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Abstract 
This paper provides guidelines for performing Mendelian 
randomization investigations. It is aimed at practitioners seeking to 
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undertake analyses and write up their findings, and at journal editors 
and reviewers seeking to assess Mendelian randomization 
manuscripts. The guidelines are divided into ten sections: motivation 
and scope, data sources, choice of genetic variants, variant 
harmonization, primary analysis, supplementary and sensitivity 
analyses (one section on robust statistical methods and one on other 
approaches), extensions and additional analyses, data presentation, 
and interpretation. These guidelines will be updated based on 
feedback from the community and advances in the field. Updates will 
be made periodically as needed, and at least every 24 months.
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          Amendments from Version 2
This is an update to the guidelines for performing Mendelian 
randomization investigations to reflect updates in the literature 
over the past three years – both advances in technologies and 
datasets providing more opportunities for advanced analyses, 
and methodological innovations enabling broader and more 
reliable analyses. As stated in the original publication, we will 
continue to revise these guidelines periodically. Notable changes 
in this update are: 1) addition of three new co-authors (Zoltán 
Kutalik, Jean Morrison, Wei Pan) to better reflect the diversity 
and geographical spread of thought leaders in MR, 2) new 
paragraphs on within-family analyses, 3) updated advice on 
drug-target MR analyses, including on variant choice and use 
of colocalization, 4) revised discussion of methods including 
recently published robust methods for MR, 5) substantial 
revision to the section on other sensitivity analyses and a 
renewed emphasis on triangulation of evidence, 6) a new 
section “Extensions and additional analyses”, and 7) a general 
edit of the text to improve accuracy and clarity. We will continue 
to revisit these guidelines as applied practice shifts and the 
methodological literature develops.

Any further responses from the reviewers can be found at 
the end of the article

REVISED

The aim of this paper is to provide guidelines for perform-
ing Mendelian randomization investigations. It is written both 
for practitioners seeking to undertake analyses and write up 
their findings, and for journal editors and reviewers seeking to 
assess Mendelian randomization manuscripts. These guidelines 
are deliberately written as suggestions and recommendations 
rather than as prescriptive rules, as we believe that there is no  
recipe or single “right way” to perform a Mendelian rand-
omization investigation. Best practice will depend on the aim 
of the investigation and the specific exposure and outcome  
variables. However, we believe these guidelines will help  
investigators to consider the key issues in designing, undertak-
ing and presenting Mendelian randomization analyses. These  
guidelines will be updated based on feedback from the com-
munity and advances in the field. Updates will be made  
periodically as needed, and at least every 24 months.

These guidelines are complementary to the STROBE-MR 
recommendations on reporting Mendelian randomization  
investigations1,2. Here, we provide advice on which analyses 
to perform in a Mendelian randomization investigation, 
whereas the STROBE-MR guidelines focus on reporting the 
analyses chosen by the investigators. We assume a familiarity 
with the basic concepts of Mendelian randomization and 
genetic epidemiology, such as pleiotropy and linkage  
disequilibrium3–6. We use the term “exposure” to refer to the 
proposed causal factor, and “outcome” to refer to the trait or  
disease that the exposure is hypothesized to influence.

Flowcharts highlighting some of the key analytic steps and 
choices for investigators are provided as Figure 1 and Figure 2, 
and a one-page checklist summarizing these guidelines written 
for reviewers of Mendelian randomization analyses is provided  
as Figure 3. The guidelines are divided into ten sections: moti-
vation and scope, data sources, choice of genetic variants, 
variant harmonization, primary analysis, supplementary and  

sensitivity analyses (one section on robust statistical methods and 
one on other approaches), extensions and additional analyses, 
data presentation, and interpretation. Software to implement the  
statistical methods is referenced in Table 1.

1. Motivation and scope
Mendelian randomization uses genetic variants to assess 
causal relationships using observational data. A genetic vari-
ant can be considered as an instrumental variable for a given 
exposure if it satisfies the instrumental variable assumptions: 
1) it is associated with the exposure, 2) it is not associated with 
the outcome due to confounding pathways, and 3) it does not  
affect the outcome except potentially via the exposure7,8.

Before embarking on a Mendelian randomization analysis, inves-
tigators should consider the aims of their investigation and the 
primary hypotheses of interest. There are many potential moti-
vations for using Mendelian randomization, and the motiva-
tion should influence decisions on how to perform the analysis, 
and how to arrange and present its results. The objective of a  
Mendelian randomization analysis is a test of a causal hypoth-
esis, and sometimes additionally an estimate of a causal effect9. 
The straightforward statement of the causal hypothesis is that 
interventions on the exposure variable will affect the outcome. 
If the genetic associations with the exposure vary with time, 
then there are some nuances in terms of what causal hypotheses 
can be tested10; we discuss the impact of time-varying  
relationships between variables in Section 10.

If a Mendelian randomization investigation is performed  
primarily to assess whether an exposure has a causal effect 
on an outcome, then estimating the size of the causal effect 
of the exposure on the outcome is less important and may even 
be unnecessary8,11. Priorities in such an analysis are to find 
genetic variants that satisfy the instrumental variable assump-
tions and to test their associations with the outcome in the largest  
available dataset that is relevant to the causal question of inter-
est. Investigators may be able to find mediating traits down-
stream of the exposure that both help understand the mechanistic 
pathways from the exposure to the outcome, and provide 
modifiable targets for intervention in order to influence the  
outcome.

In contrast, if investigators seek to estimate the quantitative 
impact on the outcome of a proposed intervention in the  
exposure12, then further questions become more important, 
such as how well the genetic variant proxies the specific inter-
vention, whether genetic associations with the exposure are  
estimated in a relevant population, and whether the relationships 
between variables are linear and homogeneous in the population13.  
However, as we discuss in Section 10, causal estimates from 
Mendelian randomization should always be interpreted with cau-
tion. Alternatively, if investigators simply want to assess whether 
traits share common genetic predictors (potentially implying 
shared aetiological mechanisms), then an analytic approach  
that assesses shared heritability (such as LD-score regression14 
or bivariate genome-based restricted maximum likelihood 
[GREML]15) may be preferable to conducting a Mendelian  
randomization investigation.
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Figure 1. Flowchart highlighting some of the key analytic choices in performing a Mendelian randomization (MR) analysis.

Figure 2. Generic analytic pipeline for Mendelian randomization (MR).
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Figure 3. Checklist of questions to consider when reviewing a Mendelian randomization investigation.
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Table 1. Summary of some methods proposed for Mendelian randomization: inverse-variance weighted method and robust 
methods.

Method Consistency 
assumption

Strengths and weaknesses Reference Software

Inverse-variance 
weighted

All variants valid or 
balanced pleiotropy

Most efficient (greatest statistical power), biased if average 
pleiotropic effect differs from zero

16 *†

MR-Egger InSIDE Sensitive to outliers, sensitive to violations of InSIDE 
assumption, InSIDE assumption often not plausible, often less 
efficient

17 *†

MR-RAPS InSIDE 
(except outliers)

Downweights outliers, sensitive to violations of balanced 
pleiotropy assumption

18 ‡

Weighted median Majority valid Robust to outliers, sensitive to addition/removal of genetic 
variants

19 *†

Mode-based 
estimation

Plurality valid Robust to outliers, sensitive to bandwidth parameter and 
addition/removal of genetic variants, generally conservative

20 *†

MR-PRESSO Outlier-robust Removes outliers, efficient with valid IVs, very high false positive 
rate with several invalid IVs

21 ‡

MR-Robust Outlier-robust Downweights outliers, efficient with valid IVs, high false positive 
rate with several invalid IVs

22 *

MR-Lasso Outlier-robust Removes outliers, efficient with valid IVs, high false positive rate 
with several invalid IVs

22

Contamination 
Mixture

Plurality valid Robust to outliers, sensitive to variance parameter and addition/
removal of genetic variants

23 *

MR-Mix Plurality valid Robust to outliers, requires large numbers of genetic variants, 
very high false positive rate in several scenarios

24 ‡

MR-cML Plurality valid Likelihood-based and robust to the violation of all three IV 
assumptions

25 *‡

Each of the methods in the table can be implemented using summarized data. False positive rates refer to the simulation study by Slob and Burgess26. InSIDE 
is the Instrument Strength Independent of Direct Effect assumption. IV = instrumental variable.

* Implemented in MendelianRandomization package for R (https://cran.r-project.org/web/packages/MendelianRandomization/index.html)

† Implemented in mrrobust package for Stata (https://github.com/remlapmot/mrrobust)

‡ Implemented for R in its own software package:

- MR-PRESSO in mrpresso package (https://github.com/rondolab/MR-PRESSO),

- MR-RAPS in mr.raps package (https://github.com/qingyuanzhao/mr.raps),

- MR-Mix in MRMix package (https://github.com/gqi/MRMix), 

- MR-cML in MRcML package (https://github.com/xue-hr/MRcML).

Investigators should also give thought to the scope of their 
analysis. If the aim of the investigation is to understand  
disease aetiology, then consideration of a limited set of  
exposures/outcomes as main analyses may be justified. Whereas 
if the question relates to public health, then consideration of 
a wider range of outcomes influenced by an exposure may be 
worthwhile, as public health recommendations should assess  
the broad consequences of intervention on an exposure, which 
may involve weighing risks and benefits for different out-
comes. At the extreme end of the spectrum is a phenome- 
wide Mendelian randomization investigation, in which very 
large numbers of exposure/outcome pairs are considered27–29. 
Such analyses are generally regarded as exploratory or  
“hypothesis-generating”, and results are typically treated as  
provisional until replicated in an independent dataset.

Specifying the primary analyses in a Mendelian randomization 
investigation is important to address problems of multiple 
testing, particularly given the large number of analyses that 
could be performed using available genetic data30. Additional  
analyses, including subgroup analyses and analyses on related 
outcomes may be presented as supplementary, exploratory, 
or sensitivity analyses. An overly conservative approach to  
multiple testing is often excessive, given the typically low 
power of Mendelian randomization studies and the fact that  
Mendelian randomization often investigates exposure/outcome 
relationships with prior epidemiological or biological sup-
port. As with all epidemiological analyses, selective report-
ing of “significant” results (leading to reporting bias) should 
be avoided and all analyses performed should be described  
transparently.
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2. Data sources
The next fundamental question is which data sources will 
be used: how many datasets are included in the analysis and 
whether the analysis is performed using individual-level data or  
summarized data.

Mendelian randomization investigations can be performed using 
data from a single sample (known as one-sample Mendelian 
randomization), in which genetic variants, exposure, and out-
come are measured in the same individuals, or from two samples 
(known as two-sample Mendelian randomization), in which  
variant—exposure associations are estimated in one dataset, 
and variant—outcome associations are estimated in a second 
dataset31. Two-sample investigations often occur when genetic 
associations with the exposure are estimated in a cross- 
sectional sample of healthy individuals, to reflect genetic asso-
ciations with usual levels of the exposure in the population, 
and genetic associations with a binary disease outcome are  
estimated in a case-control study.

There are benefits and limitations of both one- and two-sample 
settings. A one-sample setting allows the investigation to be  
conducted in a single population sample, meaning that  
Mendelian randomization and conventional epidemiological 
findings (for example from multivariable-adjusted regression) 
can be compared in the same individuals. In a two-sample 
setting, the populations from which the two samples were 
extracted may differ. This is problematic if associations of the 
genetic variant with the exposure or with variables on pleio-
tropic pathways differ between the two samples, as this could  
affect the validity of the instrumental variable assumptions. A 
particular concern arises if the two samples represent differ-
ent ethnic groups, as patterns of linkage disequilibrium can dif-
fer between population ancestry groups, meaning that a genetic 
variant may not be as strongly (or even not at all) associated 
with the exposure in the outcome dataset. Alternatively, the 
two samples could differ substantially according to population 
characteristics such as age, sex, socio-economic background,  
and so on32. Such differences can affect not only the inter-
pretation of causal estimates, but also the validity of causal  
inferences33. For example, genetic variants associated with  
smoking intensity may be strongly associated with disease out-
comes in populations where smoking is common, but not in 
populations where smoking is rare. One-sample analyses do not 
suffer from these concerns, nor do they require harmonization  
of the genetic variants across the datasets (see Section 4).

Another related issue is whether the analysis is performed using 
individual-level data or summarized data. Summarized data 
are genetic association estimates from regression of the expo-
sure or outcome on a genetic variant16,34. Several large consor-
tia have made such estimates publicly available for millions  
of variants30,35,36. Although the use of summarized data is often 
synonymous with the two-sample setting, the benefits and limi-
tations for the analysis of the two choices (i.e. one- versus 
two-sample and individual-level versus summarized data) are  
distinct. Moreover, two-sample approaches can be used with 
individual-level data (such as the use of externally-derived  

weights), and summarized data approaches can be used with 
one-sample data (if necessary, by creating the summarized data  
from the individual-level data37).

Summarized data are often available for larger sample sizes, 
meaning that power to detect a causal effect is increased. 
However, access to only summarized data limits the range of  
analyses that can be performed. Individual-level data are 
required to conduct analyses in specific subgroups or strata of  
the population, or to choose which variables to adjust for 
when generating the summarized data. If published summa-
rized association estimates have already been adjusted for a 
variable causally downstream of the exposure or outcome,  
collider bias (see Section 7) can occur38. Individual data in a  
one-sample setting are required to investigate non-linear effects39. 
A specific advantage of publicly available summarized data is  
transparency, as the analysis can be reproduced by a third party  
with access to the same data.

One- and two-sample investigations also differ in terms of bias 
with weak instruments40. In a one-sample setting, if the genetic 
variant–exposure associations are weak, then chance variation  
means that genetic associations with the exposure and out-
come are correlated in the direction of the confounded asso-
ciation between the two. This results in instrumental variable 
estimates that are biased in the direction of the confounded asso-
ciation, and inflated false positive (type 1 error) rates, particularly 
when more than one variant is included in the analysis41.  
In a two-sample setting without sample overlap, bias due to 
weak instruments is in the direction of the null, and does not 
lead to false positive findings. However, as several large consor-
tia have overlapping studies, participants may overlap between 
the datasets used to estimate the genetic associations with the 
exposure and outcome42. In this case, the direction and size 
of the bias varies linearly depending on the degree of overlap  
(formally, depending on the degree of correlation between the 
genetic association estimates). For the special case of a one-
sample analysis with a binary disease outcome, if the genetic 
associations with the exposure are estimated in the controls 
only, then genetic associations with the exposure and outcome 
will not be correlated, and bias will follow the pattern of the  
two-sample setting42. Various statistical methods have been pro-
posed to reduce weak instrument bias due to sample overlap  
and bias due to winner’s curse (see Section 3)43–45.

The “randomization” in Mendelian randomization refers to 
the quasi-random allocation of genetic variants from parents 
to offspring that occurs at conception. This randomization 
only truly holds conditional on the parental genotype. The key 
consequence of this randomization is that genetic variants are  
independently distributed from traits that they do not affect, 
an implication of Mendel’s laws of segregation and inde-
pendent assortment. There is some plausibility that this inde-
pendence holds for many traits at a population level in large  
“well-mixed” populations. Empirical investigations in European  
populations have shown that associations between genetic vari-
ants and many traits are no stronger than would be expected  
due to chance alone46,47.
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Concerns about independence are greater for traits that are more 
socially-patterned, as this increases susceptibility to associa-
tions arising from population structure, assortative mating, and 
dynastic effects48. Population structure can give rise to genetic 
associations due to differences in the frequency of a variant 
and the distribution of a trait across the population (such as  
latitude in Europe, which correlates with allele frequencies for 
lactase persistence variants and milk consumption49). Assorta-
tive mating occurs when individuals reproduce with people 
who are more similar to themselves than would be expected by 
chance. This can also lead to genetic associations that represent 
social differences rather than causal effects50. Finally, dynas-
tic effects occur when a parent’s genotype affects their child’s  
outcome by a causal pathway not acting via the child’s pheno-
type (for example, due to an effect of the parent’s phenotype 
on the child’s outcome). This can induce associations between 
the offspring’s genotype and outcomes that do not reflect the  
effect of the exposure in the offspring.

These potential sources of bias have encouraged the devel-
opment of statistical approaches and datasets to perform  
within-family Mendelian randomization analyses, exploiting 
the random allocation of variants between siblings51. Hence, if 
a relevant dataset is available and statistical power is reason-
able, investigators could consider performing a within-family 
Mendelian randomization analysis, particularly if the expo-
sure is socially-patterned or likely to be subject to population 
stratification48,52. If this is not possible, then the validity of the  
investigation relies on independence of the genetic variants 
from potential confounders holding at a population level. How-
ever, within-family analyses typically have lower power than 
analyses in unrelated individuals, as families where all indi-
viduals have the same genotype (such as where both parents are 
major homozygotes) would not contribute any information to 
the analysis. Hence, imprecise null findings from family-based  
analyses should be interpreted with caution, particularly if a  
population-based analysis suggests a causal effect.

3. Selection of genetic variants
The most important decision to be made in designing a  
Mendelian randomization investigation is which genetic vari-
ants to include in the analysis53. First, it is necessary to decide 
whether the analysis is performed using variants from a single 
gene region, or using variants from multiple regions of the genome 
(a polygenic analysis). For example, a Mendelian randomiza-
tion analysis for C-reactive protein (CRP) may be conducted 
using variants in the neighbourhood of the CRP gene region  
(which encodes C-reactive protein), or it may be conducted 
using all independent genome-wide significant predictors of 
CRP54. The former has advantages of specificity – if a gene 
region has a specific biological link with the exposure, then the 
Mendelian randomization investigation based on these variants  
(sometimes called a “cis-Mendelian randomization analysis”55, 
as the variants are cis-variants for the gene product) is more 
plausible as an assessment of the causal role of that particular 
exposure compared with an analysis including all genome-wide 
significant predictors of CRP regardless of function. How-
ever, if only one gene region is included in the analysis, then 

several robust statistical analysis methods (see Section 6)  
are less reliable, as they assume independence in whether vari-
ants violate the instrumental variable assumptions. Variants in 
the same gene region are likely to either all be valid instruments 
or all invalid. When genetic variants are all valid instruments, 
power depends on the proportion of variance in the expo-
sure explained by the variants56 – hence a polygenic Mendelian  
randomization investigation will typically have greater power  
than one including variants only from a single gene region.

Mendelian randomization analyses for investigating drug targets 
often use variants in a single gene region, typically the gene 
that encodes the protein target under investigation57,58. For 
example, investigations into the effects of glucagon-like  
peptide 1 receptor (GLP1R) agonists have considered variants 
in the GLP1R gene region59, and investigations into the effects 
of activated factor X inhibitors have considered variants in  
the F10 gene60. However, for complex multifactorial exposures 
such as body mass index or blood pressure, there is no single 
relevant gene, and so a more agnostic polygenic analysis may 
be necessary. In some cases, both approaches may be possible:  
for example, variants associated with low-density lipoprotein  
(LDL) cholesterol in the HMGCR gene region have particular 
relevance for understanding the impact of taking statin drugs, 
whereas a polygenic analysis including genetic predictors of 
LDL-cholesterol from multiple gene regions may be informa-
tive about the effect of LDL-cholesterol perturbation more 
generally. The latter approach allows investigators to test for 
consistency of the causal finding across multiple variants that  
influence the exposure via different biological pathways61.

When the analysis is based on a single gene region, it may be 
that a single variant is included in the analysis. However, if mul-
tiple variants explain independent variance in the exposure, 
then their inclusion will increase the power to detect a causal 
effect, even if the variants are partially correlated. With summa-
rized data, appropriate methods should be used to account for  
correlated variants32. For drug targets, variants may be chosen 
based on associations with levels of a protein or similar  
biomarker that reflects pharmacological perturbation of the target, 
or expression of the targeted gene in a relevant tissue or cell 
type. If there are many correlated candidate variants in a gene 
region, then including all variants in a single analysis will typi-
cally result in numerical instability, as the analysis can be highly 
sensitive to small changes in the variant correlation matrix62.  
Variable selection and dimension reduction approaches have 
been proposed to maximize the proportion of variance in the 
exposure explained by the selected variants while avoiding  
instability due to multicollinearity63.

For a polygenic analysis, there are two main strategies for  
selecting variants: either a biologically driven approach or a  
statistically driven approach. The two approaches are not mutu-
ally exclusive, and the overall decision of which variants to  
include may comprise elements from both approaches.

A biological approach to selecting genetic variants would 
include variants from regions that have a biological link to 
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Figure 4. Directed acyclic graphs illustrating validity and invalidity of instrumental variable assumptions in different scenarios.  
a) Mediator is on causal pathway from exposure to outcome. b) Mediator is on causal pathway from genetic variants to exposure. c) Genetic 
variants influence the exposure, which has downstream effect on a related variable which does not affect the outcome. d) Genetic variants 
influence a related variable, and the related variable affects the outcome and exposure of interest. We note that the related variable may be 
known or unknown. e) Genetic variants influence the exposure and outcome via different causal pathways. f) Genetic variants influence the 
outcome primarily, and only influence the exposure via the outcome. In scenarios a, b, and c, as there is no alternative pathway from the 
genetic variants to the outcome, the instrumental variable assumptions are satisfied. In scenario d, the pathway from the genetic variants to 
the outcome does not pass via the exposure, and so the instrumental variable assumptions are not satisfied for the exposure (although they 
are satisfied for the related variable). Scenarios a, b, and c are examples of “vertical pleiotropy” (also called “indirect pleiotropy”) that do not 
invalidate the instrumental variable assumptions. Scenario d reflects a situation where the causal risk factor has been incorrectly identified 
– it is not the exposure, but the related variable. Scenario e reflects “horizontal pleiotropy” (also called “direct pleiotropy”) that violates the 
instrumental variable assumptions. Scenario f reflects a reverse causation situation where the genetic variant has been incorrectly identified 
as primarily affecting the exposure.

the exposure of interest. For example, several Mendelian  
randomization investigations for vitamin D have used variants 
from four gene regions that are biologically implicated in the  
synthesis or metabolism of vitamin D64. However, caution is 
required as biological understanding is often imperfect. As an 
example, although genetic variants in the IL6R gene region are 
associated with increased circulating levels of interleukin-6, 
they in fact decrease interleukin-6 signalling, leading to oppo-
site directions of association with disease outcomes to those  
expected based on serum interleukin-6 measurements65.

A common statistical approach when selecting genetic variants 
is to include all variants associated with the exposure of  
interest at a given level of statistical significance (typically, 
a genome-wide significance threshold, such as p < 5×10-8).  
Selection may be based on the dataset in which genetic  
associations with the exposure are estimated. However, this  
can lead to “winner’s curse” –genetic associations tend to be 
overestimated in the dataset in which they were first discovered.  
If genetic variants are selected based on their associations with 
the exposure in the dataset under analysis, weak instrument  
bias is exacerbated (in the direction of the observational  
association in a one-sample setting, and in the direction of the 
null in a two-sample setting)41. This bias can be avoided by 
selecting genetic variants based on a different dataset entirely. 
This can lead to a “three-sample” analysis, in which variants 
are identified in one dataset, and the genetic associations with 
the exposure and outcome are estimated in separate datasets66.  
If associations with the exposure from separate large datasets 

are not available, investigators will have to choose between  
basing their variant choice on the dataset under analysis (and 
hence risking winner’s curse bias), or basing their variant choice 
on a smaller dataset (and hence risking uninformative findings 
due to low power)67. When genetic variants are chosen solely 
based on their association with the exposure without reference 
to the function of the variants, researchers should be especially  
careful about the possibility of variants being pleiotropic.

A more nuanced approach to variant selection would be 
to start off with a statistical rationale for choosing genetic  
variants, but then to exclude variants that are known to be 
pleiotropic or that are associated with variables that represent 
pleiotropic pathways to the outcome. However, a genetic  
association with a variable does not necessarily reflect that the  
instrumental variable assumptions are violated. Additionally, if 
variants are associated with a variable that has no influence on  
the outcome, bias will not be introduced.

We use the term “horizontal pleiotropy” (sometimes referred 
to as “direct pleiotropy” or simply “pleiotropy”) to refer to 
the scenario where a genetic variant is associated with vari-
ables on different causal pathways to the outcome, and “vertical 
pleiotropy” (sometimes referred to as “indirect pleiotropy” or 
“mediated pleiotropy”) to refer to the scenario where a genetic 
variant is associated with variables that are on the same causal 
pathway to the outcome68. Provided that the causal pathway  
from the genetic variant to the outcome is mediated entirely via 
the exposure (see Figure 4), a genetic variant is a valid instrument 
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for assessing the causal role of the exposure (assuming the other 
instrumental variable assumptions are satisfied), even if it is asso-
ciated with another variable31. In practice, distinguishing between 
horizontal pleiotropy and vertical pleiotropy requires knowl-
edge of the relationships between the variables in the analysis. 
When there are multiple genetic variants, horizontal pleiotropy 
is more likely if a genetic association with a specific variable 
is only observed for a small number of variants. In contrast,  
vertical pleiotropy (in particular corresponding to the scenarios 
in Figure 4a–c) is likely to lead to genetic associations with that  
variable for all variants that associate with the exposure. While 
removing horizontally pleiotropic variants from a Mendelian  
randomization analysis should lead to more reliable results, care 
must be exercised, as removing vertically pleiotropic variants  
could lead to distorted causal estimates.

Another possible scenario that would lead to instrument invalid-
ity is if genetic variants influence the outcome primarily rather 
than the exposure (Figure 4f, see also discussion on reverse 
causation in Section 7). If there is a reverse causal effect of the  
outcome on the exposure, then genetic predictors of the  
outcome could be identified as hits in a genome-wide associa-
tion study for the exposure. However, such variants would not be  
valid instrumental variables.

In conclusion, there is no one correct way to choose which 
genetic variants to include in an analysis. Causal conclusions 
will be more reliable when the instrumental variable assump-
tions are more plausible. In practice, a balance may need to be 
struck between including fewer variants (and potentially having 
insufficient power) and including more variants (and potentially 
including more pleiotropic variants). We note the possibil-
ity that a researcher could exploit this uncertainty and perform a  
data-driven investigation, choosing variants based on the results  
of Mendelian randomization analyses with different sets of vari-
ants. This underscores the importance of writing an analysis 
plan before looking at the data, and considering prospectively 
what criteria may be considered for including and excluding 
genetic variants from the analysis. This problem is not unique 
to Mendelian randomization, and pre-registration of analysis 
plans has been suggested as a potential way of ensuring that  
analyses are conducted transparently and without bias  
(whether intentional or unintentional)69.

A practical suggestion for performing a polygenic analysis is 
to consider both a liberal analysis, including more genetic vari-
ants, and a conservative analysis, including fewer variants31. 
While it is theoretically possible for pleiotropy to lead to a false 
negative finding, it is generally more likely that pleiotropy 
will bias estimates away from the null. Hence a null finding in 
a liberal analysis is more convincing evidence of a true null  
relationship – there is little evidence for a causal relationship 
even when potentially pleiotropic genetic variants are included 
in the analysis. Section 6 and Section 7 describe sensitivity  
analyses for assessing the instrumental variable assumptions  
and the robustness of non-null findings.

4. Variant harmonization
Genetic associations with exposures and outcomes are typically 
reported per additional copy of a particular allele. Hence, 

when combining summarized data on genetic associations, it is  
important to ensure that genetic associations are expressed 
per additional copy of the same allele70. This is particularly  
important as not all publicly-available data resources are consist-
ent about reporting strand information correctly. For example, 
if a genetic variant is a biallelic single nucleotide polymor-
phism (SNP) with alleles A and G on the positive strand, then 
the corresponding base pairs on the negative strand will be T 
and C. In this case, one dataset may report the association per  
additional copy of the A allele, and another per additional copy 
of the T allele – but the same comparison is being made. Allele 
and strand information can be double-checked by compar-
ing allele frequency information – if the allele frequencies are  
similar for the A and T alleles, then the researcher can be more 
confident that this is a strand mismatch. Additional care should 
be taken for palindromic variants – if the alleles were A and T  
(or C and G), then the same alleles would appear on both the  
positive and negative strands. In such a case, if the allele fre-
quency is close to 50%, analysts may choose to drop the variant  
from the analysis if it is not possible to verify that the alleles 
have been correctly orientated. While this is a conservative 
policy, allele alignment problems have led to incorrect results 
in Mendelian randomization analyses, and retractions and  
corrections of manuscripts.

5. Primary analysis
Different statistical methods have been proposed for Mendelian 
randomization with individual-level data and with summa-
rized data. In a one-sample setting with individual-level data, 
a causal effect estimate can be obtained using the two-stage 
least-squares (2SLS) method. In the first stage, the expo-
sure is regressed on the genetic variants and any relevant  
covariates. In the second stage the outcome is then regressed on 
the predicted values of the exposure from the first regression and 
the same covariates71. In general, we recommend only includ-
ing as covariates age, sex, genomic principal components of 
ancestry, and technical covariates (such as recruitment centre), 
as further adjustment may bias estimates either if adjustment 
is for a variable on the causal pathway from the genetic variants 
to the outcome (a mediator), or if adjustment induces collider 
bias72. Strictly speaking, the 2SLS method refers to a two-stage  
analysis using linear regression for continuous outcomes and 
exposures. Similar two-stage analyses can be performed with 
binary variables using logistic regression73, although in this case 
estimates are sensitive to correct specification of the first-stage 
regression model74 and other approaches that make weaker  
distributional assumptions, such as structural mean models,  
may be preferred75.

The 2SLS method can be applied to the two-sample setting if 
individual-level data are available for both samples76. However, it 
is typical for two-sample investigations to use summarized data. 
With summarized data, if only one genetic variant is used as an 
instrument, the causal effect estimate is simply the ratio of the 
variant—outcome association divided by the variant—exposure  
association. With multiple variants as instruments, the most com-
monly used method is the inverse-variance weighted (IVW) 
method16. With uncorrelated variants, the IVW estimate can be 
obtained from an IVW meta-analysis of the ratio estimates for 
the individual variants77. The same estimate can equivalently 
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be calculated as the ratio estimate using a weighted genetic 
risk score as a single instrument, with the weights equal to the  
associations of each variant with the exposure estimated in 
the first sample32. A modification of this method has been  
proposed to allow for correlation (linkage disequilibrium)  
between variants32. For continuous outcomes, the IVW estimate 
is asymptotically equivalent to the 2SLS estimate obtained 
from individual level data16. The 2SLS method (and thus also 
the IVW method) is the most efficient estimate of the causal  
effect when all genetic variants are valid instruments32.

If all genetic variants are valid instruments and the relation-
ships between all variables (genetic variants, exposure and  
outcome) are linear and homogeneous for all individuals in the 
population, then we would expect the variant-specific estimates 
(that is, the ratio estimates based on each variant in turn) to  
all target the same causal parameter, and for there to be no  
more heterogeneity between the variant-specific estimates 
than would be expected by chance alone13. However, there are 
many reasons why excess heterogeneity may occur in practice. 
These include statistical reasons (such as departures from  
linearity and homogeneity across individuals) and biological  
reasons. For instance, variants associated with body mass index 
(BMI) influence BMI via different biological mechanisms78.  
Additionally, some variants are associated with BMI from 
early childhood and others from adolescence or later. Variants 
that influence BMI for longer may be expected to have stronger  
proportional associations with chronic disease outcomes for 
which BMI is a cause. Hence if there is a true causal effect of  
the exposure on the outcome, some heterogeneity may be 
expected in the variant-specific causal estimates. However,  
heterogeneity would also arise if some genetic variants are not  
valid instrumental variables (see Section 6)79.

The IVW method can be performed using a fixed-effects or 
a random-effects meta-analysis model. Unless there are very 
few variants (meaning that heterogeneity between the variant-
specific estimates cannot be estimated reliably) or all variants 
are taken from the same gene region, we recommend using a  
multiplicative random-effects model as the default option for the  
IVW method. If there is no more heterogeneity between 
the ratio estimates for the individual variants than would be 
expected by chance alone, then the random-effect analysis is 
equivalent to the fixed-effect analysis, and there is no loss of 
precision in making the weaker random-effects assumption. 
However, if there is excess heterogeneity, then the fixed-effect 
analysis is inappropriate, as its confidence intervals are mis-
leadingly narrow. A multiplicative random-effects model is  
preferred to the additive random-effects model that is more  
common in the meta-analysis literature as it does not change the 
relative weighting of the variant-specific estimates34. In contrast, 
an additive random-effects model upweights outlying estimates, 
which are more likely to represent pleiotropic variants. The  
multiplicative random-effects IVW method provides valid causal 
estimates under the assumption of balanced pleiotropy; that 
is, pleiotropic effects on the outcome are equally likely to be  
positive as negative34.

We recommend the IVW method with multiplicative random-
effects as the primary analysis method for use with summa-
rized data, because it is the most efficient analysis method with 
valid instrumental variables, and it accounts for heterogeneity 
in the variant-specific causal estimates. If a causal effect is 
detected using this method, then investigators should proceed 
to perform sensitivity analyses (Section 6 and Section 7) to  
assess the robustness of their finding to the assumption of  
balanced pleiotropy.

A scenario that requires a different approach to the primary 
analysis occurs when there are several related exposures that 
have shared genetic predictors, meaning that it is difficult to 
find specific predictors of the individual exposures. In this case, 
a multivariable Mendelian randomization approach may be the  
primary analysis strategy80. Multivariable Mendelian rand-
omization is an extension to standard (univariable) Mendelian  
randomization that allows genetic variants to be associated with 
more than one exposure, and estimates the direct causal effects 
of each exposure in a single analysis model. The instrumental 
variable assumptions in multivariable Mendelian randomiza-
tion require each variant to be associated with at least one of 
the exposures, not associated with the outcome via confound-
ing, and not to affect the outcome except potentially via its  
association with one or more of the exposures included in the 
analysis model. For identification, it is also required that there 
is no perfect collinearity between the genetic associations; that 
is, there are variants that explain independent variation in each 
exposure81. Examples of exposure sets where multivariable 
Mendelian randomization has been used include lipid fractions 
(such as high-density lipoprotein cholesterol, LDL-cholesterol,  
and triglycerides)82, and body composition measures (such 
as fat mass and fat-free mass)83. Provided that genetic  
variants act as instrumental variables for the set of exposures, 
the direct causal effects of the individual exposures on the  
outcome can be estimated84. Both the 2SLS and IVW methods 
can be adapted to the multivariable setting81. A multivariable  
analysis strategy may also be worthwhile if genetic variants are 
associated with measured exposures that represent potentially 
pleiotropic pathways from the genetic variants to the outcome, 
as the effects of these exposures on the outcome will be 
accounted for in the multivariable analysis model (Section 7).  
Specific methods have been proposed based on a multivari-
able approach in the context of gene expression data, such as 
the transcriptome-wide summary statistics-based Mendelian  
randomization (TWMR) method85.

6. Robust methods for sensitivity analysis
A robust analysis method is defined here as a method that can 
provide valid causal inferences under weaker assumptions 
than the standard IVW method. Many robust analysis meth-
ods are available to detect and account for pleiotropy when  
using multiple genetic variants. Any polygenic Mendelian  
randomization investigation where variants are chosen based 
on their associations with the exposure that does not per-
form one or more robust methods may be viewed as somewhat  
incomplete54,86. Investigators should consider using multiple 

Page 11 of 34

Wellcome Open Research 2023, 4:186 Last updated: 04 AUG 2023



methods that make different assumptions about the nature of 
the underlying pleiotropy26. Although robust methods typically 
use the term ‘pleiotropy’, any source of instrument invalidity 
can be expressed as algebraically equivalent to bias from  
pleiotropy87, and so these methods can help assess sensitivity 
of findings to instrument invalidity more generally, and not  
simply invalidity that arises from horizontal pleiotropy. However, 
the robust methods are more likely to be effective for address-
ing instrument invalidity that arises due to issues such as  
pleiotropy or linkage disequilibrium with a variant influencing  
a confounder, which affect specific variants in a sporadic way, 
and less effective for instrument invalidity that arises due to 
issues such as population stratification or dynastic effects, 
which affect all variants in a systematic way48. We here use the  
language of pleiotropy to make mathematically precise state-
ments about the assumptions needed for methods to provide  
consistent estimates, but these statements cover instrument  
invalidity more generally.

While a full comparison of all the robust methods that have 
been proposed is beyond the scope of this paper, a summary of 
several methods is provided as Table 1. This table is based on a 
broader review and comparison of methods26. We proceed to  
provide a brief description of some commonly used methods.

The most commonly used robust methods are MR-Egger, 
median- and mode-based methods, and MR-PRESSO. We 
focus on these methods here as they can be implemented using  
summarized data alone, and they rely on different assumptions 
to provide consistent causal estimates. The MR-Egger method  
estimates the causal effect as the slope from the weighted regres-
sion of the variant—outcome associations on the variant— 
exposure associations, and the average pleiotropic effect as 
the intercept. The method allows all genetic variants to have 
pleiotropic effects; however, it requires that the pleiotropic 
effects are independent of the variant–exposure associations 
(referred to as the Instrument Strength Independent of Direct 
Effect (InSIDE) assumption)17. This assumption would be  
violated in the case of “correlated pleiotropy”, which occurs 
when genetic variants influence a confounder of the exposure 
and outcome (and hence there are correlated pleiotropic effects 
on the exposure and outcome)88. A multivariable version of the 
MR-Egger method is available89. Estimates from the MR-Egger 
method are particularly affected by outlying and influential  
datapoints90, and are prone to be imprecise, particularly when 
the variant—exposure associations are all similar in magnitude. 
This can lead to the method having low power to detect a causal 
effect. A heterogeneity measure has been proposed to quan-
tify the similarity between variant—exposure associations and 
the potential impact on MR-Egger analyses91. Another method  
making the InSIDE assumption is the MR-RAPS (robust 
adjusted profile score) method, which first excludes strongly 
pleiotropic variants, and then assumes all remaining variants  
follow the InSIDE assumption18.

The median- and mode-based methods19,20,92 rely on some genetic 
variants being valid instruments, but make weaker assump-
tions about the invalid instruments and are more robust to  

outliers. Specifically, the median-based method assumes that 
less than half of the variants are invalid instruments (majority 
valid assumption), and the mode-based method assumes more  
variants estimate the true causal effect than estimate any other 
quantity (plurality valid assumption). Intuitively speaking, both  
methods take the variant-specific causal estimates (i.e. the ratio 
estimates based on the individual variants), and calculate a meas-
ure of central tendency of these estimates. These methods have 
a natural robustness to variants with outlying ratio estimates, 
and so are not as affected by the presence of a small number of 
pleiotropic variants as the IVW and MR-Egger methods. The 
mode-based method has been shown to have low precision in 
some simulated and real datasets26. Other methods have been 
proposed that make the same plurality valid assumption as the  
mode-based method, including the contamination mixture  
method23 and MR-Mix24.

The MR-PRESSO method is a variation on the IVW method 
that first sequentially removes genetic variants from the analysis  
whose variant-specific causal estimate differs substantially 
from those of other variants21. The IVW method is then per-
formed for all variants that are not judged to be heterogeneous. 
A potential problem with this sequential (that is, one-by-one) 
removal strategy is that, when there are several variants with  
similar outlying estimates, no single variant may be judged to 
be an outlier on its own. Alternative methods have considered 
penalized regression for simultaneous parameter estimation 
and outlier detection, using a Lasso (also called L

1
) penalty22 

or an L
0
 penalty. The constrained maximum likelihood  

(MR-cML)25 is such a method that performs selection of invalid 
instruments and estimation allowing any of the three instru-
ment variable assumptions to be violated via either uncorre-
lated or correlated pleiotropy. In addition to asymptotically  
valid inference, it also offers a data perturbation/resampling 
scheme to account for uncertainty in model selection and so  
achieve better inferences in finite samples.

A further class of robust methods uses latent modelling to 
distinguish to what extent genetic associations with the out-
come arise due to a causal effect of the exposure, as opposed 
to pleiotropic effects of particular variants either on the  
outcome directly or on a common cause of the exposure and  
outcome. A causal model is evidenced if the predominance of  
variants that associate with the exposure also associate with 
the outcome in a proportional way. If the genetic associations 
with the outcome do not follow this pattern, then a non-causal  
explanation would be preferred. Emerging methods that take this 
approach include the Causal Analyses Using Summary Effect  
Estimates (CAUSE)88 and Latent Heritable Confounder Mendelian 
randomization (LHC-MR)93 methods.

While it would be excessive to perform every robust method 
for Mendelian randomization that has been proposed, or even 
all the methods mentioned here, investigators should pick a  
sensible range of methods to assess the sensitivity of their  
findings. For example, one suggestion is to perform MR-RAPS, 
the weighted median-based method, and the MR-cML method, 
as these methods require different assumptions to be satisfied 
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for asymptotically consistent estimates (respectively: InSIDE,  
majority valid, and plurality valid). If estimates from all  
methods are similar, then any causal claim is more credible. 
However, finding differences between estimates does not neces-
sarily imply the absence of a causal effect. Different methods 
will perform better and worse in different scenarios, so criti-
cal thought and judgement is required. Two recent simulation  
studies that compared different methods recommended the  
contamination mixture method26 and MR-Mix94 as having the 
lowest mean squared error across a range of different methods –  
these methods both make the same assumption for consist-
ent estimation as the mode-based method, and so either could 
be used in preference to it. Alternatively, the MR-CUE95  
(“correlated horizontal pleiotropy unraveling shared etiology 
and confounding”) method has been demonstrated to have good  
performance in an extensive comparison of methods.

New methods for Mendelian randomization analysis are appear-
ing regularly, and (unsurprisingly) tend to report simulations  
and applications suggesting they have advantages over pre-
vious methods. It is unlikely that one approach will perform 
best in all settings, and so it is important to perform a range 
of analyses that depend on different sets of assumptions.  
Combining this with orthogonal validation – such as through 
the use of positive and negative controls (Section 7) – is the  
most powerful way of addressing causal questions, within the  
triangulation of evidence framework96,97.

We also recommend that a measure of the heterogeneity 
between variant-specific causal estimates, such as Cochran’s 
Q statistic or the I2 statistic, is reported as a part of a polygenic  
Mendelian randomization investigation79,98,99. Conclusions are 
more reliable when multiple genetic variants provide concord-
ant evidence for a causal effect, and particularly when there is  
no more heterogeneity between the variant-specific causal esti-
mates than expected by chance. As discussed in Section 5, 
some heterogeneity may be expected even when all genetic vari-
ants are valid instruments. However, causal conclusions are 
less reliable when there is substantial heterogeneity, especially 
when there are distinct outliers (which may represent pleiotropic 
variants) or when evidence for a causal effect depends on one  
or a small number of variants.

Leave-one-out analyses (i.e. remove one variant from the 
analysis and re-estimate the causal effect) can be valuable in  
assessing the reliance of a Mendelian randomization analy-
sis on a particular variant100. If there is one genetic variant that 
is particularly strongly associated with the exposure, then it 
may dominate the estimate of the causal effect. Investigators 
should assess the robustness of findings to the removal of such  
variants. If a causal effect is only evidenced by one variant, 
then the validity of the inference depends only on that  
variant. If there are many variants in an analysis, leaving 
one variant out at a time is unlikely to change the estimate  
substantially, and leaving out subsets of the variants (say, a  
randomly chosen 30% at a time101) may be more appropriate. A  
further approach for identifying variants to remove from the 
analysis is Steiger filtering, which removes variants from the 

analysis if their association with the outcome is stronger than  
that with the exposure102. It is highly unlikely that variants could 
have a stronger association with the outcome than the exposure 
if the instrumental variable assumptions are satisfied and the 
genetic association with the outcome is entirely mediated 
via the exposure (unless there is substantial measurement  
error in the exposure).

While removing horizontally pleiotropic variants from a  
Mendelian randomization analysis will improve the valid-
ity of causal inferences, there is some danger in a post hoc or  
data-driven selection of genetic variants. This is particularly 
true if many genetic variants are judged to be heterogeneous:  
the removal of too many variants from the analysis could pro-
vide a false impression of agreement amongst the remaining 
variants, and over-precision in the causal estimate. Removing 
a variant from the analysis is more justified when a pleiotropic  
association of the variant has been identified103.

7. Other approaches for sensitivity analysis
Sensitivity analysis should not be limited to the application of 
different statistical methods. This is particularly important for 
investigations based on a single gene region, as several of the 
methods discussed above are not applicable in this case. Other 
approaches for assessing robustness include varying the data-
set and choice of genetic variants in the analysis (including the 
suggestion of liberal and conservative variant sets in Section 3),  
the use of positive and negative control outcomes and/or  
samples, colocalization, subgroup analyses, and examining 
associations with potentially pleiotropic variables. We describe  
each of these in turn.

A positive control outcome is an outcome for which it is already 
established that the exposure is causal. For example, the out-
come of gout may be used as a positive control in a Mendelian 
randomization investigation for serum uric acid as an expo-
sure, as raised uric acid levels are known to increase risk of 
gout. Provided that there is sufficient statistical power, then if  
genetic variants that are associated with serum uric acid are 
not also associated with risk of gout, then we may question 
whether the genetic variants are truly able to assess the effects 
of varying serum uric acid104. Conversely, a negative control out-
come is an outcome for which it is believed that the exposure  
cannot be causal105. For example, childhood levels of vitamin D  
have been used as a negative control outcome for the effect of 
adulthood BMI; childhood BMI was shown to affect childhood 
vitamin D levels in a Mendelian randomization investigation,  
but adulthood BMI did not106. If a Mendelian randomization  
investigation suggests that the negative control outcome is 
caused by the exposure, then violation of the instrumental vari-
able assumptions (such as through pleiotropy or population  
stratification) may be suspected107.

Colocalization assesses whether the same genetic variant (or 
variants) influences two traits108,109. If genetic variants in a 
given gene region are associated with both an exposure and 
an outcome, it may be that the same genetic variants causally  
influence both the exposure and outcome (implying the likely  
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presence of a causal pathway including the exposure and out-
come). However, it may instead be that the two associations are 
driven by different causal variants, and these variants are cor-
related due to linkage disequilibrium110. This would typically 
indicate a violation of the Mendelian randomization assump-
tions. An example of this is the APOE gene region, which  
contains genetic variants associated with LDL-cholesterol and  
Alzheimer’s disease. However, LDL-cholesterol does not 
appear to be a cause of Alzheimer’s disease in Mendelian ran-
domization analyses using variants from other gene regions111. 
A colocalization analysis revealed distinct causal variants for 
LDL-cholesterol and Alzheimer’s disease at the APOE locus, 
indicating that variants in this gene region are not valid instru-
ments assessing the effect of LDL-cholesterol on Alzheimer’s  
disease112.

Colocalization can be a useful sensitivity analysis when a  
Mendelian randomization analysis is based on a single gene 
region113. However, there are several limitations to such an  
analysis, including identifying the true causal exposure (this is 
particularly relevant when using gene expression as the expo-
sure, as colocalization results often differ depending on the 
choice of tissue) and statistical power. Bayesian approaches for 
colocalization (such as the coloc family of methods) typically 
only conclude that there is colocalization if there are variants  
having strong associations (p < 10-4 or 10-5) with both the  
exposure and outcome. In the language of coloc, if genetic  
variants are strongly associated with the exposure but not the  
outcome, then the method may prioritize hypothesis H

1
  

(existence of a causal variant for trait 1 but not trait 2) rather than 
hypothesis H

3
 (distinct causal variants for traits 1 and 2 – that 

is, the traits fail to colocalize) or hypothesis H
4
 (shared causal  

variants for traits 1 and 2 – that is, the traits colocalize). Hence, 
while in some cases colocalization methods will provide  
helpful evidence supporting or questioning the Mendelian  
randomization assumptions, in other cases they may provide no  
strong evidence for or against colocalization112.

A subgroup analysis comparing Mendelian randomization 
results from subgroups of the population in which the genetic 
variants have different degrees of association with the expo-
sure can serve as a sensitivity analysis to assess the instrumental 
variable assumptions. An example of such a subgroup analysis 
is the comparison of genetic associations with blood pressure 
in men and women in an East Asian population for variants  
implicated in the metabolism of alcohol114,115. As women in East 
Asia tend not to drink alcohol, genetic associations with blood 
pressure are observed in men but not in women. Also, genetic 
associations are stronger in heavier drinkers114. This provides 
confidence that the genetic associations are driven by alcohol  
consumption and not by a pleiotropic mechanism. Such an  
analysis can be performed if there is a subgroup of the popula-
tion that has reduced or increased levels of the exposure116,117.  
However, if the subgroup is defined by a collider (see below),  
then stratification can introduce bias to the analysis118. As sex 
cannot be affected by autosomal genetic variants, sex cannot 
be a collider, and so stratification on sex will not induce  
collider bias119.

A further possible sensitivity analysis is to check the genetic 
associations with other variables associated with the out-
come, and which are thought not to lie on the causal pathway 
through the exposure (i.e. are not mediators). Such variables 
may lie on alternative pleiotropic pathways to the outcome. If 
the genetic variants are not associated with such variables,  
then some reassurance can be drawn that the Mendelian  
randomization assumptions are satisfied. A further possibility 
in this case is to perform a multivariable Mendelian randomiza-
tion, including the putative pleiotropic variables as additional 
exposures in the analysis model120. This analysis will estimate 
the direct effect of the exposure on the outcome keeping these  
variables constant.

There are several other potential sources of bias in a Mendelian 
randomization analysis other than invalid instruments. We con-
sider here collider bias, selection bias, and reverse causation  
as three potential sources of bias, and direct readers to reviews that 
list further potential sources of bias68,121.

A collider is a common effect of two variables – for example, 
the exposure is influenced by the genetic variants and the expo-
sure—outcome confounders, and so is a collider. Any vari-
able causally downstream of the exposure is also affected by 
the genetic variants and confounders, and so is also a collider. 
Even if the genetic variants and confounders are uncorrelated 
(they are marginally independent in the population), they will  
typically be associated when conditioning on the collider (they 
become conditionally dependent)118. Stratifying on or adjust-
ing for a collider therefore leads to an association between 
variables that influence the collider. An association between 
the genetic variants and the exposure—outcome confounders 
would lead to biased causal estimates122. Collider bias is not  
unique to Mendelian randomization, but it is particularly rel-
evant as some published genetic association estimates have 
been adjusted for potential colliders123. For example, genome 
wide association studies of many brain volume measures  
routinely adjust for measures of cranial size or total brain  
volume, but head size may itself be influenced by exposures 
of interest in subsequent Mendelian randomization studies124. 
Methods to account for collider bias have recently been  
proposed125–127.

Selection bias is a specific example of collider bias which 
occurs when selection into a study sample depends on a  
collider. Most epidemiological studies do not recruit all  
individuals from the target population with equal probability, 
and so suffer from selection bias. Even if genetic variants behave  
as if randomly distributed in the population as a whole, they 
may not be randomly distributed in a selected subset of  
the population. A specific example of selection bias is index 
event bias, where entry into the study sample is dependent on 
having a particular index event128. For example, investigations 
into disease survival can only include individuals who have 
had an initial disease event129. Simulation studies have shown 
that selection bias can have a severe impact on Mendelian  
randomization estimates, but only when the selection effects  
are quite strong72,122. Selection bias can potentially be addressed 
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using inverse-probability weighting130, although this requires  
estimation of the probability of selection into the study sample 
for all participants. Specific weights to reduce selection bias have  
been proposed for the UK Biobank study131.

While the genetic code is fixed at conception and so cannot 
be influenced by reverse causation, if the outcome influences 
the risk factor, then variants that primarily affect the outcome 
would (in a large enough sample size) be associated with 
the exposure132. As discussed above and shown in Figure 4f,  
if genetic variants used as instrumental variables for the expo-
sure in fact influence the outcome primarily, then genetic 
associations with the outcome could be present without the  
exposure influencing the outcome. The MR-Steiger method 
has been developed to detect such variants (for a continuous  
exposure and outcome) and remove them from the analysis102.

8. Extensions and additional analyses
We distinguish between sensitivity and supplementary analy-
ses discussed in the previous two sections, which are conducted 
to improve reliability in testing the primary causal hypoth-
esis, and extensions and additional analyses, which address 
related, but distinct causal hypotheses. We only provide brief 
comments and references on these extensions to Mendelian  
randomization, several of which are the subject of ongoing  
methodological investigations.

Non-linear Mendelian randomization aims to characterize the 
shape of the causal relationship between the exposure and  
outcome; that is, does the causal effect of the exposure on the 
outcome vary at different levels of the exposure39? Several  
methods for non-linear instrumental variable analysis have been 
proposed. Two broad categories of non-linear methods operate 
by: i) estimation of a flexible model relating the exposure to the  
outcome133,134, and ii) stratification of the population into strata 
with different average levels of the exposure, and estima-
tion of stratum-specific causal effects135. Results from these 
approaches can be sensitive to the parametric assumptions made 
by the methods – for the first category, which models relating the 
exposure to the outcome are considered136; and for the second  
category, whether the genetic effect on the exposure varies in the  
population137. Indeed, variability in the effect of genetic variants 
on the exposure is evident for several exposures; this variability 
can lead to highly misleading estimates137,138. The doubly-ranked  
stratification method has been proposed that may be less sensi-
tive to variability in these genetic effects139. Assessment of the 
reliability of current non-linear methods is a topic of current  
research.

Factorial Mendelian randomization takes genetic predictors of 
two exposures (or two interventions on the same exposure), 
and assesses whether there is statistical interaction between 
these in their association with the outcome. Under the assump-
tion that the genetic predictors are instrumental variables for 
the exposures, the statistical interaction can be interpreted 
as an interaction between the causal effects of the exposures  
on the outcome on the same scale140. For example, a study 
investigated interactions between genetic variants in the 

HMGCR gene region and the PCSK9 gene region, which 
respectively can be regarded as proxies for statins and PCSK9  
inhibitors141, in their associations with coronary artery  
disease risk. The investigation found no association of the 
outcome with the interaction term between these variants 
in logistic regression, indicating no evidence for deviation 
from additivity in the combined effects of statins and PCSK9  
inhibitors on a logit scale. A weakness of these investiga-
tions is that statistical power to detect an interaction is often 
low, in which case a null finding should not be interpreted as  
strong evidence for lack of interaction.

Time-varying Mendelian randomization aims to assess the 
potentially varying effect of an exposure at different periods 
during the life course142. For example, an investigation consid-
ered genetic predictors of BMI measured during early-life and  
later-life, and used a multivariable Mendelian randomization  
framework to assess the independent effects of early-life and  
later-life BMI on coronary artery disease risk143. Little evidence 
was found for a direct effect of early-life BMI on coronary 
artery disease risk. In contrast, for breast cancer, the effect of 
early-life BMI appeared stronger than the effect of later-life 
BMI. Researchers should be cautious when performing such 
analyses to ensure that the values of the exposure at differ-
ent time periods genuinely represent biologically distinct risk 
factors, and not simply measures taken at different times but  
capturing the same essential risk factor144.

Mediation can be assessed in a Mendelian randomization frame-
work in two ways145. In two-step Mendelian randomization, 
analysts estimate the effect of the exposure on the outcome, 
and compare this to the product of the effect of the exposure 
on the proposed mediator multiplied by the effect of the media-
tor on the outcome146. Each of these steps can be performed 
using standard Mendelian randomization, although separate 
instrumental variables are required for the exposure and media-
tor. These approaches can also be used to explore evidence for 
molecular mediation: the involvement of gene expression, DNA 
methylation or metabolite involvement in a disease pathway147.  
Alternatively, analysts can compare the effect of the  
exposure on the outcome from standard (that is, univariable)  
Mendelian randomization to the effect from multivariable  
Mendelian randomization including the mediator as an addi-
tional exposure variable84. The latter estimate represents the 
direct (that is, unmediated) effect of the exposure on the  
outcome. For example, investigators considered the effect of 
time in education on coronary heart disease in a multivariable 
Mendelian randomization additionally accounting for BMI, 
systolic blood pressure, and smoking behaviour148. They showed 
that a substantial proportion of the effect of education on coro-
nary heart disease risk was mediated via one or other of these  
traits.

In bidirectional Mendelian randomization, investigators per-
form separate Mendelian randomization analyses to assess the 
effect of the exposure on the outcome, and the effect of the out-
come on the exposure149. These analyses require separate instru-
ment variables for the exposure and for the outcome150. For 
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example, investigators considered associations between genetic 
predictors of educational attainment and short-sightedness, 
and between genetic predictors of short-sightedness and  
educational attainment151. They found associations in the former 
case, but not in the latter. This suggests that time spent in educa-
tion affects one’s eyesight, rather than poor eyesight affecting 
an individual’s propensity to spend more time in education. 
Resolving the direction of causation between these two  
factors using Mendelian randomization answered a question first 
posed over 400 years ago152. Although in this example, evidence 
for a causal effect was found in one direction but not the other, 
this is not always the case. For example, there is evidence from 
Mendelian randomization that higher BMI has a causal effect on  
increasing smoking prevalence153, and that cigarette smoking 
causally reduces BMI154. However, in other cases, bidirectional  
Mendelian randomization findings may reflect the presence of 
shared aetiological pathways, rather than true causal effects in  
both directions155.

9. Data presentation
An attractive feature of Mendelian randomization is that the 
analysis can be summarized graphically in a transparent way. 
For example, in a polygenic analysis, a scatter plot of the genetic 
associations with the outcome against the genetic associations 
with the exposure reveals much about the analysis – whether  
different genetic variants provide similar estimates of the causal 
effect or if there is considerable heterogeneity, and whether 
the analysis is dominated by a single genetic variant or not31.  
The scatter plot is appealing as it presents the data with 
no manipulation. Examples of scatter plots illustrating  

heterogeneity and no heterogeneity in the causal estimates from  
different variants are shown in Figure 5. Alternatives are  
forest plots, funnel plots, and radial plots – each of these  
assesses heterogeneity in the variant-specific causal estimates156. 
Plots allow the investigators and readers to assess the reliabil-
ity of the analysis method and its underlying assumptions, and  
we strongly recommend their inclusion in a manuscript.

Other important information to report include the first-stage 
R2 statistic (when the exposure is continuous), which is a meas-
ure of the variance in the exposure explained by the genetic 
variants, and (particularly in a one-sample setting) the related 
F statistic, which is a measure of instrument strength and can 
be used to judge the extent of weak instrument bias157. For  
multivariable Mendelian randomization, the conditional F  
statistic is a more relevant measure of instrument strength, 
and assesses the strength of association of the variants with 
each exposure in turn after accounting for the other exposures  
in the model158.

Investigators can also make some statement about the power of 
their proposed analyses. Power to detect a causal effect depends 
on the proportion of variance in the exposure explained by the 
genetic variants, proposed size of causal effect, sample size 
(for the genetic associations with the outcome), and (with a 
binary outcome) proportion of individuals with an outcome  
event. Power calculators can be found at http://cnsgenomics.
com/shiny/mRnd/ and https://sb452.shinyapps.io/power/. Power 
calculations are often performed post hoc, as sample sizes are  
rarely determined based on a proposed Mendelian randomization 

Figure 5. Scatter plot of genetic associations with the outcome (vertical axis) against genetic associations with the exposure 
(horizontal axis). Examples illustrated are: (left) no heterogeneity in the variant-specific causal estimates (effect of LDL-cholesterol on 
coronary heart disease risk using 8 variants associated with LDL-cholesterol); and (right) heterogeneity in the variant-specific causal  
estimates (effect of C-reactive protein on coronary heart disease risk using 17 genome-wide significant predictors of C-reactive 
protein). As indicated by differences in estimates, not all genetic variants are valid instrumental variables for C-reactive protein, and so a  
causal interpretation is not appropriate. Taken from Burgess et al., 201892.
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analysis. Power calculations are more meaningful when  
performed prior to the analysis, and can guide investigators which 
exposure/outcome pairs to consider, and so focus on analyses  
that have a better chance of giving meaningful results.

10. Interpretation
Finally, we discuss the interpretation of findings from  
Mendelian randomization investigations. In the first instance, 
a Mendelian randomization investigation assesses the asso-
ciation of genetic predictors of an exposure with an outcome, or 
equivalently, the association of genetically-predicted levels of 
an exposure with an outcome. Making causal inferences from 
observational data always relies on untestable assumptions. In  
Mendelian randomization, a key assumption is that observed dif-
ferences in the outcome associated with genetically-predicted 
levels of the exposure would also be seen if the exposure were  
intervened on9,71. This version of the consistency assump-
tion in causal inference159 is referred to as gene—environment  
equivalence160.

In line with the STROBE-MR guidelines1,2, we recommend 
that a cautious interpretation should be taken when describ-
ing the extent to which a causal effect has been demonstrated 
by a Mendelian randomization investigation. The appropriate 
degree of caution will depend on the plausibility of the instru-
mental variable assumptions, the concordance of estimates from  
different methods and different analytical approaches, the 
results from sensitivity and supplementary analyses, and so 
on. Even if a Mendelian randomization finding is replicated 
in a separate dataset, there is still intrinsic uncertainty in the  
instrumental variable assumptions, meaning that uncertainty 
in a causal conclusion remains. Another specific caution is that 
if multiple related traits are similarly associated with the same  
genetic variants (such as different measures of obesity or gene 
expression in different tissues), then Mendelian randomization 
approaches cannot identify the true causal risk factor without  
additional assumptions.

Mendelian randomization estimates relate specifically to changes 
in the exposure induced by the genetic variants used as instru-
mental variables. The genetic code is fixed at conception, and 
so Mendelian randomization investigations typically compare 
groups of the population having different trajectories in their 
distribution of the exposure over time161. Analyses therefore 
typically can be interpreted as assessing the impact of long-
term elevated levels of an exposure162. For example, genetic  
variants in the CRP gene have been shown to be associated with 
CRP levels throughout the life course, with similar relative asso-
ciations in childhood and in middle age163. However, in most 
cases, we have incomplete information about how the genetic 
variant changes the distribution of the exposure across the life 
course. If the genetic associations with the exposure vary over 
time, then Mendelian randomization estimates based on genetic 
associations with the exposure measured at a single timepoint 
can be unreliable33. Similar difficulties of interpretation arise  
if the impact on the outcome relates to levels of the exposure at 
a specific time period in life. A plausible example of this is the 

effect of vitamin D on multiple sclerosis; multiple sclerosis risk  
is hypothesized to be influenced by vitamin D levels during  
childhood, but not vitamin D levels in adulthood164.

That said, results from Mendelian randomization investigations 
have often been shown to qualitatively agree with the results 
from randomized trials, suggesting that a causal interpretation 
for Mendelian randomization findings is often reasonable121. 
Mendelian randomization investigations are worthwhile in pro-
viding an alternative line of aetiological evidence even though 
the instrumental variable assumptions can never be proved  
beyond all doubt96,97. However, quantitative differences between 
estimates from Mendelian randomization and from trials are 
likely, particularly as there are differences between how genetic 
variants influence the exposure and how clinical and phar-
maceutical interventions influence the exposure165 As genetic  
variants typically affect usual levels of exposures on a long-term  
basis, Mendelian randomization estimates are often larger than 
those from conventional observational studies or randomized 
trials for the same magnitude of difference in the exposure33. 
Hence, the causal estimate from a Mendelian randomization 
investigation should not generally be interpreted directly as 
the expected impact of intervening on the exposure in applied  
practice166.

The estimate from a Mendelian randomization investigation 
is therefore better interpreted as a test statistic for a causal 
hypothesis and an indicator of the direction of the effect, rather 
than the estimated impact of a well-defined intervention at a  
specific point in time. But even when a Mendelian randomiza-
tion investigation is performed primarily to assess the causal 
role of an exposure, causal estimates can still be useful, for  
example to assess heterogeneity in estimates from different  
variants as a test of instrument validity, or to compare results 
from different analysis methods as an assessment of robustness. 
A logical consequence of the 2SLS/IVW method providing 
the most efficient causal estimate when combining evidence  
across multiple valid instrumental variables is that, under the 
same assumptions, the method provides the most powerful test  
of the presence of a causal effect.

Summary
Overall, the key elements of a Mendelian randomization inves-
tigation to be reported in any manuscript are: i) motivation for 
why a Mendelian randomization analysis should be performed 
and for the scope of the analysis, ii) a clear description and  
justification of the choice of dataset(s) for the analysis, includ-
ing why a one- or two-sample approach was chosen for the  
primary analysis, iii) a clear description and justification of the  
choice of genetic variants used in the analysis, iv) a discussion, 
whether statistically or biologically led, of whether the genetic 
variants are likely to satisfy the instrumental variable assump-
tions, v) a graphical presentation of the data, such as a scatter 
plot of the genetic associations, and vi) some attempt to test 
the robustness of the main findings, whether by use of robust  
methods (for a polygenic analysis) or another approach – whatever  
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is most appropriate to the analysis under consideration. These  
elements are necessary for the reader to judge the reliability of a 
Mendelian randomization investigation.

Particularly with the advent of summarized data and the  
two-sample setting, performing a Mendelian randomization 
analysis has become more straightforward30. The difficulty is not 
in performing a Mendelian randomization analysis, but rather 
in performing a credible analysis167 and providing a reasoned 
interpretation164. We hope that these guidelines, summarized  
in the accompanying flowcharts (Figure 1 and Figure 2) and 
checklist (Figure 3), will aid practitioners in performing reliable 

analyses, and editors and reviewers in judging the reliability of 
analyses, and that their use will help improve the overall quality  
of Mendelian randomization investigations.

Disclaimer
The views expressed in this article are those of the authors. Publica-
tion in Wellcome Open Research does not imply endorsement by 
Wellcome.

Data availability
No data are associated with this article.
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These guidelines are a welcomed addition to the literature and reflect the experience and 
common practices performed by some thoughtful and influential researchers in the MR 
community. I am especially encouraged to see that this is a living document that the researchers 
expect to update periodically. Generally, the guidelines reflect consensus on analytic practices 
with some appropriate caveats provided for the targeted audience. In this review, I highlight areas 
that are not discussed in great detail that I think warrant attention in the development of further 
guidelines. 
 
1.       Well-defined causal effect estimands and causal null hypotheses: Part 1 carefully 
separates the goal of testing for a non-null effect and estimating a causal effect. Its consideration 
of testing, however, does not make clear what types of null hypotheses can really be assessed (see 
Swanson et al. 2018)1, and the description on effect estimation only suggests qualitatively 
weighing whether the genetic variants act like the intervention of interest. More guidance could 
be provided on question framing, especially by giving more specifics on the types of causal 
questions MR is able to answer. See also Hernán & Robins (2006)2 and Swanson et al. (2017)3. 
 
2.       The importance of time: Related to the framing of the research question is also how time is 
a part of this framing. MR estimates are often described as “lifetime effects” but the standard IV 
methods used in MR are developed for time-fixed exposures. (Note that this type of concern also 
applies to causal null hypothesis testing, as described in Swanson et al. 2018)1. At very least, some 
qualitative guidance on how to interpret results in light of the time-varying nature of exposures 
and outcomes over the life-course is needed. See again Swanson et al. (2017)3and also Labrecque 
& Swanson (2019)4. 
 
3.      Available robust methods, sensitivity analyses, and falsification strategies: These 
guidelines state that Sections 6 and 7 are not exhaustive considerations of these tools, but it 
would be helpful to the MR community if guidance on these points was expanded in future 
versions of these guidelines. It is not very clear why the authors chose to present the tools they 
did have room for, and not others. It also is not very clear why these sections focus so much on 
the risk of bias due to pleiotropy when other types of biases can also threaten MR estimates. 
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expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 20 Apr 2020
Stephen Burgess 

> We thank the reviewers for their comments, which we have numbered for reference. We 
provide point-by-point responses to their suggestions below. < 
 
Reviewer 2 (Sonja Swanson) 
  
B0. These guidelines are a welcomed addition to the literature and reflect the experience 
and common practices performed by some thoughtful and influential researchers in the MR 
community. I am especially encouraged to see that this is a living document that the 
researchers expect to update periodically. Generally, the guidelines reflect consensus on 
analytic practices with some appropriate caveats provided for the targeted audience. In this 
review, I highlight areas that are not discussed in great detail that I think warrant attention 
in the development of further guidelines. 
  
> We thank the reviewer for her comments and positive view of these guidelines. < 
  
B1.       Well-defined causal effect estimands and causal null hypotheses: Part 1 carefully 
separates the goal of testing for a non-null effect and estimating a causal effect. Its 
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consideration of testing, however, does not make clear what types of null hypotheses can 
really be assessed (see Swanson et al. 2018)1, and the description on effect estimation only 
suggests qualitatively weighing whether the genetic variants act like the intervention of 
interest. More guidance could be provided on question framing, especially by giving more 
specifics on the types of causal questions MR is able to answer. See also Hernán & Robins 
(2006)2 and Swanson et al. (2017)3. 
  
> We appreciate this point, which we now introduce at the beginning of the manuscript, 
referencing the Swanson 2018 paper. We have added to the manuscript: “The 
straightforward statement of the causal hypothesis is that interventions in the exposure 
variable will affect the outcome. If the genetic associations with the exposure vary with 
time, then there are some nuances in terms of what causal hypotheses can be tested 
[Swanson et al, 2018]; we discuss the impact of time-varying relationships between 
variables in Section 9.” (Section 1). < 
  
> We also refer to this debate in Section 9 (Interpretation) when we discuss numerical 
estimates from Mendelian randomization and how these relate to clinically-meaningful 
causal parameters. In particular, we have added to the manuscript: “The estimate from a 
Mendelian randomization investigation is therefore better interpreted as a test statistic for 
a causal hypothesis rather than the estimate of a well-defined intervention.” (Section 9). 
  
B2.       The importance of time: Related to the framing of the research question is also how 
time is a part of this framing. MR estimates are often described as “lifetime effects” but the 
standard IV methods used in MR are developed for time-fixed exposures. (Note that this 
type of concern also applies to causal null hypothesis testing, as described in Swanson et al. 
2018)1. At very least, some qualitative guidance on how to interpret results in light of the 
time-varying nature of exposures and outcomes over the life-course is needed. See again 
Swanson et al. (2017)3and also Labrecque & Swanson (2019)4. 
  
> As per the response to point B1, we now reference the discussion about time-varying 
relationships between variables in Section 1 in relation to tests of the causal null hypothesis. 
  
> We have edited the discussion in Section 9 to include issues relating to time-varying 
relationships between variables, referencing the papers cited above: “Mendelian 
randomization estimates relate specifically to changes in the exposure induced by the 
genetic variants used as instrumental variables. Genetic variants are present from before 
birth, and so Mendelian randomization investigations typically compare groups of the 
population having different trajectories in their distribution of the exposure over time. 
Analyses therefore typically can be interpreted as assessing the impact of long-term 
elevated levels of an exposure. However, in most cases, we have incomplete information 
about how the genetic variant changes the distribution of the exposure across the life 
course. If the genetic associations with the exposure vary over time, then Mendelian 
randomization estimates based on genetic associations with the exposure measured at a 
single timepoint can be unreliable. Similar difficulties of interpretation arise if the impact on 
the outcome relates to levels of the exposure at a specific time period in life. A plausible 
example of this is the effect of vitamin D on multiple sclerosis; multiple sclerosis risk is 
hypothesized to be influenced by vitamin D levels during early childhood, but not vitamin D 
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levels in adulthood.” (Section 9). < 
  
B3.      Available robust methods, sensitivity analyses, and falsification strategies: These 
guidelines state that Sections 6 and 7 are not exhaustive considerations of these tools, but it 
would be helpful to the MR community if guidance on these points was expanded in future 
versions of these guidelines. It is not very clear why the authors chose to present the tools 
they did have room for, and not others. It also is not very clear why these sections focus so 
much on the risk of bias due to pleiotropy when other types of biases can also threaten MR 
estimates. 
  
> As we have stated, we will revise these guidelines over time. However, balance is needed 
in this manuscript between comprehensiveness and comprehensibility. It is perhaps better 
for a comprehensive discussion of methods to be provided separately. Also, while we aim to 
update these guidelines regularly, we are unable to update advice with the regularity 
needed to offer up-to-the-minute recommendations on methods as they are developed and 
updated. We therefore focus on methods whose performance is generally understood. We 
have now added reference to a more extensive review of methods: “This table is based on a 
broader review and comparison of methods [Slob, 2020].” (Section 6). 
  
> We have now more clearly stated the motivation behind our choice of presentation: “We 
focus on these methods here as they can be implemented using summarized data alone, 
and they rely on different assumptions to provide consistent causal estimates.” (Section 6). 
  
> In terms of focusing on pleiotropy, we were unclear in the initial submission. As described 
in Kang et al, JASA 2016 “Instrumental variables estimation with some invalid instruments 
and its application to Mendelian randomization”, there is a statistical correspondence 
between pleiotropy and instrument validity, meaning that any instrument invalidity can be 
expressed algebraically in terms of pleiotropy. Hence, while we use the language of 
pleiotropy to provide mathematically precise statements of the assumptions needed for 
consistent estimates, this section does not only cover pleiotropy, but invalid instruments 
more generally. 
  
> We have changed the section headings for Sections 6 and 7 to: “Robust methods for 
sensitivity analysis” and “Other approaches for sensitivity analysis” to make clear that these 
sections are not narrowly focused on pleiotropy, but cover other sources of instrument 
invalidity. We have also added the sentence: “Although robust methods typically use the 
term ‘pleiotropy’, there is a mathematical correspondence between instrument invalidity 
and pleiotropy [Kang et al, 2016], and so these methods can help assess sensitivity of 
findings to instrument invalidity more generally, and not simply invalidity that arises from 
horizontal pleiotropy. We here use the language of pleiotropy to make mathematically 
precise statements about the assumptions needed for methods to provide consistent 
estimates.” (Section 6). 
  
> As per the response to point A1, we have added new paragraphs in Section 7 on 
alternative sources of bias. We hope this addresses the reviewer’s concerns. <  
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Jean Morrison   
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This article is a practical review of Mendelian randomization (MR) and set of guidelines intended 
for practitioners. The writing is clear and well organized and fairly thorough. I think this is an 
invaluable resource to investigators who wish to carry out an MR analysis and provides a good 
survey of relevant literature. My comments are mostly minor, I feel this article is much needed 
contribution to the field. 
 
Major comments

Reverse direction effects: To me it seemed to one major omission was discussion of reverse 
direction effects. These can easily cause false positives for methods like IVW and are 
especially an issue if one is using the "agnostic" variable selection method. I think it could 
be good to add a graph or two graphs to Figure 4 displaying a reverse effect (of outcome on 
exposure) and possibly also a feedback loop. This should be accompanied by a discussion of 
when reverse effects are something the investigator should think about and when they 
aren't. The sensitivity testing section should include a discussion of testing in the opposite 
direction if agnostic variable selection is used and if the pair of traits warrants that 
consideration. It would also be good to include a discussion of how to interpret a positive 
result in both directions. 
 

○

Collider bias when using summary statistics: When discussing individual level data 
approaches the authors give a set of recommended covariates and note that collider bias is 
a concern. A brief explanation of what a collider is and how it causes bias should be 
added. A parallel discussion should be added concerning summary statistic based analyses. 
In particular, it is important that investigators know which covariates were adjusted to 
compute the summary statistics and how to identify a potential collider. 

○

 
Minor comments:

Slightly more attention should be given to analyses described early as "exploratory" in 
which the investigator scans through many potential causal effects and how these should 
be treated differently. Relatedly, more attention could be given to analyses that use 

○
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agnostic variable selection method. These issues are linked because a phenome wide MR 
analysis is likely to use the agnostic approach. In my view, for studies like these, a robust 
method (or multiple robust methods) should always be used, the investigator should 
assume that some variants are pleiotropic. 
 
There is more danger in using a one sample approach with an agnostic variant set due to 
weak instrument bias, which should be mentioned. Methods exist that estimate and correct 
for this bias by using correlation among test statistics for variants that aren't associated 
with either trait. CAUSE (Morrison et al. bioRxiv 2019)1 is one but there must be other 
approaches to this issue as well.  
 

○

Both Egger regression and the modal estimator have much lower power than other 
methods. This is worth mentioning when discussing interpreting results from sensitivity 
analyses. 
 

○

It is worth mentioning in figure 4 that the "related variable" may not always be known.  
 

○

In the paragraph mentioning the "three sample" approach, it would be interesting to 
include any results about how much bias in the causal effect might be created by selection 
bias if one simply selects significant variants from the exposure GWAS.

○
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I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.
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Stephen Burgess 

Jean, 
Thanks for the rapid and thoughtful response. We will wait for other reviewers to comment, 
and then update the article to address your points in due course. 
Best wishes, Stephen  

Competing Interests: No competing interests were disclosed.

Author Response 20 Apr 2020
Stephen Burgess 

> We thank the reviewers for their comments, which we have numbered for reference. We 
provide point-by-point responses to their suggestions below. < 
  
Reviewer 1 (Jean Morrison): 
  
A0. This article is a practical review of Mendelian randomization (MR) and set of guidelines 
intended for practitioners. The writing is clear and well organized and fairly thorough. I 
think this is an invaluable resource to investigators who wish to carry out an MR analysis 
and provides a good survey of relevant literature. My comments are mostly minor, I feel this 
article is much needed contribution to the field. 
  
> We thank the reviewer for her comments and positive view of these guidelines. < 
  
Major comments 
  
A1. Reverse direction effects: To me it seemed to one major omission was discussion of 
reverse direction effects. These can easily cause false positives for methods like IVW and are 
especially an issue if one is using the "agnostic" variable selection method. I think it could 
be good to add a graph or two graphs to Figure 4 displaying a reverse effect (of outcome on 
exposure) and possibly also a feedback loop. This should be accompanied by a discussion of 
when reverse effects are something the investigator should think about and when they 
aren't. The sensitivity testing section should include a discussion of testing in the opposite 
direction if agnostic variable selection is used and if the pair of traits warrants that 
consideration. It would also be good to include a discussion of how to interpret a positive 
result in both directions. 
  
> We have now added new paragraphs to Section 7 covering biases in estimation arising 
due to issues other than invalid instruments. These covers reverse causation (point A1) and 
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collider bias (point A2). 
  
> Relating to reverse causation, we have added to the manuscript: “While the genetic code is 
fixed at conception and so cannot be influenced by reverse causation, if the outcome 
influences the risk factor, this can result in gene—outcome associations becoming distorted 
and lead to misleading inferences. As shown in Figure 4e, if genetic variants that are 
supposed to be instrumental variables for the exposure in fact influence the outcome 
primarily, then genetic associations with the outcome could be present without the 
exposure influencing the outcome. The MR-Steiger method has been developed to detect 
such variants and remove them from the analysis. Bidirectional Mendelian randomization 
analyses have been proposed that use separate sets of instrumental variables for the 
exposure and outcome to assess the direction of causal effect.” (Section 7). 
  
> We have added a reverse causation scenario and a feedback loop scenario to Figure 4 as 
requested: “Another possible scenario that would lead to instrument invalidity is if genetic 
variants influence the outcome primarily rather than the exposure (Figure 4e, see also 
discussion on reverse causation in Section 7).” (Section 3). < 
  
A2. Collider bias when using summary statistics: When discussing individual level data 
approaches the authors give a set of recommended covariates and note that collider bias is 
a concern. A brief explanation of what a collider is and how it causes bias should be added. 
A parallel discussion should be added concerning summary statistic based analyses. In 
particular, it is important that investigators know which covariates were adjusted to 
compute the summary statistics and how to identify a potential collider. 
  
> As per the response to point A1, we have expanded the discussion about collider bias and 
selection bias in new paragraphs in Section 7 on bias due to issues other than invalid 
instruments. 
  
> We have added to the manuscript: “A collider is a common effect of two variables – for 
example, any variable causally downstream of the exposure is influenced by the genetic 
variants and the exposure—outcome confounders, and so is a collider. Even if two variables 
are unrelated (they are marginally independent), they will typically be related when 
conditioning on the collider (conditionally dependent). Stratifying on or adjusting for a 
collider therefore leads to an association between variables that influence the collider. An 
association between the genetic variants and the exposure—outcome confounders would 
lead to biased causal estimates. Collider bias is not unique to Mendelian randomization, but 
it is particularly relevant as some published genetic association estimates have been 
adjusted for potential colliders. Methods to account for collider bias have recently been 
proposed. 
  
“Selection bias is a specific example of collider bias which occurs when selection into a study 
sample depends on a collider. Simulation studies have shown that selection bias can have a 
severe impact on Mendelian randomization estimates, but only when the associations of 
variables with the collider are quite strong. Selection bias can potentially be addressed 
using inverse-probability weighting, although this requires estimation of the probability of 
selection into the study sample for all individuals.” (Section 7). 
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> We also discuss the problem raised by the reviewer about pre-computed summarized 
data: “If published summarized association estimates have already been adjusted for a 
variable causally downstream of the exposure, collider bias (see Section 7) may be 
unavoidable.” (Section 2). < 
  
Minor comments: 
  
A3. Slightly more attention should be given to analyses described early as "exploratory" in 
which the investigator scans through many potential causal effects and how these should 
be treated differently. Relatedly, more attention could be given to analyses that use 
agnostic variable selection method. These issues are linked because a phenome wide MR 
analysis is likely to use the agnostic approach. In my view, for studies like these, a robust 
method (or multiple robust methods) should always be used, the investigator should 
assume that some variants are pleiotropic. 
  
> In reference to phenome scan analyses, we have added: “Such analyses are generally 
regarded as exploratory or “hypothesis-generating”, and results are typically treated as 
provisional until replicated in an independent dataset.” (Section 1). In relation to analyses 
performed using an agnostic set of genetic variants, we have added: “If genetic variants are 
chosen in a way that is completely agnostic to the function of the variants, then researchers 
should be especially careful about the possibility of variants being pleiotropic.” (Section 3). < 
  
A4. There is more danger in using a one sample approach with an agnostic variant set due 
to weak instrument bias, which should be mentioned. Methods exist that estimate and 
correct for this bias by using correlation among test statistics for variants that aren't 
associated with either trait. CAUSE (Morrison et al. bioRxiv 2019)1 is one but there must be 
other approaches to this issue as well. 
  
> We have added discussion on winner’s curse and weak instrument bias when genetic 
variants are selected in the dataset under analysis (see point A7). 
  
> We have added reference to the CAUSE method and another similar paper: “A further 
class of robust methods uses latent modelling to distinguish to what extent genetic 
associations with the outcome arise due to a causal effect of the exposure, as opposed to 
via direct (pleiotropic) or confounder-driven effects of particular variants. A causal model is 
evidenced if the predominance of variants that associate with the exposure also associate 
with the outcome in a proportional way. If the genetic associations with the outcome do not 
follow this pattern, then a non-causal explanation would be preferred. Emerging methods 
that take this approach include the Causal Analyses Using Summary Effect Estimates 
(CAUSE) [Morrison et al] and Latent Heritable Confounder MR (LHC-MR) [Darrous et al] 
methods.” (Section 6). 
  
> We have also added reference to recently developed methods that are based on 
multivariable Mendelian randomization: “Methods have been proposed based on a 
multivariable approach in the context of gene expression data, including the MR-link [van 
der Graaf et al] and transcriptome-wide summary statistics-based Mendelian 
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Randomization (TWMR) [Porcu et al] methods.” (Section 7). < 
  
A5. Both Egger regression and the modal estimator have much lower power than other 
methods. This is worth mentioning when discussing interpreting results from sensitivity 
analyses. 
  
> We have now mentioned this with respect to the MR-Egger method: “Estimates from the 
MR-Egger method are particularly affected by outlying and influential datapoints, and are 
prone to be imprecise, particularly when the variant—exposure associations are all similar 
in magnitude. This can lead to the method having low power to detect a causal effect.” 
(Section 6), and also with respect to the mode-based method: “The mode-based method has 
been shown to have low precision in some simulated and real datasets.” (Section 6). < 
  
A6. It is worth mentioning in figure 4 that the "related variable" may not always be known. 
  
> We now mention this in the figure caption: “We note that the related variable may be 
known or unknown.”. < 
  
A7. In the paragraph mentioning the "three sample" approach, it would be interesting to 
include any results about how much bias in the causal effect might be created by selection 
bias if one simply selects significant variants from the exposure GWAS. 
  
> Bias due to selecting variants based on their statistical significance in the dataset under 
analysis comes under the broader category of winner’s curse. Selecting variants based on 
their association with the exposure in the dataset under analysis can lead to exacerbation of 
weak instrument bias. We have expanded the discussion on winner’s curse in Section 3: 
“Often, selection is based on the dataset in which genetic associations with the exposure are 
estimated. However, this leads to “winner’s curse” –genetic associations tend to be 
overestimated in the dataset in which they were first discovered. If genetic variants are 
selected based on their associations with the exposure in the dataset under analysis, weak 
instrument bias is exacerbated (in the direction of the observational association in a one-
sample setting, and in the direction of the null in a two-sample setting).” (Section 3). <  
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This comment is about the definition of one-sample vs two-sample Mendelian randomization 
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analysis on page 6. My understanding is an analysis using allele score in which genetic variants, 
exposure, and outcome are measured in the same individuals, and the allele score uses effect 
estimates of genetic variants and the exposure from another dataset as weights can be considered 
as one-sample Mendelian randomization analysis. However, another researcher thinks that this 
analysis using allele score should be considered as two-sample Mendelian randomization analysis 
because the weights represent variant-exposure associations in one dataset and the variant-
outcome associations are obtained from another dataset. It would wonderful if the next version of 
the guidelines would clarify this point. Thank you.
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