−: Tn∈[−s,0]

e(MX(α)−1)(H(t−Tn ,Yn)−H(−Tn,Yn)),

so that E

(
e(MX(α)−1)

R t

0
νs ds

)
= m(∞, t). As in the proof of Proposition 2.1, condi-

tioning on an event in [−s− h,−s) of the Poisson process on the negative half-line
yields

m(s+ h, t) = (1 − ρ h)m(s, t) + ρ hm(s, t) EY (e(MX(α)−1)(H(t+s,Y )−H(s,Y ))),

which leads to

m(s, t) = exp

(
ρ

∫ s

0

(EY (e(MX(α)−1)(H(t+w,Y )−H(w,Y ))) − 1) dw

)
.

De’l Hopital’s rule gives

lim
t→∞

logm(∞, t)

t
= lim

t→∞
ρ (MX(α) − 1)

∫ ∞

0

EY

(
h(t+ w, Y ) e(MX(α)−1)(H(t+w,Y )−H(w,Y ))

)
dw

≤ ρ (MX(α) − 1) lim
t→∞

∫ ∞

0

EY

(
h(t+ w, Y ) e(MX(α)−1)H(∞,Y )

)
dw

= ρ (MX(α) − 1) lim
t→∞

EY

(
H(t, Y ) e(MX(α)−1)H(∞,Y )

)
= 0,

where the latter follows by monotone convergence under the assumption of the
proposition. 2

Corollary 2.5. For the multiplicative model (3), assume that MY (MX(α)−1) <∞
for all α in some open interval J and that µg =

∫ ∞

0
tg(t)dt <∞. Then the stationary

version of the intensity process λt, corresponding to νt =
∑

n∈Z− g(t− Tn)Yn, fulfills
(8) for all α ∈ J .

Proof. For MX(α) < 1, the first condition of Proposition 2.4 and the finiteness
of m(∞, t) trivially hold, so that (8) is fulfilled. In the case MX(α) ≥ 1, from
H(∞, Y ) = Y the finiteness of

E

(
H(t, Y ) e(MX(α)−1)H(∞,Y )

)
≤ E

(
Y e(MX (α)−1)Y

)

follows by choosing α∗ ∈ J with α∗ > α and using MY (MX(α∗)− 1) <∞. Further,
∫ ∞

0

(EY (e(MX(α)−1)(H(t+w,Y )−H(w,Y ))) − 1) dw ≤

∫ ∞

0

(EY (e(MX(α)−1)Y G(w)) − 1) dw

= lim
A→∞

[
w(EY (e(MX(α)−1)Y G(w)) − 1)

]A

0
+

∫ ∞

0

wg(w)EY e
(MX(α)−1)Y G(w) dw

≤ lim
A→∞

[
A(EY (e(MX (α)−1)Y G(A)) − 1)

]
+

∫ ∞

0

wg(w)EY e
(MX(α)−1)Y dw

∼ lim
A→∞

[
AEY (MX(α) − 1)G(A)

]
+ µgMY (MX(α) − 1)

= 0 + µgMY (MX(α) − 1) <∞

where we used µg <∞ to infer AG(A) → 0. 2
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3 The aggregate claim size St

3.1 A general ordering result for St

We state a general ordering result on the aggregate claim amount that holds for
arbitrary stationary compound Cox processes. Recall that a random variable X is
said to dominate a random variable Y in convex order (X ≥cx Y ), if E(φ(X)) ≥
E(φ(Y )) for all convex functions φ.

Proposition 3.1. Let St =
∑Nt

i=1Xi for a Cox process Nt with stationary intensity

process λt and E(λt) = λ∗ for all t ≥ 0, and S∗
t =

∑N∗

t

j=1Xj, where N∗
t denotes a

homogeneous Poisson process with intensity λ∗, which is independent of Nt. Then

St ≥cx
S∗

t .

Remark 3.1. For arbitrary random variables X, Y with EX = EY , the relation
X ≥cx Y is equivalent to

E
(
(X − a)+

)
≥ E

(
(Y − a)+

)
(11)

for all a (given that the expectation exists), which is the stop-loss or, equivalently,
the increasing convex order (see e.g. Theorem 3.A.16 of Shaked & Shanthikumar
[27]). Thus the above result immediately entails that the stop-loss premium in the
portfolio is larger for the model (1) in stationarity than for the averaged Cramér-
Lundberg model.

Proof. Since Λt ≥cx λ
∗ t, it follows that for any t > 0,

E
(
Nt −K

)+
≥ E

(
N∗

t −K
)+

(12)

for each K ≥ 0 (see for instance Kaas et al. [18, Example 10.4.6]).
Together with E(Nt) = E(N∗

t ), this implies Nt ≥cx N∗
t (cf. Remark 3.1). The

assertion then follows by translating the ordering to the compound sums of the i.i.d.
individual claims, using for instance Theorem 2.A.7 of [27]. 2

3.2 Another representation of St

Let us assume (5) for the remainder of this section. Rewriting Corollary 2.2, we can
find another interpretation for the aggregate claim amount St in the shot-noise Cox
model:

Proposition 3.2. For a fixed time t, the aggregate claim amount St in model (1)
with (5) is compound Poisson with intensity λ + ρ and time-dependent claim size

distribution X̃(s) with moment-generating function

M eX(s)(α) =
ρ

λ + ρ
M bX(s)(α) +

λ

λ+ ρ
MX(α) (13)

and
M bX(s)(α) = EY (e(MX(α)−1)H(t−s,Y )). (14)
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Proof. From (6), the cumulant generating function of St is given by

log E(eαSt) = λ t (MX(α) − 1) + ρ

∫ t

0

(
EY (e(MX (α)−1)H(t−s,Y )) − 1

)
ds

= (λ+ ρ)

∫ t

0

(
M eX(s)(α) − 1

)
ds. 2

Clearly, X̃(s) is a mixture of the original claim size distribution X and the time-

dependent X̂(s). The latter can be interpreted as a random sum Z =
∑N(Y )

i=1 Xi

where N(Y ) is Poisson with rate H(t − s, Y ) given Y and independent of the Xi.
That is, all claims in the time interval [s, t] that are due to the intensity shot at time
s are collected in one single batch claim and these batch claims are independent of
each other (this is the finite-time horizon analogue of the batch process introduced
in Section 1). From either this batch interpretation or directly from (14) with

α → −∞, one deduces that X̂(s) has an atom at zero with weight

P(X̂(s) = 0) =

∫ ∞

0

e−H(t−s,Y )dFY (y). (15)

Let us investigate further the structure of the time-dependent random variable X̂(s)
for the multiplicative model (3).

Proposition 3.3. Suppose h(t, Y ) = g(t) Y .

(a) The moments of X̂(s) are given by

µ bX(s), n =
∑

k1+2k2+···+nkn=n

n!

k1! · · ·kn!
µY,k

(µX,1

1!

)k1

· · ·
(µX,n

n!

)kn

G(t− s)k,

where k1, . . . , kn are non-negative integers and k = k1 + · · ·+ kn.

(b) If Y ∼ Exp(ν), then

M bX(s)(α) =
ν

ν +G(t− s)
+

G(t− s)

ν +G(t− s)
MZ∗(s)(α), (16)

with MZ∗(s)(α) = ν
ν+G(t−s)

MX (α)
−G(t−s)

.

Proof. Using

M bX(s)(α) = MY

(
(MX(α) − 1)G(t− s)

)
, (17)

assertion (a) directly follows from Faá di Bruno’s formula (see e.g. [15]). For (b),
MY (α) = ν

ν−α
leads to

M bX(s)(α) =
ν

ν +G(t− s)

1

1 − G(t−s)
ν+G(t−s)

MX(α)

=
ν

ν +G(t− s)

∞∑

k=0

(
G(t− s)

ν +G(t− s)

)k

MX(α)k,
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so that the distribution function F bX(s) of X̂(s) can be expressed through the weighted
renewal function

F bX(s)(α) =
ν

ν +G(t− s)

∞∑

k=0

(
G(t− s)

ν +G(t− s)

)k

F ∗k
X (α),

which is equivalent to (16). 2

Equation (16) identifies X̂(s) as a mixture of a random variable degenerate at 0
(corresponding to no claim in (s, t] due to the shot at s) and a time-dependent ran-
dom variable Z∗(s), the weights itself depending on time. For instance, X ∼ Exp(η)
leads to Z∗(s) ∼ Exp( ν η

ν+G(t−s)
).

The following generalization is at hand. Recall (e.g. [2]) that when X is phase-
type (PH) with representation (α, U,E), then α is the initial vector, U is the phase
generator and E is the set of non-absorbing states. Write ∆ for the absorbing state
(for convenience taken to be the same for all PH distributions in question) and let
γj∆(s) = 1−

∑
k γjk(s) where the γjk are defined below, ui∆(s) = −

∑
i′ uii′, vj∆(s) =

−
∑

j′ vjj′.

Proposition 3.4. Suppose that X is PH with representation (α, U,E) and Y is PH

with representation (β, V, F ). Then X̂(s) as defined in (17) is PH with representa-
tion

(
α bX(s), U bX(s), E × F

)
where elements i, j, resp. ij, i′j′ of α bX(s), U bX(s) are given

by ∑

k

βkγkj(s)αi , resp. uii′δjj′ + ui∆γjj′αi′

where Γ(s) = (γjk(s)) is the matrix

Γ(s) =

∫ ∞

0

eV bG(t− s) e−G(t−s)b db.

In particular, X̂(s) has an atom at zero with weight MY (G(t− s))).

Proof. The interpretation of Γ(s) is as the transition matrix for the Markov process
underlying Y observed at the Poisson(G(t− s)) epochs only. We think of state ij in
E×F as belonging to an X generated by a Poisson event when the Markov process
for Y is in state j. The initial vector for X̂(s) is

∑
j βjγj∆(s) (the probability of no

Poisson events before Y ) at ∆ and
∑

k βkγkj(s)αi at ij. Finally, the transition rate
from ij to i′j′ is

uii′δjj′ + ui∆γjj′αi′

(the first term represents a change of state for the Markov process underlying the X
at a fixed Poisson event and the second a termination at one Poisson event followed
by restart at the next, falling before Y ), and the absorption rate in ij is ui∆γj∆(s).

2
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Remark 3.2. The above mixing structure indicates a straight-forward way to sim-
ulate the aggregate claim size for a given time horizon t. First, one simulates a
homogeneous Poisson process with intensity λ + ρ. For an event at time s < t, a
claim with distribution function FX occurs at s with probability λ

λ+ρ
. Otherwise, a

claim with time-dependent distribution function F bX(s) occurs (which has size zero

with probability MY (G(t − s)), see (15)). This can also be interpreted as an inde-
pendent ”thinning” of the compound Poisson(λ + ρ)-process.

3.3 A saddlepoint approximation for St

We briefly mention that the knowledge of the function κt(α) also allows to apply
a saddlepoint approximation for the tail of the aggregate claim size St for fixed t
in the usual way (see for instance [2, p.317] for details). To that end, consider the
(tilted) probability measure

Pθ(St ∈ dx) = E(eθSt−κt(θ) 1{A∈dx}),

where θ = θ(x) is chosen in such a way that Eθ(St) = κ′t(θ) = x. As x → ∞, θ
approaches the right abscissa of convergence α0 = sup{α : κt(α) < ∞}, given that
limθ→α0 κ

′
t(θ) = ∞. From (10), we get Varθ(St) = κ′′t (θ) with

κ′′t (θ) = λ tM ′′
X(θ)+ρ

∫ t

0

EY

(
(H2(s, Y )M ′

X(θ)2+H(s, Y )M ′′
X(θ)) e(MX(θ)−1)H(s,Y )

)
ds

+
E

(
e(MX(θ)−1)

R t
0 νs ds(M ′

X(θ)2 (
∫ t

0
νs ds)

2 +M ′′
X(θ)

∫ t

0
νs ds)

)

E(e(MX (θ)−1)
R t

0
νs ds)

−

(
M ′

X(θ) E(e(MX(θ)−1)
R t

0
νs ds

∫ t

0
νs ds)

)2

E2(e(MX(θ)−1)
R t
0 νs ds)

.

Heuristically, for x → ∞ (and thus θ → α0) the number of claims under the tilted
measure Pθ goes to infinity (cf. Section 4.2) and a central limit result holds, namely
that the limiting Pθ-distribution of (St − x)/

√
κ′′t (θ) is standard normal, eventually

leading to

P(St > x) ∼
e−θx+κt(θ)

θ
√

2π κ′′t (θ)
as x→ ∞.

For appropriate conditions to make this argument rigorous, we refer to Jensen [14].

4 Ruin with light-tailed claims

4.1 Infinite time ruin estimates via large deviations

The adjustment coefficient, in the logarithmic sense, is defined by

γ = − lim
u→∞

1

u
logψ(u). (18)

10



In order to show its existence and to determine its value, we make use of the following
consequence of the Gärtner-Ellis theorem from large deviations which is due to
Glynn & Whitt [13] (see also Nyrhinen [24] and Asmussen [1]):

Theorem 4.1. Let {Zn}n∈N be a sequence of real random variables, Sn = Z1 + · · ·+
Zn, ψ(u) = P(Sn > u for some n) and assume that there exist a finite function κ
and positive constants γ, ε such that

(i) n−1 log E(eθSn) → κ(θ) for |θ − γ| < ε,

(ii) κ(γ) = 0, κ′(γ) > 0,

(iii) E(eγSn) <∞ for all n.

Then (18) holds.

Theorem 4.2. Let the moment-generating function MX(α) = E(eα X) of the claim
size distribution FX and E exp(αH(∞, Y )) exist for all α in a neighborhood of the
origin and be steep. Then, for the risk process (1) with claim occurrence according
to the shot-noise intensity process (2) satisfying (8), the Cramér-Lundberg approxi-
mation

lim
u→∞

1

u
logψ(u) = −γ

holds, where γ is the positive solution of κ(γ) = 0 and κ is given by (9).

Proof. Considering a discrete skeleton {Snh}n∈N, Corollary 2.3 implies that κnh(α)/n
has a limit of the form

κ(h)(α) = hκ(α).

Since an easy calculation shows that (κ(h)(α))′′ > 0 for every α ≥ 0, κ(h)(0) = 0 and
(κ(h))′(0) = h (µ− c) < 0 by the net profit condition, it follows that (κ(h))′(γ) > 0.
Here the required steepness implies that κ(α) is unbounded in a neighborhood of its
abscissa of convergence and hence guarantees the existence of the solution γ > 0.
Consequently, Theorem 4.1 applies and P(maxn(Snh − c n h) > u) ∼ e−γu in the
logarithmic sense. Finally, since

max
t

(St − c t) ≥ max
n

(Snh − c n h) ≥ max
t

(St − c t) − c h

(see also [9]), the maximum over nh can be replaced by the continuous time maxi-
mum over t and the theorem follows from ψ(u) = P(maxt(St − c t) > u). 2

A refinement of the above result will be given in Theorem 4.5 below.

Proposition 4.3. Let γ∗ denote the adjustment coefficient of the classical compound
Poisson model with constant intensity β and otherwise identical parameters. Then
γ < γ∗.

11



Proof. The defining equation for γ∗ in the classical model reads

β (MX(γ∗) − 1) = γ∗ c. (19)

From EY (e(MX(γ)−1)H(∞,Y ) − 1) > EY

(
H(∞, Y )

)
(MX(γ) − 1) (given that Y is not

degenerate at zero), we have from (9)

λ
(
MX(γ) − 1

)
− γ c+ ρEY

(
H(∞, Y )

) (
MX(γ) − 1

)
< 0,

which by (19) and the definition of β gives γ < γ∗. 2

Remark 4.1. For the stationary model with νt given by (4), this monotonicity result
also follows directly from Theorem 3.1 by choosing φ(x) = eαx as the convex function
in the expectation.

Let η > 0 denote the security loading defined by

c = (1 + η)µ.

The following result gives properties of γ and γ∗ for the limit η → 0:

Proposition 4.4. As η → 0,

γ∗(η) =
2µX

µX,2

η + O(η2), (20)

γ(η) =
2µX

µX,2

1

1 + ρ E(H2(∞,Y ))
λ+ρ E(H(∞,Y ))

η + O(η2). (21)

Proof. In view of κ(γ) = 0 we consider a Taylor expansion of the equation

exp[H(∞, y)(eγx − 1)] = 1 +
γ c

ρ
−
λ

ρ
(eγx − 1)

with respect to x and H(∞, y) up to second order, leading to

(γ x+
γ2x2

2
)H(∞, y)+

H2(∞, y)γ2x2

2
=
γ

ρ
(1+η)µX β−

λ

ρ
(γ x+

γ2x2

2
)+O(γ3).

Taking expectations with respect to x and y (note that X and Y are independent),
(21) follows after a little algebra. The expansion (20) follows similarly; for the latter
see also [1]. 2

Remark 4.2. Note that Proposition 4.4 implies

γ′(η)|η=0 =
2µX

µX,2

1

1 + ρ E(H2(∞,Y ))
λ+ρ E(H(∞,Y ))

< (γ∗)′(η)|η=0.

12



Remark 4.3. In case the Poisson shot noise process has multiplicative shots (cf. (3)),
the above formulas simplify. For instance,

κt(α) = (λ(MX(α) − 1) − α c) t

+ ρ

∫ t

0

(
MY

(
(MX(α) − 1)G(s)

)
− 1

)
ds+ log E

(
e(MX(α)−1)

R t

0
νs ds

)

and correspondingly the defining equation (9) for the Lundberg coefficient γ reduces
to

κ(α) = λ(MX(α) − 1) − α c+ ρ
(
MY

(
(MX(α) − 1)

)
− 1

)
.

Moreover, from (21) we obtain for η → 0

γ(η) =
2µX

µX,2

1

1 +
ρ µY,2

λ+ρµY

η + O(η2).

Remark 4.4. Considering the shot noise part only (i.e. λ = 0 and (5)), it follows
from (9) that the function Ha(t, Y ) = H(a t, Y ) leads, for any a > 0, to the same
adjustment coefficient γ. Thus, γ also represents the adjustment coefficient for the
limit a → ∞, which is the batch process mentioned in the introduction, where ac-
cording to a homogeneous Poisson process with intensity ρ, groups of (independent)
individual claims occur and the number of claims in each group is determined by
a Poisson random variable Nb with parameter H(∞, Y ). Indeed, in this case (9) is
just the classical compound Poisson Lundberg equation with individual claim size∑Nb

j=1Xj.

4.2 The path to ruin

We now look at the path leading to ruin, given it occurs. For notational convenience,
assume (5). From [13] it follows that, for large u, ruin occurs roughly at time u/κ′(γ)
and as if the cumulant generating function of Su/κ′(γ) is changed from κu/κ′(γ)(α) to

κu/κ′(γ)(α + γ) − κu/κ′(γ)(γ) = (λ(MX(α + γ) −MX(γ)) − α c)
u

κ′(γ)

+ ρ

∫ u/κ′(γ)

0

(EY (e(MX (α+γ)−1)H(s,Y )) − EY (e(MX (γ)−1)H(s,Y ))) ds.

For the multiplicative model (3) this can be rewritten as

κu/κ′(γ)(α + γ) − κu/κ′(γ)(γ)

=
(
λ∗(MX∗(α)−1)−α c

) u

κ′(γ)
+

∫ u/κ′(γ)

0

ρ∗(s)
(
MY ∗(s)((MX∗(α)−1)G(s))−1

)
ds,

where

λ∗ = λMX(γ), MX∗(α) =
MX(α+ γ)

MX(γ)
, ρ∗(s) = ρMY (v(γ, s)) and

MY ∗(s)(α) =
MY (MX(γ)α+ v(γ, s))

MY (v(γ, s))
, where v(γ, s) = (MX(γ) − 1)G(s).

13



In other words, the sample path leading to ruin is again a compound Cox pro-
cess of Poisson shot noise type with the parameters changed in the following way:
the intensity process λt is multiplied by the constant MX(γ), the jump distribu-
tion Y is exponentially tilted by the (time-dependent) factor v(γ, s), the claim size
distribution is exponentially tilted by the factor γ, and the Poisson process under-
lying the shot noise is now inhomogeneous with ρ∗(s) increasing from ρ∗(0) = ρ to
ρ∗(u/κ′(γ)) = ρMY ((MX(γ) − 1)G(u/κ′(γ))). This amounts to a change of drift of
the surplus process from

c−
∂

∂t
E (St) = c− µX

(
λ+ ρEY (H(t, Y ))

)

to

c−
∂

∂t
E (S∗

t ) = c−M ′
X(γ)

(
λ+ ρEY

(
H(t, Y ) e(MX(γ)−1)H(t,Y )

))
.

Hence, as a function of t, the drift of the path to ruin increases from c−λM ′
X(γ) (for

t = 0) to the finite limit c−M ′
X(γ)

(
λ+ρEY

(
H(u/κ′(γ), Y ) e(MX(γ)−1)H(u/κ′(γ),Y )

))
→

c−M ′
X(γ)

(
λ+ ρEY

(
H(∞, Y ) e(MX(γ)−1)H(∞,Y )

))
.

Remark 4.5. For the special case g(s) = e−δ s, the above change of measure was
derived in [7] by PDMP techniques in the framework of the Esscher equivalent
measure to price insurance-linked contracts on the market. Note that the large
deviations approach above is a particularly transparent alternative to derive this
result.

4.3 Finite-time ruin probabilities

Denote with ψ(u, T ) = P(τ(u) < T ) the probability of ruin up to time T . Let
a ∈ R

+ and αa be defined as the unique solution of κ′(αa) = 1
a
, where the convex

function κ(α) is given by (9). Using the same skeleton argument as in Theorem
4.1, one can apply the large deviation estimate for the finite-time ruin probability
of Nyrhinen [23] to our risk process, leading to

lim
u→∞

1

u
logψ(u, a u) = −γa,

with

γa =

{
αa − a κ(αa), a < 1

κ′(γ)
,

γ, a ≥ 1
κ′(γ)

.

4.4 Beyond large deviations

Let us now return to the compound Poisson batch process R̃t introduced in Section
1, which is obtained by moving all arrivals of claims in the batch of claims caused
by a catastrophic event at Tn to Tn. This risk process has intensity λ̃ = λ + ρ for
arrivals of claims and a claim size distribution F eX which is a mixture of FX and

the distribution of a random sum Z =
∑N(Y )

i=1 Xi where N(Y ) is Poisson with rate

14



H(∞, Y ) given Y and independent of the Xi; the weights are λ/λ̃, resp. ρ/λ̃, and
the premium rate is c (in the notation of (13), we look at the case t = ∞, which

makes X̃(s) = X̃ time-independent).
Let us introduce the following random variables associated with a catastrophic event:
N(Y ), the number of claims triggered by the event; Z =

∑N(Y )
1 X ′

i, the total claim
amount caused by the event; and L, the time from the event until the last of the
N(Y ) claims occurs. Here, again, N(Y ) is Poisson with rate H(∞, Y ) given Y and

independent of the X ′
i. Obviously, ψ(u) ≤ ψ̃(u).

The following is a refinement of Theorem 4.1:

Theorem 4.5. For some constant C− ≤ 1, C−e
−γu ≤ ψ(u) ≤ e−γu for all u.

Proof. The upper inequality is clear from Lundberg’s inequality for ψ̃(u). For the

lower, note that it is well known that R̃eτ(u)− has a limit distribution given τ̃(u) <∞
as u→ ∞ (see for instance Theorem 2 of Schmidli [26]). Hence there exists A such
that

P
(
τ̃(u) <∞, R̃eτ(u)− ≤ A

)
≥ (1 − ǫ)ψ̃(u) (22)

for all large u.
Define the pre-τ̃ (u) occupation measure Q(u) by

Q(u)(F ) = E

∫ eτ(u)

0

I
(
(S̃t − c t) ∈ F

)
dt , F ⊆ (−∞, u) .

Then the l.h.s. of (22) is
∫ u

u−A

λ̃ F eX(u− x)Q(u)(dx)

which is bounded above by λ̃Q(u)(u − A, u). Clearly, we can choose ℓ1 with d =

P(Z > A, L ≤ ℓ1) > 0. Every ruin event for R̃t will also cause ruin for Rt, if the
initial surplus u is lowered by c ℓ1, given that the variable L corresponding to the
batch claim causing ruin does not exceed ℓ1. Moreover, considering the situation
only where the surplus prior to ruin is bounded above by A, we obtain a lower bound
for the ruin probability of Rt, getting

ψ(u− cℓ1) ≥

∫ u

u−A

λ̃P(Z > u− x, L ≤ ℓ1)Q
(u)(dx) ≥ λ̃ Q(u)(u− A, u) d

≥ d(1 − ǫ)ψ̃(u) .

Appealing to the Cramér-Lundberg asymptotics for ψ̃(u), the proof is complete. 2

5 Ruin with heavy-tailed claims

Define the integrated tail distribution F I
X of FX by

F I
X(x) =

1

µX

∫ x

0

FX(z) dz.
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A distribution function F is said to be in the class S∗, if

lim
x→∞

∫ x

0

F (x− y)

F (x)
F (y) dy = 2

∫ ∞

0

F (x) dx

and F (x) > 0 for all x (cf. Klüppelberg [16]). In particular, F ∈ S∗ implies that
both F ∈ S and FI ∈ S (where S is the class of subexponential distributions).
Lognormal, Weibull and regularly varying distributions with finite mean all belong
to S∗.
In addition to FX ∈ S∗, we will also throughout need the condition

E exp

{
α

∫ ∞

0

νs ds

}
< ∞ for some α > 0 . (23)

Proposition 5.1. For the stationary model, (23) is equivalent to

∫ ∞

0

(
EeαH(s,Y ) − 1

)
ds <∞. (24)

In particular, for the multiplicative model a sufficient condition for (23) to hold is
EeαY <∞ and G(t) = O(t−β) for some β > 1.

Proof. By a similar argument as in the proof of Proposition 2.4, one gets

E exp

{
α

∫ ∞

0

νs ds

}
= exp

{
ρ

∫ ∞

0

(
EeαH(s,Y ) − 1

)
ds

}
,

and consequently (24). For H(s, Y ) = Y G(s), assume w.l.o.g. G(t) ≤ t−β , t ≥ 1.
Clearly, the integral from 0 to 1 can be made finite, whereas substituting z = t−β ,
the integral from 1 to ∞ is, for β > 1,

E

∫ 1

0

1

β z1+1/β

(
eαY z − 1

)
dz = E

(
1 − eα Y + αY

∫ 1

0

eα Y zz−1/β dz

)

≤ 1 +
αβ

β − 1
E(Y eαY ) <∞. 2

5.1 Infinite time ruin probabilities

Theorem 5.2. Assume FX ∈ S∗, (23) and EeαH(∞,Y ) <∞ for some α > 0. Then

ψ(u) ∼
µ

c− µ
F

I

X(u) . (25)

In the proof, we shall employ coupling with the batch process R̃t discussed in Section
4.4 (together with the notation used there). When νt ≡ 0, then clearly S̃t ≥ St in the

sense of sample paths, and so it is trivial that ψ(u) ≤ ψ̃(u). We will see in Lemma 5.3

that ψ̃(u) has the claimed asymptotics, establishing the asymptotic upper bound in
Theorem 5.2.
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Lemma 5.3. Under the assumptions of Theorem 5.2, ψ̃(u) ∼
µ

c− µ
F

I

X(u) .

Proof. Conditioning upon Y , we get

EzN(Y ) = E exp {H(∞, Y )(z − 1)}

which, under the assumptions of the above theorem, is finite for some z > 1 (implying
that P(N(Y ) = n) decreases geometrically fast in n). It is well known ([2, p. 259]
or [11, p. 45]) that this implies

P
(
Z > x

)
∼ EH(∞, Y )FX(x) (26)

and hence

F eX(x) ∼
λ

λ̃
FX(x) +

ρEH(∞, Y )

λ̃
FX(x) =

β

λ̃
FX(x),

F
I
eX(x) ∼

β

λ̃µ eX

∫ ∞

x

FX(z) dz =
βµX

λ̃µ eX
F

I

X(x) =
µ

λ̃µ eX
F

I

X(x) = F
I

X(x) ;

for the last equality, note that

µ eX =
λ

λ̃
µX +

ρEH(∞, Y )

λ̃
µX =

µ

λ̃
.

Finally, letting r̃ = λ̃µ eX/c = µ/c, we have by standard theory [2, p. 259] or [11, p.
43]) that

ψ̃(u) ∼
r̃

1 − r̃
F

I
eX(x) =

µ

c− µ
F

I

X(u). 2

Proof of Theorem 5.2. We first assume νt ≡ 0. Consider the aggregate claim
process S̆t obtained from St by moving all claims triggered by a catastrophic event
and occurring at most ℓ0 time units later to occur precisely ℓ0 time units after
the catastrophic event, whereas claims occurring more than ℓ0 time units later are
deleted. Then ψ(u) ≥ ψ̆(u) for all u. Standard results on translation of Poisson
processes imply that the restriction of S̆t − ct to t ∈ [ℓ0,∞) is an ordinary Cramér-
Lundberg risk process, and reasoning as in the proof of Lemma 5.3, we obtain

P
(

sup
t∈[ℓ0,∞)

(S̆t − S̆ℓ0 − c(t− ℓ0)) > u
)

∼
µ(ℓ0)

c− µ(ℓ0)
F

I

X(u) (27)

where µ(ℓ0) = µX

(
λ+ ρEH(ℓ0, Y )

)
. Now

sup
t∈[0,∞)

(S̆t − ct) ≥ (S̆ℓ0 − cℓ0) + sup
t∈[ℓ0,∞)

(
S̆t − S̆ℓ0 − c(t− ℓ0)

)
. (28)

Here the two terms are independent. Since S̆ℓ0 is the sum of a Poisson(λℓ0) number
of Xi’s, P(S̆ℓ0 − cℓ0 > u) ∼ λℓ0 FX(u), which is dominated by (27). Hence the tail
of supt∈[0,∞)(S̆t − ct) is asymptotically given by (27), and we get

lim inf
u→∞

ψ(u)

F
I

X(u)
≥ lim inf

u→∞

ψ̆(u)

F
I

X(u)
=

µ(ℓ0)

c− µ(ℓ0)
.
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Letting ℓ0 → ∞ and using µ(ℓ0) ↑ µ, we obtain

lim inf
u→∞

ψ(u)

F
I

X(u)
≥

µ

c− µ
.

Combining this with the bound ψ(u) ≤ ψ̃(u) and Lemma 5.3 completes the proof
when νt ≡ 0.
In the general case, the obtained asymptotics for νt ≡ 0 is clearly an asymptotic
lower bound. To get an upper, bound the tail of supt∈[0,∞)(St − ct) by the tail of

the independent sum of
∑M(ν)

1 Xi and the supremum when νt ≡ 0. Here M(ν)
denotes the Cox process resulting from νt and condition (23) implies that M(ν) has

exponential moments. Consequently (see again [2, p. 259]), the tail of
∑M(ν)

1 Xi is

asymptotically proportional to FX(u) = o(F
I

X(u)), so that the asymptotic behavior
of the tail of supt∈[0,∞)(St − ct) is given by the one for the case νt ≡ 0. 2

Remark 5.1. From Proposition 5.1, we see that Theorem 5.2 is in particular valid
for the stationary process with (4), given (24). For that case, (25) can in fact also be
deduced directly from Theorem 3.1 of Asmussen et al. [4] through the formulation
of λt as a stationary ergodic Poisson cluster process, see Theorem 12.6.3 of Rolski
et al. [25]. Alternatively, in this case the lower bound in Theorem 5.2 also follows
from ψ(u) ≥ ψ∗(u) (cf. [25, p.513]), where the latter refers to the averaged Cramér-
Lundberg process, which has the asymptotics of (25). However, our approach above,
which can be extended to general Poisson cluster processes, allows to establish the
result beyond the stationary setting (which was a crucial assumption in [25]) and,
at least in some cases (like the setting of Proposition 5.1), under weaker conditions.
Moreover, our approach leads to ruin estimates for the finite time horizon also (see
Section 5.2).

5.2 Finite-time ruin probabilities

Let e(u) = E(X − u|X > u) denote the mean excess function of the claim size
distribution. Note that for FX ∈ S, e(u) → ∞ for u→ ∞. Recall the definition of
the generalized extreme value distribution

Hξ(x) =

{
exp(−(1 + ξx)−1/ξ) if ξ 6= 0
exp(− exp(−x)) if ξ = 0,

where 1 + ξx > 0, and the usual notation FX ∈ MDA(Hξ) for FX being in the
maximum domain of attraction of Hξ. For our purposes, the case FX ∈ MDA(Hξ)
for some ξ < 0 is not of interest, since this property implies a finite right end-point
of the distribution function (see for instance [11]).
When considering the asymptotics of ψ(u, t) as u → ∞, we will consider the cases
t = e(u)T with T fixed, t/e(u) → 0 but t→ ∞ and finally t fixed (i.e., independent
of u) separately. In the first case:
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Theorem 5.4. Suppose that

lim
u→∞

e(u+ a)

e(u)
= 1 for any a > 0. (29)

If FX ∈ S∗ ∩ MDA(Hξ) for ξ ≥ 0, (23) and EeαH(∞,Y ) <∞ for some α > 0, then

ψ(u, e(u)T ) ∼ ψ(u)
(
1 + logHξ

(
(c− µ)T

))
. (30)

In particular, for regularly varying F
I

X with index −1/ξ, ξ > 0,

ψ(u, u T ) ∼ ψ(u)
(
1 − (1 + (c− µ)T )−1/ξ

)
,

and for FX ∈ S∗ ∩ MDA(H0),

ψ(u, e(u)T ) ∼ ψ(u)
(
1 − e−(c−µ)T

)
.

Proof. Almost identical to the proof of Theorem 5.2. It follows from [3] that the

asymptotics of ψ̃(u, e(u)T ) is as in (30), so the upper bound is clear when νt ≡ 0.
For the lower bound, note first that ψ(u, t) ≥ ψ̆(u, t) and proceed similarly as
in the proof of Theorem 5.2 to see that the asymptotics of ψ̆(u, e(u)T ) is indeed
as in (30). In particular, the tail of S̆ℓ0 − cℓ0 is again dominated by the tail of
supt∈[ℓ0,e(u)T )

(
S̆t − S̆ℓ0 − c(t − ℓ0)

)
. Finally, the case of a general νt is dealt with

exactly as when t = ∞, replacing the sup over [0,∞) by the sup over [0, e(u)T ).
The assertion for regularly varying tails follows from e(u) ∼ ξu. 2

Remark 5.2. Condition (29) on the mean excess function is fulfilled for all heavy-tail
distributions of practical interest (cf. [11, p. 296]).

In case of a growth rate b(u)T of the time horizon with b(u) = o(e(u)), Theorem
5.4 implies ψ(u, b(u)T ) = o(ψ(u)). The following theorem gives some more explicit
information for this case.

Theorem 5.5. If FX ∈ S∗ ∩ MDA(Hξ) with ξ ≥ 0, (23) and EeαH(∞,Y ) < ∞ for
some α > 0, then

ψ(u, b(u)T ) ∼ β FX(u) b(u)T,

when b(u) ↑ ∞ with b(u) = o(e(u)).

Lemma 5.6. If FX ∈ S∗ ∩ MDA(Hξ) with ξ ≥ 0, the following relation for the
finite-time ruin probability of a Cramér-Lundberg process holds:

ψCL(u, b(u)T ) ∼ λCL FX(u) b(u)T,

where λCL denotes the intensity of the underlying homogeneous Poisson process.

Proof. Consider the random walk Sn =
∑n

i=1 ξi with E(ξi) = 0 and Fξi
∈ S∗. Let

Md
σ := maxn≤σ(Sn − d n) for some stopping time σ of the random walk and some

constant d ≥ 0. According to a recent result of Foss et al. [12], one then has

P(Md
σ > u) ∼

∑

n≥1

P(σ ≥ n)F ξi
(u+ d n)
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as u → ∞, uniformly over all stopping times σ. Let h be fixed and choose ξi =∑N(h)
j=1 Xj − λCLµXh (implying Fξi

∈ S∗) and furthermore σ = b(u)T . Denote

the ruin probability of the discrete-time process R
(h)
CL,n (n ∈ N) (i.e. the Cramér-

Lundberg process viewed at time points nh only) by ψ
(h)
CL . The above result then

translates into

ψ
(h)
CL(u, b(u)T ) ∼

∑

n≥1

P(b(u)T ≥ nh)F ξi
(u+ (c− λCLµX)nh)

=
∑

1≤n≤b(u) T/h

F ξi
(u+ (c− λCLµX)nh).

It follows that

ψ
(h)
CL(u, b(u)T ) ≪

b(u)T

h
F ξi

(u+ (c− λCLµX)h) =
b(u)T

h
P




N(h)∑

j=1

Xj > u+ c h




∼ λCL b(u)T FX(u+ c h) ∼ λCL b(u)T FX(u)

and similarly

ψ
(h)
CL(u, b(u)T ) ≫

b(u)T

h
F ξi

(u+ (c− λCLµX) h b(u)T )

=
b(u)T

h
P




N(h)∑

j=1

Xj > u+ (c− λCLµX)h b(u)T + λCLµX h





∼ λCL b(u)T FX(u+ (c− λCLµX) h b(u)T + λCLµX h)

∼ λCL b(u)T FX(u),

where the last asymptotic relation uses

FX(u+ b(u)) ∼ FX(u),

and since b(u) = o(e(u)), the latter is fulfilled for any FX ∈ MDA(Hξ) (see for

instance equation (3.42) of [11]). Thus ψ
(h)
CL(u, b(u)T ) ∼ λCL b(u)T FX(u). From

max
t≤⌊b(u)T/h⌋ h

(St − c t) ≥ max
n≤b(u)T/h

(Snh − c n h) ≥ max
t≤⌊b(u)T/h⌋ h

(St − c t) − c h

one finally observes that for h→ 0, ψ
(h)
CL(u, b(u)T ) can be replaced by ψCL(u, b(u)T ).

2

Lemma 5.7. Let the random variables M,
(
N1(λ)

)
λ≥0

,
(
N2(λ)

)
λ≥0

, X1, X2, . . . all

be independent, such that Ni(λ) is Poisson(λ), X1, X2, . . . have distribution FX and
M ≥ 0 with EeαM <∞ for some α > 0. Then

pM(u) = P

(N1(M)+N2(λ)∑

i=1

Xi > u
)

∼ λFX(u)

when u, λ = λ(u) → ∞ with λ/e(u) → 0.
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Proof. The case M = 0 a.s. is implicitly contained in Lemma 5.6. Alternatively, for
most heavy-tail distributions of interest the statement also follows from Proposition
7.1 of Mikosch & Nagaev [22].
Now consider the case of a general M . What has been noted for M = 0, implies
that λFX(u) is an asymptotic lower bound for pM(u). To get an upper, we note
that pM(u) ≤ p′M(u) + p′′M(u) + p′′′M(u) where the three terms are defined as pM(u)
but with the added restrictions N1(M) +N2(λ) ≤ λ(1 + 2ǫ), resp. N2(λ) > λ(1 + ǫ),
resp. N1(M) > λǫ. Let z > 1 (to be specified later) and choose D such that
F

∗n

X (x) ≤ DznFX(x) for all n and x (which is always possible for FX ∈ S). Then

p′′M(u) ≤ DFX(u) E
[
zN1(M)+N2(λ) 1{N2(λ)>λ(1+ǫ)}

]

≤ DFX(u) E
(
zN1(M)

)
E

1/2
(
z2N2(λ)

)
P

1/2
(
N2(λ) > λ(1 + ǫ)

)

(by independence and Cauchy-Schwarz). Inserting the Chernoff bound for N2(λ)
yields

p′′M(u) ≤ DFX(u) E
(
zN1(M)

)
E

1/2
(
z2N2(λ)

)
e−λκ∗(ǫ)/2

= DFX(u) E
(
zN1(M)

)
eλ(z2−1−κ∗(ǫ))/2

where κ∗(ǫ) > 0 (with limit 0 as ǫ ↓ 0)). Similarly, since N1(M) has exponential
moments by the assumption on M , we have P

(
N1(M) > x

)
< E(eβ N1(M)) e−βx for

some β > 0 and get

p′′′M(u) ≤ DFX(u) E
[
zN1(M)+N2(λ) 1{N1(M)>λǫ}

]

≤ DFX(u) E
(
zN2(λ)

)
E

1/2z2N1(M)
P

1/2
(
N1(M) > λǫ

)

≤ DFX(u) eλ (z−1)
E

1/2z2N1(M)
E

1/2(eβ N1(M))e−βλǫ/2.

Choosing z such that

Ez2N1(M) <∞, z2 < 1 + κ∗(ǫ), z < 1 + βǫ/2,

both p′′M(u) and p′′′M(u) become o
(
FX(u)

)
and hence

lim sup
u→∞

pM(u)

λFX(u)
≤ lim sup

u→∞

p′M(u)

λFX(u)
≤ 1 + 2ǫ .

2

Proof of Theorem 5.5. For νt ≡ 0, we again have

ψ̆
(
u, b(u)T

)
≤ ψ

(
u, b(u)T

)
≤ ψ̃

(
u, b(u)T

)

for any ℓ0 > 0 in the process R̆t. From Lemma 5.6 one deduces ψ̃
(
u, b(u)T

)
∼

λ̃ b(u)T F eX(u) = β b(u)T FX(u). Moreover, from (28) it follows that ψ̆
(
u, b(u)T

)
∼

ψ̃
(
u, b(u)T

)
for ℓ0 ↑ ∞, since b(u) ↑ ∞ and thus the term S̆ℓ0 − cℓ0 in (28) is

asymptotically negligible.
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For arbitrary νt with (23), observe again that the above case νt ≡ 0 is an asymptotic
lower bound. Furthermore, from

ψ
(
u, b(u)T

)
≤ P(Sb(u)T > u) ≤ P


S̃b(u)T +

N1(M)∑

i=1

Xi > u


 ,

we get the upper bound as a consequence of Lemma 5.7 with M =
∫ b(u)T

0
νs ds. 2

Theorem 5.8. Assume FX ∈ S∗, (23) and EeαH(∞,Y ) <∞ for some α > 0. Then,
for a fixed time horizon T ,

ψ
(
u, T

)
∼

(
λT + ρ

∫ T

0

EY (H(s, Y )) ds+

∫ T

0

E(νs) ds

)
FX(u).

Proof. We have
P(ST − c T > u) ≤ ψ

(
u, T

)
≤ P(ST > u),

where ST =
∑NT

i=1Xi and NT is the shot-noise process generated by (2). Since under
the assumptions of the theorem, EeαΛT <∞ for some α > 0, it follows that

P(ST > u) ∼ E(ΛT )FX(u),

establishing the result. 2

6 An adaptive premium rule

Finally, we indicate an extension to a model with reserve-dependent premium rule,
introduced in [1] for the classical compound Poisson model. Here, instead of a
constant premium rate c = (1 + η) β µX , the premium rate c(t) at time t is adapted
to the claim experience in the portfolio through c(t) = (1 + η)St−/t. That is to say,
one fixes the security loading η and uses the natural estimator of β µX based upon
the information Ft−, where Ft = σ(Ss : 0 ≤ s ≤ t). Suppose (5). From

St −

∫ t

0

c(s) ds =
Nt∑

j=1

Xj − (1 + η)

∫ t

0

∑Nt

j=1Xj

s
ds =

Nt∑

j=1

Xj

(
1 − (1 + η) log

t

Ti

)
,

one can reinterpret the risk process as a compound Cox process with time-dependent
claims. From (10) and Proposition 2.1 we then arrive at

κt(α) = log E(eSt−
R t
0 c(s)ds) = λ

∫ t

0

MX

(
α

(
1 − (1 + η) log

t

s

))
ds− (λ+ ρ) t

+ ρ

∫ t

0

EY

(
e

R t
s

h(w−s,Y )(MX(α(1−(1+η) log t
w ))−1) dw

)
ds.
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Consequently,

κt(α)

t
= λ

∫ 1

0

MX (α (1 + (1 + η) log u)) ds− (λ+ ρ) + I(t),

where I(t) =
ρ

t

∫ t

0

EY

(
e

R t
s

h(w−s,Y )(MX(α(1−(1+η) log t
w ))−1) dw

)
ds.

It was shown in [1] that the first summand is equivalent to λE(eαX/(1+(1+η)αX)).
It then remains to show that the limit κ(α) = limt→∞ κt(α)/t exists and fulfills the
assumptions of Theorem 4.1, in which case one again obtains exponential estimates
for finite- and infinite-time ruin probabilities along the lines of Section 4. We illus-
trate this procedure for a specific example:

Example: For the multiplicative model h(t, Y ) = δ e−δt Y (δ > 0), X ∼ Exp(z1)
and Y ∼ Exp(z2), one obtains

I(t) =
ρ

t

∫ t

0

z1 ds

z1 + 1 − e−δ(t−s) −
∫ t

s
z2 δ e−δ(w−s)dw

z2−α(1−(1+η) log t
w)

= ρ z1

∫ 1

0

du

k(u, t)

with

k(u, t) = z1 + 1 − e−δu t −

∫ ut

0

z2 δ e
−δb db

z2 − α(1 + (1 + η) log(1 − u+ b/t))
.

Define furthermore

I = ρ z1

∫ 1

0

du

k(u)
with k(u) = z1 + 1 −

z2
z2 − α(1 + (1 + η) log(1 − u))

and assume α < z1z2/(1+z1). We want to show that I(t) → I as t→ ∞. In k(u, t),
we have 1 − u + b/t < 1 in the integral, so a lower bound for the denominator of
the integrand is z2 − α, and k(u, t) → k(u) pointwise is immediate by dominated
convergence. We further get

k(u, t) ≥ z1 + 1 − e−δut −

∫ ut

0

z2 δ e
−δb db

z2 − α

= z1 + 1 − e−δut − z2
1 − e−δut

z2 − α
= ζ +

α

z2 − α
e−δut ≥ ζ,

where ζ = z1 +1− z2/(z2 −α) is positive by the assumption α < z1z2/(1+ z1). One
more application of dominated convergence with ζ−1 as integrable majorant proves

I(t) → I = ρ


 z1

1 + z1
− z1 z2

e
z1z2

(1+z1)α(1+η)
− 1

1+η Ei
(

1
1+η

− z1z2

(1+z1)α(1+η)

)

(1 + z1)2 α(1 + η)


 ,

where

Ei(x) =

∫ x

−∞

et

t
dt = 0.577..+ log |x| + x+

x2

4
+ · · · , −∞ < x < 0
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denotes the Exponential Integral. Thus we obtain

κ(α) = λE

(
eαX

1 + (1 + η)αX

)
− (λ+ ρ)

+ ρ


 z1

1 + z1
− z1 z2

e
z1z2

(1+z1)α(1+η)
− 1

1+η Ei
(

1
1+η

− z1z2

(1+z1)α(1+η)

)

(1 + z1)2 α(1 + η)


 ,

which is a continuous function in [0, z1z2

1+z1
). One readily verifies that κ(0) = 0,

κ′(0) = −η (λ + ρ
z1z2

) < 0 and the convexity of κ(α). Given that κ(α) ↑ ∞ as
α ↑ z1z2

1+z1
, it follows that there is a unique adjustment coefficient γ ∈ (0, z1z2

1+z1
) with

κ(γ) = 0 and κ′(γ) > 0.
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[19] C. Kühn. Shot-noise processes. Encyclopedia of Actuarial Science (J.L. Teugels
& B. Sundt, eds.), 1556-1558, Wiley, Chichester, 2004.

[20] C. Macci, G. Stabile & G.L. Torrisi. Lundberg parameters for non standard
risk processes. Scand. Act. J., to appear, 2005.

[21] C. Macci & G.L. Torrisi. Asymptotic results for perturbed risk processes with
delayed claims. Insurance Math. Econom., 34(2):307–320, 2004.

[22] T. Mikosch & A.V. Nagaev. Large deviations of heavy-tailed sums with appli-
cations in insurance. Extremes, 1(1):81–110, 1998.

[23] H. Nyrhinen. Rough descriptions of ruin for a general class of surplus processes.
Adv. in Appl. Probab., 30(4):1008–1026, 1998.

[24] H. Nyrhinen. Large deviations for the time of ruin. J. Appl. Probab., 36(3):733–
746, 1999.

[25] T. Rolski, H. Schmidli, V. Schmidt & J. Teugels. Stochastic Processes for
Insurance and Finance. John Wiley & Sons Ltd., Chichester, 1999.

25



[26] H. Schmidli. On the distribution of the surplus prior and at ruin. ASTIN Bull.,
29(2):227–244, 1999.

[27] M. Shaked & J. G. Shanthikumar. Stochastic Orders and their Applications.
Academic Press Inc., Boston, 1994.

26


