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abstract: Adaptation is often described in behavioral ecology as
individuals maximizing their inclusive fitness. Under what condi-
tions does this hold, and how does this relate to the gene-centered
perspective of adaptation? We unify and extend the literature on
these questions to class-structured populations. We demonstrate
that the maximization (in the best-response sense) of class-specific
inclusive fitness obtains in uninvadable population states (meaning
that all deviating mutants become extinct). This defines a genuine
actor-centered perspective on adaptation. But this inclusive fitness
is assigned to all bearers of a mutant allele in a given class and de-
pends on distributions of demographic and genetic contexts. These
distributions, in turn, usually depend on events in previous gener-
ations and are thus not under individual control. This prevents, in
general, envisioning individuals themselves as autonomous fitness
maximizers, each with its own inclusive fitness. For weak selection,
however, the dependence on earlier events can be neglected. We
then show that each individual in each class appears to maximize
its own inclusive fitness when all other individuals exhibit inclusive
fitness-maximizing behavior. This defines a genuine individual-centered
perspective of adaptation and justifies formally, as a first-order ap-
proximation, the long-heralded view of individuals appearing to
maximize their own inclusive fitness.

Keywords: adaptation, inclusive fitness, game theory, social behav-
ior, maximizing behavior.

Introduction

One striking hallmark of living systems is their functional
organization. From molecular, cellular, and physiological
structures within individuals to behavioral interactions
between them, organisms in nature display a purposeful-
ness in form and a goal directedness in action that has

been marveled at by generations of biologists (Darwin
1859; Fisher 1930; Williams 1966; Dawkins 1996; Grafen
2007). This outward functionality is so unequivocal that
humanity has attributed purpose to animals and plants
since the mists of time.
Can this purposefulness be characterized? It is well un-

derstood that the functionality of organisms is born out of
natural selection. This causes organisms to become adapted
to their biotic and abiotic environments over evolution-
ary time. Over short timescales, mutations are limited and
allele-frequency changes, resulting from differences in or-
ganismic forms and behaviors, involve selection among a
limited number of alternative variants present in the pop-
ulation. Since to each trait combination of an organism
there is an associated reproduction and survival schedule,
the process of genetic adaptation is often depicted as the
maximization of individual fitness. Survival and reproduc-
tion, however, also depend on the environment in which
individuals reside, in particular on the traits of conspecifics.
An organism’s environment thus varies in response to
changes in trait composition in the population induced by
natural selection. This prevents a net increase in individual
fitness over evolutionary time, even supposing that at all
times alleles increasing survival and reproduction are fa-
vored by evolution. Indeed, the goalposts of the survival
and reproductive games of life are shifting as evolution
proceeds. And even with fixed goalposts, increase in sur-
vival and reproduction may be prevented by multilocus ef-
fects in the presence of recombination, as highlighted in
some classical criticisms of fitnessmaximization (e.g., Moran
1964; Ewens 2004; Bürger 2000; Ewens 2011).
Over long timescales, an organism can be regarded as

adapted to a particular environment if no alternative trait
combination or behavioral schedule can be produced by
mutation, which would result in further allele frequency
change (Fisher 1930; Williams 1966; Grafen 1988; Reeve
and Sherman 1993; Dawkins 1996). In this long-term per-
spective, the maximization of the geometric growth rate of
a mutant allele when rare—referred to here as “invasion
fitness”—in a large population where individuals express
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a resident trait provides a condition of uninvadability of
mutant traits (all deviating mutants from some feasible set
of traits become extinct). Uninvadability is a defining prop-
erty of an evolutionarily stable population state inwhich the
resident trait combination is a best response to any mutant
deviation (Eshel 1983; Metz et al. 1992; Ferrière and Gatto
1995; Eshel et al. 1998; Metz 2011). It is in terms of this no-
tion of best response that maximization of (invasion) fit-
ness can actually be conceived in the long-term evolution-
ary perspective, and this holds regardless of the underlying
genetic details (Eshel and Feldman 1984; Liberman 1988;
Eshel 1996; Hammerstein 1996; Weissing 1996; Eshel et al.
1998).
Invasion fitness is the per capita number of mutant

copies produced by the whole mutant lineage descending
from an initial mutation over a life-cycle iteration, when
the mutant reproductive process has reached stationarity
in a resident population. This shows that invasion fitness
is a property of a collection of interacting individuals and
gives no reason to say that in an uninvadable population
state the fitness of any of these individuals is maximized
(in the best-response sense). It has even been argued that
any focus on individual survival and reproduction to un-
derstand adaptation is misleading and should be aban-
doned altogether (Dawkins 1978). The gene-centered per-
spective of adaptation (Hamilton 1963, 1996; Dawkins
1976, 1982; Haig 1997b, 2012) has in fact distanced itself
from ideas of maximization of individual survival and re-
production long ago and focuses instead on the differential
transmission of alleles to understand adaptation.
In spite of the logical primacy of the gene-centered per-

spective, trying to interpret natural selection in individual
terms appears necessary for anyone observing individuals
rather than genes. Hamilton (1964) attempted to draw a
bridge between the gene and the individual-centered per-
spective of adaptation by defining inclusive fitness, a quan-
tity that is assigned to a representative carrier of an allele, so
that natural selection proceeds as if this quantity is maxi-
mized.While this inclusive fitness is not a distinct property
of each individual in a population, individual inclusive fit-
ness maximization has nevertheless been argued to have at
least some heuristic value (e.g., Maynard Smith 1982; Daw-
kins 1978; Grafen 1984, 2007;West andGardner 2013) and
is a working assumption in behavioral ecology (McNamara
et al. 2001; Alcock 2005) and evolutionary psychology (Al-
exander 1990; Buss 2005). It is also a perspective often en-
dorsed in social evolution theories (Bourke 2011; West
and Gardner 2013). For example, one may say that sterile
workers maximize their inclusive fitness by helping a col-
ony queen to raise offspring. Here, it is acknowledged that
workers, being sterile, do notmaximize their individual fit-
ness but rather maximize the survival and expected repro-
duction of related individuals.

Despite the attractiveness of the individual-centered
perspective of adaptation, there has been few formal
models supporting it and/or delineating the conditions
under which individuals can be regarded as autonomous
agents maximizing their own objective function (i.e., maxi-
mizing their ownmaximand). For instance, Grafen (2006a)
considers that individuals maximize an inclusive fitness,
which, formally, does not depend on the behavior of other
conspecifics and thus appears on our reading not to cover
social interactions in any broad sense. It has also been
shown that in age-structured populations without social in-
teractions and in group-structured populations with social
interactions, individuals appear tomaximize a weighted av-
erage individual fitness (respectively Grafen [2015] and
Lehmann et al. [2015]), which is distinct from inclusive
fitness. More generally, connections between individual
fitness, inclusive fitness, and individual maximization be-
havior have been discussed in the literature on kin selec-
tion, evolutionarily stable traits, and adaptive dynamics
(e.g., Hines and Maynard Smith 1978; Maynard Smith
1982; Michod 1982; Eshel 1991; Day and Taylor 1996;
Mesterton-Gibbons 1996; Eshel et al. 1998; Day and Tay-
lor 1998; Frank 1998; Rousset 2004; Lehmann and Rousset
2014a; Akçay and Van Cleve 2016; Okasha and Martens
2016; Eshel 2019). But these discussions often do not em-
phasize enough the distinction between the gene-centered
and the individual-centered perspective of adaptation, and
they generally do not cover the case of class-structured pop-
ulations (e.g., queen and worker, male and female, young
and old individuals).
Our goal in this article is to formalize and push forward,

as far as is consistent with the gene-centered perspective,
the individual-centered approach according to which indi-
viduals may maximize their own inclusive fitness in an
uninvadable population state. To that aim, we use the com-
mon framework of evolutionary invasion analysis and pro-
ceed as follows in four steps.We start by presenting amodel
of evolution in a diploid group-structured population with
limited dispersal and class structure within groups. In this
model, we then consider three perspectives on adaptation,
formalized by three fitness measures, all of which are max-
imized (in the best-response sense) in an uninvadable pop-
ulation state. First, we consider a “recipient-centered perspec-
tive,” which is formalized as a weighted mean of the fitness
of individuals who bear an allele. Second, we consider an
“actor-centered perspective,”which is formalized as an exact
class-specific version of inclusive fitness. This maximand is
assigned to all bearers of an allele in a given class. Finally, we
consider a “rational actor-centered perspective.” This is the
only perspective that fully captures the idea that individuals
maximize their own inclusive fitness, and it is formalized as
a class-specific inclusive fitness that can be assigned to indi-
viduals without knowing their genotype.
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By formalizing these three perspectives on adaptation
and discussing similarities and differences thereof, we
unify and extend previous results on the relationship be-
tween maximization behavior and the concept of adapta-
tion sensu Reeve and Sherman (1993, p. 9), that is, “a phe-
notypic variant that results in the highest fitness among a
specified set of variants in a given environment.” This
allows us to provide a full connection between evolution-
ary invasion analysis, the different perspectives on inclu-
sive fitness theory, and game-theoretic approaches. Read-
ers who find the technical details in the following text
challengingmay nevertheless have a look at the expression
for inclusive fitness (eq. [4]) and read the discussion sec-
tion. Therein, results are summarized with a number of
take-home messages about the interpretation of adapta-
tion in terms of fitness maximization. Finally, readers in-
terested in how selection on traits can be decomposed into
direct effects on actors and indirect effects on recipients
but not in whether individuals do really maximize their
own inclusive fitness should read the section “The Actor-
Centered Perspective of Adaptation” but can skip themore
complicated section “The Rational Actor–Centered Per-
spective of Adaptation.”

The Model

Assumptions

To formalize and compare the different perspectives on
adaptation in a simple way but retain key biological pop-
ulation structural effects, we endorse two sets of well-
studied assumptions.

Demographic Assumptions

First, we assume that evolution occurs in a population struc-
tured in an infinite number of groups (or demes or patches),
each with identical environmental conditions and connected
to each other by randomand uniformly distributed, but pos-
sibly limited, dispersal (i.e., the canonical demographic is-
landmodel ofWright [1931]). Demographic time is discrete,
and during each demographic time period, reproduction,
survival, and dispersal events occur in each group with ex-
actly n individuals being censused at the end of a time period
(after all relevant density-dependent events occurred). Each
of the n individuals in a group belongs to a class (e.g., queen
and worker, male or female, young or old), and nc denotes
the number of classes, which is assumed fixed and finite.
The number of individuals can differ among classes within
a group (but is constant for each class across all groups).
Each individual in each group can express a class-

specific trait that affects its own survival, reproduction,
and dispersal and possibly those of group neighbors. Let
us focus on a focal group where individuals are labeled

from 1 to n, and let xi denote the trait expressed by focal
individual i from that group. When this individual is of
class a, its trait is taken from the set Xa of feasible traits
available to an individual of class a (i.e., xi ∈ X a). We col-
lect the class-specific traits expressed by all of the n2 1
neighbors of i into the vector x2i of group-neighbor traits.
We then let wua(xi, x2i, !x) denote the expected number of
surviving class u offspring per haplogenome produced
over a demographic time period by a class a individual i
with trait xi ∈ X a when group neighbors have trait profile
x2i in a population where the average individual trait pro-
file across classes is !x ∈ X (here, X denotes the set of fea-
sible traits across all classes; see supplement A, eq. [A.3],
for a formal definition of fitness and table 1 for a summary
of notation; supplements A–C are available online).
We refer to wua as the individual fitness function, as it

determines the number of successful gametes per haploid
set of an individual (Grafen 1985). Individual fitness thus
gives the average number of replicate gene copies produced
by an individual per homologous gene, and so the unit of
measure is here gene copy number. In writing individual
fitness as wua(xi, x2i, !x) we made, for simplicity of analysis
and presentation, a number of assumptions about fitness.
First, individual fitness depends here on the focal’s own
phenotype only through the trait of the class in which the
focal resides. This thus excludes interdependence among
own traits throughout the lifespan of the focal when it can
change class (such as in an age-structured population when
traits affect body size and thus may have effects on different
age classes). Second, the focal’s individual fitness depends
on the trait of each neighbor only through the neighbor’s
class-specific trait. This thus also excludes interdependence
among traits throughout the lifespan of neighbors that can
change class (such as in an age-structured population when
traits affect body size and transfer of resources among indi-
viduals depends on body size). Finally, the effects of individ-
uals from different groups on a focal individual’s fitness is
meanfield; that is, it depends only on the population average
trait. While making these assumptions on fitness do not al-
low us to cover all biological scenarios of interest (see the
section “Scope of our Results” for a discussion of the restric-
tive assumptions of our model and how to relax them), our
model does cover the evolution of traits of arbitrary com-
plexity in disjoint classes (i.e., when the class of an individual
is fixed at birth), like workers and queens or males and
females. As such, our model applies in broad generality to
the paradigmatic biological scenarios for which inclusive fit-
ness theory has been initially developed.

Evolutionary Assumptions

No assumptions so far have been made about the genetic
composition of the population, and each individual may
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express a different trait and thus be phenotypically dis-
tinct from any other individual. To understandwhich traits
are favored over the long term by evolution in this popula-
tion, we now turn to our second set of assumptions. We
place ourselves in the framework of an evolutionary inva-
sion analysis (“evolutionarily stable strategy approach”;
e.g., Eshel and Feldman 1984; Tuljapurkar 1989; Parker
and Maynard Smith 1990; Metz et al. 1992; Charlesworth
1994; Ferrière and Gatto 1995; Eshel 1996; Caswell 2000;
Otto and Day 2007; Metz 2011). Accordingly, we consider
a population that is monomorphic for some resident trait
and aim at characterizing the conditions according to
which a mutant allele changing trait expression is unable
to invade the population. For this, we let resident individuals
(necessarily homozygotes if diploid) have the vector x p
(y1, y2, ::: , ync) ∈ X of traits, one for each class of individu-
als, where ya is the trait of a (homozygote) individual of class
a. Let a heterozygote mutant individual have trait vector
xp (x1, x2, ::: , xnc) ∈ X . We assume that heterozygote

traits are convex combinations (“weighted averages”) of
homozygote traits, which means that we rule out over-,
under-, and strict dominance but otherwise allow for
arbitrary gene action. This allows us to write the trait
za(xa, ya) of mutant homozygotes of class a as a function
of the traits xa of heterozygote and ya of resident homo-
zygotes of that class (see eqq. [A.13] and [A.14] in supple-
ment A for a formal definition). This also covers the hap-
loid case where we simply assign trait x to mutant and trait
y to residents. So, for both haploid and diploid popula-
tions, traits are fully specified by x and y.

Characterizing Adaptation by Way of Uninvadability

With the assumptions of the last section, the fate (extinc-
tion or spread) of a mutant allele with heterozygote trait x
introduced into amonomorphic resident class-structured
population with homozygote trait y can be determined by
the invasion fitnessW(x, y). This is the geometric growth

Table 1: Summary of notation

Notation Meaning and references to the supplement

xi, x2i, !x Respectively, trait of individual i, its group neighbor’s trait profile, and the average trait over all individuals
in the population.

x, y Trait of a mutant and a resident individual in a haploid population. In a diploid population, y is the trait
of a homozygote resident, x is the trait of the heterozygote, and z(x, y) is the trait of the homozygote
mutant (eq. [A.14]).

wus(xi, x2i, !x) Expected number of surviving class u offspring per haplogenome produced by an individual of class s (possibly
including self ) over one demographic time period (eq. [A.3]).

vs(y) Neutral reproductive value of single gene copy in class s (eq. [A.18]).
W(x, y) Invasion fitness of a mutant gene copy (eqq. [A.6], [A.15], [A.23]).
V(x, y) Average of the vu(y) reproductive values (eq. [A.20]).
wDFa(x, y) Average direct fitness of a class a mutant gene copy (eqq. [A.24], [A.28]).
wDFua(x, y) Average (over the qD

a (x, y) distribution) of the expected number of u-type offspring produced (per haplogenome)
by an individual of class a bearing a copy of the mutant allele (eq. [A.29]).

wIFa(x, y) Inclusive fitness of a class a mutant gene copy (eq. [B.38]).
wIa(xi, x2i, !x) Fitness as-if of a class a individual (eqq. [C.10], [C.28], [C.34]).
fs(x, y) Probability that a mutant gene copy resides in a class s individual (eq. [A.21]).
f(x, y) Distribution for fs(x, y).
qD
a (x, y) Conditional distribution of identity for a gene copy in class a. The qD

a (x, y) distribution accounts for correlated
phenotypic effects within groups due to identity by descent and thus captures the kin selection effects expe-
rienced by a class a individual (eqq. [A.10], [A.17]).

rsFa(x, y) Conditional relatedness, with a class s individual, of a gene copy taken in a class a individual (eq. [B.24]). Under
weak selection this is written rsFa(y), that is, as a function of only the resident population.

rnsFa(x, y) Conditional identity with a gene copy randomly taken in a class s individual of a gene copy taken in a class a
individual (eq. [B.24]).

rfa(x, y) Conditional identity with a gene copy randomly taken in a class a individual of a gene copy taken in that same
individual (eq. [B.24]).

cua(x, y) Average effect on its own fitness through class u offspring of a gene substitution in a class a individual (eq. [B.14]).
bus←a(x, y) Average effect of a gene substitution in a single class a individual on the fitness of all class s recipients (eq. [B.31])

through class u offspring.
cIua(xi, x2i, !x) Average effect of a class a individual on its own fitness as-if (eq. [C.13]) through class u offspring.
bIus←a(xi, x2i, !x) Average effect of a single class s individual on the fitness as-if of all class a recipients (eq. [C.13]) through

class u offspring.
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rate of the mutant allele when rare. Henceforth, the mu-
tant allele cannot invade the population when

W(x, y) ≤ 1: ð1Þ

Suppose now that a given resident trait, say x* p
(x*

1, x*
2, ::: , x*

nc), is uninvadable—that is, it is resistant to in-
vasion by any alternative trait from the set of all possible
traits X (i.e., eq. [1] holds for any mutant given the resi-
dent x*). This trait x* must then be a best response to itself,
meaning that if we vary invasion fitnessW(x, x*) by vary-
ing x, the uninvadable trait x* must maximize invasion fit-
ness with respect to x ∈ X . This means that x* results in
the highest invasion fitness among all alternatives traits
given in the set X of feasible traits for the resident popula-
tion at the uninvadable state. Hence, x* qualifies as an
adaptation in the sense of Reeve and Sherman (1993, p. 9),
that is, “a phenotypic variant that results in the highest fit-
ness among a specified set of variants in a given environ-
ment,”with “fitness” being invasion fitness and “a specified
set of variants” beingX. This definition of adaptation is use-
ful for two reasons. First, it has a direct formal encapsula-
tion as uninvadability. Second, it captures the apparent pur-
posefulness of traits as an outcome of cumulative natural
selection, which has forcefully been argued as being the de-
fining feature of adaptation (Fisher 1930; Williams 1966;
Grafen 1988; Dawkins 1996).
The above characterization of adaptation is gene cen-

tered, since it is obtained in terms of the fitness of mutant
alleles. To assess whether individuals maximize their in-
clusive fitness, however, we must characterize adaptation
in terms of individual-centered concepts. For that pur-
pose, we contrast three individual-centered perspectives
on adaptation.
Perspective 1, recipient centered. Here, we provide a

representation of invasion fitness expressed in terms of
the class-specific fitness components (the wua functions
introduced above) of a typical carrier of the mutant allele.
This perspective directly flows out from the evolutionary
model and is recipient centered because we consider the
fitness of individuals bearing the mutant allele and how
this fitness is affected by the behavior of others. Hence,
behavioral effects are grouped by recipients.
Perspective 2, actor centered. Behavioral effects, however,

are the outcomes of actors expressing traits. We thus ask
whether it is possible to obtain a class-specific representa-
tion of fitness that is maximized (in the best-response
sense) at uninvadability and where behavioral effects are
grouped by the actor. That is, canwe define a (class-specific)
inclusive fitness that is maximized for each class in an un-
invadable population state?
Perspective 3, rational actor centered. Here, we go one

step further than the actor-centered perspective. We ask
whether it is possible to obtain an actor-centered repre-

sentation of fitness where the trait of each individual is
different and where this fitness is still maximized at un-
invadability, independently for each individual in each
class. This is the (behavioral ecology) question of whether
we can we look at adaptation as if each individual is an au-
tonomous decision-maker having free choice of action and
as if these actions are guided by a striving to maximize a
measure of inclusive fitness.
Perspective 1 obtains when an allele’s fitness is viewed

as a (possibly weighted) mean of the fitness of individu-
als who bear the allele. It is therefore a straightforward
translation of the gene-centered perspective in individual-
centered terms; in the context of this article, it is hardly dis-
tinguishable from the gene-centered perspective. Perspec-
tive 2 changes the focus from the own fitness of allele bearers
to their accumulated fitness effects on different recipients.
This is the classic inclusive-fitness interpretation introduced
byHamilton (1964). However, in that interpretation a single
value (the class-specific inclusive fitness) is still assigned to
all bearers of a given allele in a given class. By contrast, only
perspective 3 may capture the idea of individuals maximiz-
ing their inclusive fitness, and thus it is perspective 3 that
seemsmost often invoked in behavioral ecology to understand
adaptation.We now develop each perspective in turn to assess
their relative levels of generality. We formally describe these
perspectives and all arguments subtending our analysis in an
extensive supplement, which fully details, generalizes, and
discusses the more in-depth technical concepts. The supple-
ment also contains some additional material and references,
as our analysis connects to many different ideas and inter-
twined concepts (for instance, inclusive fitness itself can be
formalized in different ways; see supplement B). The main
text presents the key formalization and results of our analysis.

The Recipient-Centered Perspective of Adaptation

Average Direct Fitness

In supplement A, we provide the relationship of invasion
fitness to the individual fitness components wua by suit-
ably averaging over the distribution of class states in
which a carrier of the mutant allele can reside. We denote
this distribution by the vector f(x, y), whose ath entry is
the probability fa(x, y) that a random copy of the mutant
allele finds itself in class a. Invasion fitness of the (hetero-
zygote) mutant x in a resident y can then be written

W(x, y) p
1

V(x, y)

Xnc

ap1

wDFa(x, y)fa(x, y), ð2Þ

where the average direct fitness wDFa(x, y) of a class a mu-
tant (with DF standing for direct fitness) is a weighted aver-
age

Pnc

up1vu(y)wDFua(x, y), over descendants of class u, of the
expected number wDFua(x, y) of u-type offspring produced
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(per haplogenome) by an individual of class a bearing a
copy of the mutant allele; vu(y) is the neutral reproductive
value of a gene copy in class u (i.e., the asymptotic contri-
bution to the gene pool of a single class u gene copy in a
monomorphic resident population); and V(x, y) is the av-
erage of the vu(y) reproductive values over the f(x, y) dis-
tribution, thus giving the asymptotic contribution, to the
gene pool, of a randomly sampled mutant copy that is
assigned the total offspring (reproductive) values of a res-
ident gene copy. Hence, invasion fitness can be represented
as the average direct fitness of a copy of the mutant allele
relative to the average direct fitness this allele copy would
have if it was assigned the individual fitness components
of resident individuals.
We can express wDFua(x, y) as an average

E(xi ,x2i)∼qDa (x,y)[wua(xi, x2i, y)] over the distribution qD
a (x, y)

of group trait profiles (xi, x2i) experienced by a mutant
gene copy (in a diploid population in particular, the trait
xi of the carrier of that gene copy of class a can be either
that of a homozygote or that of a heterozygote (xi ∈
fza(xa, ya), xag), while the trait xj of any neighbor j of class
s may take values in fzs(xs, ys), xs, ysg). The distribution
qD
a (x, y) accounts for correlated phenotypic effects within
groups due to identity by descent experienced by a carrier
of class a of the mutant allele. Hence, the qD

a (x, y) distribu-
tion captures kin selection effects experienced by a class a
individual, which occurs whenever the fecundity and sur-
vival of an individual is affected by the genetic trait ex-
pressed by one or more other individuals who are genet-
ically related to the actor in a nonrandom way at the loci
determining the trait (Michod 1982, p. 40). Invasion fitness
depends on the average direct fitness of each class and thus
on the collection qD(x, y)p (qD

a (x, y))a∈C of class-specific
genotype distributions. In particular,

wDFa(x, y) p
Xnc

up1

vu(y)E(xi ,x2i)∼qDa (x,y)[wua(xi, x2i, y)], ð3Þ

whichmeans that the average direct fitness of a class amu-
tant is the neutral reproductive value–weighted average of
the average, over the distribution of trait profiles (xi, x21)
experienced by a mutant gene copy, of the expected num-
ber, given the group genotypes, of u-type offspring pro-
duced per haplogenome by an individual of class a bearing
a random copy of themutant allele (see box 1 for an exam-
ple of average direct fitness).

The Importance of Genetic Contexts

The expression for invasion fitnessW(x, y) (eqq. [2], [3])
makes explicit that invasion fitness is the average individ-
ual fitness component wua over a distributions of demo-
graphic states (captured by f(x, y)) and genetic states

(captured by qD(x, y)) of a copy of the mutant allele. Im-
portantly, these two distributions depend on mutant and
resident traits. As such, invasion fitness depends on the
fitness of a collection of individuals taken over multiple
generations and represents the average replication ability
of a randomly sampled allele from themutant lineage. This
focus on gene replication epitomizes the gene-centeredper-
spective of evolution. Accordingly, it is not the individual
fitness of a single individual (or a single gene copy) in a given
demographic and genetic context that matters for selection
but the average of such individual fitnesses over a distribu-
tion of contexts (Dawkins 1978; Haig 1997b, 2012). Natu-
ral selection on an allele thus depends not only on how it
changes the immediate survival and reproduction of its
carriers (changes inwua) but also on changes in the probabil-
ities of contexts (Kirkpatrick et al. 2002, p. 1728) in which
the allele at a given locus can be found (as measured by
f(x, y) and qD(x, y)). Indeed, an allele can reside, say, in a
worker or a queen, be inherited from a mother or a father,
and is likely to be in a genomewithmany other loci with dif-
ferent allele combinations. The importance of such contexts
of alleles for their evolutionary dynamics has been much
emphasized in populations genetics (e.g., Altenberg and
Feldman 1987; Kirkpatrick et al. 2002; Roze 2009). There
are even mutations that spread through selection only by
way of their effects on changes in the contexts in which they
are found. Typical examples are modifier alleles involved in
the evolution of recombination or migration, which may
spread by increasing their chance of being in a genetic con-
text with higher survival or reproduction, despite the mod-
ifier having no direct physiological effect on reproduction
and/or survival in a given context (e.g., Altenberg and
Feldman 1987; Kirkpatrick et al. 2002; Roze 2009). From
now on, we refer to f(x, y) and qD(x, y) as the contextual
distributions.

The Actor-Centered Perspective of Adaptation

Inclusive Fitness

What is missing to understand how selection targets traits
in the representations of invasion fitness given by average
direct fitness (eqq. [2], [3]) is twofold. First, it is a simple
and intuitive quantification of the effect of limited dis-
persal (and thus kin selection), which summarizes the var-
iation on fitness introduced by the distribution over ge-
netic contexts (the qD(x, y) distribution). Second, it is a
quantification of the contribution to fitness of trait ex-
pressions in the different classes of individuals who really
contribute to allele transmission. For instance, in the so-
cial insect example described in box 1, a male has positive
individual fitness but its trait is not under selection, while
a worker has zero individual fitness but its trait is affected
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by selection. Then, can one identify the force of selection on
the actor’s trait in a fitnessmeasure? In other words, we aim
to find an inclusive fitness wIFa(x, y) for a class a carrier of
themutant allele in a resident y population, which, by vary-
ing the class-specific trait xa ∈ X a, maximizes the function
wIFa with respect to that trait and for any actor class a in an
uninvadable population state x*. Hence, such maximiza-
tionmeans that x*

a results in the highest class a inclusive fit-
ness among all traits values in Xa in an uninvadable popu-
lation at x*.
In supplement B, we show that

wIFa(x, y) p va(y)

1
Xnc

up1

vu(y)
!
2cua(x, y)1

Xnc

sp1

rsja(x, y)bus←a(x, y)
"

ð4Þ

satisfies this maximization problem. Here, extending an
established population genetics terminology, 2cua(x, y)
is the average effect on the number of class u mutant
gene copies produced by a single class a individual when
expressing a copy of the mutant instead of the resident
allele (originally, the average effect of an allele substitu-
tion on a quantitative trait; e.g., Fisher 1941; Ewens 2004,
p. 63), and bus←a(x, y) is the average effect on the expected
number of class u offspring produced (per haplogenome)
by all class s neighbors in a group, stemming from a single
class a gene copy switching to expressing a copy of the

mutant instead of the resident allele. These costs and
benefits hold regardless of the number of group partners
and have been reached by using a nontrivial multiplayer
and class-specific generalization of the two-predictor regres-
sion of individual fitness used in the exact version of kin se-
lection theory (Queller 1992; Frank 1997; Gardner et al. 2011;
Rousset 2015; see supplement B for further considerations
on regressions and inclusive fitness). As such, 2cua(x, y)
and bus←a(x, y) describe additive effects on fitness resulting
from two distinct gene substitutions, as if each were inde-
pendently brought up by mutation. Each such effect ac-
counts for changes in individual fitness when everything
else is held constant, in particular holding constant the av-
erage effects of interactions between individual traits (al-
though those will be modified by an allelic substitution).
Finally, inclusive fitness (eq. [4]) depends on

rsja(x, y) p
rnsja(x, y)
rfa(x, y)

, ð5Þ

which is the relatedness between a class a actor and a
class s recipient. Here, rfa(x, y) is the probability that, con-
ditional on an haplogenome in a focal individual of class
a carrying the mutant allele (hence, the subscript “f”), a
randomly sampled homologous gene in that individual is
mutant, and rnsja(x, y) is the probability that, conditional
on an individual of class a carrying the mutant allele, a ran-
domly sampled homologous gene in a (nonself) neighbor
of class s is amutant allele (hence, the subscript “n”). Hence,

Box 1: Social insect example

Let us thus consider a seasonal population of diploid social insects (e.g., termites rather than ants) that allocate
resources to the production of three classes of individuals: reproductive males, reproductive females (queens), and
workers. The life cycle is as follows: (1) at the beginning of the season, each group is occupied by exactly a single
mated queen that initiates a colony by producing workers that help produce sexuals; (2) at the end of the season,
all reproductive individuals disperse at the same time, and individuals of the parental generation die; (3) random
mating occurs—all queens mate with exactly one male and then compete for vacated breeding slots to form the
next generation. Under these assumptions, successful gene copies must pass through the single-mated female in
each group, and the expected number of class u offspring produced by a class a mutant individual per haplo-
genome can be written wDFua(x, y), where trait x p (xf , xm, xo) collects, respectively, the traits of females, males,
and workers. The trait for the resident is y p (yf , ym, yo), whereby the invasion fitness of the mutant can be written
as in equation (2), with the direct fitnesses given by

wDFf (x, y) p vf (y)wDFff (x, y)1 vm(y)wDFmf
(x, y),

wDFm(x, y) p vf (y)wDFfm(x, y)1 vm(y)wDFmm(x, y),
wDFo(x, y) p 0,

ðBX:1Þ

and the distribution of class states in which a carrier of the mutant allele can reside being f(x, y) p
(ff (x, y),fm(x, y),fo(x, y)). A worker does not reproduce and henceforth has a zero direct fitness, but its class fre-
quency is nonzero (fo(x, y) ( 0; the explicit expressions for ff (x, y), fm(x, y), and fo(x, y) are given in eq. [A.32] in
the supplement), and it helps its parents to reproduce. Formally, the worker affects the reproduction of its male and
female parents through the dependence of individual fitness on trait vector x p (xf , xm, xo).

ð4Þ
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relatedness rsja(x, y) can be interpreted as the ratio of the
probability of indirect transmission by a class s individual
of a mutant allele taken in a class a individual to the prob-
ability that the individual transmits itself this allele to the
next generation. In the absence of selection, this is equiva-
lent to the standard ratio of probabilities of identity by de-
scent (Hamilton 1970, p. 1219; Lehmann and Rousset 2014b;
eq. [A.5]). Relatedness is expressed in terms of the class-
specificmutant copy number distribution (the qD

a (x, y) dis-
tribution) and as such summarizes the statistical effects of
limited dispersal on mutant-mutant interactions.

The Subunits of Adaptation

Class-specific inclusive fitness wIFa(x, y) is the reproduc-
tive value of a class a individual augmented by the average
effect of that individual switching to expressing a copy of
themutant allele on the reproductive value–weighted num-
ber of mutant gene copies produced by all recipients of its
action(s). Thus, all behavioral effects are grouped by actor
in equation (4), andwe emphasize that this also holds within
classes (see supplement B for proofs and for details on the
connection to the neighbor-modulated formulation of in-
clusive fitness). Crucially, inclusive fitness is defined at the
allele level, and this is consistent with the original formula-
tion of this concept (Hamilton 1964, pp. 3–8). But our own
formulation (eq. [4]) extends it to class-structured popula-
tions and further shows that it holds regardless of the com-
plexity of the evolving trait and the strength of selection on
the mutant allele.
The fundamental difference between average direct fitness

wDFa(x, y) (eq. [3]) and inclusive fitness wIFa(x, y) (eq. [4]) is
that the direct fitness is nonnull only for individuals who re-
produce, while the inclusive fitness effect is nonnull only for
individuals whose trait affects their own individual fitness
and/or that of other individuals in the population (see the
concrete social insect example in box 2). As a result, in an
uninvadable population state the inclusivefitness of each class
appears to be maximized with respect to the class-specific xa
trait, while the average direct fitness wDFa(x, y) does not.
Inclusive fitness also makes explicit that a fitness com-

parison is made between expressing or not the mutant al-
lele, since this involves comparing successful number of
gene copies gained and lost through behavioral interac-
tions. Hence, inclusive fitness allows one to fasten attention
on the pathways determining fitness costs and benefits
(Grafen 1988). This is particularly salient in the case of
classes, where a fitness measure can be attached not only
to reproductive individuals but also to, say, sterile workers,
which can thus be seen as contributing to thefitness of their
gene lineage. The inclusive fitness formulation thus shifts
attention from those individuals that are passive carriers
of alleles to those individuals whose trait actively affects

the transmission of alleles. In other words, the unit of ad-
aptation is the gene (Dawkins 1978, 1982; Haig 2012), and
its subunits are the replicate gene copies expressed differ-
ently in particular classes of individuals, whose traits can
be regarded as the outcomes of maximizing a class-specific
inclusive fitness.

The Rational Actor–Centered Perspective
of Adaptation

Fitness As-If

Class-specific inclusive fitnesswIFa(x, y) (eq. [4]) seems sat-
isfying from a population genetics point of view to under-
stand selection on traits affecting relatives.Many behavioral
ecologists, however, observe individual behavior instead of
genes. What is then missing to understand how selection
targets traits in the class-specific representation of inclusive
fitnesswIFa(x, y) is a prediction of adaptive traits among the
alternatives that an individual can potentially express given
the actions of social partners. The simplest andmost widely
used concept for the prediction of individual behavior is
that of a Nash equilibrium trait profile, compared to which
no individual can get a higher “payoff” by a unilateral devi-
ation of behavior (see, e.g., Luce andRaiffa 1957; Fudenberg
and Tirole 1991; Mas-Colell et al. 1995). Here, an individ-
ual is envisioned as an autonomous decision-maker, “freely
choosing” its action independently of each other individual
and with a striving to maximize payoff. In a Nash equilib-
rium, the individual then makes the best decision for itself
in terms of payoff, based on all others individuals making the
best decisions for themselves. Our aim now is to find such a
payoff for a focal individual of class a, denotedwIa(xi, x2i, !x).
Here we use the same notation as before for individual
traits, but xi is to be understood as any trait value that a given
individual i could express instead of the (genetically deter-
mined) trait that it actually expresses. We refer to wIa as the
“fitness as-if” function of an individual of class a, because
the individual acts as if it maximizes this function in an
uninvadable state by choosing the appropriate trait value
xi ∈ X a (see eq. [C.1] and supplement C for more details
on the construction of fitness as-if).
The previously considered invasion fitness, class-specific

average direct fitness, and class-specific inclusive fitness do
not fulfill the role of a fitness as-if since they depend onmu-
tant and resident traits. The fundamental difference between
fitness as-if wIa maximization and, say, inclusive fitness wIFa

maximization is that each individual can vary its own trait
in fitness as-if independently of each other individual. By
contrast, inclusive fitness is maximized with respect to a
mutant trait, and this implies that it takes into account cor-
related changes in the traits expressed by cobearers. In this
respect, the previous perspectives were all gene centered,
while the rational actor perspective is distinctly individual
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centered. In reaching a definition of a fitness as-if, we will
still need to take correlated trait changes into account by
adjusting the function definition rather than by allowing
its argument x2i to vary with xi.

A General Rational Actor–Centered Maximand?

Supplement C shows that it is possible, in theory, to con-
struct an inclusive fitness as-if maximand that individuals
appear to maximize in an uninvadable population state
(see eq. [C.28]). This maximand, however, requires that
the contextual distributions are written in terms of the ac-
tor’s trait and the average in the population. It is thus as
if the actor controlled the genetic and demographic con-
texts it experiences. In reality, however, the contextual dis-
tributions cannot be under the actor’s control. These distri-
butions do not depend on the actor’s behavior but on the

reproduction and survival of ancestors that determine the
present genetic and demographic contexts. This precludes,
in our understanding, a general rational actor–centered rep-
resentation of adaptation.
If the contextual distributions, f(x, y) and qD(x, y), were

to be independent of the mutant trait, then a fitness as-if
could be constructed with these distributions exogenous
to an individual’s own behavior. There are least two ways
to achieve exactly this, and both hinge on weak-selection
approximations implying that, to first order, the distribu-
tion of genetic and class contexts will no longer be depen-
dent on the mutant allele. Such first-order approximations
are reached by assuming either that the phenotypic effect
of the mutant is small (“small-mutation” weak selection, in
which case the individual fitness functions wua are assumed
differentiable with respect to trait values) or that param-
eters determining both mutant and resident phenotypic

Box 2: Individual and inclusive fitness for social insect example

As an example of the individual fitnesses in equation (BX.1), making the (evolutionary) role of workers more
explicit, let us assume that each female produces exactly one worker, which increases colony productivity ac-
cording to its trait xo. We also consider that the female trait xf determines the sex ratio and nothing else. Finally,
we consider that the male trait does not affect any fitness component. Since the worker is heterozygote with prob-
ability 1/2 and homozygote for the resident with probability 1/2, the expected number of (reproductive) daughters
of a mutant female can be written as

wDFff (x, y) p
(11 P(xo))xf

2(11 P(yo))yf
#

1
2
1

(11 P(yo))xf

2(11 P(yo))yf
#

1
2
: ðBX:2Þ

Here, xf is the proportion of offspring that become female. The worker affects the relative fecundity of a female,
which is assumed to be given by 11 P(⋅), where P(⋅) is some function of worker trait. In other words, the worker
trait increases offspring production of the queen relative to some baseline. The first term in equation (BX.2) is for
the case where the worker is heterozygote, and the second is for when it is a homozygote resident. The denomi-
nators in equation (BX.2) reflects female production by other colonies that are monomorphic for the resident allele,
and the 2 reflects the fact that we measure fitness per haplogenome. Likewise, the number of sons produced by a
female is

wDFmf
(x, y) p

(11 P(xo))(12 xf )
2(11 P(yo))(12 yf )

#
1
2
1

(11 P(yo))(12 xf )
2(11 P(yo))(12 yf )

#
1
2
: ðBX:3Þ

While male trait does not impact fitness, the mutant allele may still occur in a male, and the mutant male fitness
components will depend on the worker trait, which affects offspring production by the male’s mate(s), whereby

wDFfm(x, y) p
(11 P(xo))
2(11 P(yo))

#
1
2
1

1
4

and wDFmm(x, y) p
(11 P(xo))
2(11 P(yo))

#
1
2
1

1
4
: ðBX:4Þ

For this model, the inclusive fitness effects of a female, male, and worker carrying the mutant in a population at the
equilibrium sex ratio of x*

f p 1=2 are, respectively,

wIFf (x, y) p vf (y),
wIFm(x, y) p vm(y),

wIFo (x, y) p vf (y)
#
P(xo)2 P(yo)
11 P(yo)

$
1 vm(y)

#
P(xo)2 P(yo)
11 P(yo)

$
:

ðBX:5Þ

See supplement B, section B.3, for a proof.
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effects on fitness are small (“small-parameter” weak selec-
tion). In both cases, the contextual distributions depend at
most on the resident trait (f(x, y) ∼ f(y) and qD(x, y) ∼
qD(y); see supplement sec. C.5.1 for more details). The key
implication is that under weak selection a mutant allele will
not affect the genealogical and/or demographic class struc-
ture to which it is exposed, and this structure can thus be
held constant. This was a central assumption endorsed by
Hamilton (1964, p. 34) and has been used to obtain a repre-
sentation of individual maximizing behavior in the absence
of social interactions in age-structured populations (Grafen
2015; Lessard and Soares 2016) and in the presence of social
interactions in group-structured populations (Lehmann
et al. 2015). These two cases can be generalized by the results
provided in supplementC, andwe nowpresent afitness as-if
that takes the form of inclusive fitness.

Maximization of Inclusive Fitness As-If
under Weak Selection

Assuming weak selection, we show in supplement C that
the inclusive fitness as-if function wIa of a class a individ-
ual defined by

wIa(xi, x2i, !x) p va(!x)

1
Xnc

up1

vu(!x)
!
2cIua(xi, x2i, !x)1

Xnc

sp1

rsja(!x)bIus←a(xi, x2i, !x)
"

ð6Þ

ismaximized in an uninvadable population state. In this in-
clusive fitness as-if, 2cIua(xi, x2i, !x) is an average effect on
the number of class u offspring produced by a single class
a individual, and bIus←a(xi, x2i, !x) is an average effect of a
single class a individual on the number of class u offspring
produced by all class s neighbors. These average effects,
costs to self and benefits to others, are now weak-selection
approximations of the exact costs and benefits obtained by
performing a general regression of the individual fitness of i
when in classa on the frequency in itself and its neighbors of
a hypothetical allele determining trait expression, whereby
the effects of switching trait expression can be assessed.
This allele is taken to have the same distribution as the mu-
tant allele in the population genetic model and ensures that
the inclusive fitness as-if (eq. [6]) of a class a individual
aligns, at uninvadability, with the class-specific inclusive fit-
ness of the population genetic model (eq. [4]). The key dif-
ference between the cost cIua(xi, x2i, !x) in the as-if and the
cost 2cua(x, y) in the population genetic model (recall
eq. [4]) is then that all individuals within groups have dis-
tinct traits in the rational actor perspective (and likewise for
the benefits bIus←a(xi, x2i, !x) versus bus←a(x, y)). As such, the
probability rsja(!x) that, conditional on being in class a, a
random actor and a random class s recipient in its group

share the same allele is constant with respect to the actor’s
trait. Hence, it is equivalent to the standard relatedness in a
monomorphic population with trait !x (sometimes called
pedigree relatedness) and is independent of actor genotype.
Equation (6) provides an inclusive-fitness representa-

tion of fitness as-if that individuals from each class appear
to maximize in an uninvadable population state (see sup-
plement sec. C.5.2 for a proof of this result). It may be felt
to be a stretch to define the inclusive fitness as-if, which
does not characterize individual or allelic fitness in a popu-
lation genetic model. Such an elaborate construction may
nevertheless be needed to assign a coherent meaning to
the untold number of statements found in the literature
that individuals maximize their own inclusive fitness (rather
than the inclusive fitness, eq. [4], of an allele in the popula-
tion genetic model). Of particular note here is that our con-
struct can be assigned to individuals without knowing their
genotype. On the other hand, its representation (eq. [6])
still makes explicit that individuals in each class adjusting
their behavior will strive to do so by maximizing their ge-
netic contribution to the next generation and by treating
others according to the degree of genetic relatedness be-
tween actor and recipient.

Scope of Our Results

We have identified a rational actor–centered maximand,
which individuals appear tomaximize in uninvadable pop-
ulation states under weak selection (or if, for other reasons,
the f and qD contextual distributions are independent of
selection). This result, as well as the actor-centered maxi-
mand (eq. [4]), were obtained assuming simplifying demo-
graphic assumptions; in particular, constant group size
and abiotic environment, no isolation by distance, and dis-
crete time.We now confront each of these the assumptions
in turn. First, the number of individuals in each class and
thus group size as well as abiotic environments are all likely
tofluctuate. To cover these cases, it suffices to follow the rec-
ommendation ofMcPeek (2017), which describes common
practices in theoretical evolutionary biology (e.g., Brown
and Vincent 1987; Taper and Case 1992; Geritz et al. 1998;
Dercole andRinaldi 2008; Lion 2018), to write individualfit-
ness wua not only as a function of an individual’s trait and
that of its interaction partners (group and average popula-
tionmembers) but also as a function of relevant endogenous
variables (e.g., population size, abiotic environment, cultural
knowledge)—that is, those variables whose distributions or
values are influenced by individual traits and thus result
in environmental feedbacks on fitness. For weak selection,
these distributions or values can then be approximated as
a function of the resident traits (see Ronce et al. [2000]
and Rousset and Ronce [2004] for concrete examples of fit-
ness functions and distributions covering both demographic
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and environmentalfluctuations, in particular exampleswhere
the number of individual in each class can fluctuate between
groups, as well as examples where the total number of indi-
viduals within groups can fluctuate, respectively). Then, an
inclusive fitness as-if under individual control can be de-
fined; the implication being that there are now more con-
texts to consider relative to the case with no fluctuations
(e.g., different group sizes and environments, different
number of individuals across classes in different groups),
and individuals face a maximization problem under the
constraint that the endogenous distributions or values of
contexts are evaluated at the uninvadable trait state. Like-
wise, taking isolation by distance into account calls for an
extension of the number of contexts and relatednesses to
be considered. But given the contexts and the related-
nesses, their distributions or values can again be approxi-
mated as a function of the resident strategies under weak
selection (see Rousset and Billiard [2000] for such con-
structions for isolation by distance) and again an inclusive
fitness as-if under individual control can be defined. We
also assumed discrete time, but comparison of our results
(in particular to those of the continuous time model of
Grafen [2015, eq. (38)]) suggests that here again, only a re-
definition of contexts is needed to cover fitness as-if under
continuous time.
Our results also relied on specific assumptions about

trait expression. While traits themselves can be arbitrarily
complex (e.g., they can be of arbitrary dimension, combin-
ing both discrete and continuous trait values, or be reaction
norms), we assumed that there is no kin recognition or dis-
crimination based on using genetic cues (most models in
the literature do not allow for this case either). Yet other
forms of kin discrimination, such as different behaviors
expressed toward sisters, cousins, and so on, are readily
accounted by our results once sisters, cousins, and so on
are recognized as different classes of actors. Ourmodel also
does not cover complicated conditional class-specific traits
expressions, such as when an individual helps its mother
as long as she is alive and upon her death starts to help its
siblings. Including such biologically relevant cases andmore
generally conditional trait expression based on individual
recognition again calls for an extension of the number of
contexts to be considered in the definition of fitness as-if. Fi-
nally, we assumed a resident monomorphic population, but
this population could be polymorphic with any finite num-
ber of genotypes coexisting in equilibrium. Here, previous
results (Eshel and Feldman 1984; Liberman 1988; Eshel
et al. 1998) suggest, again, that an extension of the number
of contexts will allow definition of a corresponding fitness
as-if. In conclusion, all of the above scenarios involve con-
sidering more complicated f and qD contextual distribu-
tions, so that explicit extensions of our results under these
scenarios will need care for the definitions of contexts, fit-

nesses, and relatedness. Such demographic, genetic, and
behavioral extensions could be very welcome to generalize
both class-specific inclusivefitness (eq. [4]) and class-specific
inclusive fitness as-if (eq. [4]) but are unlikely to alter our
conclusions, since they all rely only on broadening the num-
ber of contexts (be it demographic or genetic).

Discussion

Summary and Take-Home Messages

The evolutionary literature provides contrasting messages
about the relationship between adaptation and individual
behavior as the outcome of fitness maximization. We here
combined core elements of evolutionary invasion analysis,
inclusive fitness theory, and game theory to get a hold on
the conditions under which individuals can be envisioned
as maximizing their own inclusive fitness in an uninvad-
able population state (i.e., a population where all deviating
mutants become extinct). In particular, we considered
three individual-centered perspectives on adaptation (fig. 1)
and defined two class-specific inclusive fitnessmaximands.
The first inclusive fitness maximand is assigned to bearers
of a mutant allele, but here only identically to all bearers in
a given class rather than identically to all bearers of an al-
lele, as in Hamilton (1964). Our second maximand is as-
signed to each individual in the population separately and
is a generalization of our class-specific inclusive fitness that
a behavioral ecologist can directly assign to any observed
individual without knowing genotypes. Instead of depend-
ing on genotype, it has to depend on the traits expressed by
all social partners. This “behavioral” inclusive fitness never-
theless reduces to the class-specific inclusive fitness of amu-
tant allele when the resident population is an uninvadable
population state and under a weak-selection approxima-
tion.We thereby defined a rational actor–centered inclusive
fitness that is maximized at an evolutionary equilibrium.
Our formal analysis leads to the following main take-home
messages.
Message 1: Actor-centered inclusive fitness maximization

obtains generally. Uninvadable traits can be characterized
in terms of mutant alleles attempting to maximize (in the
best-response sense) their own transmission across gener-
ations. We showed that the traits expressed by individuals
in each class maximize class-specific inclusive fitness in an
uninvadable population state (eq. [4]). This provides a gen-
uine actor-centered perspective of adaptation.
Message 2: Inclusive fitness is a gene-centered fitnessmea-

sure. Selection on a mutant allele depends on both the in-
dividual fitness of its carriers and the distributions of class
and genetic contexts in which these carriers reside. Since
these distributions are properties of a lineage of individuals
overmultiple generations, the class-specific inclusive fitness
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is not the fitness of a single individual but that of an average
class-specific carrier of a mutant allele sampled from the
distributions of genetic contexts it experiences.
Message 3: Rational actor–centered inclusivefitnessmax-

imization obtains under weak selection. For weak selec-
tion, the distributions of class and genetic contexts, and
thus relatedness, can be taken to be unaffected by selection
(Hamilton’s [1964] original modeling assumption). In this
case, we showed that each individual in each class appears
tomaximize its own inclusive fitness (eq. [6]) in an uninvad-
able population state. This provides a genuine individual-
centered perspective of adaptation that can be assigned to
an individual without knowing its genotype.
Message 1 follows from the fact that alleles are the infor-

mation carriers of the hereditary components of organismic
features and behavior. As emphasized by Dawkins (1979,
p. 9), alleles do not act in isolation but in concert with all
other alleles in the genome and in interaction with the en-
vironment to produce the organism. But uninvadability can
be deduced from unilateral deviation of allelic effects alone.
This logic can be transposed down at the class level so that
adaptation in the long-term evolutionary perspective can be
envisioned as the maximization of the class-specific inclu-

sive fitness of a mutant allele that holds for any trait com-
plexity and selection strength. This inclusive fitness consists
of the class-specific reproductive value of an allele aug-
mented by the inclusive fitness effect, which is a decompo-
sition of the force of selection, in terms of direct and indirect
effects on transmissionof replica copies of this allele. The in-
clusive fitness effect in class-structured populations is com-
monly represented, to the first order, as an average effect on
the reproductive value–weighted number of offspring pro-
duced by a recipient of a given class (Taylor 1990; Frank
1998; Rousset 2004). Our class-specific inclusive fitness,
which collects effects by actors of a given class, better em-
bodies the notion of class-specific inclusive fitness and holds
generally. Furthermore, since any (indirect) effect that an ac-
tor from a given class has on the survival and reproduction
of a relative in another class is not an effect on the actor’s
own fitness, the maximization of class-specific average di-
rect fitness is generally not compatible with uninvadability,
in contrast to class-specific inclusive fitness.
Message 2 follows from the fact that the selection pres-

sure on a social trait depends on what carriers and other
individuals are doing. One cannot say what is the best for
one individual to dowithout specifying the actions of other

Figure 1: Three perspectives on adaptation. The three perspectives are here illustrated in groups of three haploid individuals and ignoring
any class structure. In the recipient-centered perspective (A), interactions between group members are described by arrows representing
effects of group neighbors on the fitness of a focal recipient carrying a mutant allele. In the actor-centered perspective (B) and the rational
actor–centered perspective (C), interactions between group members are described by arrows representing effects of a focal actor on the
fitness of average group recipients.
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individuals in present and past generations. This applies to
inclusive fitness as well and shows that the fitness effects
under the control of an allele (the set of all copies of an al-
lele) may include changes in class (demographic) and ge-
netic contexts. As such, inclusive fitness is a gene-centered
fitnessmeasure (consistent withHamilton’s original defini-
tion), whose components, like relatedness, cannot be under
the control of a single individual. This precludes a general
interpretation of uninvadability as individuals maximizing
their inclusive fitness. The usual individual-centered char-
acterization of Nash equilibrium in the social sciences (e.g.,
Luce and Raiffa 1957; Fudenberg and Tirole 1991; Binmore
2007) bears similar limitations as a characterization of hu-
man (evolved) behavior.
Message 3 follows from the fact that when selection is

weak, the dependence of the inclusive fitness of an allele
on the frequency of this allele across generations can be
simplified and the outcome of evolution can be regarded
as individuals maximizing their own inclusive fitness for a
given distribution of genetic-demographic contexts. This
warrants the view of individuals from different classes as
autonomous decision-makers, each maximizing its own
inclusive fitness.
Finally, we delineate two implications highlighted by

our analysis.

Is It Empirically Expected That 2c1 rb 1 0?

First, in any population that is subject to density-
dependent regulation and that is in an uninvadable state,
the average individual fitness and the average inclusive fit-
ness are equal to 1. In practice, populations will not be ex-
actly at uninvadable states, but, when they depart from
such states, they are not expected to depart in any consis-
tent way in terms of expressing social behavior (e.g., the
trait level expressed by individuals could be well below or
above the uninvadable one). Hence, in contrast to the hy-
pothesis considered by Bourke (2014), we do not necessar-
ily expect a tendency for the inclusive fitness effect (rb2 c,
the difference between the baseline fitness of 1 and inclusive
fitness) of a “more social” act to be positive even when kin
selection operates through positive indirect effects (rb 1 0).
This argument applies to the class-specific inclusive fit-
ness as well (the difference between wIFa(x, y) and the re-
productive value in equation (4), which will be zero at
uninvadability).
Bourke (2014) reviewed a number of studies that have

attempted to test kin selection by quantifying the inclu-
sive fitness effect, and he documented only a weak ten-
dency for a positive bias. This meta-analysis was framed
as a test of Hamilton’s rule, and it could then be seen as
providing little support for kin selection theory. But the
inclusive fitness effect, rb2 c, and more generally the

class-specific inclusive fitness effect should be negative
for any mutant trait in an uninvadable population state,
since invasion fitness is maximized in that state. Hence,
the results of Bourke’s (2014) meta-analysis could actually
be seen as evidence that populations are generally close to
some evolutionary equilibrium, where the inclusive fitness
effect tends to vanish.
In contrast to the inclusive fitness effect (rb2 c in the

absence of classes), the indirectfitness effect, rbwill be non-
zerowhen kin selection operates at an evolutionary equilib-
rium. In testing kin selection theory, a difference should
thus be made between attempting to measure the inclusive
fitness of an allele, which, at an equilibrium, is not informa-
tive about the importance of kin selection, and the indirect
fitness effect, which for all conditions quantifies how the
force of selection on amutant depends on relatedness. Nev-
ertheless, the inclusive fitness of a particular class of indi-
viduals (eq. [4]) is itself informative about the importance
of kin selection, since it assigns fitness contributions even
to individuals that do not reproduce.

So, When Do Individuals Maximize
Their Inclusive Fitness?

The second and more significant implication of our re-
sults is to support the common conception in behavioral
ecology and evolutionary psychology of adaptation as the
result of interacting individuals maximizing their own in-
clusive fitness (e.g., Alexander 1979, 1990; Alcock 2005;
Buss 2005; Grafen 2007, 2008; Davies et al. 2012; West
and Gardner 2013; Crespi 2014). Insofar as evolutionists
think about adaptation in this way, they should keep in
mind the underlying weak-selection assumption—the as-
sumption that the population needs to be close to an
uninvadable state—and the definition of inclusive fit-
ness for which it holds (eq. [6]). That is, it is a function
of the traits of an individual and of its social partners all
assumed distinct yet which coincides with allelic inclusive
fitness at an evolutionary equilibrium. Previous work has
been able to justify that individuals appear to maximize
their inclusive fitness only for behaviors that do not in-
volve any phenotypic interactions (Grafen 2006a),1 thus
ruling out social interactions in any broad sense.
While Fisher (1930) and Hamilton (1996, pp. 27–28)

have emphasized the importance of weak selection for the

1. Strictly speaking, Grafen (2006a) did not formally prove any form of
inclusive fitness maximization, since as discussed in Lehmann and Rousset
(2014a) he considered selection on a mutant allele over a single generation
under the assumption that there is a single copy of this allele in the popu-
lation. But his results about individual-centered inclusive fitness maximiza-
tion can be shown to hold by considering multigenerational effects and are
implied by the present analysis.
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evolutionary process, weak-selection approximations are
still sometimes vilified in evolutionary biology (as reviewed
in Birch 2017). The value of approximations, however, can
be assessed only by their impact on a field. Humans were
landed on the moon using Newtonian mechanics (Wakker
2015)—a first-order approximation of the real (relativistic)
mechanics of the solar system (Okun 2012). Thus, techno-
logical and scientific achievements regarded as paradigmatic
are as dependent on approximations as is the individual-
centered versionof inclusivefitness.Anumber of uniquepre-
dictions about social behavior have been made by focusing
on individual inclusive fitness-maximizing behavior, from
conflicts over sex ratios and resources within families to in-
breeding tolerance and genomic imprinting (e.g., Trivers
and Hare 1976; Haig 1997a; Alcock 2005; Macke et al. 2011;
Davies et al. 2012; Szulkin et al. 2013). Our analysis formally
justifies this long-heralded view.
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Supplement A: Invasion fitness as average direct fitness

In this Supplement, we derive the expressions for the average direct fitness given in the main text,

eqs. (2)–(3). As explained therein, we limit our discussion to a population that is divided into

an infinite number of groups that are all of constant size n and connected by random dispersal

with reproduction occurring in discrete time periods (i.e., Wright’s 1931 canonical island model of

dispersal). In each group, there is a finite number of classes and we use the following notations (see

also section “Demographic assumptions” of the main text): na denotes the number of individuals

in class a, C denotes the set of classes (e.g., workers and queens, males and females; n = Âa2C na

and |C| = nc), and Xa denotes the feasible trait set of an individual of class a 2 C with the total

trait set being X = ’a2C Xa (products of sets are taken as Cartesian products throughout).

In such a population, a resident trait x⇤ is uninvadable if it is a best response to itself, meaning

that if we can vary invasion fitness W(x, x⇤) by varying the mutant trait x in the set X of feasible

traits,1 an uninvadable trait must be a trait maximizing invasion fitness for the resident at x⇤

(formally invasion fitness is the function W : X 2 ! R+ with W(y, y) = 1 for all y 2 X ). It then

follows that an uninvadable trait x⇤ satisfies

x⇤ 2 arg max
x2X

W(x, x⇤), (A.1)

which means that x⇤ belongs to the set of traits resulting in the highest invasion fitness among

all alternatives given in the set X of feasible traits, for the resident population at x⇤ (in eq. A.1,

x⇤ belongs to a set because an uninvadable trait is not necessarily unique).

Since (even assuming the island model) notations and concepts, to express the function W in

terms of individual-centered components in the presence of class-structure and diploidy, become

rapidly complicated, we will progressively introduce di↵erent cases (haploid, diploid, etc.), con-

cepts, and notations. We start by defining formally the central building block of our analysis,

which is individual fitness.

A.1 Building blocks

A.1.1 Individual fitness

In the absence of class-structure, we define the individual fitness function as

w : X ⇥X n�1 ⇥X ! R+, (A.2)

such that w(xi, x�i, x̄) is the expected number of successful o↵spring produced (per haplogenome)

by a focal individual i 2 I = {1, 2, .., n} with trait xi 2 X , where neighbors in group I have

trait profile x�i 2 X n�1 in a population where the average trait over all individuals is x̄ 2 X .

1We assume that X is a locally convex Hausdor↵ space; namely, it is a nonempty, compact, and convex set
in a topological vector space (Alipantris and Border, 2006, p. 55). We are not aware of any applications in
evolutionary biology that is not covered by this case (e.g., it covers discrete finite trait sets, infinite-dimensional
reaction norms or function-valued traits, combination of thereof, etc.), and is the space for which general results
concerning function maximization exists (Alipantris and Border, 2006, pp. 581-585).
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The expectation is over all within-generation stochastic e↵ects on settled o↵spring number in

the descendant generation and conditional on realized trait profile (xi, x�i, x̄) in the parental

generation.

In the presence of class-structure, and following the assumptions and explanations of the main

text, the individual fitness functions is defined as

wus : Xs ⇥’
a2C

X na�das
a ⇥X ! R+ 8(u, s) 2 C2, (A.3)

such that wus(xi, x�i, x̄) is the expected number of successful class-u o↵spring produced over a

demographic time step by individual i 2 I when in class-s (per haplogenome) with trait xi 2 Xs

in a group where neighbors have trait profile x�i 2 ’a2C X na�das
a (which has dimension n� 1

owing to the fact that das is the Kronecker delta) in a population where the vector of average

traits is x̄ 2 X .

A.1.2 Distinct and indistinct individuals

The formulation of the fitness functions (eqs. A.2–A.3) allows for a characterization of the pop-

ulation where each individual in a group can be distinguished from each other. This means that

the trait profile (xi, x�i) in a focal group, i.e., its state, belongs to the set of all ordered trait pro-

files (i.e., all ordered group states are considered; for instance, in the absence of class-structure,

this is X n). In an evolutionary invasion analysis, however, we consider that only two alleles

–mutant and resident– segregate in the population and so there can be a maximum number of

only two types of individuals in each class in a haploid population (or three types in diploids:

one heterozygote and the two homozygotes). Hence, we have group states with n individuals,

where each member belongs only to one among a finite number of genotypic types. This allows

for an alternative characterization of the population, where one counts the number of individuals

bearing identical traits in a group and thus individuals are no longer distinguished (i.e., only

unordered groups states are considered).

To illustrate these concepts, consider a haploid population without class structure with indi-

viduals either expressing a mutant trait x 2 X or expressing a resident trait y 2 X . Since each

individual in a group is either mutant or resident, there is a total number of 2n ordered groups

states. Since neighbors are exchangeable, the individual fitness of an individual i with given trait

xi is identical for all permutations of neighbors’ traits in x�i. Thus,

w(xi, x�i, x̄) = w(xi, xk, x̄) 8x�i 2 Sk, (A.4)

where xk = (x, x, . . . y, y, . . . ) is the vector of dimension n� 1 with the first k� 1 entries equal to

x and the subsequent n� k entries equal to y, and Sk is the set of all distinct permutations of

xk. The number of distinct permutations is the binomial coe�cient

B(n, k) =
✓

n� 1
k� 1

◆
. (A.5)
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In the class-structured case, permutation-invariance is on the trait profile of neighbors belonging

to the same class. Permutation-invariance is not an assumption, it is part of what allows one to

determine whether di↵erent neighbors belong to the same class of actors. When permutation-

invariance does not hold, individuals belong to di↵erent classes.

These considerations show that one can characterize a group state in a class-structured pop-

ulation from the perspective of an individual i either by distinguishing all individuals (ordered

group states) or by not distinguishing individuals in identical states (unordered group states).

While in evolutionary analysis individuals are usually not distinguished because this is often

mathematically simpler (an exception being the Price equation, Price, 1970; Frank, 1998), dis-

tinguishing them is fundamental to the rational actor-centered perspective of adaptation. As

such, we develop the invasion fitness by distinguishing individuals when this will be needed for

the analysis of the indivdual-centered perspective, but start by not distinguishing individuals to

frame the model into the classical approach and to introduce concepts in a progressive way.

A.2 Average direct fitness without classes

A.2.1 Haploids

Indistinct individuals. In the absence of within-group class structure (homogeneous individ-

uals), the invasion fitness can be written

W(x, y) =
n

Â
k=1

w(x, xk, y)qk(x, y), (A.6)

which takes the form of average direct fitness. Indeed, here w(x, xk, y) is the individual fitness

given by eq. (A.4) and qk(x, y) is the probability that a randomly sampled mutant individual

from the mutant lineage descending from the initial mutant resides in a group with k mutants

(Ân
k=1 qk(x, y) = 1).
The qk(x, y) probability is evaluated under the assumption that the mutant is overall rare in

the population, and that the growth of the mutant lineage descending from a single initial copy

has reached stationarity. That is,

qk(x, y) =
kuk(x, y)

Ân
j=1 juj(x, y)

, (A.7)

where u = (u1, u2, ..., un) is the right eigenvector associated to the leading eigenvalue W(x, y) of
the matrix A(x, y) describing the growth of the mutant when it is overall rare in the population:

A(x, y)u(x, y) = W(x, y)u(x, y). (A.8)

The jkth entry of A(x, y), denoted by ajk, gives the expected number of groups with j � 1
mutants descending over one time step from a group with k � 1 mutant, and uj(x, y) is the
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stationary probability that there are j mutants in a group, conditional on there being at least

one mutant. A proof of eq. (A.6) follows by left-multiplying eq. (A.8) with a vector n whose

entry j is equal to the number j of mutants, noting that Ân
j=1 jajk = w(x, xk, y)k is the expected

number of successfull mutant copies produced over one time step by all mutant gene copies in

a group in state k, and rearranging terms; see Lehmann et al. (2016) for a detailed proof and a

more detailed characterization of the multitype branching process underlying mutant dynamics.

Distinct individuals. We now make the link to characterizing invasion fitness by considering

all ordered groups states. To obtain this representation, we note that from eq. (A.4), we can

write

w(x, xk, y) =
1

B(n, k) Â
x�i2Sk

w(x, x�i, y), (A.9)

where on the right-hand side we have distinguished all trait profiles in the focal group with k� 1
neighbors bearing the mutant allele. Let us now further define

qD
k (x, y) =

qk(x, y)
B(n, k)

, (A.10)

which is the probability that, conditional on an individual carrying the mutant allele, an ordered

neighbor trait profile x�i 2 S = {x, y}n contains exactly k � 1 individuals also carrying the

mutant (hence Ân
k=1 Â

x�i2Sk
qD

k (x, y) = 1 and the superscript D stands for a reminder that the

distribution is over profiles of traits for distinct individuals). On substituting eqs. (A.9)-(A.10)

into eq. (A.6), we can write the invasion fitness of a mutant allele with trait x introduced into a

haploid resident population with trait y as

W(x, y) =
n

Â
k=1

Â
x�i2Sk

w(x, x�i, y)qD
k (x, y) 8(x, y) 2 X 2, (A.11)

which is the average fitness over all ordered trait profiles in a group.

Writing explicitly the sums appearing in eq. (A.11) and detailing the permutation under the

more general diploid and class-structured model will be cumbersome and we now present an

alternative and more compact representation of invasion fitness. To that end, let us collect all

qD
k (x, y) probabilities into the vector q

D(x, y), which is the distribution of ordered group states

experienced by an individual with trait x and that has sample space in S = {x, y}n. With this,

we can write invasion fitness as

W(x, y) = E
x�i⇠q

D(x,y)[w(x, x�i, y)] , (A.12)

where the notation ⇠ specifies that variable x�i follows distribution q

D(x, y).
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A.2.2 Diploids

When individuals are diploid, we need to take into account that they can be homozygote for the

mutant allele. To do this, it will be convenient to build on our notations for mutant and resident

traits introduced for a haploid population. For a diploid population, we let y 2 X be the trait of

an individual that is homozygote for the resident allele and x 2 X be the trait of an individual

that is heterozygote for the mutant allele. Let z 2 X denote the trait of a homozygote mutant

and assume that the trait of an heterozygote is obtained as the following convex combination of

the trait of the two homozygotes:

x = ay + (1� a)z (A.13)

for the scalar a 2 (0, 1). Hence, we rule out over-, under-, and strict dominance, but otherwise

allow for arbitrary gene action. Eq. (A.13) guarantees that for all y 2 X and z 2 X , we have

x 2 X and it allows us to express conveniently the trait of a homozygote mutant as a function

z : X 2 ! X of heterozygote and resident homozygote traits, where

z(x, y) = y +
x� y
1� a

. (A.14)

For arbitrary group size n, the invasion fitness of a mutant allele with heterozygote trait x
introduced into a resident diploid population with homozygote trait y can be written as

W(x, y) = E(xi ,x�i)⇠q

D(x,y)[w(xi, x�i, y)] , (A.15)

where xi 2 {z(x, y), x}. Each component xj of the neighbor trait profile x�i = (x1, , ..., xi�1, xi+1, ...xN)

takes values in the set {z(x, y), x, y}. The expectation in eq. (A.15) is over the distribution

q

D(x, y) of ordered group profiles of traits, determined by the distribution of contexts of copies

of the mutant allele. The sample space of the distribution of ordered group profiles of strategies

is S = {z(x, y), x} ⇥ {z(x, y), x, y}n�1. Eq. (A.15) shows that invasion fitness can, as in the

haploid case and regardless of the mating system, be expressed as an average of the direct fitness

components w(·, ·, ·) over a distribution q

D(x, y), but which is generally more involved than in

the haploid case. Indeed, for the diploid case, the matrix A(x, y) defining the closed“dynamically

su�cient” system determining the fate of the mutant when rare (recall eq. A.8) has entries a
jk

,

which gives the expected number of groups in state j descending over one time step from a group

in state k, and where a state specifies the number of homozygote and heterozygote individuals in

a group. More specifically, j = (jy, jx, jz), where jy denotes the number of homozygote residents,

jx the number of heterozygotes, and jz the number of homozygote mutants in a group. The state

space of the process is G = {j : jy + jx + jz = n and jx + jz > 0} and the stationary distribution

satisfying eq. (A.8) is u(x, y) = (u
j

(x, y))
j2G .

A proof of eq. (A.15) then follows by left-multiplying eq. (A.8) with a vector n whose entry j is

equal to the number jx + 2jz of mutant gene copies in that state and rearranging terms by noting

that Â
j2G (jx + 2jz) a

jk

= w(x, x

k

, y)kx + w(z(x, y), x

k

, y)2kz is the expected number of success-
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ful mutant copies produced over one demographic time step by all mutant gene copies in a group

in state k, and where x

k

denotes the vector of neighbor group profiles when a group is in state k.

With this, W(x, y) = Â
k2G [w(x, x

k

, y)kx + w(z(x, y), x

k

, y)2kz] u
k

(x, y)/ [Â
k2G (kx + 2kz) u

k

(x, y)]
regardless of the assumptions on the mating system. Expanding therein the individual fitnesses

in terms of ordered group profiles (like in eq. A.9) one obtains eq. (A.15). The distribution

q

D(x, y) of ordered group states experienced by a typical copy of the mutant allele will thus be

expressed in terms of u(x, y), of the numbers kx and 2kz, and combinatorial terms. We skip the

explicit expression of q

D(x, y) since it requires to define notations to take into account that a

mutant allele copy can be in a homozygote or an heterozygote individual (see eq. A.16 for an

example) but the logic to obtain q

D(x, y) is as in the haploid case (see eq. A.7 and eq. A.10).

As an example of eq. (A.15), let us consider the case n = 2, then

W(x, y) = w(x, y, y)q0,he(x, y) + w(x, x, y)q1,he(x, y) + w(x, z(x, y), y)q2,he(x, y)

+ w(z(x, y), y, y)q0,ho(x, y) + w(z(x, y), x, y)q1,ho(x, y) + w(z(x, y), z(x, y), y)q2,ho(x, y),
(A.16)

where qj,he(x, y) is the probability that, given a gene copy is mutant, its carrier is heterozygote and

its group neighbor has j copies of the mutant (j = 0, 1, 2, then indicate the cases, respectively, for

the neighbor to be homozygote resident, heterozygote, and homozygote mutant), while qj,ho(x, y)
is the probability that, given a gene copy is mutant, its carrier is homozygote and its group

neighbor has j copies of the mutant. For this case, the distribution over group contexts is given

by

q

D(x, y) = (q0,he(x, y), q1,he(x, y), q2,he(x, y), q0,ho(x, y), q1,ho(x, y), q2,ho(x, y)), (A.17)

whose elements sum up to one and could be expressed in terms of probabilities of identity in

state of alleles in pairs of individuals (Michod, 1982, Fig. 1).

A.3 Average direct fitness with classes

A.3.1 Haploids

In the presence of classes, the trait x of the mutant in a haploid population is taken as a vector

of actions (or stream of actions), one for each class the individual may belong to, so we write

x = (x1, x2, ..., xnc) 2 X , where xa is the trait of a mutant individual when of class a. Likewise,

we have y = (y1, y2, ..., ync) 2 X . Using eq. (A.3), we let wus(xs, xk, y) be the expected number

of class-u o↵spring produced by a class-s mutant when in a group in state k = (k1, ..., knc), which

is the vector of the number of individuals carrying the mutant allele in each class, with ka being

the number of mutants in class a, whereby xk is a vector that has (ks � 1) entries with trait

xs, ka entries with trait xa for each a 6= s, while all remaining entries are for the corresponding

element of the resident trait vector y.
A central quantity in our analysis is the reproductive value vs(y) of a single gene copy residing
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in an individual of class s in a monomorphic resident population (neutral reproductive value),

which satisfies

vs(y) = Â
u2C

vu(y)wus(y, x0, y) (A.18)

(e.g., Taylor, 1990; Frank, 1998; Rousset, 2004; Grafen, 2006b; Lehmann et al., 2016), where 0

indicates the value of k with no mutants at all. With these definitions, the invasion fitness of

a mutant allele with trait x in a resident population with trait y can be written as a sum over,

respectively, possible group states, o↵spring classes, and parent classes:

W(x, y) =
1

V(x, y) Â
k2I

Â
u2C

Â
s2C

vu(y)wus(xs, xk, y)qk,s(x, y), (A.19)

where qk,s(x, y) is the probability that a randomly sampled member of the mutant lineage finds

itself in class s and in a group in state k; I = (I1 ⇥ · · ·⇥ Inc) \ 0 is the set of possible group

states with Iu = {0, 1, ..., nu} being the set of the number of mutant alleles in class u; and

V(x, y) = Â
s2C

vs(y)fs(x, y), (A.20)

where

fs(x, y) = Â
k2I

qk,s(x, y) (A.21)

is the probability that a randomly sampled gene copy from the mutant lineage resides in a class-s
individual. Hence, V(x, y) is the total (neutral) reproductive value of a randomly sampled mutant

gene copy from its lineage. Owing to eq. (A.18), V(x, y) can be seen as the average reproductive

value of a mutant gene copy that would have its fitness components assigned those of a resident

copy (instead of expressing mutant fitness components, the wus(xs, xk, y)’s, it expresses resident
fitness components, the wus(ys, x0, y)’s).

Eq. (A.19) is in terms of unordered neighbor profiles charaterized by k. In this formalism,

invasion fitness W(x, y) still satisfies eq. (A.8), if the matrix A(x, y), describing the growth of

the mutant lineage when rare in the population, now has entries ajk giving the expected number

of mutant copies in context j that descend from a mutant copy in context k, and the qk,s(x, y)
distribution is then expressed in terms of the leading right eigenvector u(x, y) = (u

k

(x, y))
k2I

of this matrix; namely,

qk,s(x, y) =
ksuk(x, y)

Âk2I Âs2C ksuk(x, y)
. (A.22)

A detailed proof of eq. (A.19) can be found in Lehmann et al., 2016, Appendix F. It follows

by left-multiplying eq. (A.8) with a vector n whose entry j is equal to the reproductive value-

weighted number Âu2C juvu(y) of mutant gene copies in context j. This yields n · A(x, y)u(x, y) =

8
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Â
k2I Â

j2I Âu2C juvu(y)a
jk

u
k

= W(x, y) n · u, wherein the central expression can be simplified

(and the whole expression rearranged) by noting that Â
j2I jua

jk

= Âs2C wus(x, xk, y)ks is the

expected number of successful mutant copies in class u produced over one demographic time step

by all mutant gene copies in a group in state k.

We now write eq. (A.19) as

W(x, y) =
1

V(x, y) Â
s2C

wDFs(x, y)fs(x, y), (A.23)

where

wDFs(x, y) = Â
u2C

Â
k2I

vu(y)wus(xs, xk, y)qk|s(x, y) (A.24)

is the expected reproductive value-weighted fitness of a class s mutant gene copy and

qk|s(x, y) =
qk,s(x, y)
fs(x, y)

(A.25)

is the probability that, conditional on an individual carrying the mutant allele and of class s, the
individual resides in a group in state k. Eq. (A.24) is the sum of the reproductive values of the

descendants of an individual of class s, including its potentially surviving self. We thus refer to

wDFs(x, y) as the average direct fitness of a class s individual, and, for a panmictic population, this

quantity was previously called Williams’ reproductive value (Grafen, 2015, p. 8). Hence, invasion

fitness eq. (A.23) is the total average direct fitness of a mutant relative to the reproductive value

that individual would have if it expressed the resident trait.

However, any non-null vector of weights could have been chosen in eq. (A.19) and eq. (A.23)

to compute the geometric growth rate, which is so because the right-hand side eq. (A.19) is ob-

tained by rearranging the leading eigenvalue-eigenvector equation, where the leading eigenvector

can be normalized by any non-null vector (see Lehmann et al., 2016, Appendix B and C for

more details). We can in particular choose the unit vector (1, 1, ..., 1), whereby invasion fitness

becomes the average of the individual fitnesses of a randomly sampled mutant from its lineage. In

eq. (A.19), we choose reproductive-value weights for two reasons. First, average direct fitness is

then expressed with the same weights as is inclusive fitness (see next section “Inclusive fitness”),

given that for inclusive fitness there is no choice but to use the reproductive-value weights. Sec-

ond, the reproductive-value weights play a pivotal role in the forthcoming weak-selection analysis

(section “Individual maximands under weak selection”), where they allow to obtain meaningful

expressions for the di↵erent average fitnesses, a feature that follows from the well-established

fact that the reproductive-value weights are also the unique weights that would allow to apply

eqs. (A.23) when the mutant is no longer rare to predict the direction of average allele frequency

change by a scalar fitness measure at all allele frequencies under weak selection (e.g., Rousset,

2004; Grafen, 2006b).

Finally, we note that we could normalize the reproductive values such that V(x, y) = 1,
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however this would induce the vu(y)’s to become a function of the mutant, since the fs(µ, y)
probabilities in eq. (A.20) depend on the mutant. We would like to avoid this here, otherwise

di↵erentiation of W(x, y) requires di↵erentiating the reproductive values, and so we need a no-

tation distinguishing the case where reproductive values depend on the mutant from the case of

weak selection (investigated below), where this dependence drops out. In order to have a uni-

form notation throughout the main text, we normalize the vu(y)’s such that the average neutral

reproductive value of a randomly sampled resident individual is one:

V(y, y) = Â
s2C

vs(y)fs(y, y) = 1, (A.26)

where vs(y)fs(y, y) can be recognized as the reproductive value of class s in a monomorphic

resident population (e.g., Taylor, 1990; Rousset, 2004) and so eq. (A.26) is the standard normal-

ization of the reproductive values.

A.3.2 Diploids and social insects

In order to generalize eq. (A.24) to diploidy, we let za(xa, ya) 2 Xa be the trait of an ho-

mozygote mutant of class a when the profile of heterozygote mutant traits across classes is

x = (x1, x2, ..., xnc) 2 X and the trait profile of a homozygote resident individual is y =

(y1, y2, ..., ync) 2 X (following eqs. A.13–A.14, we assume that for each a, za(xa, ya) is obtained

by assuming that heterozygote traits are a convex combination of the homozygotes’ traits). With

this, let z(x, y) = (z1, z2, ..., znc) 2 X denote the profile of homozygote mutants. Then, the in-

vasion fitness of a mutant allele with heterozygote (multidimensional) trait x introduced into a

resident diploid population with homozygote trait y can be written as

W(x, y) =
1

V(x, y) Â
s2C

wDFs(x, y)fs(x, y), (A.27)

where

wDFs(x, y) = Â
u2C

vu(y)wDFus(x, y) (A.28)

and

wDFus(x, y) = E(xi ,x�i)⇠q

D
s (x,y)

h
wus(xi, x�i, y)

i
, (A.29)

which is the expected reproductive value-weighted fitness of a class s mutant gene copy. Here,

xi 2 {zs(xs, ys), xs} if individual i is of class s and each component xj of the neighbor trait profile

x�i = (x1, ..., xi�1, xi+1, ...xN) takes values in {za(xa, ya), xa, ya} if the corresponding individual j
is of class a. In eq. (A.29), the couple (xi, x�i) follows the distribution q

D
s (x, y) of ordered focal

group trait profiles determined by the distribution of contexts of copies of the mutant allele in
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individuals of class s. The distribution of trait profiles has sample space

Ss = {zs(xs, ys), xs}⇥’
a2C

{za(xa, ya), xa, ya}(na�dsa), (A.30)

since among the neighbors of an individual of class s we have na individuals of class a 6= s and

ns � 1 class-s individuals. An algebraic proof of eqs. (A.27)–(A.29) follows by combining the line

of arguments used to derive the invasion fitness for diploids without classes (eq. A.15) and that

for haploids with classes (eq. A.19).

A special case of eq. (A.29) is when there is only a single adult individual per group under

complete dispersal and random mating. In that case, a mutant individual can only be heterozy-

gote (as long as the mutant is rare). As a concrete example, we work out the model of a seasonal

population of social insects presented in Box ??, where x = (xf, xm, xo), which collects, respec-

tively, the traits of females, males, and workers so that the set of classes is C = {f, m, o}. Since
we are interested in considering the three classes of individuals demographically, the census stage

of fitness is taken right before dispersal (end of stage (1) of the life cycle). When the mutant

allele is rare, the dynamics of the number of mutant allele copies in females, males, and workers

in the population between successive census stages can be described by the matrix

A(x, y) =

2

66664

wDFff(x, y) wDFfm(x, y) 0

wDFmf(x, y) wDFmm(x, y) 0

wDFof(x, y) wDFom(x, y) 0

3

77775
, (A.31)

From this matrix, the probabilities that a randomly sampled copy of the mutant allele is in

a female, male, or worker, are respectively

ff(x, y) =
wDFff (wDFff + wDFmm)

X
, ff(x, y) =

wDFmm (wDFff + wDFmm)
X

and fo(x, y) =
wDFffwDFof

X
,

(A.32)

where X = (wDFff + wDFmm)2 + wDFffwDFof. The reproductive values are vo(y) = 0, vf(y) > 0
and vm(y) > 0, and the invasion fitness is given by

W(x, y) =
1

V(x, y)
[wDFf(x, y)ff(x, y) + wDFm(x, y)fm(x, y)] . (A.33)

The two direct fitnesses appearing in this equation are given by eq. (??) of the main text.

Supposing there is only one worker in the colony (e.g., assumptions in the main text), then, in

a monomorphic population, we have ff(y, y) = fm(y, y) = fo(y, y) = 1/3 and the reproductive

values, normalized so as to satisfy eq. (A.26), are

vo(y) = 0, vf(y) =
3
2

, vm(y) =
3
2

. (A.34)
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Supplement B: Inclusive fitness

The main aim of this Supplement is to derive from invasion fitness the expression for the inclusive

fitness of a class-a individual given in the main text (eq. 4) and then to show that it is maximized

for the class-specific trait xa in an uninvadable state x⇤. As in the previous section, we do so by

progressively introducing the di↵erent concepts. Before delving into the calculations, it is worth

recalling that “inclusive fitness” can be regarded as achieving two related decompositions of the

force of selection on a mutant allele. First, it is a partition of selection into direct and indirect

fitness e↵ects (the “cost” and “benefit” of Hamilton’s rule, e.g., Hamilton, 1964; Frank, 1998;

Rousset, 2004), where the indirect e↵ects are weighted by relatedness coe�cient(s). This allows

to usefully classify behaviors in di↵erent categories (“selfishness”, “altruism”, “spite”, etc.) and

is most easily achieved in an evolutionary model by a neighbor-modulated representation where

fitness e↵ects are grouped by recipient of actions (e.g., Hamilton, 1970, Frank, 1998, Rousset,

2004, Fig. 7.1). Second, and as further explained in the main text, one may seek to go one step

further and group the indirect fitness e↵ects by actor. We will refer to this as the actor-centered

approach to inclusive fitness.

For a model with arbitrary strength of selection on a mutant allele without class structure,

a general expression for the decomposition into direct and indirect e↵ects has been reached

for the case n = 2 by performing a two-predictor regression of the fitness of a representative

individual from the population, on the mutant allele frequency it carries and on the frequency

of the mutant in its neighbors (Queller, 1992; Frank, 1997; Gardner et al., 2011), thus reaching

a neighbor-modulated representation of “inclusive fitness”. Importantly, it has been shown that

such a two-predictor regression automatically yields an actor-centered representation of such

e↵ects (Rousset, 2015).

Alternatively, one may perform a single-predictor regression of the individual fitness of a

carrier of the mutant on the frequency of the mutant allele among its neighbors, which may be

more in line with certain empirical estimates of inclusive fitness where only the social neigborhood

of an individual expressing a particular behavior is varied (Krakauer, 2005; Dobson et al., 2012).

A single-predictor regression was also used in Lehmann et al. (2016, Box.1) as a justification

to derive an exact decomposition of the force of selection into direct and indirect e↵ects for

haploid class-structured populations. The single-predictor regression, however, only leads to a

neighbor-modulated representation of direct and indirect e↵ects.

In order to obtain a general actor-centered representation of fitness e↵ect for diploid class

structured populations and avoid confusions between approaches, we first delineate in the case of

haploids the di↵erences between the partitions of fitness by single and two-predictor regressions,

and by neighbor-modulated and inclusive fitness e↵ects. In a second time, we turn to the general

class-structured populations analysis.

B.1 Inclusive fitness for haploids without classes

We start by deriving a decomposition into direct and indirect e↵ects from invasion fitness (eq. A.6)

for the haploid case and without class structure. To that end, we use the relatedness coe�cient
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defined as

r(x, y) =
n

Â
k=1

✓
k� 1
n� 1

◆
qk(x, y), (B.1)

which is the probability that a randomly sampled neighbor of a mutant (itself randomly sampled

from its lineage when rare) also carries the mutant allele (when n = 2, we have r(x, y) = q2(x, y)).

B.1.1 Regression with respect to neighbors

For a one-predictor regression, we aim to write the individual fitness of a mutant x in a group

with trait profile xk as

w(x, xk, y) = 1� g(x, y) + b(x, y)
✓

k� 1
n� 1

◆
+ residual, (B.2)

where 1�g(x, y) is the intercept of the regression, b(x, y) is the additive e↵ect on a focal’s fitness

of allele frequency in neighbors, and (k� 1)/(n� 1) is the frequency of the mutant allele among

neighbors of a mutant. The“cost” (g) and“benefit” (b) of this single predictor are determined by

minimizing over the qk(x, y) distribution the expected mean-square di↵erence between individual

fitness w(x, xk, y) and the regression. Thus, for all (x, y) 2 X 2, we minimize the sum of squares

Q(g, b, x, y) =
n

Â
k=1


1� g + b

✓
k� 1
n� 1

◆
� w(x, xk, y)

�2
qk(x, y), (B.3)

with respect to g and b, which are practically obtained by setting ∂Q(g, b, x, y)/∂g=0 and

∂Q(g, b, x, y)/∂b=0, and solving for g and b, which are thus obtained as functions of x and

y (i.e., g = g(x, y) and b = b(x, y)). It follows directly by averaging the regression over the

qk(x, y) distribution, that we can write invasion fitness in terms of the so-obtained coe�cient as

W(x, y) = 1� g(x, y) + r(x, y)b(x, y) (B.4)

for relatedness defined in eq. (B.1).

B.1.2 Regression with respect to focal and neighbors

For the two-predictor regression, the additional predictor variable for the fitness of an individual

is its own allelic type. To take this into account in a least-squares regression framework, we

need to consider a population where the average mutant frequency is no longer rare. We denote

by p this frequency, and by a slight abuse of notation, we denote by w(x, xk, p) the individual

fitness of a mutant in a group with a total number k of mutant neighbors, in a population where

the mutant frequency is p. More generally, whenever we will consider fitness at all mutant

frequencies, we will replace the last argument of the fitness function with the mutant frequency

in the population). Fitness w(y, xk+1, p) likewise stands for the fitness of an individual carrying

the resident allele in the same context of a group including k mutants (hence xk+1 is any vector
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of dimension N � 1 with k entries equal to x and N � k entries equal to y). The sum of squares

characterizing the regression of the expected number of o↵spring of a mutant x with frequency

p in a resident y population is:

Q(c, bN, x, y, p) =

 
n

Â
k=1

h
1� c + bN (k� 1)� w(x, xk, p)

i2
qk(x, y, p)

!
p

+

 
n�1

Â
k=0

h
1 + bN k� w(y, xk+1, p)

i2
q̃k(x, y, p)

!
(1� p), (B.5)

where c and bN are regression coe�cients (the superscript N will from now on stand as a reminder

that the regression is, by construction, neighbor-modulated, and we also regress on the number

rather than the frequency of mutant neighbors, as this will be useful later), qk(x, y, p) is the

probability that, given an individual is a mutant with trait x in a population where the frequency

of mutants is p and residents play trait y, it will reside in a group where there are k mutants

(this probability can be obtained from the full dynamical system for a non-rare mutant, but

since we do not need to compute this probability explicitly, we do not specify this dynamical

system). Likewise, q̃k(x, y, p) is the probability that, given an individual is a resident with trait

y in a population where the frequency of mutants with trait x is p, it will reside in a group with

k mutants (again this probability can be obtained from the full dynamical system for a non-rare

mutant). Minimizing the quadratic form Q(c, bN, x, y, p) (by solving ∂Q(c, bN, x, y, p)/∂c = 0
and ∂Q(c, bN, x, y, p)/∂b = 0) we then obtain the regression coe�cients c = c(x, y, p) and bN =

bN(x, y, p), which depend on the population allele frequency.

When the mutant is rare (p ! 0), the fitness of a mutant is w(x, xk, p) ! w(x, xk, y) (same

as in eq. A.6) and the regression thus predicts this fitness as

w(x, xk, y) = 1� c(x, y) + bN(x, y) (k� 1) + residual, (B.6)

where the residual and the cost and benefit will depend on mutant trait, resident trait, and are

limits as p ! 0 of frequency-dependent terms, i.e., c(x, y) = limp!0 c(x, y, p) and bN(x, y) =

limp!0 bN(x, y, p). When the mutant is rare, we also have that qk(x, y, p)! qk(x, y) because in

that case the mutant frequency dynamics within groups is described by the mean matrix A, which

is also the matrix of the linearized dynamical system around p = 0, and so qk(x, y, p) = qk(x, y)+
O(p) for all k. The residuals are orthogonal to the regressors when regression coe�cients minimize

the quadratic form (Cox and Wermuth, 1996, section 3.3.2). Here the regressors include both an

intercept and the focal allele frequency, and then the expectation of the residuals is zero whether

an individual carries the mutant or the resident allele. Thus, the residuals disappear from the

average of expression (B.6) over the conditional distribution qk(x, y, p) of k given an individual

carries the mutant allele, and we can then write invasion fitness as:

W(x, y) = 1� c(x, y) + r(x, y) (n� 1) bN(x, y) (B.7)
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for the relatedness coe�cient defined in eq. (B.1). We now give an interpretation of this result.

The interpretation of �c(x, y) is the additive marginal e↵ect on the number of successful gene

copies produced by an individual when it expresses the mutant instead of the resident allele,

while bN(x, y) can be interpreted in the two following ways.

(1) Neighbor-modulated interpretation. Here, bN(x, y) gives the average e↵ect, on the ex-

pected number of o↵spring (per haplogenome) produced by a focal individual, and stem-

ming from a randomly sampled neighbor expressing a copy of the mutant instead of the

resident allele.

(2) Actor-modulated interpretation. Here, bN(x, y) gives the average e↵ect, on the ex-

pected number of o↵spring (per haplogenome) produced by a randomly sampled group

neighbor, of an individual expressing a copy of the mutant instead of the resident allele.

This dual interpretation follows from the fact that the regression (e.g. eq. B.5) averages over

all contexts, mutant and resident neighbors a↵ecting the fitness of a focal recipient, which itself

can be mutant or resident (“two-predictor regression”), and so, on average, recipient and actor

individuals can be interchanged (see Rousset, 2015 for more details on this dual perspective). As

such, eq. (B.7) provides a genuine actor-centered representation of inclusive fitness and in order

to obtain a more compact expression, we let

b(x, y) = (n� 1) bN(x, y) (B.8)

denote the additive e↵ect, on the expected number of o↵spring (per haplogenome) produced by

all group neighbors, of an individual expressing a copy of the mutant instead of the resident allele.

Thereby, selection favors the mutant (W(x, y) > 1) when Hamilton’s rule is satisfied:

r(x, y)b(x, y)� c(x, y) > 0. (B.9)

B.1.3 Comparing single- and two-predictor regression

The key di↵erence between the single and two-predictor regression version of inclusive fitness

(eq. B.3 and eq. B.5) is that only mutant fitness in di↵erent contexts (the set of w(x, xk, p)) are
taken into account into the single-predictor regression (eq. B.3), while all contexts for mutant

and residents (the set of w(x, xk, p) and w(y, xk+1, p) values) are taken into account in the two-

predictor version (eq. B.5). Technically, this implies that one has to consider explicitly the

average mutant allele frequency p in the total population to derive the two-predictor version.

Biologically, this implies that the interpretation of costs and benefits di↵er. Indeed, while the

variable b in eq. B.4 and b in eq. B.7 and are both regression coe�cients of fitness to mutant

frequency in neighbors, in general b 6= b, since the value of a regression coe�cient depends on

the other predictor variables considered. Likewise, g and c di↵er. This is best seen in the case

where n = 2, where the single-predictor regression line exactly describes the fitness for k = 1
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and k = 2, hence 1� g is the fitness of a single mutant in a group. Indeed, in this case

g(x, y) = w(y, y, y)� w(x, y, y)

b(x, y) = w(x, x, y)� w(x, y, y). (B.10)

By contrast, in the case of non-additive interactions between group members, it is known that

1� c, as given by the two-predictor regression, is not the fitness of a single mutant (e.g., Gardner

et al., 2011, eq. 7). Further, in this case already for n = 2, both c and b will depend on relatedness

coe�cients (e.g., Gardner et al., 2011) and are given explicitly by

�c(x, y) =
1

1 + r(x, y)
(w(x, y, y)� w(y, y, y)) +

r(x, y)
1 + r(x, y)

(w(x, x, y)� w(y, x, y))

b(x, y) =
1

1 + r(x, y)
(w(y, x, y)� w(y, y, y)) +

r(x, y)
1 + r(x, y)

(w(x, x, y)� w(x, y, y)) .

(B.11)

In the actor-modulated interpretation, 1/[1 + r(x, y)] and r(x, y)/[1 + r(x, y)] weigh in both �c
and b the case where the neighbor of a focal individual is either resident or mutant, respec-

tively. To understand where these weights come from, let P denote the probability of an (x, x)
focal-neighbour pair in a group and Q the probability of an (x, y) focal-neighbour pair [these

probabilities reducing respectively to pr(x, y) and to p(1� r(x, y)) for vanishing p]. Then the

weights are proportional to P + Q versus P, rather than Q versus P, for the following reason.

The derivative of the sum of squares with respect to c is proportional to

Q(w(x, y, y) + c� w(y, y, y)) + P(w(x, x, y) + c� b� w(y, y, y))

= (Q + P)(w(x, y, y) + c� w(y, y, y)) + P(w(x, x, y)� b� w(x, y, y)). (B.12)

The e↵ect of least-square regression is to predict w(x, y, y) and w(y, x, y) with identical predic-

tion residuals: w(y, x, y)� w(y, y, y)� b = w(x, y, y)� w(y, y, y) + c, and thus the derivative is

proportional to

(Q + P)(w(x, y, y) + c� w(y, y, y)) + P(w(x, x, y) + c� w(y, x, y)), (B.13)

meaning that we have represented the original term w(x, x, y)� w(y, y, y) as the e↵ect of two

allelic substitutions, each with e↵ect �c. This recovers the solution for �c. The same logic holds

for the weights in the expression for b and this argument holds at all allele frequencies p.

B.2 Inclusive fitness for diploids with classes

B.2.1 Multiplayer class-structured regression

We now turn to deriving an expression for inclusive fitness for diploids with class structure by

performing an extension of the two-predictor regression of the fitness of a representative gene
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copy from the population. To construct this fitness measure, we consider all possible group trait

profiles, and write for each class u of descendants and each class s of parent, the fitness (per

haplogenome) of a focal individual i with trait xi in a group with trait profile x�i as

wus(xi, x�i, y) = wus(y, x0, y)� cus(x, y)pi + Â
j 6=i

bN
us k(j)(x, y)pj + residual. (B.14)

Here, pi denotes the frequency of the mutant allele in individual i 2 I [zero, one-half, or one,

so that the individual expresses, respectively, trait y, x or z(x, y)]. The function k : I ! C
assigns to each individual in group I its class in C, such that k(j) = a when individual j is in

class a. The mutant allele frequencies pi in each individual are thus predictor variables of fitness

and cus(x, y) and bN
us k(j)(x, y) are regression coe�cients depending on mutant and resident trait

values. Indeed, eq. (B.14) says that we seek to obtain the predictor

ŵus

⇣
cus, b

N
us, pi, y

⌘
= wus(y, x0, y)� cus(x, y)pi + Â

j 6=i
bN

us k(j)(x, y)pj. (B.15)

of class-u fitness of a class-s gene copy as a linear regression on the mutant allele frequency

carried by all actors on that fitness [here the vector b

N
us collects all the bus k(j) regressors and

the vector pi collects mutant frequencies pi in all individuals].

Eq. (B.14) must hold for all trait profiles (xi, x�i) 2 {zs(xs, ys), xs, ys}⇥’a2C {za(xa, ya), xa, ya}(na�dsa)

and the regression coe�cients are determined by the following argument, which generalizes the

one developed in the absence of class structure (section B.1). Let then wus(xi, x�i, p) denote the

fitness of an individual in a population where the mutant frequencies in the di↵erent classes are no

longer rare, and are collected in the vector p = (p1, ..., pnc), where ps is the average mutant allele

frequency in class s in the population. Further, let q

D
s (x, y, p) denote the ordered distribution of

group traits, determined by the distribution of contexts of copies of the mutant allele in class s.
This q

D
s (x, y, p) distribution has the same sample space as q

D
s (x, y) (recall eq. A.30) and general-

izes it to arbitrary allele frequency. Likewise, q̃s(x, y, p) denotes the ordered distribution of group

traits for non-rare mutant frequency, determined by the distribution of contexts of copies of the

resident allele in class s [q̃s(x, y, p) has sample space {xs, ys}⇥’a2C {za(xa, ya), xa, ya}(na�dsa)].

With these notations, the expected sum of squares to be minimized by the regression coe�cients

can be written

Qus(cus, b

N
us, x, y, p) = E(xi ,x�i)⇠q

D
s (x,y,p)

⇣
ŵus

⇣
cus, b

N
us, pi, y

⌘
� wus(xi, x�i, p)

⌘2
�

ps

+ E(xi ,x�i)⇠q̃

D
s (x,y,p)

⇣
ŵus

⇣
cus, b

N
us, pi, y

⌘
� wus(xi, x�i, p)

⌘2
�
(1� ps). (B.16)

By solving ∂Qus(cus, b

N
us, x, y, p)/∂cus a = 0 and ∂Qu,s(cus, b

N
us, x, y, p)/∂bN

us k(j) = 0 for all

j 6= i, we obtain the regression coe�cients cus a(x, y, p) and bN
us k(j)(x, y, p). These depend on
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the population state and we note that that

bN
us k(j)(x, y, p) = bN

us a(x, y, p) for all j when k(j) = a, (B.17)

since individuals from the same class carrying similar traits have the same e↵ect on the recipients

of their actions. Computing the regression coe�cients explicitly involves solving linear systems

of equations with complicated terms. But all in all, this is not more involved that computing

invasion fitness to begin with, since this requires computing eigenvectors (recall eq. A.8). Hence,

no computational complexity is added if the regression coe�cients are to be computed explicitly.

That said, the interpretative nature of inclusive fitness does require the explicit computation of

the regression coe�cients.

B.2.2 Average allele frequency

Our aim is now to evaluate the so-obtained regression coe�cients under vanishing mutant allele

frequency. To do this, we need a single (scalar) measure of allele frequency such that allele

frequencies in all classes vanish simultaneously when this measure vanishes. As such a mea-

sure, we use the weighted average allele frequency p = Âa2C aa(y)pa in the population, where

the weights are the neutral class reproductive values (the aa(y) = va(y)fa(y, y) elements in

eq. A.26). To evaluate the regression coe�cients, we then need to be able to express each class-

specific frequency pa in terms of p and fa(x, y), at least when the mutant allele is rare. For

this purpose, we recall that as long as the mutant allele is rare, its growth is characterized by

the leading eigenvalue (invasion fitness) and by the associated right eigenvector (quasi-stationary

distribution) u(x, y) of the transition matrix A(x, y) [i.e., eq. A.8]. Eigenvectors are defined up

to a constant factor, so the relationship between allele frequencies pa in each class a and the

eigenvector can be specified up to a constant, here denoted L1. We write this relationship as

pa = L1ua(x, y) (B.18)

where ua(x, y) is (up to a constant factor) the frequency of the mutant allele in class a under the

quasi-stationary distribution u(x, y). The average allele frequency is then p = L1 Âa2C aa(y)ua(x, y),
whereby L1 = p/ [Âa2C aa(y)ua(x, y)] and

pa = p
ua(x, y)

Âa2C aa(y)ua(x, y)
= p

ua(x, y)
Âa2C ua(x, y)

Âa2C ua(x, y)
Âa2C aa(y)ua(x, y)

. (B.19)

From eq. (A.22), the middle fraction on the right-hand side is the probability fa(x, y) that a

randomly sampled gene copy from the mutant lineage is in class a, introduced in eq. (A.21):

fa(x, y) = ua(x, y)/ Âa2C ua(x, y). The last fraction in eq. (B.19) is then the inverse of the

fraction Âa2C aa(y) [ua(x, y)/ Âa2C ua(x, y)] = Âa2C aa(y)fa(x, y), and

pa = p
fa(x, y)

Âa2C aa(y)fa(x, y)
. (B.20)
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Substituting eq. (B.20) into cus(x, y, p) and bN
us a(x, y, p), and recalling eq. (B.17), we com-

pute the regression coe�cients of eq. (B.14) as

cus a(x, y) = lim
p!0

cus a(x, y, p) and bN
us a(x, y) = lim

p!0
bN

us a(x, y, p) (B.21)

(see section B.3 for a concrete application and explicit computation of such coe�cients). We

further note that, by construction, qs(x, y, p)! qs(x, y) as p! 0. This then allows us to define

rfs(x, y) = E(xi ,x�i)⇠q

D
s (x,y)[pi] , (B.22)

which is the probability that, conditional on a random gene copy of class s carrying the mutant

allele, a randomly sampled homologous gene in that individual is a mutant. For k(j) = a, we
have

rn a|s(x, y) = E(xi ,x�i)⇠q

D
s (x,y)

⇥
pj
⇤

(B.23)

which is the probability that, conditional on a random gene copy of class s carrying the mutant

allele, a randomly sampled homologous gene in a neighbor of class a is a mutant allele. In terms

of the rfs(x, y) and rn a|s(x, y) probabilities, we define the relatedness coe�cient between a class-s
actor and a class-a recipient as

ra|s(x, y) =
rn a|s(x, y)
rfs(x, y)

. (B.24)

B.2.3 Average inclusive fitness

Now substitute eq. (B.14) into direct fitness (eq. A.29) and then into invasion fitness (eq. A.27).

Then, by dint of the reproductive values recursion (eq. A.18), the reproductive values normalizer

(eq. A.20), the relatedness coe�cients (eqs. B.22–B.24), the relationship Âj:k(j)=a bN
us k(j)(x, y) =

bN
us a(x, y)(na � dsa) (eq. B.17), and recalling that the residual term in eq. (B.14) cancels when

averaged over the q

D
s (x, y) distribution (since they are uncorrelated with regressors), the invasion

fitness of a mutant allele introduced as a single copy in a resident population can be put under

the form

W(x, y) = 1 +
1

V(x, y)
[WIF(x, y)� 1] , (B.25)

where

WIF(x, y) = 1+ Â
u2C

Â
s2C

vu(y)

"
�cus(x, y) + Â

a2C
bN

us a(x, y)(na � dsa)ra|s(x, y)

#
rf,s(x, y)fs(x, y).

(B.26)
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is the inclusive fitness of the mutant allele. These two equations were previously derived for

the haploid case (rf,s(x, y) = 1 for all s 2 C) in Lehmann et al. (2016, eqs. C.1-C.6) assuming

that 1� cu,s was the intercept and only bN
us a were the regression coe�cients of fitness, thus

performing a multiple-neighbors extension of the single-predictor regression to obtain inclusive

fitness. To obtain such coe�cients it su�ces to set ps = 1 in eq. (B.16) and otherwise follow the

same line of argument.

Since V(x, y) > 0, we have from eq. (B.25) that

W(x, y)  1 () WIF(x, y)  1. (B.27)

Hence, trait x⇤ is uninvadable if it is a best-reply to itself in terms of inclusive fitness: x⇤ 2
arg maxx2X WIF(x, x⇤). Finally, we note that if one chooses to normalize the (neutral) reproduc-

tive such that V(x, y) = 1, then one would have W(x, y) = WIF(x, y).

B.2.4 Grouping e↵ects by actor

In eq. (B.26), the fitness e↵ects of social interactions among individuals in the population are

grouped by recipients each class s. We now first rearrange eq. (B.26) in order to obtain a grouping

of fitness e↵ects by actor in each class, so that WIF(x, y) reads as an average over class-specific

inclusive fitnesses (which justifies the subscript “Inclusive Fitness”). In a second, time we then

show that class-specific inclusive fitness is maximized in an uninvadable population state.

The key steps to reach the actor-centered perspective, is to note, first, that, as was the case

under the haploid model, bN
us a(x, y) can be interpreted in the two following ways.

(1) Neighbor-modulated interpretation. Here, bN
us a(x, y) gives the average e↵ect, on the

expected number of class-u o↵spring (per haplogenome) produced by a focal individual in

class a, and stemming from a randomly sampled neighbor expressing a copy of the mutant

instead of the resident allele.

(2) Actor-modulated interpretation. Here, bN
us a(x, y) gives the average e↵ect, on the ex-

pected number of class-u o↵spring (per haplogenome) produced by a randomly sampled

group neighbor of class a, of an individual expressing a copy of the mutant instead of the

resident allele.

We will thus from now on use the second interpretation and further note that the following

equality holds

rn a|s(x, y)fs(x, y) = rn s|a(x, y)fa(x, y)
ns

na
. (B.28)

To check this result, we highlight that each side of the equation involves two ways of sampling

gene copies. First, we sample gene copies uniformly from the mutant lineage (by definition,

fs(x, y) is the probability that a gene sampled in this way is in a class-s individual), and then we

sample gene copies uniformly among class-a individuals (rn a|s(x, y) is the probability that, when

a given gene copy from a class-s individual is mutant, a given gene copy from a class-a individual
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in the same group is mutant). The expected number of pairs of gene copies in class-s and class-a
individuals within a group per copy of the mutant allele is then obtained as fs(x, y)2narn a|s(x, y)
when the first sampled gene copy is in a class-s individual, and as fa(x, y)2nsrn s|a(x, y) when

the first copy is sampled in a class-a individual, from which the above result follows.

Substituting eq. (B.28) into eq. (B.26), and rearranging we obtain

WIF(x, y) = 1+ Â
u2C

Â
a2C

vu(y)

"
�cua(x, y) + Â

s2C
bN

us a(x, y)(ns � dsa) rs|a(x, y)

#
rfa(x, y)fa(x, y),

(B.29)

where

�cua(x, y) + Â
s2C

bN
us a(x, y)(ns � dsa) rs|a(x, y) (B.30)

is the average e↵ect, on the number of class-u o↵spring (per haplogenome) produced by all group

members of class a, and stemming from an individual of class a expressing a copy of the mutant

instead of the resident allele. Eq. (B.30) is consistent with eq. (8) of Grafen, 2006a who assumed

(a) additive separable fitness e↵ects and (b) relatedness independent of evolving trait values. To

further simplify expression (B.29), we let

bus a(x, y) = (ns � dsa)bN
us a(x, y) (B.31)

denote the average additive e↵ect, on the number of class-u o↵spring produced (per haplogenome)

by all class-s neighbors in a group, and stemming from a single class-a individual switching to

expressing a copy of the mutant instead of the resident allele. Substituting eq. (B.31) into

eq. (B.29), we can obtain:

WIF(x, y) = 1 + Â
a2C

DwIFa(x, y)rfa(x, y)fa(x, y), (B.32)

where

DwIFa(x, y) = Â
u2C

vu(y)

"
�cua(x, y) + Â

s2C
bus a(x, y)rs|a(x, y)

#
(B.33)

is the inclusive fitness e↵ect of an average class-a carrier of the mutant allele.

B.2.5 Class-specific inclusive fitness maximization

We here prove that the inclusive fitness e↵ect (eq. B.33) is maximized with respect to xa at

the uninvadable state x⇤, which will allow us to define a class-specific inclusive fitness that is

equivalently maximized. In general, inclusive-fitness (eq. B.32) maximization does not implies

maximization of the summand therein for each class with respect to all mutants x 2 X , but what
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we consider here are class-specific mutants. To that end, let x̃a = (x⇤1 , x⇤2 , ..., x⇤a�1, xa, x⇤a+1, ..., x⇤nc),

denote the trait profile of a mutation with all traits held at the uninvadable state, except for

trait xa of class a that can unilaterally deviate. Then, if the mutant x̃a appears in a population

in state x⇤, we have

DwIFv(x̃a, x⇤) = 0 8v 6= a. (B.34)

Eq. (B.34) says that if a mutant allele changes only the trait expression of individuals of class

a, then the inclusive fitness e↵ect of any other class v 6= a is nil. This is so since DwIFa(x̃a, x⇤)
captures all e↵ects of individuals of class a expressing the mutant trait xa (the “actors”) on

mutant allele transmission. A more formal proof follows from the fact that cuv(x̃a, x⇤) = 0 and

bus v(x̃a, x⇤) = 0 for all v 6= a and all u and s because the u-type fitness wus of an individual of

class s is a constant with respect to the traits of individuals in any class v 6= a, since all individuals
in any class v 6= a express the same trait value x⇤v . Hence, all such regression coe�cients on class-

v individuals will be nil, since there is no variation in individual fitness to be explained by any

such regressor.

Substituting eq. (B.34) into eq. (B.32), the inclusive fitness of a mutant inducing an unilateral

deviation in class a in population state x⇤ is given by

WIF(x̃a, x⇤) = 1 + DwIFa(x̃a, x⇤)rfa(x̃a, x⇤)fa(x̃a, x⇤). (B.35)

Since rfa(x̃a, x⇤)fa(x̃a, x⇤) > 0 for all classes and traits, we have from eq. (B.35) that

DwIFa(x̃a, x⇤)  0 () WIF(x̃a, x⇤)  1 for all xa 2 Xa. (B.36)

Hence, trait x⇤a preempts invasion by any mutant inducing an unilateral deviation in class a if

it satisfies x⇤a 2 arg maxxa2Xa DwIFa(x̃a, x⇤). Since this holds for each class in an uninvadable

population x⇤, we have

DwIFa(x̃a, x⇤)  0 () WIF(x̃a, x⇤)  1 8xa 2 Xa and a 2 C (W(x, x⇤)  1 for all x 2 X .

In other words, the inclusive fitness e↵ect in each class is maximized in an uninvadable population

state:

x⇤a 2 arg max
xa2Xa

DwIFa(x̃a, x⇤) 8a 2 C ( x⇤ 2 arg max
x2X

W(x, x⇤). (B.37)

The left-hand side can now also be written in terms of the inclusive fitness

wIFa(x, y) = va(y) + DwIFa(x, y) (B.38)

of a class-a individual (eq. ?? of the main text), which is thus also maximized in an uninvadable
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population state (since va(y) does not depend on the mutant trait):

x⇤a 2 arg max
xa2Xa

wIFa(x̃a, x⇤) 8a 2 C ( x⇤ 2 arg max
x2X

W(x, x⇤). (B.39)

We finally mention that if we were to replace class-specific inclusive wIFa(x̃a, x⇤) by class-

specific average direct fitness wDFa(x̃a, x⇤) in the left-hand side of eq. (B.39), then eq. (B.39)

is not satisfied, unless additional assumptions are made on the form of the individual fitness

functions. This negative results points to the limitations of using average direct fitness as an

individual-centered maximand. Indeed, in the presence of indirect fitness e↵ects, where an actor

of class a carrying the mutant allele a↵ects the fitness of another individual carrying the mutant

(say a worker a↵ecting the reproduction of a queen), the direct fitnesses wDFu(x̃a, x⇤) for u 6= a
in expression (A.27) for invasion fitness will not be independent of the mutant trait xa of a class-a
individual. In this case, the invasion fitness of trait xa depends on these wDFu(x̃a, x⇤) fitnesses

for u 6= a, even though the individual expressing trait xa is not in any class u 6= a. Hence the

biological interpretation of an individual of class a as maximizing wDFa(x̃a, x⇤) at an evolutionary

equilibrium generally breaks down.

B.3 Example: inclusive fitness for social insects

We here derive the inclusive fitness e↵ects for the social insect model (eq. B.5 in Box 2) from the

fitness functions defined in the main text (see eqs. B.2–B.4 in Box 2) and assuming the population

has reached the uninvadable sex ratio of 1/2 for this model. Because we consider only diploidy,

our “social insects” are akin to termites rather than ants. From eqs. (B.2) of Box 2, we can write

the individual fitness of a female i whose worker o↵spring has trait xo(i) 2 {zo, xo, yo} as

wff

⇣
xo(i), yo

⌘
=

⇣
1 + P(xo(i))

⌘

2 (1 + P(yo))

wmf

⇣
xo(i), yo

⌘
=

⇣
1 + P(xo(i))

⌘

2 (1 + P(yo))
, (B.40)

which, once averaged over the cases where the o↵spring is heterozygote (with phenotype xo(i) =

xo), or homozygote resident (with phenotype xo(i) = yo), produces eqs. (B.2) of Box 2 (and

where for simplicity of presentation we only denote the traits whose variation a↵ect fitness).

Likewise, from eq. (B.4) of Box 2, the individual fitness of a male i whose worker o↵spring has

trait xo(i) 2 {yo, xo, zo} can be written

wfm

⇣
xo(i), yo

⌘
= wff

⇣
xo(i), yo

⌘

wmm

⇣
xo(i), yo

⌘
= wmf

⇣
xo(i), yo

⌘
. (B.41)

In order to evaluate the sum of squares for the regression coe�cients, we need to take into

account all possible matings as this determines the number of mutant allele copies in the worker
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o↵spring. There is a total number of 9 matings, since a female can be homozygote mutant

(probability denoted pho,f), heterozygote (probability denoted phe,f), or homozygote resident

(probability (1� pho,f � phe,f)), and her mate can be of the same respective types (with respec-

tive probabilities, pho,m, phe,m, and (1� pho,m � phe,m)). The assumption that we consider a

population with random mating at the uninvadable sex-ratio, implies that the fitness functions

for both males and females are equivalent (e.g., eq. B.41), and that the frequency of the mutant

allele will be the same in males and females, pm = pf = p. Henceforth, we can evaluate the

genotype frequencies in terms of allele frequencies at Hardy-Weinberg equlibrium:

pho,m = pho,f = p2 and phe,f = phe,m = 2p(1� p). (B.42)

B.3.1 Regressions for female fitness components

Taking into account all matings, we write the sum of squares for female fitness through o↵spring

of type j 2 {f, m} as

Qjf(cjf, bN
jf o, bN

jf m) = Qjf|ho(x)pho,f + Qjf|he phe,f + Qjf|ho(y)(1� pho,f � phe,f), (B.43)

where Qjf|ho(x), Qjf|he, and Qjf|ho(y) are, respectively, the sum of squares when the female is

homozygote mutant, heterozygote, and homozygote resident. Application of eqs. (B.15)–(B.16)

shows that when the female is homozygote

Qjf|ho(x) =

✓
1
2
� cjf + bN

jf o + bN
jf m � wjf(zo, yo)

◆2
pho,m

+

2

4
 

1
2
� cjf + bN

jf o +
bN

jf m

2
� wjf(zo, yo)

!2
1
2

+

 
1
2
� cjf

bN
jf o

2
+

bN
jf m

2
� wjf(xo, yo)

!2
1
2

3

5 phe,m

+

 
1
2
� cjf +

bN
jf o

2
� wjf(xo, yo)

!2

(1� pho,m � phe,m) (B.44)

where in the present example wjf is given by eq. (B.40). The first, second, and third summand,

stand, respectively, for the case where the male mate of the focal female is homozygote mutant,

heterozygote, or homozygote resident. When the male is heterozygote, then with probability 1/2
the worker inherits a copy of his mutant allele and will be homozygote (first term in the second

summand), while with probability 1/2 the worker does not inherit a copy of the mutant allele

from its father and will be heterozygote (second term in the second summand).

When the female is heterozygote, we write the sum of squares as Qjf|he = (1/2)Qjf|he,1 +

(1/2)Qjf|he,0, where Qjf|he,1 represents the case where the worker inherits the mutant allele from

its mother and Qjf|he,0 for the case the worker does not inherit the mutant from its mother. We
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find that

Qjf|he,1 =

✓
1
2
�

cjf

2
+ bN

jf o + bN
jf m � wjf(zo, yo)

◆2
pho,m

+

2

4
 

1
2
�

cjf

2
+ bN

jf o +
bN

jf m

2
� wjf(zo, yo)

!2
1
2

+

 
1
2
�

cjf

2
+

bN
jf o

2
+

bN
jf m

2
� wjf(xo, yo)

!2
1
2

3

5 phe,m

+

 
1
2
�

cjf

2
+

bN
jf o

2
� wjf(xo, yo)

!2

(1� pho,m � phe,m) (B.45)

and

Qjf|he,0 =

 
1
2
�

cjf

2
+

bN
jf o

2
+ bN

jf m � wjf(xo, yo)

!2

pho,m

+

2

4
 

1
2
�

cjf

2
+

bN
jf o

2
+

bN
jf m

2
� wjf(xo, yo)

!2
1
2
+

 
1
2
�

cjf

2
+

bN
jf m

2
� wjf(yo, yo)

!2
1
2

3

5 phe,m

+

✓
1
2
�

cjf

2
� wjf(yo, yo)

◆2
(1� pho,m � phe,m). (B.46)

Finally, when the female is homozygote resident, we have that

Qjf|ho(y) =

 
1
2
+

bN
jf o

2
+ bN

jf m � wjf(xo, yo)

!2

pho,m

2

4
 

1
2
+

bN
jf o

2
+

bN
jf m

2
� wjf(xo, yo)

!2
1
2
+

 
1
2
+

bN
jf m

2
� wjf(xo, yo)

!2
1
2

3

5 phe,m,

(B.47)

since a worker from a homozygote resident mother can inherit the mutant allele only from its

father, and when the father is heterozygote the worker inherits the mutant with probability 1/2.
We now minimize the sum of squares Qjf(cjf, bN

jf o, bN
jf m) with respect to the relevant re-

gression coe�cients, which requires that, for j 2 {f, m}, we solve

∂Qjf(cjf, bN
jf o, bN

jf m)

∂cjf
= 0 ,

∂Qjf(cjf, bN
jf o, bN

jf m)

∂bN
jf o

= 0 and
∂Qjf(cjf, bN

jf o, bN
jf m)

∂bN
jf o

= 0 (B.48)

for cjf, bN
jf o and bN

jf m. Substituting eq. (B.42) into the so-obtained regression coe�cients and
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letting p! 0, we finally obtain that cjf = 0, bN
jf m = 0 for j 2 {f, m}, and

bN
ff o =

(P(xo)� P(yo))
1 + P(yo)

bN
mf o =

(P(xo)� P(yo))
1 + P(yo)

, (B.49)

where these regressions coe�cients are the o↵spring production of the mutant worker minus that

of the resident worker relative to the o↵spring production of the mutant worker.

B.3.2 Regressions for male fitness components

We now derive the regression coe�cients for the male fitness components. The model for the

male side is exactly symmetric to that of the female side and to compute the corresponding sum

of squares Qjm(cjm, bN
jm o, bN

jm f) for j 2 {f, m} we only interchange m and f subscripts in all

equations of the previous section. Otherwise, the calculations carry over mutatis mutandis to

give cjm = 0, bN
jm f = 0 for j 2 {f, m}, and

bN
fm o =

(P(xo)� P(yo))
1 + P(yo)

bN
mm o =

(P(xo)� P(yo))
1 + P(yo)

. (B.50)

B.3.3 Inclusive fitness e↵ects

Using the regression coe�cients computed in the last two sections, we are now in the position

to compute the inclusive fitness e↵ects. First, the inclusive fitness e↵ects of females and males is

null

DwIFf(x, y) = 0

DwIFm(x, y) = 0. (B.51)

To obtain the inclusive fitness e↵ect for a worker, we note that from eq. (B.31),

bus o(x, y) = bN
us o(x, y) (B.52)

for u 2 {f, m} and s 2 {f, m} since the number of individuals of each class nf = nm = no = 1.
With this, eq. (B.33), and eqs. (B.49)–(B.50), we obtain

DwIFo(x, y) = vf(y)
✓

P(xo)� P(yo)
1 + P(yo)

◆
+ vm(y)

✓
P(xo)� P(yo)

1 + P(yo)

◆
. (B.53)

Adding the reproductive values to the inclusive fitness e↵ects shown in eq. (B.51) and eq. (B.53),

we obtain the inclusive fitnesses displayed in Box 2.
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Supplement C: Fitness as-if

C.1 Rational-actor payo↵ maximization

As explained in the section “Fitness as-if” of the main text, a standard concept for the prediction

of individual behavior is that of a Nash equilibrium trait profile, compared to which no individual

can get a higher “payo↵” by a unilateral deviation of behavior (see e.g., Luce and Rai↵a, 1957,

Fudenberg and Tirole, 1991 or Mas-Colell et al., 1995). Let us now introduce such a payo↵

function for a class a individual, denoted wIa, and defined on the domain

wIa : Xa ⇥’
s2C

X ns�dsa
s ⇥X ! R+ 8a 2 C, (C.1)

such that wIa(xi, x�i, x̄) is the payo↵ to individual i, xi 2 Xa being now understood as any trait

value that a given individual i could express instead of the trait that it actually expresses, when

group neighbors express trait profile x�i, and in a population where the average trait expression

is x̄ 2 X . This payo↵ function has exactly the same domain as the individual fitness function

(eq. A.3).

Suppose now each individual in the population is envisioned as an autonomous decision-maker,

“choosing” the trait it expresses independently of each other individual and with a striving to

maximize its payo↵ function wIa (hence xi can vary and is not genetically determined). Then, a

Nash equilibrium x⇤ = (x⇤1 , x⇤2 , ..., x⇤nc) (symmetric in each class) satisfies

x⇤a 2 arg max
xi2Xa

wIa
�
xi, x

⇤
�i, x⇤

�
8a 2 C, (C.2)

where x

⇤
�i is the trait profile of all neighbors, where entry j of x

⇤
�i is equal to x⇤s if neighbor j 6= i

is of class s. In such a symmetric Nash equilibrium x⇤, individuals in each class make the best

decision for themselves in terms of payo↵, i.e., they maximize their payo↵ based on all others

doing the same.

Our aim is to elicit a representation of the payo↵ function wIa that individuals appear to

maximize in an uninvadable population state. We call such a payo↵ a fitness as-if. More formally,

a fitness as-if function wIa satisfies

x⇤a 2 arg max
xi2Xa

wIa
�
xi, x

⇤
�i, x⇤

�
8a 2 C ( x⇤ 2 arg max

x2X
W(x, x⇤), (C.3)

where the invasion fitness in the right-hand side is given by eqs. (A.27)–(A.29). Eq. (C.3) says

that if x⇤ is uninvadable, then this equilibrium can be envisioned as a Nash equilibrium, where

each individual appears to maximize its fitness as-if, when each other individual in each class

exhibits fitness-maximizing behavior. In other words, in an uninvadable population state, it is

as if each individual maximizes its fitness as-if.

In this Supplement, we not only prove that eq. (6) of the main text satisfies eq. (C.3), but more

generally explain how to construct expressions for fitness as-if that take the form of both average

27

Supplemental Material (not copyedited or formatted) for: Laurent Lehmann, François Rousset. 2020. "When Do Individuals Maximize Their Inclusive Fitness?." 
The American Naturalist 195(4). DOI: https://doi.org/10.1086/707561. 



direct fitness and inclusive fitness. Thereby, this Supplement connects together traditional game

theory, evolutionary invasion analysis and inclusive fitness theory.

C.2 Average direct fitness as-if

C.2.1 The instrumental distribution

We start by presenting a way to construct an average direct fitness as-if as this will pave the

way to construct inclusive fitness as-if. Since we aim that the trait of each individual and thus

of neighbors can be distinct from each other, we need to depart from the population genetic

models of the previous sections where invasion fitness was depending only on heterozygote and

homozygote mutant and resident traits, with the distribution q

D(x, y) of group states describing

correlated trait expression within groups. In order to take this di↵erence into account, we consider

that, while fitness as-if should in general consist of the same fitness components, wus, as invasion

fitness, it should be averaged over a di↵erent distribution of correlated trait expression within

groups (in particular, a distribution with a di↵erent sample space allowing for each individual

expressing a di↵erent trait). We refer to this new distribution as the instrumental distribution,

and it will be reminiscent of the so-called subjective probability distribution of the profile of

traits that neighbors play, as considered in the construction of an individual’s utility function

in game theory (e.g., Fudenberg and Tirole, 1991, Mas-Colell et al., 1995). To describe how we

obtain the instrumental distribution, we first define its sample space, beginning with a haploid

population without class structure.

C.2.2 Haploids without classes

For haploids without classes, where wI(xi, x�i, x̄) is the fitness as-if of an individual with trait

xi in a group with neighbor trait profile x�i = (x1, x2, ..., xi�1, xi+1, ..., xn) in a population with

average group trait x̄, the instrumental distribution is constructed as follows. We first consider

the sample space defined from the neighbor trait profile x�i, defined by replacing any number

of the elements of x�i by i’s trait. Thus, for any k 2 {1, . . . , n}, we consider the set Pk(x�i) of

hypothetical neighbor trait profiles x̃�i such that exactly k� 1 components of the profile x�i are

replaced by i’s trait xi, while the remaining n� k components of x̃�i are identical to those in x�i

(this operation will capture correlated trait expression within groups). The set of all such profiles

is Si = [n
k=1Pk = ’n�1

j 6=i {xi, xj}. From the perspective of individual i, we can think of x̃�i as a

hypothetical profile where neighbors’ traits have been replaced with traits similar to self, and if

such a profile were to obtain in individual i’s group, then its fitness would be w(xi, x̃�i, x̄).
Any probability distribution s(xi, x�i, x̄) on the space Si takes values in the simplex D(Si)

induced by Si, and assigns probabilities sk(x̃�i; xi, x�i, x̄) such that these probabilities satisfy

n

Â
k=1

Â
x̃�i2Pk(x�i)

sk(x̃�i; xi, x�i, x̄) = 1. (C.4)

The instrumental distribution s(xi, x�i, x̄) is as yet undefined beyond its sample space. In
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particular, this distribution has yet no imposed relation to the probabilities of events specified

by the q

D(x, y) distribution that occur in the actual reproductive process in the population under

consideration, but it retains the ability to describe within-group correlated trait expression. In

order to connect these two distributions, we note that q

D(x, y) takes values in the simplex

D(S) or ordered phenotypic groups states, which is the same as the simplex D(S(i)). Thus,

D(S) = D(S(i)), and we can choose the instrumental distribution such that

s(xi, x�i, x̄) = q

D(xi, x̄). (C.5)

So we consider that the instrumental probabilities of events, defined by replacing elements of

the trait profile by the focal individual’s trait, are identical to the probabilities of ordered trait

profiles in the population genetic model (or equivalently, to the probabilities of joint genetic

identity in the group).

Given the instrumental distribution defined by eq. (C.5), we can define the average direct

fitness as-if of an individual with trait xi as

wI(xi, x�i, x̄) =
n

Â
k=1

Â
x̃�i2Pk(x�i)

w(xi, x̃�i, x̄)sk(x̃�i; xi, x�i, x̄) , (C.6)

which is the average of individual fitness over the distribution s(xi, x�i, x̄). A more compact

representation of this fitness as-if is

wI(xi, x�i, x̄) = E
x̃�i⇠s(xi ,x�i ,x̄)[w(xi, x̃�i, x̄)] , (C.7)

where the notation ⇠ specifies that variable x̃�i follows the distribution s(xi, x�i, x̄) (recall

eq. A.12).

C.2.3 Diploids with classes

We can now generalize the construction of the instrumental distribution to a diploid class-

structured population. For this case, it is useful to denote explicitly by xi,a the realized trait

of individual i 2 I when of class a. Then, the instrumental distributions ss(xi, x�i, x̄) for the

realized profile of traits (x̃i, x̃�i) in a group when individual i is of class a is defined as follows.

First, the trait x̃i of individual i when of class a is assumed to take values in {za(xi,a, x̄a), xi,a}
and this parallels the case where in the genetic process an individual with the mutant allele can

be heterozygote or homozygote, but our assignment is here a defining feature and is not intended

to reflect any genetic reality. Second, each element x̃j of x̃�i = (x̃1, , ..., x̃i�1, x̃i+1, ...xn) is defined

to take values in the set of traits belonging to the class of the individual under scrutiny; that is,

if individual j is of class s then, by construction x̃j 2 {zs(xi,s, xj,s), xi,s, xj,s}. The hypothetical

profile (x̃i, x̃�i) is then defined to be distributed according to ss(xi, x�i, x̄), a distribution that
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has sample space

Ss(i) = {zs(xi,s, x̄s), xi,s}⇥’
a2C

(na�dsa)

’
j 6=i

{za(xi,a, xj,a), xi,a, xj,a}. (C.8)

Hence, the distribution ss takes values in the set D(Ss(i)), which is the simplex generated by

the support Ss(i). Since the distribution q

D
s (x, y) determining invasion fitness takes values in

the same simplex D(Ss) = D(Ss(i)) (recall eq. A.30), we can, as in the haploid case, set the

probabilities of events in the instrumental distribution identical to the probabilities of ordered

trait profiles in the population genetic model:

ss(xi, x�i, x̄) = q

D
s (xi, x̄). (C.9)

Thus, we again define the instrumental probabilities, of events defined by replacing elements of

the trait profile by the focal individual’s trait, to be identical to the probabilities of ordered trait

profiles in the population genetic model.

Given the instrumental distribution ss(xi, x�i, x̄) so defined (eq. C.9), the average direct

fitness as-if of an individual of class a with trait xi in a group with neighbor trait profile x�i

in a population with average group trait x̄ is defined as a reproductive value-weighted sum of

expected numbers of o↵spring of di↵erent classes u:

wIa(xi, x�i, x̄) = Â
u2C

vu(x̄)E(x̃i ,x̃�i)⇠ss(xi ,x�i ,x̄)[wua(x̃i, x̃�i, x̄)] . (C.10)

In order to illustrate the notation and better understand the expectation in eq. (C.10) for diploidy,

we consider the case of n = 2 without class structure (hence the neighbor trait profile is the

singleton x�i = x�i ). Then, we write the direct fitness as-if of an individual with trait xi as

wI(xi, x�i, x̄) = w(xi, x�i, x̄)sS,O(xi, x�i, x̄) + w(xi, x�i, y)sO,O(xi, x�i, x̄)

+ w(xi, z(xi, x�i), x̄)sF,O(xi, x�i, x̄) + w(z(xi, x̄), xj, x̄)sS,F(xi, x�i, x̄)

+ w(z(xi, x̄), xi, x̄)sO,F(xi, x�i, x̄) + w(z(xi, x̄), z(xi, x�i), x̄)sF,F(xi, x�i, x̄).

(C.11)

Here, the second subscript k 2 {O, F} in sj,k(xi, x�i, x̄) denotes that the instrumental substitute

to individual i can be of two possible types, either it is “outbred” (k = O), in which case its

(objective) fitness w depends on trait xi, or it is “inbred”(k = F), in which case its fitness depends

on trait z(xi, x̄). The first subscript j 2 {S, O, F} denotes that the instrumental substitute to the

group neighbor can express three di↵erent traits: it expresses either trait x�i (j = S for “self”),

or xi (j = O), or z(xi, x̄) (j = F). With these notations, sj,O(xi, x�i, x̄) is the instrumental

probability that, given trait profile (xi, x�i, x̄), individuals i is of type “outbred” and its neighbor

expresses the trait of type j 2 {S, O, F}, while sj,F(xi, x�i, x̄) is the instrumental probability that

individual i is “inbred” and its neighbor expresses trait of type j. In terms of these probabilities,
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we can write the instrumental distribution of profiles experienced by individual i as

s(xi, x�i, x̄) =
⇣
{sj,O(xi, x�i, x̄)}j2{S,O,F}, {sj,F(xi, x�i, x̄)}j2{S,O,F}

⌘
. (C.12)

Note that eq. (C.11) shows that fitness as-if is defined as an average over cases where in-

dividuals are “outbred” or “inbred”, i.e., have the trait of an heterozygote or homozygote, and

so varying xi varies the trait both when the substituted individual is heterozygote (given by

xi itself) and when it is homozygote (given by z(xi, xj)). This construction ultimately owes to

the fact that in the original reproductive process individuals express di↵erent traits upon being

heterozygote or homozygote (e.g., eq. A.29), a standard modeling assumption for diploids (e.g.,

Nagylaki, 1992; Gillespie, 2004; Hartl and Clark, 2007).

C.3 Inclusive fitness as-if

C.3.1 Multiplayer regression for class-structure

We now present the regression analysis underlying the construction of inclusive fitness as-if and

do so directly for diploids with class structure. To that end, we consider the same regression

model as in the population genetic model (recall eqs. B.14–B.15) but will evaluate its coe�cients

under the instrumental distribution instead of the genetic contextual distribution. Namely, we

focus on individual i with trait xi in a group with neighbor trait profile x�i, and consider a

hypothetical switch in behavior to expressing trait x̃i in a group with neighbor trait profile x̃�i.

We then write the number u of descendants of an individual i of class s in the altered group as

wus(x̃i, x̃�i, x̄) = wus(x̄s, x̄, x̄)� cIus(xi, x�i, x̄)pI,i

+ Â
j 6=i

bN
Ius k(j)(xi, x�i, x̄)pI,j + residual, (C.13)

where x̄ denotes the vector of neighbor trait profile (dimension n� 1), all of which are evaluated at

the mean (of the corresponding class) in the population and cIus(xi, x�i, x̄) and bN
Ius a(xi, x�i, x̄)

are regression coe�cients. The functional form of this equation is the same as that under the

population genetic model (eq. B.14), but its interpretation slightly di↵ers and is as follows. We

consider a group state where each of the gene copies from the original group of the focal individual

i may be replaced in any individual by 2, 1, or 0 copies of an I allele, which plays the same role

as the mutant allele in being a determinant of the traits of a focal individual i and its neighbors.

For the focal individual itself, the new trait value x̃i is within the set {zs(xi,s, x̄s), xi,s, x̄s}, when
it bears 2, 1, or 0 copies of the I allele, and pI,i 2 {0, 1/2, 1} denotes the frequency of allele I

in individual i. The new trait x̃j of a neighbor individual j 6= i when of realized class k(j) = a
is within the set {za(xi,a, xj,a), xi,a, xj,a}, which stems, respectively, from individual j 6= i bearing
2, 1, or 0 copies of the I allele. Thus any value of (x̃i, x̃�i) is a hypothetical group trait profile,

resulting from a switch of allele expression and where, by construction, eq. (C.13) must hold for

all profiles (x̃i, x̃�i) 2 {zs(xi,s, x̄s), xi,s, x̄s} ⇥’a2C ’(na�dsa)
j 6=i {za(xi,a, xj,a), xi,a, xj,a}. Hence, the
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main structural di↵erence between eq. (C.13) and its population genetic counterpart, eq. (B.14),

is that all neighbors of individual i have all distinct traits in eq. (C.13) when they do not switch

to expressing allele I.

The regression coe�cients cIus(xi, x�i, x̄) and bN
Ius a(xi, x�i, x̄), are now obtained by following

exactly the same line of argument as in the population genetic model, but using the instrumental

distribution instead of the contextual genetic state distribution. Accordingly, we first note that

eq. (C.13) says that we predict fitness with the same linear regression

ŵus

⇣
cIus, b

N
Ius, pI, x̄

⌘
= wus(x̄s, x̄, x̄)� cIus(xi, x�i, x̄)pI,i + Â

j 6=i
bN

Ius k(j)(xi, x�i, x̄)pI,j, (C.14)

where vector b

N
Ius collects the bIus k(j) regression coe�cient and vector pI collects all the pI,i

frequencies. Second, we let ss(xi, x�i, p) and s̃s(xi, x�i, p) denote the distribution of group

states in a population where the vector of frequencies of allele I across classes is equated to

the vector p of mutant allele frequencies across classes in the population genetic model (the

ss(xi, x�i, p) and s̃s(xi, x�i, p) distributions have, respectively, sample space {zs(xi,s, x̄s), xi,s}⇥
’a2C ’(na�dsa)

j 6=i {za(xi,a, xj,a), xi,a, xj,a} and {xi,s, x̄s}⇥’a2C ’(na�dsa))
j 6=i {za(xi,a, xj,a), xi,a, xj,a}). These

sample spaces induce the sample simplexes as the q̃

D
s and q

D
s distributions (used in eq. B.16) and

so we set

ss(xi, x�i, p) = q

D
s (xi, x̄, p) and s̃s(xi, x�i, p) = q̃

D
s (xi, x̄, p). (C.15)

We can now define the quadratic expression

QIus

⇣
cIus, b

N
Ius, xi, x�i, p

⌘
= E(x̃i ,x̃�i)⇠ss(xi ,x�i ,p)

⇣
ŵus

⇣
cIus, b

N
Ius, pI, x̄

⌘
� wus(x̃i, x̃�i, p)

⌘2
�

ps

+ E(x̃i ,x̃�i)⇠s̃s(xi ,x�i ,p)

⇣
ŵus

⇣
cIus, b

N
Ius, pI, x̄

⌘
� wus(x̃i, x̃�i, p)

⌘2
�
(1� ps), (C.16)

and we solve ∂QIus(cIus, b

N
Ius, xi, x�i, p)/∂cIus = 0 and ∂QIus(cIus, b

N
Ius, xi, x�i, p)/∂bN

Ius k(j) = 0
for all j 6= i. Recalling eq. (B.20), we obtain the regression coe�cients of eq. (C.13) as

cIus(xi, x�i, x̄) = lim
p!0

cIus(xi, x�i, x̄, p) bN
Ius k(j)(xi, x�i, x̄) = lim

p!0
bN

Ius k(j)(xi, x�i, x̄, p). (C.17)

We now further note that when q

D
s (xi, x̄, p) ! q

D
s (xi, x̄) and ss(xi, x�i, p) ! ss(xi, x�i, x̄)

as p! 0, we have

ss(xi, x�i, x̄) = q

D
s (xi, x̄), (C.18)

and

E(x̃,x̃�i)⇠ss(xi ,x�i ,x̄)[pI,i] = E(xi ,x�i)⇠q

D
s (xi ,x̄)[pI,i] = rfs(xi, x̄), (C.19)
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where the first equality follows from eq. (C.18) and the definition of pI,i, which takes exactly

the same frequency as the mutant allele within an individual under assumption (C.18); while

the second equality follows from the definition of the within-individual identity in state under

neutrality (recall eq. B.22). Likewise, when individual j 6= i is of class a, we have

E(x̃,x̃�i)⇠ss(xi ,x�i ,x̄)
⇥
pI,j
⇤
= E(xi ,x�i)⇠q

D
s (xi ,x̄)

⇥
pI,j
⇤
= rn a|s(xi, x̄). (C.20)

The first equality follows from eq. (C.18) and the definition of pI,j, while the second equality

follows from the definition of the between-individual identity in state under neutrality and the

fact that the distribution of allele I is the same as that of the mutant allele (recall eq. B.23). In

terms of the rfs(xi, x̄) and rn a|s(xi, x̄) probabilities, we have that

rs|a(xi, x̄) =
rn s|a(xi, x̄)
rfa(xi, x̄)

, (C.21)

which is the (neutral) relatedness coe�cient between a class-s actor and a class-a recipient in a

population monomorphic for trait value x̄.
By contrast to the regression coe�cients in the population genetic model, the coe�cient

bN
Ius k(j)(xi, x�i, x̄) (eq. C.17) takes only the interpretation of a neighbor-modulated regression

coe�cient, since it gives the e↵ect, on the fitness of i, of an average social partner switching to

expressing trait xi instead of its own trait xj. This in general is not the e↵ect of individual i on
the fitness of its average social partner when switching its own trait value from x̄ to xi (since

in general xj 6= x̄). We next show how to obtain an actor-centered regression coe�cient out of

bN
Ius k(j)(xi, x�i, x̄).

C.3.2 Actor-centered regression coe�cients

To introduce our argument, we first consider haploids without class structure. In that case,

we set bN
Ius k(j)(xi, x�i, x̄) = bN

I,j(xi, x�i, x̄) since there are no class e↵ects. It will also turn

out useful to re-write the quadratic expression (eq. C.16) for the haploid case in more compact

form. To that end, let sI(xi, x�i, p) denote the full unconditional instrumental distribution

(which concatenates the unconditional instrumental distributions s(xi, x�i, p) and s̃(xi, x�i, p)
weighted by the respective allele I frequencies), and that has sample space

WI = {xi, x̄}⇥’
j 6=i

{xi, xj}. (C.22)

With this, we can then write the quadratic expression for haploids as

QI

⇣
cI, b

N
I , xi, x�i, p

⌘
= E(x̃i ,x̃�i)⇠sI(xi ,x�i ,p)

2

4
 

1� cI pI,i + Â
j 6=i

bN
I,j pI,j � w(x̃i, x̃�i, p)

!2
3

5 .

(C.23)
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Eq. (C.23) illustrates that, given that we assign a distribution to the traits expressed by

di↵erent individuals (the sI distribution), the quadratic expression to be minimized can be

represented as an average over a distribution of the traits. The resulting regression coe�cients

are contrasts of the fitness values (i.e., weighted “averages” except that the sum of the weights

is zero), which can no longer be interpreted as averages over the sI distribution, but whose

contrast weights are still fully determined by this distribution (as implied by the so-called“normal

equation” of linear regression). For instance, by performing from eq. (C.23) the calculations

detailed in the last section, we obtain in the case n = 2 (where the sample space is {xi, x̄}⇥
{xi, xj}),

bN
I,j(xi, xj, x̄) =

1
1 + r(xi, x̄)

�
w(x̄, xi, x̄)� w(x̄, xj, x̄)

�
+

r(xi, x̄)
1 + r(xi, x̄)

�
w(xi, xi, x̄)� w(xi, xj, x̄)

�

(C.24)

in the limit p! 0, which can be thought of as the extension of b(x, y) in eq. (B.11) to the case

where the trait of each group member is distinguished.

When individuals are exchangeable (meaning that the distribution of their traits are ex-

changeable, and that the same fitness function holds for all individuals), then this e↵ect is also

an average bI,j of e↵ects of the focal individual on the jth neighbor’s fitness (and thus bI,j = bN
I,j).

This case holds when one considers mutant-resident dynamics (whether the resident’s state is

an uninvadable state, or not) and underlies the dual interpretation of the regression coe�cients

discussed below eq. (B.7). Otherwise, even if the instrumental distribution sI is exchangeable

between individuals, the traits (sample space) expressed by individuals that do not bear the I

allele are not generally exchangeable. For instance, in the above haploid case, the trait sample

space of individual i is {xi, x̄} and {xi, xj} and that of its neighbor j is {xi, xj}. So these are not

exchangeable and we do not have bI,j = bN
I,j.

Rather, in order to construct an additive e↵ect bI,j of the focal individual on the jth neighbor’s

fitness, we let bI,j be the regression coe�cient to pI,j in the quadratic expression eq. (C.23), still

under the instrumental distribution defined from the context of individual i, but when the traits

expressed by the focal and its neighbor j are exchanged (in general, this is also di↵erent from

the regression coe�cient to pI,j under the instrumental distribution defined from the context of

individual j). For example, consider that xj is equal to xi, except that we still denote it xj.

Then, under the instrumental distribution, pI,j has no e↵ect on the focal individual’s fitness,

since it has no e↵ect on expressed trait, xi = xj. Yet, the focal individual has a distinct e↵ect

on its j-neighbor depending on its own pI,j and this must be reflected by a non-zero bI,j in the

inclusive fitness as-if of individual i. This e↵ect is recovered by switching the supports of the

focal’s trait and of the j-neighbor’s trait, so that the focal trait now has sample space {xi, xj},
but more importantly the neighbor’s trait now has sample space {xi, x̄} so that we can compute

a non-zero bI,j as the regression coe�cient of focal fitness on neighbor’s pI,j.

Formally, this means that once we have an expression, for bN
I,j from the regression of i’s fitness

under the instrumental distribution, as a contrast of individual fitnesses in di↵erent contexts, we
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obtain bI,j by keeping the contrast weights constant, but modifying the fitness values by switching

the sample spaces of the traits expressed by the I allele in individuals i and j. In the exemplar

case n = 2 given above (eq. C.24), the switch of the sample spaces {xi, x̄} and {xi, xj} then leads

to simply interchanging x̄ and xj in eq. (C.24). This produces

bI,j(xi, xj, x̄) =
1

1 + r(xi, x̄)
�
w(xj, xi, x̄)� w(xj, x̄, x̄)

�
+

r(xi, x̄)
1 + r(xi, x̄)

(w(xi, xi, x̄)� w(xi, x̄, x̄)) ,

(C.25)

which is an e↵ect of the focal individual on the jth neighbor’s fitness. In terms of this coe�cient,

we can then define the inclusive fitness as-if of individual i as

wI(xi, x�i, x̄) = 1� cI(xi, x�i, x̄) + r(xi, x̄)Â
j 6=i

bI,j(xi, xj, x̄). (C.26)

More generally, for diploidy and class-structure the same argument applies. Here, once we

have the neighbor-modulated coe�cient bN
Ius k(j)(xi, x�i, x̄) for k(j) = a from the regression of

i’s fitness under the instrumental distribution, as a contrast of individual fitnesses in di↵erent

contexts, we can obtain bIuk(j) a(xi, x�i, x̄) as the e↵ect of an individual i of class a on receptor

j of class k(j) = s by keeping the contrast weights constant, but modifying the fitness values by

switching the sample spaces of the traits expressed by the focal in class s and its neighbor j when
of class a; that is, by switching the supports of the focal’s trait and of the j-neighbor’s trait, so that
the focal’s trait (now of class s) has support {zs(xs,i, x̄s), xs,i, x̄s} and the neighbor’s trait (now

of class a) has support {za(xi,a, xj,a), xi,a, xj,a}. This then leads a non-zero bIuk(j) a(xi, x�i, x̄)
additive e↵ect of a focal of class a on its neighbor j of class k(j) = s, whose sum over all

recipients of class s, denoted

bIus a = Â
j 6=i,k(j)=s

bIuk(j) a(xi, x�i, x̄), (C.27)

is an individual-centered version of eq. (B.31). In terms of the so-obtained actor-centered indirect

coe�cient (and the cIua and rs|a(xi, x̄) coe�cients computed in the previous section, recall eq. C.17

and eq. C.21), we can define the inclusive fitness as-if of an individual i of class a as

wIa(xi, x�i, x̄) = va(x̄)+ Â
u2C

vu(x̄)

"
�cIua(xi, x�i, x̄) + Â

s2C
rs|a(xi, x̄) bIus a(xi, x�i, x̄)

#
. (C.28)
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C.4 Connecting the gene-centered and the rational-actor centered per-

spectives

Suppose now that at an uninvadable state x⇤, we have

cIua(xi, x

⇤, x⇤) = cua(xi, x⇤) 8xi 2 Xa

bIus a(xi, x

⇤, x⇤) = bus a(xi, x⇤) 8xi 2 Xa.
(C.29)

Then, the inclusive fitness as-if at x⇤ is equivalent to the inclusive fitness at x⇤:

wIa(xi, x

⇤, x⇤) = wIFa(xi, x⇤) 8xi 2 Xa. (C.30)

Since we know the right-hand side is maximized at x⇤, i.e., eq. (B.39) is satisfied, it follows from
eq. (C.30) that the inclusive fitness as-if (eq. C.28) satisfies eq. (C.3). Thus, in an uninvadable

population state, it is as if each individual aimed to maximize its inclusive fitness as-if, when all

others exhibit fitness-maximizing behavior.

We now show that eq. (C.29) indeed holds. First, we have both cIua(xi, x

⇤, x⇤) = cua(xi, x⇤)
and bN

Ius a(xi, x

⇤, x⇤) = bN
us a(xi, x⇤) because the regression model eq. (C.13) is the same as that

in the population genetic model (eq. B.14), the only di↵erence is that its regression coe�cients are

evaluated under a distribution where group neighbor traits are all distinct, everything else remain-

ing the same. Hence, in a population where all neighbors of the same class of an individual have

the same trait value, the regression coe�cients computed under the instrumental and contextual

distributions will be the same. It now remains to show that bIus a(xi, x

⇤, x⇤) = bus a(xi, x⇤).
This follows by noting that in the computation leading to bIus a(xi, x

⇤, x⇤), the only thing that

is changed, is an exchange of supports in the evaluation of fitnesses, but the position of the

argument xi remains unchanged in all fitness functions. The nature of the maximization problem

remains henceforth unchanged, because it is only the trait of neighbors that are interchanged.

This has no e↵ect on the symmetric Nash equilibrium (eq. C.3) and so when all neighbors play

the same trait, the regression coe�cients will be the same. Hence, in an uninvadable population

state, it is as-if individuals in each class maximize (in the best-response sense) their own inclusive

fitness defined by eq. (C.28).

As explained in the main text, eq. (C.28) is, however, not an operationally convincing as-

if fitness as it entails that an individual controls the instrumental distribution describing the

number of group neighbors expressing the same trait as self. But since the contextual distribution

determining the instrumental distribution (by way of eq. C.18) is a population-level property that

depends on the mutant trait, we cannot meaningfully view this distribution as under the control

of a particular individual.

36

Supplemental Material (not copyedited or formatted) for: Laurent Lehmann, François Rousset. 2020. "When Do Individuals Maximize Their Inclusive Fitness?." 
The American Naturalist 195(4). DOI: https://doi.org/10.1086/707561. 



C.5 Weak selection

C.5.1 Weak-selection concepts

We now finally turn to deriving an inclusive fitness as-if functions under weak selection (see

section “Weak selection concepts” of the main text for an informal discussion). To take weak

selection more formally into account, we let the matrix A(x, y) describing the growth of the

mutant when rare in the population with classes (eq. A.8 with elements giving the expected

number of groups in state i that descend from a group in state j) be of the form

A(x, y) = A(y) + eÃ(x, y) + O(e2), (C.31)

where matrix A(y) has leading positive eigenvalue equal to 1 and is independent of the mu-

tant trait, Ã(x, y) is a matrix depending on both mutant and resident traits, and e is a small

parameter.

The representation given in eq. (C.31) captures the two kinds of weak selection that we dis-

cussed in section “Weak selection concepts” of the main text2. First, one can consider that the

parameters determining both mutant and resident phenotypic e↵ects are small. In this case

of “small-mutation” selection, the matrix A(y) depends only the resident trait y and matrix

Ã(x, y) is a first-order polynomial in mutant trait x, in which case one can use the approxima-

tion q(x, y) ⇠ q(y). Second, one can consider traits a↵ecting some material payo↵ (e.g., calory

intake), or any other phenotypic feature, which itself a↵ects only weakly a background reproduc-

tion and survival (“small-parameter”weak selection). For this case, matrix A(y)! A is actually

independent of both mutant and resident traits, in which case one can use the approximation

q(x, y) ⇠ q and f(x, y) ⇠ f, and the perturbation matrix Ã(x, y) can take any form.

For weak selection, e ! 0 (e.g, Nagylaki, 1993; Lessard and Soares, 2016), the remainder

O(e2) in eq. (C.31) is neglected and

qk|a(x, y)! qk|a(y) and fa(x, y)! fa(y), (C.32)

where the left-hand sides depend at most on the resident traits and where k can describe ei-

ther a haploid or diploid group state (in the latter case, k must account for heterozygotes and

homozygotes within each class), and is independent of the evolving traits altogether under“small-

2As concrete example of both “small-mutation” and “small-parameter” weak selection, we can use the social-
insects scenario and corresponding fitnesses given in Box 1. Then, we can first Taylor-expand the fitness compo-
nents, say the number of daughters produced by queens (eq. B.2 in Box 2), in mutant trait around the resident
trait and neglect higher-order terms to obtain

wff(x, y) ⇠ w̃ff(x, y) =
1
2
+

∂wff(x, y)
∂xo

����
x=y

(xo � yo) +
∂wff(x, y)

∂xf

����
x=y

(xf � yf),

where the right-hand side gives a small-mutation approximation to fitness as the fitness of a resident individual in
a monomorphic resident population plus the marginal changes in fitness weighted by their phenotypic di↵erences.
Alternatively, we can linearize fitness in terms of the e↵ect P(xo) of workers on female fecundity wff(x, y) ⇠

w̃ff(x, y) = xf
2yf

+
xf

⇣
P(xo)�P(yo)

⌘

4yf
where the right-hand side represents small-parameter approximation to fitness.

37

Supplemental Material (not copyedited or formatted) for: Laurent Lehmann, François Rousset. 2020. "When Do Individuals Maximize Their Inclusive Fitness?." 
The American Naturalist 195(4). DOI: https://doi.org/10.1086/707561. 



parameter” weak selection. Eq. (C.32) follows from Lessard and Soares (2016, eqs. 59-67) who

show that when e ! 0, the distribution over states of the mutant when rare in the popula-

tion is described by the right unit eigenvector u(y) of A(y), and this vector subtends qk|a(y)
and fa(y) (e.g., qk,a(y) = kauk(y)/ [Âk2I Âa2C kauk(y)], eq. A.21, eq. A.25 and explanations

below eq. A.18 for the haploid case). Hence, not only the reproductive value vu(y) but also

the genealogical and class structure no longer depend on mutant traits. In other words, the

population-level properties may vary with the resident trait but are held constant on variation

of the mutant trait. This argument also applies to the case of distinct individuals (remember

Section A.1.2).

By collecting all components qk|a(x, y) into the distribution q

D
a (x, y) of genetic group states,

we have for weak selection that

q

D
a (x, y)! q

D
a (y). (C.33)

We will next apply eq. (C.33) to derive explicit expressions for fitness as-if under weak selection.

We are now ready to derive explicit as-if fitness representations. Fully endorsing weak selec-

tion, we denote from now on by w̃ua(xi, x�i, x̄) the weak-selection approximation of the class-

specific fitness function wua(xi, x�i, x̄) (as this covers both types of small-mutant and of small-

parameter weak selection). We first recover two expressions for direct fitness as-if from the

literature, which will allow us to point to limitations of this maximand, and finally to formalize

inclusive fitness as-if.

C.5.2 Class-specific inclusive fitness as-if maximization under weak selection

First, recall that, regardless for any strength of selection, we showed that each individual of

each class will appear to maximize its inclusive fitness defined by eq. (C.28) in an uninvadable

population state (e.g., eq. C.30, which implies that eq. (C.3) is satisfied) regardless of the the

strength of selection. Hence, eq. (C.28) will also be maximized under weak selection (eq. (C.3) is

satisfied), with the only di↵erence that we can let the population genetic structure be independent

of the actor’s traits. Hence, for weak selection we write the inclusive fitness as-if of individual i
of class a as

wIa(xi, x�i, x̄) = va(x̄) + Â
u2C

vu(x̄)

"
�cIua(xi, x�i, x̄) + Â

s2C
rs|a(x̄) bIus a(xi, x�i, x̄)

#
. (C.34)

This is eq. (6) of the main text and the key di↵erence with eq. (C.28) is that relatedness is now

independent of the actor’s trait and the regression coe�cients are evaluated under weak selection

using the fitness function w̃ua (instead of the fitness function wua) and using the weak selection

approximation of the instrumental distribution, everything else remains the same.
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