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The evaluation of cardiac contractility by the assessment of the ventricular systolic

elastance function is clinically challenging and cannot be easily obtained at the bedside.

In this work, we present a framework characterizing left ventricular systolic function

from clinically readily available data, including systemic and pulmonary arterial pressure

signals. We implemented and calibrated a deep neural network (DNN) consisting of a

multi-layer perceptron with 4 fully connected hidden layers and with 16 neurons per

layer, which was trained with data obtained from a lumped model of the cardiovascular

system modeling different levels of cardiac function. The lumped model included a

function of circulatory autoregulation from carotid baroreceptors in pulsatile conditions.

Inputs for the DNN were systemic and pulmonary arterial pressure curves. Outputs

from the DNN were parameters of the lumped model characterizing left ventricular

systolic function, especially end-systolic elastance. The DNN adequately performed and

accurately recovered the relevant hemodynamic parameters with a mean relative error

of less than 2%. Therefore, our framework can easily provide complex physiological

parameters of cardiac contractility, which could lead to the development of invaluable

tools for the clinical evaluation of patients with severe cardiac dysfunction.

Keywords: heart failure, hemodynamics, deep neural network, cardiovascular modeling, blood flow model,

machine learning

1. INTRODUCTION

Heart failure corresponds to a clinical syndrome with a wide spectrum of symptoms, ranging from
dyspnea and exercise intolerance to cardiogenic shock. It is caused by structural or functional
cardiac abnormalities that result in low cardiac output, i.e., the inability of the heart to provide
sufficient blood flow to satisfy the metabolic needs of the organism (Metra and Teerlink, 2017).
It affects approximately 2% of the population, with a lifetime risk of developing heart failure
of 20%, and a 5-years mortality of about 50% (Yancy et al., 2013). In the intensive care unit
(ICU), cardiogenic shock represents 6% of admission, with an in-ICU mortality as high as 50%
(Puymirat et al., 2017).
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Evaluation of cardiac function is of crucial importance since it
directly impacts treatment and therefore prognosis. In particular,
the early and repeated evaluation of the left ventricular function
is a key factor to guide therapies. This is particularly relevant
in the ICU setting, where hemodynamic changes in unstable
patients can occur rapidly (minutes). The aim of hemodynamic
monitoring is therefore to accurately and rapidly identify changes
in order to adapt treatment.

Hemodynamic assessment of cardiogenic shock is nowadays
multimodal and includes clinical evaluation and paraclinical
examination. Echocardiography for this situation is currently
the cornerstone tool since it provides a complete evaluation of
cardiac function and structure and can also predict response
to treatment, in particular fluid-responsiveness (Vieillard-
Baron et al., 2019). However, this examination is time- and
resources-consuming (although new sensor technology may
reduce the costs of these devices), hence evaluation based only
on echocardiography may result in delays in management.
Moreover, it cannot be used in a continuous manner. Other
methods, either invasive or non-invasive, allow to indirectly
assess cardiac output and volumes (Alhashemi et al., 2011;
Monnet and Teboul, 2017; Nguyen and Squara, 2017).

Although these tools provide accurate estimates of ventricular
function, evaluation of cardiac mechanics is fully characterized
using the measure of pressure and volume of the ventricle
during the entire cardiac cycle. From these values one can
establish the ventricular pressure-volume diagram and determine
the end-systolic and end-diastolic pressure-volume relationships.
The former permit the determination of ventricular end-systolic
elastance (Ees), a load-independent measurement of ventricular
contractility (Burkhoff et al., 2005; Naeije and Manes, 2014).
Nowadays these measurements require invasive techniques only
available in the catheterization laboratory (Bonnet et al., 2017).
Non-invasive methods have been developed, including magnetic
resonance imaging (Bastos et al., 2019), or real-time three
dimensional echocardiography (Seemann et al., 2019), but these
cannot be easily implemented in the daily clinical practice.

To circumvent the drawbacks of these different methods, we
aimed at developing a framework to characterize parameters of
ventricular systolic function from easily accessible clinical data,
namely systemic and pulmonary arterial pressures. The gold
standard for such measurements is the use of invasively inserted
intravascular catheters in the radial or femoral artery (systemic
arterial pressure), or the pulmonary artery (pulmonary artery
pressure). To obtain accurate pressure values, the measurements
must be done at end-expiration and in the supine position,
with standard zero reference at the level of the right atrium.
Some variability of intravascular pressure measurement may still
occur as a consequence of over- or underdamping of the signal
(Romagnoli et al., 2014). We implemented and calibrated a
deep neural network (DNN)—trained with data obtained from
a lumped model of the cardiovascular system (Shi et al., 2011), as
developed by Ursino (1998)—to model different levels of severity
of left ventricular systolic dysfunction. This DNN takes, as input,
systemic and pulmonary arterial pressure signals and returns, as
output, the parameters of the lumped model that characterize left
ventricular function, in particular Ees. The inputs are relevant

measurable clinical values, whereas the predicted outputs—
as mentioned above—cannot be easily evaluated in clinical
practice; these are in turn provided to the 0D model in order
to recover all other clinical values, especially the ventricular
pressure-volume curves.

The role of the proposed DNN is to solve an inverse problem
which maps some of the outputs of the 0D model (i.e., systemic
and pulmonary arterial pressures) to its underlying parameters.
Of note, previous investigators, (Pennati et al., 1997; Pant et al.,
2016; Schiavazzi et al., 2017) have proposed alternate methods
for parameter identification of lumped parametermodels in other
physiological conditions, such as single-ventricle physiology with
valve dysfunction (Pant et al., 2016). In this paper, we present a
novel deep-learning-based approach to solve this issue.

2. MATERIALS AND METHODS

2.1. Global Framework
In this section, we focus on the online pipeline of our method
(i.e., the prediction procedure) which is depicted in Figure 1,
whereas the training process is described in section 2.3 for
general DNNs and section 2.4 for our specific application. Input
parameters were systemic and pulmonary arterial pressure
curves. Theses curves are represented in the frequency domain
by their Fourier coefficients. As explained in more detail in
section 2.4, the Fourier coefficients were subsequently arranged
in a three-dimensional tensor which served as input for the DNN.
The output of the DNN were the four parameters characterizing
left ventricular function in the 0Dmodel, namely Emax,lv, Emax lv,0 ,
GEmax,lv

, and kE,lv (see section 2.2 for more details). In the last
step, the predicted parameters were provided to the 0D model to
simulate and recover all the other values.

2.2. Lumped Parameters Model of the
Cardiovascular System
The lumped model of the cardiovascular system has been
extensively described in the original paper by Ursino (1998).
The model provides a mathematical description of the entire
cardiovascular system with time-varying elastance of the left and
right ventricles. It also includes the afferent carotid baroreceptor
pathway, the sympathetic and vagal efferent activities, the
splanchnic and extrasplanchnic systemic circulation, and the
pulmonary circulation. A representation of the model is
presented at the bottom of Figure 1. For each of the vascular i-
compartment, mass and momentum conservation are given by,
respectively:

Qin(t)− Qout(t) =
dVi(t)

dt
, (1)

and

Pin(t)− Pout(t) = Ri Qout(t)+ Li
dQout(t)

dt
, (2)

where Vi is the volume of the i-compartment, Qin and Qout the
inflow and outflow rate, Pin and Pout the inlet and outlet pressure,
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FIGURE 1 | Global framework. Input parameters, systemic and pulmonary arterial curves are represented in the frequency domain and then given to the DNN, that

itself returns the left ventricular parameters of the 0D model. These parameters are given to the 0D model, allowing to recover numerous hemodynamic values.

Symbols in the 0D model are: circles: compliance; facing triangles (double arrows): resistance; rectangles: inertance; single white arrows in heart chambers: cardiac

valves; gray contour: elements affected by autoregulation; red elements: oxygenated blood, blue elements: deoxygenated blood. SAP, systemic arterial pressure; PAP,

pulmonary arterial pressure; DFT, discrete Fourier transform, providing the coefficients ak and bk ; DNN, deep neural network; RA, right atrium; RV, right ventricle; LA,

left atrium; LV, left ventricle.

Ri the resistance, and Li the inertance. The pressure and flow
relationship reads

dPin(t)

dt
=

1

Ci

dVi(t)

dt
. (3)

Inertance is taken into account for arterial compartments where
acceleration of blood is significant, while neglected for the other
ones. Valve opening is determined by its pressure gradient across
the valve, i.e., it opens when Pin > Pout. Left and right ventricle
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FIGURE 2 | Pressure-volume diagrams for different degrees of systolic heart

failure and their corresponding parameters in the 0D model.

contractility is modeled as a time-varying elastance. Efferent
pathways act on several parameters, namely heart period, left and
right ventricle contractility, unstressed volumes (defined as the
volume when pressure is equal to zero), and both splanchnic and
extrasplanchnic peripheral artery resistance. Parameters affected
by autoregulation are surrounded by a gray line in Figure 1.

In a previous work (Bonnemain et al., 2013), we modified the
model to account for left ventricular systolic failure at different
levels of severity and validated it with clinical data. To reproduce
various degrees of left ventricular systolic failure, we varied the
following parameters:

• Emax,lv [mmHg/ml], reference value of the ventricle elastance,
• Emax lv,0 [mmHg/ml], reference value of the ventricle elastance

in absence of autoregulation,
• GEmax,lv

[mmHg/ml/(spikes/s)], maximum baroreceptor gain,
• kE,lv [1/ml], steepness of the pressure-volume curve.

Figure 2 shows left ventricular pressure-volume loops at different
degrees of severity of heart failure. All other haemodynamic
values are presented in Bonnemain et al. (2013). For each
compartment, pressure, volume and flow can be extracted; it is
therefore straight-forward to retrieve the ventricular pressure-
volume curves.

2.3. Deep Neural Network
The term machine learning is typically used to indicate a
family of algorithms and methods which, broadly speaking, are
capable of identifying structures and patterns in complex and
(usually) high-dimensional information. Due to the abundance
of data obtained during the last decade and the ever increasing
computational power of processors, graphics processing units
(GPUs) and supercomputers, these methods have gained
particular attention in all the fields of medicine (Komorowski
et al., 2018; McKinney et al., 2020).

DNNs are a class of data-hungry machine learning algorithms
notably suited for classification and regression tasks. They are
used to approximate unknown mappings f(·) of the form y =

f(x;ω), where x and y are input and output of the model,
respectively, and ω indicates a set of parameters of the network.
The function f(·), which, in reality, can be as general as possible,
is represented in DNNs as a composition of easily computable
parameterized functions f1, f2, . . . , fl (where l is the number of
layers of the network), i.e., f = fl ◦ . . . ◦ f2 ◦ f1. In this
work, we focused on the most basic type of DNNs, i.e., multi-
layer perceptrons, which, despite their simple structure, have
been mathematically proven to satisfy desirable approximation
properties. In particular, multi-layer perceptrons with one hidden
layer or more are universal approximators, see e.g., (Cybenko,
1988;Mhaskar, 1993). In contrast tomore advanced architectures
(e.g., convolutional neural networks), multi-layer perceptrons are
solely based on a sequence of fully-connected layers of the form

yi = fi(xi;ωi = {Wi, bi}) = σi(Wixi + bi), (4)

where the subscript i refers to the ith layer of the network, xi =
yi−1 is the corresponding input, Wi and bi are a weight matrix
and a bias vector, and σi is a non-linear activation function.
Among the most common activation functions are e.g., the
rectifier linear unit ReLU(x) = max(0, x), sigmoid(x) = 1/(1 +
exp (−x)), and tanh(x). In this paper, we consider the ReLU and
sigmoid activation functions for the hidden (i.e., f1, . . . , fl−1) and
output (i.e., fl) layers, respectively. The weight matrix Wi and
the bias vector bi represent the parameters ωi of the ith layer. In
order to find an appropriate numerical value of the parameters
ωi, for each i = 1, 2, . . . , l, the DNN has to be trained on a set
of input-output pairsQ = {{x1, y1}, {x2, y2}, . . . , {xnt , ynt }} which
constitute the so called training dataset. The ultimate goal of the
training process is to find ω = {ω1,ω2, . . . ,ωl} such that the
DNN f(·,ω) performs a “good” fitting on Q, i.e., f(xk,ω) ≈ yk for
every k = 1, 2, . . . , nt . This is typically done by introducing a loss
function acting on the training dataset Lω(Q) and by minimizing
it by means of optimization algorithms (usually, gradient or
stochastic gradient descent). For a complete review of DNNs and
their optimization, we refer the reader to Goodfellow et al. (2016).

2.4. The Offline Phase: Data Generation
and Training of the Deep Neural Network
In the data generation phase, the 0D model described in
section 2.2 is solved Ns times by randomly sampling Emax,lv,
Emax lv,0 , GEmax,lv

, and kE,lv. Specifically, we determined for each
of these parameters a range of physiological or pathological
(severe heart failure) values; for details about these ranges see
(Bonnemain et al., 2013). Upper and lower bounds are reported
in Figure 2. Each training sample was generated from the 0D
model, by assigning a random individual value (drawn from a
uniform distribution defined on the corresponding admissible
range) for each of the four parameters of interest, and by
keeping constant all the other parameters of the 0Dmodel. Other
parameters include values of resistance, compliance, unstressed
volume, inertance, as well as values describing heart function, and
values related to autoregulation, as presented in detail by Ursino
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(1998). This approach allows generating a dataset which includes
a rich representation of all possible pathological conditions
leading to left heart failure. Regarding sampling strategies,
owing to the negligible computational cost required the generate
each random sample, we did not consider alternative sampling
strategies (e.g., Latin Hypercube or orthogonal sampling). The
output of the 0D model comprises multiple time dependent
one-dimensional signals. We focused only on quantities that
are easy to measure in the clinical practice, such as systemic
arterial pressure and pulmonary arterial pressure. Let us denote
(0,T) the time interval over which the simulation of the 0D
model is performed, t1 = 0, . . . , tnt = T a set of timesteps
such that the timestep size 1t = tm+1 − tm is constant for
all m = 1, . . . , nt , and uk,i(tm) the value of the ith quantity
of interest (e.g., systemic or pulmonary arterial pressure) of the
kth sample at timestep tm. In order to better capture the time
component of the quantity of interest, we decided to operate on
its representation in the frequency domain. More precisely, we
computed the Discrete Fast Fourier Transform (DFFT) of the

signal uk,i(tm) and we recovered the coefficients ak,ij and bk,ij such

that, for all k = 0, . . . , nt ,

uk,i(tm) =
ak,i0
2

+

M
∑

j=1

[

ak,ij cos
(

jωtm
)

+ bk,ij sin
(

jωtm
)

]

, (5)

where M = nt/2 and ω = 2π/T. We note that Equation (5)
must be slightly modified to account for the case of nt odd;
we refer to Quarteroni et al. (2014) for details. We introduce
for sake of clarity the vector ck,i = [ak,i0 , . . . , ak,iM , bk,i1 , . . . , bk,iM ],
i.e., the vector containing all the 2M + 1 Fourier coefficients.
In this work we selected the first 5% of Fourier coefficients,
i.e., M = 5. Cutting higher modes allows to eliminate noise
without loosing information. We studied the influence of the
number of Fourier coefficients used for the DNN input on
the DNN performance. Data from these studies are provided
in Supplementary Data Sheet 2. Overall, results indicate that
the best accuracy of the DNN is obtained using M = 5
(11 Fourier coefficients).

The training dataset Q for the DNN is composed of pairs
{xk, yk}, k = 1, . . . ,Ns, where xk = [ck,1, . . . , ck,Ni ], Ni being
the number of desired input signals selected from the output
of the 0D model, and yk = [Ek

max,lv
,Ekmax lv,0

,Gk
Emax,lv

, kk
E,lv

].

In our implementation, the input data is organized in a
three-dimensional tensor Xlmn = cl,mn with dimensions
Ns × Ni × (2M + 1) as depicted in Figure 1. Therefore,
the forward pass of the DNN consists in mapping the
frequency coefficients of a handful of time dependent signals—
in our case, systemic and pulmonary arterial pressure—to the
corresponding values of the hidden parameters of the 0D model
(as already mentioned in section 1, the DNN aims at solving
an inverse problem). Regarding the choice of loss function
Lω(Q), in this work we focused on the mean squared error

MSEω(Q) = 1/Ns
∑Ns

k=1
|yk − f(xk;ω)|2, which is well-suited to

regression tasks.

3. RESULTS AND DISCUSSION

The 0D model was implemented in the Modelica language1,
a non-proprietary, object-oriented, equation based language
which conveniently models complex physical systems. We used
OpenModelica2 as a modeling and simulation environment. The
DNN was implemented using TensorFlow3. Discrete fast Fourier
transform computation and statistical analysis were performed
with Matlab4.

As described in section 2.4, Ns = 10′000 samples were
generated from the 0D model; 5% of these were reserved to the
test set, which was employed to evaluate the performance of the
trained network. Of the 95% samples remaining, 80% represented
the train set and 20% the validation set. After considering
several DNN architectures, we opted for a multi-layer perceptron
with 4 fully connected hidden layers featuring 16 neurons per
layer. Our choice was driven by the value of loss function
achieved during training and by the absence of overfitting (which
occurs whenever the error on the train set is considerably
smaller than that on the validation set); in cases of architectures
achieving similar performance, we chose the network composed
of the smallest number of neurons. All the data regarding the
considered DNN architectures and the relative performances can
be found in the Supplementary Data Sheet 1. The learning rate
is set at a value of 0.001. The Adam optimization algorithm was
used to update the network weights during training. In Figure 3

we report the DNN performance for the 4 predicted parameters
on the test set. Each graph represents the plotting of values of
real parameter (x-axis) and the predicted parameter (y-axis). We
note that the optimal prediction corresponds to the bisector. The
architecture shows good accuracy especially for Emax,lv, Emax lv,0 ,
and kE,lv. In contrast, the prediction of GEmax,lv

appeared less
accurate, which suggests that the 0D model is significantly less
sensitive to this parameter.

To support this hypothesis, we performed a sensitivity analysis
of the output of the 0D model with respect to small variations
of the 4 parameters. The mean value of parameter P is given by
Pmean = (Pmin + Pmax)/2, where Pmin and Pmax are the lower
and upper bounds depicted in Figure 2. For each parameter P,
we run a set of 100 simulations by assigning the value P =

Pmean(1 + ǫN(0, 1)), where ǫ = 0.01 and N(0, 1) is a normal
distribution with 0 mean and a standard deviation equal to 1,
while keeping the other 3 parameters constant and equal to their
respective mean values. The results are reported in Table 2. The
output of interest shows a noticeably lower standard deviation
with respect to small variations of GEmax,lv

, highlighting a lower
sensibility of the 0D model for this parameter.

As depicted in Figure 1 and described in section 2.1, the main
objective of our study was to recover a wealth of haemodynamic
values from systemic and pulmonary arterial pressure signals.
Table 1 shows the results of the 0D model simulations solved
for the real and predicted parameters. Specifically, the 0D model

1http://www.modelica.org
2http://www.openmodelica.org
3https://www.tensorflow.org
4https://www.mathworks.com
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FIGURE 3 | DNN performance for the 4 predicted parameters. Each plot compares the real parameter on the x-axis with the predicted one with the DNN on the

y-axis. Emax,lv [mmHg/ml]: reference value of ventricle elastance, Emax lv,0 [mmHg/ml]: reference value of ventricle elastance in absence of autoregulation,

GEmax,lv
[mmHg/ml/(spikes/s)]: maximum baroreceptor gain, kE,lv [1/ml]: steepness of the pressure-volume curve.

was run for each 4-parameters set of the test set (5% of total
samples, i.e., 500 samples), both with the real and the predicted
parameters. Relevant haemodynamic values were extracted and
compared. These values were: systemic and pulmonary pressures
(mean, systolic, and diastolic), heart rate, left ventricular ejection
fraction, left ventricular end-diastolic and end-systolic volumes,
cardiac index, and pulmonary capillary pulmonary wedge
pressure. Minimal, maximal, mean, and standard deviation of
the real and predicted values were calculated. The calculated
difference between real and predicted values was defined as the
error, for which standard deviation with 95% confidence interval
were computed. All values are reported in Table 1.

Our test set included haemodynamic values spanning a range
of clinical situation from normal physiology to severe heart
failure. Overall our results indicate an excellent correlation
between real and predicted values, with mean relative error
never superior to 2%, and a narrow 95%-confidence interval.
The accuracy of this model is relevant to the clinical setting,
where these hemodynamic variables are susceptible to show
wide variations.

Furthermore, the small error in our model should be
regarded as perfectly acceptable, when considering the
variability of intravascular pressure measurements in the
clinical setting, notably related to underdamping and resonance

phenomena (Romagnoli et al., 2014). The same is true for clinical
measurements of ventricular volumes (Bastos et al., 2019). With
respect to ventricular ejection fraction, it is worth mentioning
that its measurement by standard modern techniques (cardiac
computerized tomography, radionucleotide and invasive
ventriculography, echocardiography or magnetic resonance
imaging) presents a bias of less than 5% (Pickett et al., 2015),
which reinforces the relevance of our model, which leads to a
relative error smaller than 2%. Finally, new devices and non-
invasive approaches for continuous pressure measurement may
broaden the applicability of the presented framework (Proena
et al., 2016), while new methods for haemodynamic monitoring
could provide innovative perspectives (Pour-Ghaz et al., 2019).

Our model appears slightly better to predict pressures than
other parameters, which may reflect the fact that the DNN takes
pressure, but not volumes values, as input. In addition, with
respect of heart rate, it can be noticed that minimal predicted
and real values were identical (60/min), which simply reflects the
lowest boundary of this parameter in the 0D model.

4. LIMITATIONS

We acknowledge the three following limitations in our study.
First, our model is adapted to the pathophysiology of left
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TABLE 1 | Comparison between real and DNN-predicted hemodynamic data on the test set (500 samples).

MSAP SSAP DSAP MPAP SPAP DPAP

Exact Predicted Exact Predicted Exact Predicted Exact Predicted Exact Predicted Exact Predicted

Min 67.924 67.870 86.812 87.348 57.464 56.761 16.320 16.349 27.687 27.746 10.637 10.650

Max 98.862 98.652 136.410 135.906 80.146 80.025 23.555 23.943 32.611 32.735 19.027 19.547

Mean 88.158 88.042 120.373 120.158 72.051 71.984 18.890 18.907 29.545 29.563 13.562 13.579

SD 6.245 6.549 10.241 10.678 4.347 4.593 1.351 1.427 0.892 0.945 1.583 1.672

Mean Err 0.499 0.841 0.357 0.114 0.099 0.129

Mean Rel Err 0.006 0.007 0.005 0.006 0.003 0.009

Err SD 0.484 0.810 0.346 0.106 0.083 0.127

Err CI low 0.456 0.770 0.326 0.104 0.091 0.118

Err CI up 0.541 0.912 0.387 0.123 0.106 0.140

Heart rate LVEF LVEDV LVESV CI PCWP

Exact Predicted Exact Predicted Exact Predicted Exact Predicted Exact Predicted Exact Predicted

Min 60.000 60.000 29.542 28.523 138.541 139.436 56.173 55.597 1.662 1.653 6.251 6.273

Max 78.947 83.333 61.178 60.764 217.007 220.059 152.898 157.291 3.084 3.087 15.863 16.113

Mean 65.731 65.836 49.613 49.676 162.961 162.828 83.056 82.943 2.621 2.617 9.712 9.744

SD 4.084 4.426 7.032 7.295 15.486 15.963 19.241 19.912 0.308 0.316 1.868 1.970

Mean Err 0.903 0.493 1.138 1.342 0.035 0.152

Mean Rel Err 0.014 0.011 0.007 0.015 0.014 0.015

Err SD 1.376 0.433 1.028 1.214 0.031 0.138

Err CI low 0.783 0.455 1.048 1.235 0.032 0.140

Err CI up 1.024 0.531 1.229 1.448 0.038 0.164

For each haemodynamic variable, minimal, maximal, mean, and standard deviation values are given for the exact and predicted samples. For each set of data in the 500 samples, the difference between exact and predicted values

(error) was calculated, and mean error (absolute and relative ) was computed, with additional calculation of its standard deviation and its 95% confidence interval. MSAP [mmHg], mean systemic arterial pressure; SSAP [mmHg], systolic

systemic arterial pressure; DSAP [mmHg], diastolic systemic arterial pressure; MPAP [mmHg], mean pulmonary arterial pressure; SPAP [mmHg], systolic pulmonary arterial pressure; DMAP [mmHg], diastolic pulmonary arterial pressure;

LVEF [%], left ventricle ejection fraction; LVEDV [ml], left ventricle end-diastolic volume; LVESV [ml], left ventricle end-systolic volume; CI [L/(min m2 )], cardiac index; PCWP [mmHg], pulmonary capillary wedge pressure; Min, minimal value;

Max, maximal value; Mean, mean value; SD, standard deviation; Mean Err, mean error; Mean Rel Err, mean relative error; Err SD, error standard deviation; Err CI min, error confidence interval lower bound; Err CI up, error confidence

interval upper bound.
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TABLE 2 | Sensitivity analysis for the 4 predicted parameters, performed as described in section 3.

MSAP SSAP DSAP MPAP SPAP DPAP HR LVEF LVEDV LVESV CI PCWP

Emax,lv

Min 88.112 121.471 70.979 17.733 28.827 12.186 62.500 44.071 155.524 69.532 2.491 8.469

Max 90.846 123.547 74.516 19.762 30.133 14.576 68.182 55.292 167.613 93.507 2.820 10.487

Mean 89.400 122.586 72.807 18.697 29.415 13.338 64.746 49.676 161.103 81.187 2.671 9.381

SD 0.737 0.542 0.908 0.600 0.346 0.729 1.504 3.398 3.385 7.179 0.120 0.578

Emax lv,0

Min 76.391 99.962 64.606 17.582 28.621 11.986 60.000 39.089 146.217 61.539 2.011 7.706

Max 95.113 132.031 76.921 20.514 30.713 15.415 75.000 57.912 187.664 114.309 3.017 12.551

Mean 88.207 120.344 72.138 18.759 29.451 13.413 65.651 49.809 162.815 82.347 2.637 9.557

SD 5.350 9.204 3.428 0.865 0.564 1.018 3.763 5.185 12.310 14.920 0.308 1.385

GEmax,lv

Min 88.120 119.649 72.355 18.213 29.165 12.727 62.500 48.984 157.368 76.024 2.508 8.897

Max 90.513 124.818 73.361 18.927 29.537 13.651 68.182 51.690 163.877 83.603 2.847 9.649

Mean 89.416 122.375 72.936 18.672 29.354 13.331 64.523 50.382 160.505 79.654 2.717 9.257

SD 0.580 1.310 0.261 0.164 0.099 0.200 1.506 0.778 1.874 2.178 0.094 0.214

kE,lv

Min 86.914 118.793 70.946 17.543 28.569 11.974 62.500 50.196 152.245 75.199 2.413 7.995

Max 92.191 126.766 74.940 19.559 30.043 14.317 68.182 50.614 168.665 84.003 2.955 10.455

Mean 89.583 122.755 72.998 18.537 29.309 13.151 64.723 50.428 160.677 79.657 2.708 9.190

SD 1.583 2.488 1.141 0.650 0.425 0.764 2.124 0.133 5.080 2.730 0.187 0.7583

Minimal, maximal, mean and standard deviation are reported for each haemodynamic variable. MSAP [mmHg], mean systemic arterial pressure; SSAP [mmHg], systolic systemic arterial pressure; DSAP [mmHg], diastolic systemic arterial

pressure; MPAP [mmHg], mean pulmonary arterial pressure; SPAP [mmHg], systolic pulmonary arterial pressure; DMAP [mmHg], diastolic pulmonary arterial pressure; LVEF [%], left ventricle ejection fraction; LVEDV [ml], left ventricle

end-diastolic volume; LVESV [ml], left ventricle end-systolic volume; CI [L/(min m2)], cardiac index; PCWP [mmHg], pulmonary capillary wedge pressure; Min, minimal value; Max, maximal value; Mean, mean value; SD, standard deviation.
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heart failure, and therefore cannot apply to other condition of
cardiac failure, such as right heart dysfunction. Secondly, we
choose to focus only on 4 parameters of interest. Therefore,
it is likely that including additional parameters (for instance a
resistance parameter associated with vascular dysfunction) could
have affected the resulting accuracy of the network. Third, even
though the 0D model includes a component of autoregulation,
it does not take into account respiratory physiological variables,
which may significantly influence cardiac function (concept of
heart-lung interactions), notably in the context of mechanical
ventilation, which is frequently provided in patients with severe
cardiac failure. Fourth, our study used exclusively synthetic
data. Using real patients data (possibly affected by noise) to
validate our framework will be essential for its applicability in the
clinical setting, and such validation will be the matter of future
investigations. Furthermore, we cannot rule out that using real
clinical data could affect the ability to train the proposed network,
an issue that will require additional studies.

5. CONCLUSIONS AND PERSPECTIVES

In this work we presented a framework that allows to predict,
from physiological data (systemic and pulmonary arterial
pressure signals), various parameters of left ventricular function
and other haemodynamic variables. The 0D model used to train
the DNN in our study allows to describe a wide spectrum of
pathophysiological alterations pertaining to left heart failure. In
turn, the DNN displayed remarkable accuracy to recover relevant
haemodynamic parameters.

Our study represents a first step toward the development of
automated tools providing helpful information on heart function.
For instance, the application of our framework could assist in
the real time detection of left ventricular dysfunction, especially
in ICU patients, who are subject to continuous monitoring of
intravascular pressures. Also, our tool could be useful to assess the
left ventricular function during mechanical circulatory support,
such as left ventricular assist device (LVAD) or veno-arterial
extracorporeal membrane oxygenation (ECMO).

Future studies, that will validate themodel with patient related
data, will be necessary for the clinical implementation of our tool.
Moreover, our framework will be of great interest for the future
extensions of the 0D model to other circulatory pathologies or
heart disease as well as to mechanical circulatory support.
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