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Abstract

This paper aims to understand the binding strategies of a nanobody-protein pair by

studying known complexes. Rigid body protein–ligand docking programs produce

several complexes, called decoys, which are good candidates with high scores of

shape complementarity, electrostatic interactions, desolvation, buried surface area,

and Lennard–Jones potentials. However, the decoy that corresponds to the native

structure is not known. We studied 36 nanobody-protein complexes from the single

domain antibody database, sd-Ab DB, http://www.sdab-db.ca/. For each structure, a

large number of decoys are generated using the Fast Fourier Transform algorithm of

the software ZDOCK. The decoys were ranked according to their target protein-

nanobody interaction energies, calculated by using the Dreiding Force Field, with

rank 1 having the lowest interaction energy. Out of 36 protein data bank (PDB) struc-

tures, 25 true structures were predicted as rank 1. Eleven of the remaining structures

required Ångstrom size rigid body translations of the nanobody relative to the pro-

tein to match the given PDB structure. After the translation, the Dreiding interaction

(DI) energies of all complexes decreased and became rank 1. In one case, rigid body

rotations as well as translations of the nanobody were required for matching the

crystal structure. We used a Monte Carlo algorithm that randomly translates and

rotates the nanobody of a decoy and calculates the DI energy. Results show that rigid

body translations and the DI energy are sufficient for determining the correct binding

location and pose of ZDOCK created decoys. A survey of the sd-Ab DB showed that

each nanobody makes at least one salt bridge with its partner protein, indicating that

salt bridge formation is an essential strategy in nanobody-protein recognition. Based

on the analysis of the 36 crystal structures and evidence from existing literature, we

propose a set of principles that could be used in the design of nanobodies.
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1 | INTRODUCTION

Nanobodies form a class of proteins produced by the immune system

of camelids and sharks and are the antigen-binding domains of heavy

chain-only antibodies also denoted as VHH antibodies. These are

small proteins, 12–15 kDa, that have three loops which are the three

complementarity determining regions, CDR's, that play a significant

role in the binding of the nanobody with its target proteins.1 Although

nanobodies have evolved to eliminate harmful molecules in the sys-

tems of their parenting species, they can be used in applications of

protein crystallization, targeting ligands, biosensing, and diagnostics.2,3

Progress in the use of nanobodies in areas concerning human health is

impressive.4–10 Nanobody technology is rapidly becoming a corner-

stone of immunoinformatic as evidenced by the recent integrated

database INDI.5 Computationally, the three basic challenges of nano-

body design are to (1) choose the best binding nanobody from a given

library that will bind to a given protein, (2) perform mutations in the

CDR regions of a given nanobody to change its binding capacity to a

protein, (3) find the binding location and strength of a given nanobody

to a given protein. Computationally, these challenges are most com-

monly investigated by algorithms, the majority of which are based on

the assumption of rigid body docking. The advances in rigid body

docking algorithms are remarkable.11–23 For a given protein and nano-

body, the fast fourier transform algorithm (FFT) generates large num-

bers of their bound forms, called decoys, which are good binders

obtained by scoring functions based on shape complementarity, elec-

trostatic interactions, desolvation, buried surface area, Lennard–Jones

potentials, and so forth. The search algorithm common to all these

studies searches exhaustively the entire rotational and translational

space of the ligand with the receptor being fixed. In rotational search,

the three Euler angles for the ligand are changed by small increments,

ca 5–15�, and for every rotation, the translational space defined by a

set of grids on the surface of the protein, with grid spacing ca 0.5–

1.2 Å, is explored using FFT. As a result of this technique, a large num-

ber of candidate complexes, decoys, are generated, where the nano-

body is bound to different suitable locations on the protein and

ranked according to the interaction energy criterion mentioned. The

main question to be answered is “which one of these decoys is the

true solution?,” that is, which one matches the crystal structure? In

the present study, by examining 36 known nanobody-protein crystal

structures, we see that the dominant metric that serves as best distin-

guishing feature is the interaction energy calculated by the Dreiding

force field24 which emerges as an excellent criterion for identifying

the decoy that is closest to the known crystal structure. We generate

the decoys by the algorithm of ZDOCK.11 These structures are

already good candidates that passed the ZDOCK criteria of docking.

We then calculate their interaction energies using the Dreiding poten-

tial and rank these candidates with respect to their Dreiding interac-

tion (DI) energies, the decoy with the lowest interaction energy being

of rank 1. Then, we find the rank of the decoy whose structure is clos-

est to that of the known structure. The known crystal structures are

taken from the data bank single domain antibody database25 (sd-Ab

DB), http://www.sdab-db.ca/. As will be shown in detail as follows,

the prediction of the correct nanobody-protein complex using the DI

energy as the force field is extremely accurate and reliable. In several

cases, the method predicts the lowest DI energy decoy, that is, rank

1 structure, as the known crystal structure. In some other cases, the

decoy that matches the crystal structure is not of rank 1, but small,

sub-Ångstrom, rigid body displacements superpose them on the crys-

tal structure. The decoy becomes rank 1 after these rigid body transla-

tions. Only for one case, both rigid body translation and rotation are

required for the lowest root mean square deviation (RMSD) yielding

decoy to become of rank 1. For this purpose, we developed a Monte

Carlo script for randomly translating and rotating a decoy until its DI

energy reaches a minimum.

The aim of this paper is to learn the binding strategies of

nanobody-protein complex formation, with the hope of using them for

predicting unknown nanobody-protein systems in the future. There

are already several studies that aim at uncovering the rules of recogni-

tion. Notably, Gray et al.26 introduced the concept of binding funnel

formation which is essentially an energy funnel into which the ligand is

trapped prior to finding its exact location on the protein. The concept

has its roots in Hill's theory27 of cooperativity in biochemistry where

the ligand anchors itself on the surface of the protein and exhibits fluc-

tuations in the three Euler angles formed between the ligand and the

protein. While the Hill model was for rigid bodies, Gray et al.26 added

side-chain flexibility to small translations and rotations of the ligand as

was also done by Fernández-Recio et al. and28 Palma et al.29 Flexibility

was also introduced by relaxing interaction potentials by Chen and

Weng.30 Our study shows that once the proper decoy is obtained,

small rigid body translations and rotations that lower the interaction

energy are sufficient to make it the top-ranking decoy. The implication

of this observation is that perfect jigsaw-like matching is the dominant

potential for defining the best binding pose. The concept of jigsaw

matching has indeed been employed in earlier studies of recognition

both at the intramolecular and intermolecular level.31–34 A survey of

the sd-Ab DB showed that, with the exception of one or two cases,

each nanobody makes at least one salt bridge with its partner protein.

Thus, the binding strategy that emerges from our study has two simple

ingredients: First, the nanobody anchors itself on the protein at a loca-

tion that leads to a salt bridge. Then the ligand performs small rigid

body translations and rotations about this anchor point until the bind-

ing energy is minimized. The rapid formation of a salt bridge between

the ligand and the protein as a determinant of recognition has already

been acknowledged.35,36 The role of flexibility as a nanobody-protein

recognition strategy has yet to be seen.

2 | METHODS

We used the sd-Ab DB,25 http://www.sdab-db.ca/, for obtaining the

nanobody-protein crystal structures. Currently, there are 195 protein

data bank (PDB) entries in sd-AB database. However, some of these

are for single nanobody structures, some are for the same protein

with small differences of the nanobodies, and some have missing

parts. We eliminated those and chose 36 complexes as our data set.

In the first stage of calculations, we used the FFT algorithm of the

software ZDOCK,11 version 2.3.2 to generate the decoys. Each decoy
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had a different docking pose. Generally, a set of 100 decoys were suf-

ficient to include the structure closest to the known crystal structure.

In only two cases, 4CDG and 4AQ1, more than 100 decoys were nec-

essary as we report as follows. Among the various docking programs,

we specifically chose ZDOCK because we found it extremely fast,

accurate, and user-friendly. The method of generating these poses is

described in detail in the original paper by Chen and Weng.30 The

algorithm rotates the ligand around the centrally fixed protein by 15�,

around each coordinate axis. Following each rotation, it translates the

ligand, using the FFT algorithm, along grids with resolution of 1.2 Å

constructed on the surface of the protein. We then calculated the DI

energy24 for every decoy, using the software Biovia Discovery Studio

program,37 which is obtained as the difference between the energy of

the complex and the individual energies of unbound protein and

nanobody.

DI energy¼ Dreiding energy of the complex

� Dreiding energy of the target proteinð
þDreiding energy of the nanobodyÞ:

ð1Þ

All reported DI energies are in kJ/mol. The protein and the

nanobody are taken as in their crystal PDB structures in the

absence of water and hydrogens are removed. The DI energy for

each decoy calculated in this manner made it possible for us to rank

the output structures. The lowest energy decoy is rank 1, the sec-

ond lowest is rank 2, and so forth. We then superposed each decoy

on the known crystal structure and calculated the RMSD between

the two and chose the lowest RMSD as the best matching complex.

RMSD's are calculated using VMD's measure RMSD function.38 The

ranks and RMSD's of the best matching complexes are reported in

Table 1. We also developed a script that translates and rotates a

nanobody around a proposed binding pose and calculates the

Dreiding energy. The input data for this script are the PDB struc-

tures of the nanobody and the protein, the magnitude of the trans-

lation of the nanobody, the location of the nanobody atom around

which the nanobody will rotate and the amplitudes of translation,

and the three Euler angles. For the Monte Carlo scheme, the ampli-

tudes are then multiplied by a uniform random number, r, in the

interval, �1≤ r ≤1, and the nanobody is translated and rotated by the

random amount at each step. As will be discussed in detail in Section 4,

once the best fitting complex is found, translating and rotating the

nanobody rapidly leads to the conformation of the known crystal

structure with the lowest energy. Thus, the translation–rotation pro-

cess may be applied to several candidate decoys to obtain their true

lowest energies.

In addition to energy, RMSD calculations and ranking, we used

this dataset to identify the salt bridges in the crystal structures using

the electrostatic nonbonded interactions module of Discovery Studio.

Identifying the salt bridge which will form between the nanobody and

the protein is crucial for simplifying the problem since it reduces the

12-dimensional phase space available to the complex to three dimen-

sions defined by the three Euler angles.

3 | RESULTS

3.1 | Energy rank of the nearest-native structure

The list of structures, the energy rank of the best matching complex

and RMSD between the decoy and the corresponding crystal struc-

ture are given in columns 2–4 of Table 1. A rank of 1 in column 3 indi-

cates that the best matching complex to the crystal structure, that is,

the lowest RMSD, has the lowest DI energy among all the decoys

generated. Column 3 in Table 1 shows that 25 structures have rank

1, indicating that the decoy closest to the crystal structure already has

the lowest DI energy. The closeness to the crystal structure is given

by the RMSD values in column 4. Entries from 26 to 35 in Table 1

show predictions which do not have rank 1, that is, the DI energy is

not the lowest for these predictions. However, the three-dimensional

structures of these structures are close to those of the corresponding

crystal structures and may be made to coincide by pure rigid body

translation less than an Ångstrom (see later). In the fifth column of

Table 1, we compared the ranks obtained using the scoring function

2.3.2 of the ZDOCK server, which is based on surface complementar-

ity, electrostatic interactions, desolvation, buried surface area, and

various intermolecular potentials as mentioned in Section 1. The

ZDOCK 3.0.2 returns the decoys in a sorted order from highest score

being the decoy having the lowest energy to the lowest score decoys

having higher energies. A value of 10> in column 5 indicates that the

best matching complex is not among the 10 highest score decoys

given by the ZDOCK 2.3.2 scoring system. Column 5 shows that

24 of the 36 complexes are not in the set of first 10 decoys according

to the ZDOCK 2.3.2 scoring system. Entry 36 in Table 1 required both

translation and rotation for a perfect fit with crystal structure.

The Dreiding energy obtained from the crystal structure is given

in column 6. Column 7 shows the Dreiding energy for the best match-

ing complex after rigid body translation Monte Carlo cycles. Column

8 shows the available KD values. The superscript following each entry

in column 8 indicates the reference from which the data is taken. Col-

umns 6 and 7 may be used in determining good binders of unknown

complexes as will be discussed in more detail in Section 4.

We now give a few representative results from the analysis of

the set of 36 known cases:

1. The case of 3EBA: As an example of energy ranking, we present the

energy rank plot of 100 decoys of 3EBA in Figure 1. Ordinate

values represent the DI energies obtained; data points are for

100 decoys where the filled circle shows the energy of the com-

plex that best fits the crystal structure of 3EBA. The empty circles

represent results for the remaining decoys.

We see that the best matching complex has the lowest DI energy,

meaning its rank is 1. The intermolecular hydrogen bond strength cal-

culated by using Discovery Studio for the decoy with rank 1 is the

strongest among all other decoys. However, this is not a general trait,

and we cannot conclude that all rank 1 structures have the strongest

hydrogen bonding.
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2. The case of 3CFI: As another example, we present the energy rank

plot of 3CFI decoys in Figure 2. Column 3 for 3CFI entry in

Table 1, 3/1*, indicates that the prediction closest to crystal

structure had energy rank 3 but small rigid body translations

resulted in almost perfect superposition with crystal structure and

improved the DI energy to rank 1. The entry 2.03/0.46 in column

TABLE 1 DI energy, RMSD and experimental Kd values of 36 selected protein-nanobody complexes.

PDB id
DI energy rank of best
matching complex RMSD (Å)

Rank

according to
ZDOCK

DI energy of the

crystal structure
(kJ/mol)

DI energy of the best

matching complexa

(kJ/mol)
Experimental
Kds (nM)

1 3EBA 1 0.84/0.16 >10 �117 �107 2.3639

2 3K1K 1 3.12/0.38 >10 �146 �133 0.59 ± 0.1140

3 3 K74 1 0.79/0.27 >10 �107 �105 34 ± 1741

4 3P0G 1 0.33/0.05 >10 �92 �92 0.5642

5 4DK3 1 1.07/0.21 1 �64 �62 NA

6 4GFT 1 1.17/0.39 >10 �116 �101 NA

7 4I0C 1 0.55/0.17 >10 �56 �49 46043

8 4KML 1 0.81/0.103 >10 �67 �67 9.444

9 4KRL 1 1.32/0.09 1 �111 �111 219 ± 2045

10 4W6X 1 0.95/0.10 >10 �76 �50 5.25 ± 3.0846

11 5BOP 1 1.03/0.04 1 �120 �120 NA

12 5C2U 1 0.66/0.02 1 �110 �174 NA

13 5F1K 1 0.85/0.09 1 �81 �117 NA

14 5IMM 1 1.00/0.07 >10 �145 �143 3.547

15 5O02 1 0.38/038 >10 �123 �93 NA

16 6B20 1 0.37/0.11 1 �138 �136 5348

17 6EQI 1 0.65/0.11 >10 �167 �201 NA

18 6FV0 1 0.59/0.20 >10 �64 �62 172049

19 4Z9K 1 2.85/0.84 1 �130 �74 2.250

20 5F21 1 0.41/0.03 1 0135 �135 NA

21 5GXB 1 0.16/0.23 >10 +38 �51 1500051

22 5IMK 1 0.78/0.05 >10 �126 �121 85047

23 5IMO 1 0.58/0.06 >10 �198 �165 3.547

24 4EIG 1 1.10/0.13 3 �115 �114 152

25 5G5R 1 0.77/0.19 >10 �94 �94 NA

26 4C57 2/1b 0.74/0.1 10 �124 �124 59.953

27 3CFI 3/1b 2.03/0.11 >10 �97 �97 NA

28 4Y8D 3/1b 0.75/0.18 >10 �93 �96 NA

29 4CDG 6/1b 0.72/0.06 >10 �76 �76 NA

30 4C58 13/1b 0.53/0.06 >10 �83 �83 10.353

31 5BOZ 8/1b 0.67/0.22 1 �103 �146 0.754

32 4I1N 8/1b 1.03/0.17 >10 �72 �74 NA

33 5HVF 13/1b 0.37/0.04 4 �137 �140 0.0355

34 5F7K 20/1b 0.79/0.09 >10 �100 �98 NA

35 4W6Y 7/1b 1.06/0.43 1 �153 �120 1.5846

36 4AQ1 37c 7.13/1.64 >10 �25 �49 NA

Note: Cases 29 and 36, 4CDG and 4AQ1, required generating more than 100 decoys. The decoy numbers used for translation–rotation cycles are 612 and

239, respectively.

Abbreviations: DI, Dreiding interaction; NA, Not available; PDB, protein data bank; RMSD, root mean square deviation.
aRigid body translation Monte Carlo cycles were applied to the best matching complexes before calculating the DI energies. Translation and rotation

Monte Carlo cycles were applied only for sample 36.
bA rigid body translation in which the centroid of ligand moves in a sphere of radius less than 1 Å matches the structure with the known crystal structure.
cBoth rotation and translation are required to match the predicted structure with the known crystal structure.
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4 of Table 1 for 3CFI indicates that the RMSD of rank 3 decoy, the

filled circle, was 2.03 Å and dropped to 0.46 Å after a rigid body

translation and the value of its DI energy decreased to �99 kJ/mol

upon the rigid body translation. Rigid body translation was applied

to several decoys of low energy of Figure 2, but none went below

�99 kJ/mol. The next lowest binding energy was �42 kJ/mol.

Thus, rigid body translation decreases the energy, but none goes

below that of the best matching structure. It should be added that

this energy, although negative, does not represent the true energy

because the contribution of water and hydrogens are missing.

The 10 decoys indicated by a variable “b” in column 3 of Table 1,

have relatively low RMSD's as shown by the values to the left of the

slashes in column 4 and can be aligned by small rigid body translation

of the centroid within a sphere of radius 1 Å. As a result of this opera-

tion, the DI energy then becomes rank 1 for each, with RMSD's

shown on the right side of the slashes. The need to translate is

because of the size of the grid resolution in generating the decoys,

which is 1.2 Å in the software we used. The translation operation that

is needed to overcome the grid resolution effect is simple and

straightforward and may be programmed such that the DI energy is

recorded for each small step translation and the structure showing the

lowest DI energy is accepted. This is the procedure we followed for

the entries between 26 and 35 in Table 1. The conformation of the

decoy of rank 3 is presented in Figure 3 where the nanobody of the

decoy is highlighted in yellow. Translating the nanobody by 1.42 Å as

a rigid body result in overlap with crystal structure. A more detailed

explanation of the translation operation is explained in Section 4.

3. The case of 4AQ1: The minimum RMSD decoy for 4AQ1 is shown in

the left panel of Figure 4 where the nanobody is colored in blue.

Due to the size and complexity of the protein, 100 decoys were not

sufficient to make the prediction and a set of 300 decoys were used.

The decoy that is closest to the crystal structure is the decoy

239 out of 300, with a RMSD of 7.13 Å. When the 300 decoys are

ordered with respect to their Dreiding energies, this decoy is of rank

37 and cannot be superposed on the crystal structure by pure trans-

lation only, and rotation is also required. There is a salt bridge

between GLU560 and ARG45 in decoy 239 where the distance

between alpha carbons is 5.38 Å. In the crystal structure, there is a

salt bridge between LYS565 of the protein and GLU44 of the nano-

body where the distance between the alpha carbons is 9.73 Å. The

two neighboring pairs LYS565-GLU44 and GLU560-ARG45 may be

seen as nuclei of binding according to which a salt bridge between

the nanobody and the protein is established first and the nanobody

rotates and translates about the salt bridge until its energy is low-

ered. We first used Monte Carlo translation–rotation cycles on

decoy 239 around GLU560 and ARG45. The structure shown on

the right panel in Figure 4 is the structure obtained by rigid body

translation and rotation about the nitrogen of ARG45 until its DI

energy does not decrease further. This operation requires about

1000 Monte Carlo steps of translation and 1000 steps of rotation.

The DI energy at the end of these steps is �49 kJ/mol.

F IGURE 1 DI energy of 100 decoys from ZDOCK for the protein-
nanobody complex, 3EBA, is plotted as a function of the rank, where
the filled circle shows the DI energy of the best matching complex,
meaning the decoy having the lowest RMSD from the crystal
structure. DI, Dreiding interaction; RMSD, root mean square
deviation.

F IGURE 2 DI energy of 100 decoys from ZDOCK for the protein-
nanobody complex, 3CFI, is plotted as a function of the rank, where
the filled circle shows the DI energy of the best matching complex,
meaning the decoy having the lowest RMSD from the crystal
structure. DI, Dreiding interaction; RMSD, root mean square
deviation.

F IGURE 3 Rank 3 decoy for 3CFI superposed on its crystal
structure. Nanobody of the decoy is in green. Crystal structure
nanobody is in blue and the target protein is in orange.

HACISULEYMAN and ERMAN 1421
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Second, we manually translated the decoy 239 such that GLU44

is in the vicinity of LYS565 of the protein. This translation can be done

easily using Discovery Studio such that the side chain oxygen atom of

GLU44 is approximately at a distance of 3 Å from the side chain nitro-

gen atom of LYS565. We then applied translation–rotation cycles,

2000 Monte Carlo steps each, until a minimum binding energy of

�52 kJ/mol was obtained. However, this minimum energy structure

deviated from the crystal structure by a RMSD of 1.64 Å shown in

Figure 5. The DI energy of the nanobody in the crystal structure is

�24 kJ/mol which is higher than the Monte Carlo translated rotated

structure. This may not reflect the real picture and (1) the presence of

water and/or (2) deformation of side chains may make the crystal

structure more favorable. These two factors have not been thor-

oughly investigated in the literature. Yet, the conformational devia-

tions due to these two effects are small as verified by Figure 5.

3.2 | Optimizing the DI energy with respect to
translations and rotations using Delaunay triangulation

The Monte Carlo search algorithm used in obtaining Figure 5 is quite

expensive time-wise due to the ruggedness of the energy surface.

Alternatively, using gradient based minimization can be a difficult task

also, as the presence of multiple local minima and high-energy barriers

may force the technique to become trapped in a local minima. This

can prevent the algorithm from reaching the global minima and can

result in an inaccurate or incomplete energy surface representation.

Also, the gradient descent algorithm relies on the slope of the energy

surface to update the position of the search, and the gradients can

become small or nonexistent in regions of the energy surface that are

nearly flat or have many local minima. In this section, we adopt a sim-

plified visual technique for rapidly identifying the true pose of the

decoy 239 shown in Figure 5. The first simplification that we adopt is

to apply translations and rotations independently, first translations

followed by rotations. If a residue of the nanobody makes a salt bridge

with a residue of the protein, we can manually perform translations

such that the positively charged nitrogen atom of a basic amino acid

residue (such as lysine or arginine, for example) in the protein and the

negatively charged oxygen atom of an acidic group (such as carboxyl-

ate) in the ligand are separated by a distance of approximately 3–4 Å,

and form an electrostatic interaction that stabilizes the protein-

nanobody complex. Finding the three Euler angles that lead to the

true pose is more challenging. To confine the search to a small number

of energy calculations, we use Delaunay triangulation which is a

method that can be used to visualize the energy landscape of a sys-

tem with a rugged energy surface and identify local energy minima. It

is a computational geometry technique that constructs a triangulation

of a set of points such that no point is inside the circumcircle of any

triangle in the triangulation. This triangulation can be used to con-

struct contours of constant energy and locate local energy minima.

The step-by-step procedure for using Delaunay triangulation to

find energy minima is as follows:

1. Generate a set of candidate random configurations for the system

defined by the values of the three Euler coordinates.

F IGURE 4 (A) Decoy 239 for 4AQI is
superposed on 4AQI crystal structure,
nanobody of the decoy is highlighted in
green and the nanobody from the crystal
structure is colored in blue. (B) Decoy
239 is superposed on the crystal structure
after performing 1000 Monte Carlo steps
of translation and 1000 Monte Carlo
steps for rotation about the nitrogen atom

of ARG45 of the nanobody, where the
nanobody is highlighted in green. (See
legend to Figure 3 for color scheme).

F IGURE 5 The nanobody of the decoy 239 is superposed on the
nanobody crystal structure of 4AQI, after performing a second Monte
Carlo translation–rotation cycle of 2000 steps each about the oxygen
atom of GLU44 of the nanobody, where the decoy nanobody is
colored in green and the nanobody from the crystal structure is
colored in blue.
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2. Compute the DI energy of each configuration.

3. Construct the Delaunay triangulation of the configuration space

using the set of candidate configurations as input. The vertices of

the triangles correspond to the candidate configurations, and the

edges represent connections between the configurations.

4. Assign the energy value of each configuration to the correspond-

ing vertex in the triangulation.

5. Construct a contour plot of the energy landscape using the trian-

gulation. This involves identifying the triangles in the triangulation

that intersect with a given energy level and plotting the corre-

sponding vertices as a contour line.

6. Locate the local energy minima by identifying the vertices of the

triangulation that have the lowest energy values. These corre-

spond to the energy minima of the system.

We use the Contour Plot module of the software OriginPro,56

which draws contours of DI values for each given pair of Euler angles

theta–phi, theta–psi, and phi–psi. The contour lines identify, approxi-

mately, the locations of the minima in the corresponding diagrams.

We applied this method to obtain the minimum energy configura-

tions of decoy 239 of 4AQI where LYS565 of the protein and GLU44

of the nanobody are known to make a salt bridge. In the first step, we

manually translated the nanobody such that the nitrogen of LYS565

and the oxygen of GLU44 are separated by 3.5 Å. We then generated

432 conformations of the nanobody around the nitrogen of LYS565

by randomly changing the three Euler angles theta, phi, and psi and

calculated the corresponding DI energies. The contour lines of

Delaunay triangulation are presented in three panels in Figure 6. The

triangulation was applied separately for each pair of the Euler angles.

The top panel in Figure 6 is for the theta–phi pair. The lower left and

right panels are for the theta–psi and phi–psi pairs, respectively. The

black regions are the regions of minima. The three white circles

denote the values of the Euler angle pairs for the minimum. These are:

theta = 1.23 radians, phi = 1.22 radians, and psi = �0.60 radians.

These three Euler angles give the true pose of the nanobody shown in

Figure 5. We note that there are several minima in Figure 6.

The challenges identified in the Monte Carlo and energy gradient

methods also apply to the Delaunay triangulation method. Figure 6

shows that several sets of triple Euler angles, similar to the three

white circles, can be identified in the relatively large minima regions.

To determine which of these sets has the lowest binding energy, it is

necessary to construct the three-dimensional structure of each

nanobody-protein complex using the given three Euler angles and

then evaluate the DI values for these configurations.

4 | DISCUSSION

The study of 36 nanobody-protein complexes from the PDB showed

that the Dreiding force field is a good metric in the prediction of the

crystal structure from among a large number of decoys. For each com-

plex, 100, (300 for one case), decoys were generated by ZDOCK which

have favorable shape complementarity, electrostatic interactions, deso-

lvation, and buried surface area scores according to the ZDOCK scoring

F IGURE 6 The contour of Dreiding
interaction (DI) energy values for each
given pair of Euler angles theta–phi (upper
left panel), theta–psi (lower left panel),
and phi–psi (lower right panel), which
were generated by random set of
translation and rotations applied on 4AQI
around the salt bridge forming residues
LYS565 of the protein and GLU44 of the
nanobody. The three white circles show
theta–phi–psi pairs which show a
minimum DI energy. These minima angles
are theta = 1.23 radians, phi = 1.22
radians, and psi = �0.60 radians,
respectively. Color scale common to all

three panels is also shown.
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system. Out of 36 PDB structures, 25 of them were predicted as rank

1 when ranked according to the Dreiding energy. Eleven of the remain-

ing structures required Ångstrom size rigid body displacements of the

nanobody relative to the protein to match the given PDB structure.

After the translation the complexes all became rank 1. In one case, nei-

ther rigid body rotations nor translations of the nanobody resulted in

matching with the crystal structure. This was partly due to the presence

of two minima of approximately the same energies. We used a Monte

Carlo algorithm that randomly translates and rotates the nanobody of a

decoy and calculates the Dreiding energy and the unbiased Monte

Carlo simulation did not prefer the crystal structure. This script was

applied to the cases that were not rank 1 and sub-Ångstrom size rigid

body translation was sufficient for matching.

The observation that all nanobody-protein complexes exhibit at

least one salt bridge suggests that salt bridges play essential role on

the binding process. Statistical mechanical arguments given earlier27

have suggested that binding is initiated by anchoring of the ligand at a

suitable site on the protein followed by rotational rearrangements of

the ligand around the fixed anchor point. The identification of the salt

bridging residue pairs by the ligand constitutes the onset of the binding

funnel26 in which the nanobody exhibits small translational and rota-

tional rearrangements until it locks into the protein. This idea forms

the basis of the Monte Carlo script that we used in the present study.

Among the 98 nanobody-protein complexes whose crystal structures

are listed in sd-Ab DB and listed in the Table S1, all but five complexes

exhibit at least one salt bridge. The reason why five complexes do not

have salt bridges is because there are no charged residues in the three

CDR loops of the nanobodies. Most of the bonding in these five

exceptional cases is through polar residues. The distribution of salt

bridge pairs with respect to residue type is presented in Table 2.

The Cα–Cα distances of salt bridge forming residues lie in the range

8–12 Å. More importantly, the distance between the donor and accep-

tor atoms on the side chains is approximately 3 Å. The ZDOCK decoys

all exhibit salt bridges, which point to the anchor point around which

the nanobody will fluctuate. Fixing the anchor point of the ligand

reduces the phase space significantly. Thus, selecting the salt bridge at

the beginning of the docking and using Monte Carlo translations and

rotations may be a useful simplifying strategy. The total number, NSB , of

possible salt bridges between a protein and a nanobody is

NSB ¼ LRþLKð Þ PDþPEð Þþ LDþLEð Þ PRþPKð Þ, ð2Þ

where, L and R denote the ligand and the protein and the subscripts R,

K, D, and E denote Arg, Lys, Asp, and Glu, respectively, on the right

hand side of Equation (1). Of course, the ZDOCK decoy predictions

followed by DI energy calculations eliminate most of the NSB

structures and the prediction algorithm may reduce to only few Monte

Carlo simulations around each of the designated candidate decoy.

The DI energies of the complexes with available experimental KD

values, column 7 of Table 1, are plotted as a function of available KD's,

column 8. The solid line in Figure 7 is the linear fit through the points

given by the equation

ΔED ¼ �129:3�11:1ð ÞLnkDþ8:8, ð3Þ

where ΔED is the DI binding energy. Solving for KD leads to

kD ¼ e
ΔEDþ129:3�11:1

8:8

� �
: ð4Þ

Equation (3) is plotted in Figure 8 where the ordinate is in logarith-

mic scale and the abscissa values span the range �50≤ΔED ≤ �200

kJ/mol which covers the scale from poor to excellent binding. This fig-

ure may be used as a master chart to assess the quality of binding in

TABLE 2 Number of salt bridge forming residue pairs from 98
nanobody-protein complexes listed in sd-Ab DB.

ASP GLU

ARG 57 71

LYS 33 16

F IGURE 7 Dreiding interaction energy (kJ/mol) of complexes
with available experimental KD values are plotted against their
experimental LnKD (nM) values.

F IGURE 8 The KD values are plotted against the Dreiding
interaction (DI) energy using Equation (4). Ordinate scale is
logarithmic. KD of a given protein-nanobody complex whose DI
energy is known can be obtained from this figure.
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unknown nanobody-protein pairs. The DI energy obtained from the

Monte Carlo translation–rotation operation on low-rank decoys will

give the corresponding KD values.

The findings of the present work may be used as design principles

in nanobody engineering. We now discuss two cases:

Case 1. Crystal structures of the nanobody and the pro-

tein are known but the structure of the complex is not

known. We run a ZDOCK simulation and obtain several

decoys, one of which is possibly the true solution. We

determine the DI energies of all the decoys and rank

them. Starting from the lowest rank, we perform Monte

Carlo translation-rotation simulations and obtain the

lowest DI energy decoy. This will possibly be the struc-

ture closest to the true structure.

Case 2. The structure of the complex is known, and

modifications are required to increase the binding affin-

ity: We repeat the steps of Case 1 for each mutation

and obtain the binding pose and the DI energy of the

structure closest to the true structure.

The bottleneck in the above workflow is the Monte Carlo step. In

an ordinary laptop, 2000 step Monte Carlo cycle of diverse structures

and the determination of the DI energy is in the order of 1 h.
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