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A B S T R A C T

Adjuvant immunotherapy has been recently recommended for patients with metastatic clear cell
renal cell carcinoma (ccRCC), but there are no tissue biomarkers to predict treatment response in
ccRCC. Potential predictive biomarkers are mainly assessed in primary tumor tissue, whereas me-
tastases (METs) remain understudied. To explore potential differences between genomic alterations
and immune phenotypes in primary tumors and their matched METs, we analyzed primary tumors
(PTs) of 47 ccRCC patients and their matched distant METs by comprehensive targeted parallel
sequencing, whole-genome copy number variation analysis, determination of microsatellite insta-
bility, and tumor mutational burden. We quantified the spatial distribution of tumor-infiltrating
CD8þ T cells and coexpression of the T-cell-exhaustion marker thymocyte selection-associated
high mobility group box (TOX) by digital immunoprofiling and quantified tertiary lymphoid struc-
tures. Most METs were pathologically “cold.” Inflamed, pathologically “hot” PTs were associated with
decreased disease-free survival, worst for patients with high levels of CD8þTOXþ T cells. Interest-
ingly, inflamed METs showed a relative increase in exhausted CD8þTOXþ T cells and increased
accumulative size of tertiary lymphoid structures compared with PTs. Integrative analysis of mo-
lecular and immune phenotypes revealed BAP1 and CDKN2A/B deficiency to be associated with an
inflamed immune phenotype. Our results highlight the distinct spatial distribution and differenti-
ation of CD8þ T cells at metastatic sites, and the association of an inflamed microenvironment with
specific genomic alterations.

© 2024 THE AUTHORS. Published by Elsevier Inc. on behalf of the United States & Canadian Academy
of Pathology. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
Introduction

One-third of clear cell renal cell carcinoma (ccRCC) patients
present with synchronous metastases, and another third will
develop metachronous metastases over the course of disease.1
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Therapeutic advances, especially vascular endothelial growth
factor-targeted therapy or immune checkpoint inhibitors (ICIs),
have improved the prognosis of many advanced ccRCC patients.2-4

Yet, a significant number of patients with metastatic ccRCC do not
profit from immunotherapy potentially due to differences within
the tumor immune microenvironment (TIME).5

While inactivation of VHL through various mechanisms6 is
essential for ccRCC tumor initiation, genetic alterations in addi-
tional other tumor suppressor genes, like loss of BAP1 or PBRM1,7

seem necessary for tumor progression. Recently, it was shown that
some tumor suppressor genes are associated with tumor inflam-
mation or response to ICI:BAP1 deficiency is associated with high-
grade ccRCC, poor outcome,7-9 tumor inflammation,10 increased
PD-L1 expression, a T effector cell signature, and good response to
ICI.11 Conversely, PBRM1-deficient ccRCC display a rather well-
differentiated, prototypic morphology in humans and mice12

with improved clinical outcome and reduced inflammation.11,13

PBRM1-mutated ccRCC frequently carries additional mutations
in SETD2, which seem to occur after PBRM1 mutations within the
same tumor.14 SETD2 mutations increase in frequency upon dis-
ease progression, implicating a function in preventing metas-
tasis.15 These data highlight the importance of an integrated
characterization of genomic features and immunologic charac-
teristics of primary ccRCC for accurate patient stratification.

Studies investigating the immune cell composition mostly
focused on primary ccRCC,16-20 nonmatched metastases21,22 or
examined only very few primary tumors and their matched me-
tastases.23 Methods were limited to hematoxylin and eosin,
mostly single-stain immunohistochemistry at broad scale or bio-
informatic deconvolution from gene expression signatures.24,25

Despite the importance for therapeutic stratification, the spatial
distribution and amount of immune cells within the tumor com-
partments, particularly of tumor-infiltrating CD8þ Tcells, were not
assessed. Standardized and reproducible evaluations are also
lacking. Yet, dysfunctional or exhausted CD8þ T cells represent the
main clinical target in ICI therapy.26 Their distribution pattern
within the tumor compartments correlates with response to ICI in
many malignancies,27 referred to as inflamed or pathologically
“hot,” and immune excluded or desert tumors, pathologically
“cold.”28 For increased reproducibility, we recently established
standardized immune phenotyping of metastatic melanoma using
digital pathology29 and have described the application to
immunotherapy-treated ccRCC as well as other cancer types.30,31

The objective of this study was to identify potential differences
in the genetic landscape and immune cell infiltration between PT
and their corresponding metastases (METs). The underlying cau-
ses of why METs frequently exhibit diminished inflammatory
infiltration are presently not well understood, particularly in the
context of ccRCC. It has been hypothesized that somatic alter-
ations could influence immune cell infiltration. Therefore, we
investigated 47 ccRCC PTs and their METs. We combined different
molecular and histologic methods such as comprehensive tar-
geted parallel sequencing, whole-genome copy number variation
analysis, determination of microsatellite instability and tumor
mutational burden, spatially resolved digital immunoprofiling,
and digital quantification and morphometry of tertiary lymphoid
structures. Further, we included TOX, a marker described to
positively correlate with expression of PD1 and other markers of
T-cell exhaustion in human cancer32 and frequently expressed by
exhausted and polyfunctional effector memory CD8þ T cells.
Although TOX is not directly targeted by immune checkpoint
immunotherapy, it can be regarded as a predictor of anti-PD1
treatment response in several malignancies,32,33 and TOX
expression may reflect truly terminally exhausted T cells in
2

contrast to established exhaustion markers like PD1, PD-L1.34 In
our cohort, increased CD8þ T cells within PTs correlated with an
overall decreased disease-free survival (DFS). Interestingly,
although the total number of tumor-infiltrating CD8þ T cells
remained similar in inflamed METs compared with their matched
PTs, we observed a relative increase in TOXþ expression, poten-
tially indicating increased levels of CD8þ T-cell exhaustion. Loss of
BAP1 and CDKN2A/B was associated with an inflamed immune
phenotype both in PTs and METs. Our data suggest that con-
ducting a combined analysis of comprehensive molecular geno-
typing alongside spatially resolved tissue immune phenotyping,
preferably within METs, could be clinically most informative for
advanced ccRCC patients.
Materials and Methods

Patient Cohort

We collected treatment-naïve PTs of 47 ccRCC patients and
their matched distant metastases (METs) from different anatom-
ical locations. The majority of cases were retrieved from the ar-
chives of the Department of Pathology and Molecular Pathology,
University Hospital Zurich, Switzerland, between 2001 and 2020
(n ¼ 29). Further cases from the Institute of Pathology, Cantonal
Hospital Baselland, Liestal, Switzerland (n¼ 5); the Department of
Pathology and Diagnostics, University of Verona, Italy (n ¼ 5); and
the Institute of Pathology, Department of LaboratoryMedicine and
Pathology, Lausanne, Switzerland (n¼ 8), were included, the latter
as part of the Swiss Patholink consortium. All cases were reviewed
by 2 expert pathologists (B.S. and H.M.). Selection criteria included
a histologic and immunohistochemical phenotype consistent with
ccRCC in both the primary tumor and matched distant metastasis.
Distant metastases had occurred to lung (n ¼ 10), bone (n ¼ 8),
brain (n¼ 9), pancreas (n¼ 7) or soft tissue, adrenal gland, pleura,
or stomach (n ¼ 20), the latter summarized as “other,” and for 7
patients, an additional longitudinal metastasis sample was avail-
able (patient IDs: 5, 12, 14, 33, 34, 40, and 43), resulting in a total of
54 metastatic samples (Table 1). Metastatic tissue consisted of
excision specimens (n¼ 37; 68.5%), open biopsies/currettings (n¼
14; 30%), and very few core needle biopsies (n ¼ 3; 5.5%). Clinical
data including clinical stage, treatment, clinical progression-free
survival assessed by imaging, and overall survival could be
retrieved for the majority of patients (n ¼ 43). All 47 patients had
undergone surgical treatment of their primary ccRCC (partial or
complete nephrectomy). The majority received adjuvant treat-
ment (n ¼ 30 patients), and only 13 patients were treated by
surgery only. Of the 54 metastatic samples, 31 metastases were
treatment-naïve, 7 metastases were pretreated with ICI and sys-
temic therapy (TKI) (sample IDs: 24, 27, 33, 35, 36, 37, and 44), 1
metastasis with ICI only (sample ID: 16), 14 metastases had been
treated with systemic therapy (TKI) but not ICI, and for 1 sample,
pretreatment data of the metastasis were not available (Fig. 1).
Nucleic Acid Extraction

DNA was extracted from microdissected or punched formalin-
fixed paraffin-embedded tumor tissues using the RecoverAll Total
Nucleic Acid Isolation Kit (Cat No. AM1975, ThermoFisher Scien-
tific) according to the diagnostic accredited guidelines. Sampling
included multiple regions from the tumor center to capture
intratumoral heterogeneity and avoid the potential discovery of
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Figure 1.
Oncoprint visualization of the clinic-pathological parameters, the immune phenotypes an
resection of the primary tumor, treatment naïveness of the metastatic biopsy, progression-f
level as indicated. Patient IDs indicated with an asterisk are patients alive at the time of p
METs as respective columns per patient.

Table 1
Clinicopathological information of the study cohort

ccRCC Cohort Site of metastatic biopsy (n ¼ 54)

Characteristics (n ¼ 47) Lung Bone Brain Pancreas Other

Patient characteristics

Age at initial diagnosis <60 4 4 5 4 3

Age at initial diagnosis �60 6 4 4 3 17

Female 3 2 3 3 6

Male 7 6 6 4 14

Clinical stage 1 3 3 2 3 2

Clinical stage 2 0 1 3 0 2

Clinical stage 3 6 1 1 0 9

Clinical stage 4 1 3 3 4 7

Disease characteristics

Tumor (pT) stage

pT1a 0 2 0 1 3

pT1b 2 2 2 2 1

pT2a 0 0 0 1 0

pT2b 0 1 3 0 2

pT3a 5 2 4 2 12

pT3b 3 1 0 1 1

pT4a 0 0 0 0 1

Fuhrman grade

Grade 1 0 0 0 1 2

Grade 2 4 3 1 0 5

Grade 3 3 3 6 6 10

Grade 4 3 2 2 0 3

Treatment characteristics

Surgery only 3 3 1 1 7

Radiotherapy 6 3 6 1 3

Systemic treatment (TKI) 3 5 4 1 12

ICI 5 1 2 0 2

Not available 0 0 0 4 0

Metastatic biopsy characteristics

Treatment naïve 7 3 6 6 9

Prior treatment 4 5 3 0 10

Not available 0 0 0 1 0

Detailed clinicopathological information including treatment is provided. Only
primary tumors from ccRCC patients were included and are grouped according to
their site of distant metastases.
ccRCC, clear cell renal cell carcinoma; ICI, immune checkpoint inhibitor.
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clonal genetic alterations.35 Samples used for genetic profiling
were taken from the same blocks as the samples used for histo-
logic studies. Nucleic acid concentrations were measured with
Qubit dsDNA HS and RNA HS Assay Kits (Cat No. Q32851 and
Q32852, ThermoFisher Scientific).
Next-Generation Sequencing

Next-generation sequencing (NGS) library preparation and
bioinformatics analysis were conducted according to diagnostic-
approved standards. All shown samples passed the internal
quality criteria including DNA quality, mean coverage, mapped
reads, and read lengths. In detail, we performed targeted parallel
sequencing of genomic DNA using the FoundationOne CDx
comprehensive genomic profiling assay. This panel covers the
exonic regions of 324 disease-relevant genes as well as selected
intronic regions of 36 genes, which are frequently involved in
fusion events. Genomic biomarkers, including tumor mutational
burden, microsatellite instability, and loss-of-heterozygosity
(LOH), were also assessed. Mutational data were retrieved from
Foundation Medicine via One-Alteration-Per-Line Files and pro-
cessed with custom R, PERL, and Bash scripts, which are available
at https://github.com/mtp-usz/ccRCC_Primary-Metastases.
Genome-Wide Copy Number Analysis

For genome-wide copy number analysis, we subjected 500ng
genomic DNA from each sample to bisulfite conversion using the
EZ DNA Methylation Kit (Cat. No. D5001, Zymo) according to the
manufacturer’s guidelines. The Infinium Human Methylation EPIC
850k array was used to obtain genome-wide DNA methylation
profiles from FFPE tumor samples, according to the manufac-
turer’s instructions (Illumina). Data (IDAT files) were analyzed
through the minfi R package. Copy number calculations on the
IDAT files were performed using R (version 4.0.4) and the conumee
Bioconductor36 package (version 1.26.0). Prior to the calculations,
IDAT files were imported to R using the minfi37 Bioconductor
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package (v.1.36.0) and converted to conumee compatible Methyl-
Set objects. The failed probes of the data set were identified as
both the methylated and unmethylated channel reported back-
ground signal levels (P > .01). Probes that failed in more than 5% of
the samples were removed. The data were then normalized using
both Illumina and FunNorm methods for the downstream copy
number variation and methylation analyses, respectively. More-
over, we performed differential methylated analysis on both probe
and region levels using the methods implemented in the R pack-
age minfi.37 Normalized probe intensities were subsequently
clustered into segments using the circular binary segmentation
algorithmwith an acceptance significance level of a¼ 0.05, 10,000
permutations, a minimum of 5 probes per segment, and without
undoing change points. Copy number spectrum plots were
generated using the cnSpec function in the GenVisR (86) Bio-
conductor package (version 1.22.1).
Immunohistochemistry

Immunohistochemical analysis was performed utilizing the
monoclonal mouse anti-human CD8 (clone 4B11, Leica Bio-
systems), the monoclonal mouse-anti-human CD20 (clone L26,
Roche Diagnostics), and the polyclonal rabbit-anti-human TOX
(Cat No. PA5-30328, ThermoFisher Scientific) antibodies after
tissue pretreatment according to the manufacturer’s instructions.
Antibody binding was visualized using either the OptiView (Roche
Diagnostics) or Bond Polymer Refine Red Detection (Leica Bio-
systems) kits. Although all cases showed robust CD8 and CD20
staining, 6 PTs and 6METs repeatedly showed aweak TOX staining
signal and were excluded from the CD8/TOX costain analysis. One
MET was excluded completely from immuhistochemical analysis
because of technical reasons.
Digital Image Analysis, Immune Phenotypes, and Tertiary
Lymphoid Structures Evaluation

Stained slides were digitalized on a 3DHistech P1000 digital
slide scanner (3D Histech) at �40 magnification and a resolution
of 0.24 mm per pixel. Digital slide review, annotation of tumor
regions as recommended by the International Immuno-Oncology
Biomarker Working Group,38 and quality controls were per-
formed by an expert image analyst (V.V.) and reviewed by a
board-certified pathologist (V.H.K.). We then created a virtual
tissue microarray (vTMA), consisting of 5 spots each of the tumor
center and the tumor invasive margin compartment. vTMAs are
effective tools for high-throughput analysis of highly standard-
ized tissue regions in histologically defined tumor microenvi-
ronment compartments.39 The vTMA approach thus allows us to
apply standardized selection rules (tumor center, invasive
margin, and immune infiltration parameters) for the compara-
tive analysis of immune cell infiltrates and biomarker expression
analysis across large and heterogeneous sample sets while
excluding areas of artefact by expert pathology review. vTMA
spots were circular with a diameter of 600 mmandwere placed in
the regions with the highest diffuse infiltration of T cells. Regions
containing tertiary lymphoid structures (TLS) were annotated
separately and excluded from the evaluation of diffuse immune
infiltrates. In cases with limited tissue availability, (n¼ 5METs), a
minimum of 3 vTMAs spots were placed. In one case, where
placement of at least 3 spots was not possible, whole-slide
analysis was performed. vTMAs for the invasive margin
4

compartment were only created when the invasive margin was
included in the scan.

Digital image analysis was performed using HALO (HALO v3-2-
1851.266, Indica Lavbs) (Supplementary Table S1). For cell-level
analysis, nuclear segmentation was performed with a pretrained
nuclei segmentation algorithm (AI default) and optimized using
cell-morphometric parameters. CD8þ and TOXþ marker-positive
cells were quantified according to pathologist-set intensity
thresholds for the membrane/cytoplasmic (CD8) and nuclear
compartment (TOX). Unstained nonimmune tissue on the same
slide served as internal control. CD8þTOXþ, CD8þTOX�, and
CD8�TOXþ cell counts were normalized by tissue area (mm2) to
determine infiltration density. We evaluated the spatial distribu-
tion of CD8þ T cells38 by creating virtual TMAs approximating
whole-slide analyses.39

TLS were identified by CD20 staining within the intra- and
extratumoral compartment, where the extratumoral compart-
ment was stringently defined by pathologist review to exclude
adjacent normal tissue. TLS were defined as dense lymphocyte
aggregates, containing clusters of CD20þ B cells, with a minimum
size of 15,000 mm2. The boundary of each TLSwas annotated based
on evaluation of H&E-, CD20-, and CD8/TOX-stained serial sec-
tions, and the amount and area occupied by the TLS was indi-
vidually measured.
Statistics

Statistical analysis was performed using GraphPad Prism
(version 8.0.0) for Fisher exact tests, Wilcoxon tests, and 2-way
analysis of variance with Tukey-Kramer posttest for multiple
comparisons and unequal sample sizes.
Results

Exhausted CD8þTOXþ T Cells Are Relatively Increased at Matched
Metastatic Sites

For immune phenotyping, 2 expert pathologists first catego-
rized PTs and METs into the following immune diagnostic cate-
gories: immune desert, immune excluded, or inflamed, based on
the overall spatial distribution of CD8þ T cells29,40 (Fig. 2;
Supplementary Fig. S1). PTs showed either an excluded (n ¼ 29;
61%) or inflamed (n ¼ 13; 28%) immune phenotype; 1 PT (2%) was
classified as desert. We also observed 2 distinct but adjacent im-
mune infiltration patterns within a single PT in 4 cases (9%), which
we termed “dual immune phenotype” (not shown) as recently
described.29

Interestingly, the matched metastases predominantly
showed a clinically “cold” immune phenotype (desert n ¼ 5; 9%
and excluded n ¼ 40; 74%), irrespective of the site of metastasis
(Fig. 3A), their time of occurrence (synchronous vs metachro-
nous), or prior treatment with ICI (desert n ¼ 2 and excluded
n ¼ 4). Among the inflamed metastases (n ¼ 9; 16%), 1 had
received prior ICI treatment, and the majority were associated
with inflamed or excluded/inflamed primary tumors (n ¼ 6;
66%). To evaluate the quantity and functional state of CD8/TOX
T cells in PT and METs at single-cell resolution, digital image
analysis was performed of CD8þ (red) and TOXþ (brown) T-cell
infiltration in the tumor center and invasive margin compart-
ments (Fig. 3B, C). As the presence of TLS in the TIME is seen as
an enabler of naïve T-cell infiltration and intra-/peritumoral



Figure 2.
Immune phenotypes. Overviews of CD8þ T cells distribution within clear cell renal cell carcinoma as visualized by immunohistochemistry (upper row; CD8 in red) and the
corresponding H&E (lower row). Tumors devoid (left) of CD8þ T cells were termed immune desert. If CD8þ T cells had arrived at the tumor bed but predominantly remained at
the invasive margin or intratumoral stromal compartment, tumors were regarded as immune excluded (middle). Once CD8þ T cells could be observed within the intratumoral
compartment tumors were categorized as inflamed (right).
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priming, we annotated TLS and accurately measured their size
and frequency (Fig. 3D).

As expected, measured CD8þ T-cell densities were significantly
lower in tumors classified as immune desert or excluded than in
inflamed PTs (P < .0001) and METs (P < .0001) (Tables 2).
Inflamed/“hot” PTs with high infiltration densities of CD8þ T cells
showed a decreased DFSwhen comparedwith “cold” PTs, with the
worst DFS for patients with inflamed/“hot” PTs containing high
levels of exhausted CD8þTOXþ T cells (Supplementary Fig. S2).

Interestingly, the relative amount of CD8þTOXþ T cells was
significantly increased in inflamed METs when compared with
inflamed PTs (P < .05) yet without significant differences in the
absolute overall CD8þ T-cell densities (Fig. 3E). Intratumoral
TLS (Fig. 3F) showed increased accumulative size in inflamed
METs when compared with inflamed PTs (P < .001)
(Supplementary Fig. S3).
Frameshift Mutations Occur as the Most Common Mutation Type

To evaluate the spectrum of molecular alterations be-
tween PTs and matched METs, we performed comprehensive
targeted NGS analysis including the determination of the
microsatellite status, the tumor mutational burden, and LOH.
5

As expected, the majority of PTs showed mutations in VHL
(n ¼ 38, 80%), PBRM1 (n ¼ 25, 53%), and SETD2 (n ¼ 14, 30%)
with 5 PTs carrying comutations in VHL, PBRM1, and SETD1
(Fig. 1; Supplementary Fig. S4A).

All tumors displayed additional pathogenic mutations, inter-
preted as passenger mutations and various mutations of unknown
significance (Supplementary Table S2). The 9 VHL wild-type PTs
showed pathogenic mutations in PBRM1 or SETD2, except for 2
cases that were triple wild-type (VHL, PBRM1, and SETD2 wild-
type) carrying mutations among others in TP53 or TERT, respec-
tively. Of the total number of potentially pathogenic mutations
(n ¼ 340), the large majority were frameshift mutations (n ¼ 139),
followed by missense mutations (n ¼ 56), nonsense mutations
(n ¼ 54), mutations in splice sites (n ¼ 34), homozygous losses
(n ¼ 23), amplifications (n ¼ 19), deletions (n ¼ 7), promoter
mutations in TERT (n ¼ 5), and rearrangements (n ¼ 3)
(Supplementary Fig. S4B and data not shown). Interestingly, 21%
of cases showed genes exclusively mutated in the PTs that could
not be detected in their matched distant metastasis
(Supplementary Fig. S4C). Of these, SETD2 and PBRM1 were most
frequent, showing isolated orphanmutations in SETD2, an isolated
orphan mutation in PBRM1, and a cooccurrence of SETD2 and
PBRM1 exclusively in the PT. In 1 case, both PT and the matched
MET carried mutations in VHL but at different positions (PT: VHL



Figure 3.
Immune phenotypes, tumor-infiltrating CD8/TOX T cells and prevalence of tertiary lymphoid structures (TLS). Most clear cell renal cell carcinoma primary tumors (A, left)
(desert ¼ dark blue, excluded ¼ blue, and inflamed ¼ red) turned cold, and only a few remained inflamed at their metastatic site (A, right categories metastases). Whole slides
were costained for CD8 (red) and TOX (brown) (B, left), revealing CD8þTOX�, CD8þTOXþ, and CD8�TOXþ immune cells as further highlighted by the mark-up of the staining (B,
right). For further analysis, virtual tissue microarrays were annotated from the tumor center (gray circles) and invasive margin (orange circles) compartment (C). TLS were
defined as dense lymphocyte aggregate containing clusters of CD20þ B cells, measured within the tumor (termed TLS intra, yellow; within the tumor region, green) and within
the extratumoral stroma but outside of the tumor (termed TLS extra, blue; within the extratumoral stroma, red). The left panel shows a CD20-stain (brown), the right panel the
CD8 (red) and TOX (brown) stain of the same region (D). Although the absolute densities of intratumoral CD8/TOX immune cells and frequencies of TLS between the immune
diagnostic categories remained similar between primary tumors and METs, distant METs showed a significant relative increase of intratumoral CD8þTOXþ T cells (E) and a
tendency toward an increased frequency of intratumoral TLS (F).
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6



Table 2
CD8þ Tox� T cells are significantly more prevalent in inflamed than in excluded
or desert tumors both in primary tumors

Mean cells/mm2 Primary tumors

Desert (n ¼ 1) Excluded (n ¼ 29) Inflamed (n ¼ 13)

CD8þ Tox� 0 0.0002 0.001

CD8þ Toxþ 0 0.0001 0.0002

CD8-Toxþ 0 0.00002 0.00001

Mean cells/mm2 Metastases

Desert (n ¼ 5) Excluded (n ¼ 40) Inflamed (n ¼ 9)

CD8þ Tox� 0.00009 0.0002 0.001

CD8þ Toxþ 0.00004 0.0001 0.001

CD8-Toxþ 0.00001 0.00002 0.00003

P values Primary tumors

Desert vs excluded Desert vs
inflamed

Excluded vs
inflamed

CD8þ Tox� ns <.05 <.0001

CD8þ Toxþ ns ns ns

CD8-Toxþ ns ns ns

P values Metastases

Desert vs excluded Desert vs
inflamed

Excluded vs
inflamed

CD8þ Tox� n.s. <.05 <.0001

CD8þ Toxþ ns <.001 <.0001

CD8-Toxþ n.s. ns ns

P values PT vs Metastases

Desert Excluded Inflamed

CD8þ Tox� ns ns ns

CD8þ Toxþ ns ns <.05

CD8-Toxþ ns ns ns

CD8þ Tox� T cells represent the predominant population in comparison to CD8þ
Toxþ T cells and CD8� Toxþ cells regardless of the immune phenotype in the
primary tumors. In contrast, CD8þ Toxþ T cells significantly increase at the met-
astatic sites.
ns, nonsignificant; PT, primary tumors.
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D179fs*23, MET: VHL splice site 340þ2T>A). Of all frequently
mutated genes in PT, SETD2, and PBRM1weremore commonly lost
in the matched METs (Supplementary Fig. S4C). Remarkably,
orphan mutations of both genes were also detected in isolation
within the matched METs (SETD2, n ¼ 9 and PBRM1, n ¼ 5), which
were SETD2 and PBRM1 wild-type in their corresponding PTs
(Supplementary Fig. S4D). These observations were irrespective of
Table 3
Genotype-immune phenotype associations

Gene “Cold” (n ¼ 73) “Hot” (n ¼ 20) P value
(Fisher exact test)

CDKN2A .0015

Wild-type 72 15

Mutated 1 5

CDKN2B .0071

Wild-type 72 16

Mutated 1 4

MTAP .0302

Wild-type 72 17

Mutated 1 3

BAP1 .0071

Wild-type 72 16

Mutated 1 4

On the basis of a single gene analysis, inflamed tumors were associated with losses
in BAP1, CDKN2A/B and MTAP when performing Fisher’s exact tests.
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the location of metastatic site or the time difference between
sampling of the PT and the MET (data not shown). The tumor
mutational burden was generally low (<10 mutations/Mb; data
not shown), and both PTandMETsweremicrosatellite stable (data
not shown). In contrast to their PTs, matched METs showed more
frequent copy number alterations but with similar patterns of LOH
and large-scale state transition scores (data not shown). To
confirm the copy number results of the targeted panel, we per-
formed additional whole-genome-wide single nucleotide poly-
morphism-based array analysis for a subset of cases (n ¼ 14). The
genome-wide analysis similarly showed losses, particularly at
chromosome 3p and gains at chromosome 5q without major
differences between PTs andmatchedmetastases (Supplementary
Fig. S5). In consideration of the NGS and single nucleotide poly-
morphism array results, the De Novo occurrence of homologous-
recombination deficiency in the metastases appeared unlikely.
Loss of BAP1, CDKN2A/B, and MTAP Is Associated With an Inflamed
Immune Phenotype

To identify potential genotype-immune phenotype associa-
tions, we performed an integrative analysis with particular focus
on genes reported to be commonly altered in either inflamed
(BAP1 and CDKN2A/B) or poorly immunogenic (PBRM1 and
KDM5C) ccRCC.41 The association analysis was tailored on both
single and multiple gene modes on the combined sets of PT and
MET. The single gene analysis identified significantly more
frequent loss-of-function mutations of BAP1, CDKN2A/B, andMTAP
in tumors described as inflamed (Table 3).

However, we could not detect any significant association be-
tween PBRM1 and KDM5C. Next, we overlaid the corresponding
reactome pathways and examined whether any of the pathways is
associated with the immune phenotype. The results revealed
interleukin-12 signaling enrichment in inflamed ccRCC (gene set:
MTAP/JAK2; P ¼ .007) consistent with a proinflammatory milieu
(Supplementary Table S3).
Discussion

The functional impact of genetic alterations on the TIME is
complex, most likely context-dependent and incompletely un-
derstood, especially at metastatic sites.42,43 Considering the
polyclonal nature of cancer44 and the effects of clinical therapies
on tumor genetics and/or its immune landscape,45 investigation of
metastases seems essential to uncover actionable targets and
understand disease progression and drug response. Our study
provides insight into differences in the tumor immune infiltrates
and tumor-intrinsic genetic alterations between primary ccRCC
and matched distant metastases.

Seven distinct evolutionary subtypes of ccRCC have been sug-
gested based on spatially separated whole-exome sequencing
analysis of primary tumor ccRCC.46 For most patients, driver
events such as loss-of-function mutation in VHL could be detected
in the PT and matched METs. In some instances, additional mu-
tations in PBRM1 and/or SETD2 were exclusively identified at the
metastatic site, indicating potential subclonal events in the pri-
mary tumors that went undetected. Alternatively, thesemutations
might have emerged De Novo within the metastasis, highlighting
the spatiotemporal heterogeneity, especially given the 0 to 17-
year time gap between primary tumor removal and metastasis
resection observed in the current study.14
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Associations of established predictive biomarkers linked to
tumor inflammation such as increased tumor mutational burden
or microsatellite instability25 were not found in our cohort.
Neither could we observe any association between the increased
frequencies of frameshift mutations47,48 with any particular im-
mune phenotype. Despite the rather small cohort size, loss of
BAP1 and CDKN2A/B was associated with inflamed tumors as
suggested previously, yet spatial CD8þ T-cell assessment has not
been previously reported.41,49,50 In PTs, increased amounts of
CD8þ T cells within the tumor center compartment of the PT
correlated with an overall decreased DFS, with the worst DFS for
PTs showing high densities of CD8þ TOXþ T cells. In view of these
findings and the controversial predictive and prognostic role of
tumor-infiltrating CD8þ T cells in ccRCC,16,19,51,52 prospective
clinical trials employing ICI and utilizing digital image analysis
are required to decipher the role of tumor-infiltrating CD8þ T
cells in ccRCC. Overall, we observed a higher frequency of im-
mune excluded or immune desert lesions in METs compared
with PTs corresponding to clinically “cold” tumors as described
in other malignancies.40,53 Interestingly, the relative amount of
CD8þTOXþ T cells of all CD8þ T cells was increased within
inflamed METs, suggesting a preceding antitumor immunity54

and potentially tumor-experienced CD8þ T cells. Whether this
relative increase in CD8þTOXþ T cells in METs is associated with
decreased survival also in the PTs needs to be determined.

Why metastatic sites commonly turn “cold” remains largely
unknown. Genetic alterations, such as the observed PBRM1 and
SETD2 mutations in METs, could amplify STAT3 transcription55

and methylate STAT1, respectively,56 which in turn may cause
expression of immune checkpoints and, as such, lead to T-cell
exhaustion.57 This potential impact on signal transducer and
activator of transcriptions could be a possible explanation for
our observed “cold”METs with an increase in exhausted CD8þ T
cells. In contrast, the impact of chromosomal instability (CIN)
on antitumor immunity is less investigated. Cutoff values
defining categories like “low,” “intermediate,” or “high” CIN
tumors are not available, and comparative studies are lacking to
this point. CIN, however, seems to influence antitumor immu-
nity in a context-dependent fashion.44 It may promote
inflammation and tumor cell eradication by supporting tumor
heterogeneity with expression of a larger panel of tumor anti-
gens,58-60 or it may support tumor immune evasion through
chromosomal instability-mediated depletion of neoantigens
resulting in the development of less immunogenic metastases.
In our cohort, copy number alterations were not associated
with an immune phenotype, neither in PTs nor METs, but we
cannot exclude other types of chromosomal instability mech-
anisms like translocations exerting an impact on the immune
infiltrates.

Our study has inherent shortcomings related to the num-
ber of samples and treatment heterogeneity. Well-
characterized cohorts of PTs and matched metastatic lesions
are rare, as they demand a large archive of tissue. Metastatic
tissue is often monitored by imaging only or biopsied for
confirmation. The limited tissue availability of METs thus
hampers the compilation of such cohorts. Nevertheless, we
identified genotype-immune phenotype associations in ccRCC
that support an important and central role of BAP1 and
CDKN2A/B deficiency in ccRCC tumor inflammation. Although
there is significant similarity in genetic mutations and the
general immune presence within both PTs and their matched
METs, our findings support investigation of METs because of
the observed differences in immune infiltration and genetic
profiles, calling for further investigation on the complex
8

genetic and immune landscape in nonmetastatic vs metasta-
tic disease. The integration of multimodal data sets like
comprehensive molecular genotyping with spatially resolved
tissue microenvironment analysis may help better understand
genotype-immune phenotype associations, may uncover
actionable targets, and may support our understanding of
disease progression and drug response.
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