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SUMMARY
Glioblastoma recurrence is currently inevitable despite extensive standard-of-care treatment. In preclinical
studies, an alternative strategy of targeting tumor-associated macrophages and microglia through CSF-1R
inhibition was previously found to regress established tumors and significantly increase overall survival.
However, recurrences developed in �50% of mice in long-term studies, which were consistently associated
with fibrotic scars. This fibrotic response is observed followingmultiple anti-glioma therapies in different pre-
clinical models herein and in patient recurrence samples. Multi-omics analyses of the post-treatment tumor
microenvironment identified fibrotic areas as pro-tumor survival niches that encapsulated surviving glioma
cells, promoted dormancy, and inhibited immune surveillance. The fibrotic treatment responsewasmediated
by perivascular-derived fibroblast-like cells via activation by transforming growth factor b (TGF-b) signaling
and neuroinflammation. Concordantly, combinatorial inhibition of these pathways inhibited treatment-asso-
ciated fibrosis, and significantly improved survival in preclinical trials of anti-colony-stimulating factor-1 re-
ceptor (CSF-1R) therapy.
INTRODUCTION

Glioblastoma is the most common primary brain tumor in

adults.1 Standard-of-care (SoC) treatment for these high-grade

gliomas includes surgery, temozolomide-based chemotherapy,

and fractionated ionizing radiation (IR). However, despite SoC

treatment, the median survival for patients is just over 14 months

following diagnosis, and the 5-year survival rate is less than
Cancer Cell 42, 1507–1527, Septem
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5%.1,2 Nearly all glioblastomas eventually recur following treat-

ment, underscoring the need to better understand therapeutic

resistance mechanisms.

One of the major challenges in developing effective therapies

for glioblastoma is the high degree of genomic instability and

cellular plasticity, resulting in extensive intratumoral heteroge-

neity and therapy-resistant subclones.3,4 A promising alterna-

tive strategy is to target components of the more genomically
ber 9, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1507
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Figure 1. Multiple treatment modalities trigger a fibrotic response in glioblastoma

(A) Schematic of preclinical treatment regimen for the murine model of PDGFB-driven glioblastoma.

(B) Representative IF images of tumors prior to treatment (left panel) and following 28 days of BLZ945 treatment (middle panel, area enlarged in right panel). Tumor

cells labeled with GFP, fibrosis labeled with Col I and TNC. Scale bars: 500 mm.

(legend continued on next page)
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stable tumor microenvironment (TME). Previously, we found

that tumor-associated macrophages and microglia (TAMs)

constitute the largest population of the glioblastoma immune

microenvironment in patients.5 Additionally, since elevated

numbers of TAMs are associated with high tumor grade and

poor patient prognosis in many cancers, including gliomas,6–8

we have previously investigated the potential of therapeutically

targeting TAMs by blocking signaling of the colony-stimulating

factor-1 receptor (CSF-1R).9 In multiple models, we found that

CSF-1R inhibition re-educated TAMs, substantially regressed

established high-grade gliomas, and markedly increased sur-

vival in preclinical trials.10–13 While overall survival was signifi-

cantly prolonged in response to CSF-1R inhibition, tumors

eventually recurred in �50% of mice throughout these long-

term experiments.10 Interestingly, histological analyses re-

vealed that 100% of recurrent tumors regrew immediately adja-

cent to regions of glial scarring.10 By contrast, scars were only

observed in �20% of the treated mice surviving to the trial

endpoint, suggesting a potential mechanistic link between

scarring and glioma recurrence.

Scarring in the central nervous system (CNS) in other contexts

has been shown to involve multiple cell-signaling cascades initi-

ated by physical damage, inflammation, or oxygen deprivation.14

The function of CNS scarring is to circumscribe the lesion site,

thereby containing CNS damage, inhibiting excessive immune-

mediated death of cells surrounding the lesion, and allowing

for axonal regrowth to restore neurological function. However,

in the context of glioblastoma, these same functions could

have protective and even tumor-promoting effects. More gener-

ally, fibrosis in extracranial cancers has been reported to have

pro- or anti-tumoral functions depending on the context.15–17

For example, in early-stage tumors, a fibrotic response can

slow growth and impede local invasion, but as tumors progress,

increased stiffness and re-organization of the extracellular matrix

(ECM) can facilitate tumor cell mobility, promote immune

evasion and stimulate tumor cell proliferation.18,19 Conversely,

ECM proteins such as collagen III can drive cancer cell

dormancy, which slows tumor progression but also provides

protection from anti-proliferative therapies.20

Despite recent insights into the complex role of fibrosis, pre-

dominantly in epithelial cancers, and the correlations between

ECM gene expression and poor patient prognosis,21 it remains

unclear how CNS scarring may impact the response to therapy

in glioblastoma. Here, we use an integrated multi-omics strategy

to study fibrosis upon the treatment of glioblastoma and to iden-

tify targetable pathways to augment current treatments.
(C) Schematic of preclinical trial for PDG tumors treated with 10 Gy whole-brain

(D and E) Representative IF image of 14-day post-IR PDG tumor (D) and HRas-G

fibrosis with Col I, Col IV, TNC, and fibronectin. Scale bars: 1 mm.

(F) Representative IF image of PDG tumor 14 days post-surgical resection.White a

bar: 500 mm.

(G) Representative images of matched primary and recurrent glioblastoma patie

(H) Pathological scoring of fibrosis for primary and recurrent glioblastoma patient

quartile, whiskers show upper and lower extreme, datapoints and outliers shown

(I) Representative IF images of recurrent high-grade GBMpatient samples. Tumor

(J) Pre-operative MRI scans for glioblastoma patients with recurrent disease (I–III,

primary lesion, red boxes indicate sites of sample acquisition. IF images for each

resection cavity. Tumor cells labeled with Olig2/Sox2, fibrosis labeled with Col I,

See also Figure S1.
RESULTS

Regression of glioblastomas upon different treatment
modalities is associated with fibrosis
To study fibrosis in the context of glioblastoma treatment, we

first used the platelet-derived growth factor-driven glioma

(PDG) transgenic mouse model (RCAS-hPDGF-B/Nestin-Tv-a;

Ink4a/Arf�/�, pure C57BL/6 background). Gliomas develop

4–5 weeks after tumor induction (Figure 1A) and closely model

human proneural glioblastomas.10,22–24 Similar to our earlier

findings in a mixed genetic background PDG model,10 we found

that the response to the CSF-1R inhibitor BLZ945 consists of

four key phases as measured by magnetic resonance imaging

(MRI): regressing tumors (0–14-day post-treatment), dormant

tumors (28-day), recurrent tumors (various time points), and

dormant-until-endpoint tumors (Figure S1A). Immunofluores-

cence (IF) imaging and analysis of dormant residual lesions

28-days following BLZ945 treatment identified the presence of

ECM-associated collagen type I throughout the lesion area (Fig-

ure 1B), in addition to aminopeptidase N (CD13) (Figure S1B),

collagen IV, and fibronectin (Figure S1C). Further characteriza-

tion revealed a compartmentalized structure consisting of a

fibrotic core surrounded by reactive astrocytes, which were

positive for glial fibrillary acidic protein (GFAP) (Figure S1B).

Notably, this is similar to the organization of mature scars re-

ported in non-tumor CNS pathologies, including traumatic

brain injury, experimental autoimmune encephalomyelitis, and

ischemic stroke.25–27 Moreover, IF staining of recurrent gliomas,

which were genetically labeled using green fluorescent protein

(GFP), demonstrated the emergence of GFP+ tumor cells pre-

cisely from these regions of scarring (Figure S1C).

We found that mature BLZ945 treatment-associated scars

could also be detected by T2-weighted MRI in vivo, where they

are characterized by low signal intensity (Figure S1C, left panel).

Subsequent correlative IF staining on the same tissue samples

revealed that this low T2 MRI signal intensity corresponds to re-

gions enriched in the expression of markers of CNS fibrosis (Fig-

ure S1C, right panels). Notably, recurrent tumors were always

located directly next to these low T2 MRI signal intensity areas

(n = 41) (Figure S1D), an observation that aligns with our finding

that all recurrent tumors are found adjacent to histological scars.

We next investigated the prevalence of treatment-associated

fibrosis across other glioma models and treatment modalities

related to SoC therapy (Figures 1C–1F and S1E–S1H). To model

the effect of ionizing radiation therapy (IR), mice bearing high-

grade PDG were treated with focalized IR, and lesions were
IR therapy.

FAP-Cre tumor (E). Tumor cells labeled with GFP, astrocytes with GFAP, and

rrow indicates resection cavity, green arrow indicates new tumor growth. Scale

nt samples, fibrosis labeled with Picrosirius red (PSR). Scale bars: 2 mm.

samples. Two-tailed t test p = 0.0023. Boxplots showmedian, upper and lower

as dots.

cells labeled with Olig2, fibrosis labeled with Col I and TNC. Scale bars: 200 mm.

top panel). White arrows indicate resection cavity from the initial surgery of the

recurrent sample (I–III) are shown below. Asterisks indicate the location of prior

TNC, and PDGFRB. Scale bars: 200 mm.
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Figure 2. Integrated spatial multi-omics characterizes the post-treatment glioma microenvironment

(A) Representative image of untreated PDG tissue section analyzed by hyperplexed immunofluorescence imaging (HIFI)-based digital pathology. Gray boxes

below indicate BLZ945 treatment time points assessed, white boxes are time points not assessed. N = 3 mice per time point, n = 4 images per mouse.

(legend continued on next page)
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analyzed 7 days post-treatment (Figure 1C). Mice treated with IR

showed similar low T2MRI signals in association with the treated

lesions (Figure S1E, left panel) as observed following BLZ945

treatment, and increased abundance of collagen I (which repre-

sents a readout for fibrosis) and TNCby IF analysis (Figure 1D). In

longer-term IR trials, tumor recurrence occurred immediately

adjacent to these structures (Figure S1E, right panel) as we

had found for BLZ945 treatment (Figure S1D). This IR experiment

was repeated in two distinctive glioma models: HRas-GFAP-Cre

and GL261. The HRas-GFAP-Cre model involves activation

of the HRasV12 oncogene combined with p53 knockdown

in GFAP-expressing cells.28,29 Importantly, this tumor model

develops in the mouse hippocampus, different from the

prefrontal cortex location of PDG gliomas, and mice have a

different genetic background (FVB/n, vs. C57Bl/6J for PDG

and GL261). Both HRas-GFAP-Cre and GL261 tumors showed

similar fibrosis marker expression at 7- and 14-days post-IR

(Figures 1E, S1G, and S1H). We also performed partial surgical

resection on established PDG tumors (Figure 1F). IF analysis of

14-days post-resection samples revealed patterns of fibrosis

immediately adjacent to the original resection cavity (Figure 1F),

again comparable to post-BLZ945 treatment. In addition, there

was an evident correlation between new tumor growth and

fibrosis associated with the resection cavity (Figures 1F and

S1F). There was no observed dormancy phase for this treatment

modality, as surgical resections resulted in incomplete removal

of the tumor mass by design.

Evidence for treatment-induced fibrosis in glioblastoma
patients
To determine whether these preclinical findings correlated with

the SoC treatment response in patients, we collected matched

primary and recurrent glioblastoma patient samples that were

analyzed by hematoxylin and eosin (H&E), as well as by Picro-

sirius red (PSR) staining to visualize collagen, representing a

surrogate of fibrosis (Figure 1G). Pathological assessment of

H&E and PSR images showed that recurrent samples exhibited

significantly increased fibrosis compared to primary tumor

samples (Figures 1H and S1I). Moreover, IF staining of recur-

rent patient tumors demonstrated the spatial architecture

of ECM proteins and associated neoplastic cells (Figure 1I),

similar to our findings following the different treatments

performed in murine models. Together with neurosurgeons

and radiologists, we also performed MRI-guided selection of

suspected fibrotic regions (Figure 1J, top panels), found near

the resection cavity of the original primary lesion, before the

surgery of recurrent high-grade glioblastomas. Again, in this

optimally controlled context, IF imaging identified fibrotic re-

sponses immediately adjacent to the resection cavity (Figure 1J,

bottom panels), similar to our findings in mouse models of sur-

gical resection (Figure 1F).
(B) Representative H&E-stained tissue sections used to guide manual microdiss

Hierarchical clustered heatmap of protein abundance Z scores from tissue regio

(C) UMAP projection of scRNA-seq analysis of untreated tumors (left, n = 3), and

(D) Representative image of Xenium-based single-cell spatial transcriptomics (ST)

(left). Insert shows high-magnification imagewith cell outlines and individual mRNA

and post-BLZ945 treated PDG tumors with annotated cell types colored accord

See also Figure S2 and Tables S1, S2, S3, and S4.
Integrated multi-omics analysis of treatment-
associated glioma fibrosis
To comprehensively interrogate the complex cellular and extra-

cellular composition of treatment-associated fibrosis we em-

ployed an integrated multi-omics analysis strategy. We decided

to analyze the microenvironmental response to CSF-1R inhibi-

tion using BLZ945, given its marked effect on tumor regression

and increased survival in mouse models, notably as compared

to standard-of-care therapies.10,12 Moreover, a phase I/II trial

in patients combining BLZ945 with the anti-PD-1 monoclonal

antibody spartalizumab reported interim results showing anti-

tumor efficacy in some patients (https://doi.org/10.1158/1538-

7445.AM2020-CT171).

Hyperplexed immunofluorescence imaging (HIFI) whole-slide

digital pathology30 was used to spatially localize cellular pheno-

types and the structural organization of sub-regions across a

range of post-treatment time points (Figures 2A and S2A;

Table S1). We additionally performed unbiased mass spec-

trometry (MS)-based proteomic analysis of different tissue

areas (tumor, contralateral healthy brain, and fibrotic scar

areas) isolated from BLZ945-treated PDGs at multiple post-

treatment time points (Figure 2B). Analysis of the proteomic

composition of pre- and post-treatment tumor domains re-

vealed several key insights. First, we observed that all healthy

brain samples clustered closely together across treatment

time points (Figure 2B, right panel). Next, we found that un-

treated and rebound tumor samples clustered independently,

demonstrating clear compositional changes at the point of

recurrence (Figure 2B). Finally, all post-treatment lesion sam-

ples clustered together with fibrotic scars isolated from

rebound tumor samples, indicating that all lesions had similar

fibrotic profiles following treatment, even as early as 7 days

post-treatment (Figure 2B).

To further evaluate the cellular phenotypes in untreated

and BLZ945-treated glioblastomas, we performed single-cell

RNA-sequencing (scRNA-seq) on untreated, and 7- and 14-day-

treated PDG tumors (Figures 2C and S2B). Samples were disso-

ciated using a specific digestion protocol to preserve rare surviv-

ing tumor cells and vascular-associated cells.31,32 Following

BLZ945, several cell populations were increased, including

neutrophils, natural killer (NK) cells, various dendritic cell (DC)

subtypes, CD8+ T cells, CD4+ T cells, gamma-delta (gd) T cells,

and regulatory T cells (Tregs), while tumor cells were almost

completely absent (Figures 2C and S2C). While measures were

taken to preserve cell viability following dissociation, differential

loss of cellular populations due to tissue digestion could not be

ruled out. Indeed, when comparing cell abundance analysis be-

tween scRNA-seq (Figure S2C) and HIFI data (Figure 3A), some

cellular populations are underrepresented in the scRNA-seq

data. This highlights the importance of orthogonalmulti-omics an-

alyses for accurate data interpretation.
ection of tissue regions for mass spectrometry proteomic analysis (left panel).

ns collected at each treatment time point (right panel).

combined 7- and 14-day BLZ945-treated tumors (right, n = 6). TC = tumor cell.

of untreated PDG tissue sectionwith unbiased cell clustering colored for clarity

transcripts detected as dots. Right panel shows representative images of pre-

ingly. n = 3 for each time point.
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To validate gene expression as an in situ ‘‘ground truth’’33,34

and to provide critical spatial context for scRNA-seq data, we

performed single-cell resolution in situ sequencing-based spatial

transcriptomics (ST) using the Xenium platform (103 Genomics)

(Figure 2D). Untreated, 7-day, 28-day, and rebound PDG tumor
1512 Cancer Cell 42, 1507–1527, September 9, 2024
samples were analyzed with a panel of 247 murine brain-

tumor specific genes that was supplemented with 100 additional

genes informed by our scRNA-seq data (Table S2). HIFI was per-

formed on slides following Xenium analysis to provide critical

intra- and extracellular protein localization data (Table S3).
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Machine-learning annotation for regions of fibrosis was per-

formed on HIFI data and integrated into ST data to measure sin-

gle-cell proximity to areas of fibrosis. Unsupervised cluster anal-

ysis was performed on single-cell ST data, and a combination of

semi-supervised gene signatures and cell type projection from

scRNA-seq data was used for cell classification (Figures 2D;

Table S4).

CNS fibrosis as a protective niche for dormant tumor
cells following BLZ945 treatment
Analysis of HIFI data revealed that fibrotic ECM-positive areas

gradually increase as the percentage of total lesion area

following tumor regression in response to CSF-1R inhibition,

reaching a maximum at 28 days of treatment (Figure S3A). This

coincided with an increased prevalence of CNS scar-associated

cell types including perivascular-derived fibroblast-like cells

(PDFLs) and astrocytes, as well as immune cell types such as

TAMs, T cells, and neutrophils (Figure 3A). In untreated tumors

and in normal brain tissue, PDFLs (ER-TR7+) were detected in

association with the vasculature within the parenchyma (Fig-

ure S3B). Notably, in previous studies investigating distinct in-

sults to brain tissue, PDFLs were shown to delaminate from

the CNS vasculature, differentiate, and proliferate to produce

ECM proteins.27,35,36

Next, we employed orthogonal graph-based network analysis

to analyze the spatial relationships of specific cell types in HIFI

data from untreated and post-BLZ945-treated PDG lesions30

(Figures 3B and S3C). A comparison of network plots between

untreated tumors versus 28 days of BLZ945 revealed that surviv-

ing tumor cells and T cells become closely associated with

PDFLs (Figure 3B). By contrast, in dormant lesions, TAMs are

largely excluded from regions containing tumor cells (Figure 3B).

We used cluster-based cell neighborhood analysis to further

explore cellular spatial relationships and classify cells based on

the cellular proportions of their immediate environment across

different treatment time points.37 Hierarchical clustering re-

vealed 13 different cellular neighborhoods (CN) in the pooled

data from all treatment conditions (Figure 3C). We quantified

the CNs across time points to investigate how these neighbor-
Figure 4. Pro-survival features of the post-treatment fibrotic niche

(A) Representative IF image of PDG lesion following 28-day of BLZ945 treatment

(B) Mean distance of tumor cells in HIFI data to the nearest fibrotic ECM region an

non-significant. Boxplots show median, upper and lower quartile, whiskers show

(C) Representative Xenium ST image and distribution plot of 28-day BLZ945 trea

border). Scale bar: 200 mm.

(D) Volcano plot of differentially expressed genes (DEGs) in Xenium ST data for

28-day samples (n = 3). DEGs with p value <0.05 and log2 fold change >1 labele

compared to untreated controls.

(E) Heatmap of Z scores for selected dormancy and stemness-related DEGs in

proliferating in untreated (n = 3) and 28-day BLZ945-treated (n = 3) PDG lesions

(F) Representative IF images of untreated (left) and 28-day BLZ945-treated (right) s

with CD68, and ECM with collagen I. Scale bars: 200 mm.

(G) Mean distance of ‘‘TAM’’ cells in HIFI data to nearest ‘‘tumor cell’’ neighb

****p < 0.0001, ***p = 0.0002.

(H) Representative IF images of untreated (left) and 28-day BLZ945-treated (rig

collagen I. Scale bars: 200 mm.

(I) Rank-ordered bar plot of fold-changes in T cell phenotypes from 14-day BLZ94

data identified CD8+ terminally exhausted (CD8+ Tex), CD8+ precursor-exhaust

(Treg), type 1 T helper (Th1), CD4+ T-follicular helper cells (Tfh), CD8+ early activ

See also Figures S4 and S5, and Table S5.
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hoods changed in response to BLZ945 treatment (Figure S3D).

CN1, CN5, and CN9 increased throughout treatment and were

largely absent in untreated samples (Figure 3D left panel, and

3E). CN5 and CN1, containing PDFLs and T cells with or without

tumor cells, respectively (Figure 3C), colocalize in treated le-

sions, whereas CN9, containing TAMs, astrocytes, and neutro-

phils, is spatially excluded from CN5 and CN1 (Figure 3D,

right panel).

We visually validated and additionally quantified cellular local-

ization from the HIFI data to corroborate the results from the

network and neighborhood spatial analyses (Figures 4A, 4F,

4H, and S4A–S4C). We indeed observed a significant increase

in association between surviving tumor cells and domains of

dense ECM accumulation as defined by machine learning

annotation (Figures 4A and 4B) and high TNC expression (Fig-

ure S4A) in images of lesions treated with BLZ945. This exact,

consistent localization was observable at 16 weeks post-treat-

ment (Figure S4C), demonstrating that glioblastoma cells can

persist within fibrotic regions for many months after treatment.

Conversely, ECM domains and associated PDFL cells were pre-

dominantly countercorrelated with tumor cells prior to treatment

(Figures 3B and S4B).

Our HIFI analysis showed that tumor cells associated with

post-treatment fibrosis were non-proliferative (Figure 3B), sug-

gesting that tumor cells in this niche were in a dormant or quies-

cent state. To further investigate the phenotype of surviving

tumor cells, we analyzed Xenium ST data of tumor cells within

28-day post-treatment fibrotic scars and compared differentially

expressed genes (DEGs) to untreated tumor cells (Figures 4C–

4E, S4D, and S4E; Table S5). As expected, we observed a

multi-fold reduction in proliferation-related genes such as

Mki67 and Cenpf in post-treatment tumor cells compared to un-

treated (Figures 4D and S4D). Notably, cluster analysis revealed

two distinct subclusters of tumor cells in 28-day scars: non-

proliferating tumor cells and dormant tumor cells with signifi-

cantly enhanced expression of multiple dormancy and stem-

ness-related genes (Figures 4E and S4E). In particular, Gpd1,

Nanog, and Sox9 expression were all significantly and uniquely

associated with dormant post-treatment tumor cells and have
. Tumor cells labeled with GFP, fibrosis labeled with Col IV. Scale bar: 200 mm.

notations for each treatment time point. Two-way ANOVA ****p < 0.0001, ns =

upper and lower extreme, datapoints and outliers shown as dots.

ted PDG lesion, dormant tumor cells (red) labeled in region of fibrosis (green

tumor cells in untreated samples (n = 3) vs. fibrosis-embedded tumor cells in

d as increased (red) or decreased (blue) in 28-day BLZ945-treated tumor cells

ST analysis of tumor cells (TC) annotated as dormant, non-proliferating, and

.

amples. Tumor cells labeled with GFP, tumor associatedmacrophages (TAMs)

or in each image (n = 12) for each treatment time point. Two-way ANOVA

ht) samples. Tumor cells labeled with GFP, T cells with CD3, and ECM with

5-treated tumors versus untreated tumors. ProjectTILs analysis of scRNA-seq

ed (CD8+ Pex), CD8+ T effector-memory cells (CD8+ Tem), regulatory T cells

e, CD8+ naive-like, and CD4+ naive-like T cell phenotypes.
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each been previously associated with dormancy and the

concept of ‘‘glioma stem cells’’ (GSCs).38–40 Taken together,

these data indicate that surviving tumor cells in fibrotic spatial

niches reside in a dormant stem-like state. Previous studies

have demonstrated how similar cell states in patients are asso-

ciated with resistance to treatments targeting cancer cells,

including IR and chemotherapy.41,42

Tumor cells embedded within fibrotic regions were also found

to be spatially separated from BLZ945-re-educated TAMs (Fig-

ure 4F). Over the course of early BLZ945 treatment, the distance

between TAMs and tumor cells progressively increases until day

28 post-treatment (Figure 4G). In our HIFI data, we could not

definitively discriminate between resident microglia and infil-

trating macrophages. In studies of other non-tumor CNS pathol-

ogies, analyses of mature scars that develop within weeks after

the initial stimulus43 reported that activated microglia are close

to the astrocytic border surrounding the fibrotic core.44 Given

that our analyses show the core contains surviving tumor cells,

these results suggest that treatment-induced fibrosis may phys-

ically protect glioma cells from anti-tumor immunity. However,

we additionally observed a progressive increase in the percent-

age of T cells in treated glioblastomas (Figure 3B), which are

found in association with the surviving tumor cells (Figures 4H

and 3C). To query the functionality and potential heterogeneity

of these T cells, we used the nearest-neighbor classifier of

the ProjecTILs algorithm45 to predict T cell states within the

scRNA-seq dataset (Figure S5A). Applying this algorithm to the

single-cell data fromBLZ945-treated tumors revealed a progres-

sive increase in exhausted, non-functional T cell phenotypes and

in regulatory T cells (Figures 4I and S5A). Moreover, applying

T cell exhaustion scores to single-cell ST data for CD4+ and

CD8+ T cells, and Treg populations revealed that T cell exhaus-

tion was significantly enhanced in regions of fibrosis compared

to T cells outside of fibrosis (Figure S5B).

These findings suggest that domains of treatment-associated

fibrosis can act as protective niches for surviving tumor cells,

promoting dormant stem-like treatment-resistant phenotypes,

and further protecting them from macrophage and T cell-medi-

ated immune surveillance. In both IR and surgical resection treat-

mentmodels, we observed similar embedding of surviving tumor

cells in TNC-high ECM, increases in T cells associated with

fibrosis, and exclusion of CD68-high macrophages from ECM-

embedded tumor nests (Figure S5C). This suggests that any

treatment that aggressively perturbs the TME has the potential

to trigger a fibrotic response with characteristics similar to

what we observe following BLZ945 treatment of PDG tumors.

Treatment-associated fibrosis potentiates glioblastoma
recurrence
HIFI analysis of the interface between post-treatment fibrotic re-

gions and rebound PDG tumors revealed a complex interplay

between tumor cells embedded in fibrosis and those regrowing

in the brain parenchyma (Figures 5A and S5D). Differential pro-

tein analysis of spatially resolved proteomic data showed that

fibrotic regions had significantly higher expression of multiple

mitogenic and growth-promoting ligands compared to adjacent

rebound tumors and contralateral healthy brain (Figure 5B).

Xenium ST analysis of rebound tumor samples provided addi-

tional evidence that the fibrotic niche was the cellular source of
rebound tumor cells. Rebound tumor samples in the ST dataset

were binned into four compartments based on their relative dis-

tance to the post-treatment fibrotic niche (Figure 5C). Analysis of

DEGs was performed by comparing each zone of proliferating

rebound cells to proliferating untreated tumor cells, and 28-day

post-treatment dormant tumor cells within fibrosis (Figure S5E).

Proliferating rebound tumor cells uniquely clustered indepen-

dently from both dormant tumor cells and untreated proliferating

tumor cells, evidencing marked disparity to pretreatment pheno-

types. Notably, a cluster of DEGs revealed transcriptional simi-

larity between dormant tumor cells and rebound tumor cells

(Figures 5D and S5E). Dormant tumor cells clustered primarily

with rebound zones 1 and 2 closest to fibrosis, followed by zones

3 and 4, all of which were distinct from untreated tumor cells

(Figure 5D).

Taken together with our other orthogonal data, this suggests

that the fibrotic niche supports survival of dormant stem-like

tumor cells, and that rebound growth is driven by tumor cell

escape from fibrotic structures into a growth- and migration-

stimulating local environment.

CNS fibrosis is associated with increased TGF-b and
inflammatory signaling in PDFLs
Investigation of the proteins significantly enhanced in fibrotic

scars identified a range of ECM and ECM-remodeling proteins

in proteomic data including collagens, fibrillins, DCN, MMP19,

and SPP1 (Figure 6A). We interrogated the expression of genes

encoding these scar-related factors in scRNA-seq data for mul-

tiple cell phenotypes that were found to localize to fibrotic re-

gions in ST data at 7- and 14-days post-treatment (Figure 6B).

We observed that PDFL cells had the highest relative gene

expression for scar-related factors, except forMmp19 and Tgfbi

that were highest in the monocyte/macrophage population

(Figure 6B).

Gene set enrichment analyses (GSEA) of proteomic data,

comparing fibrotic scars to both tumor and healthy brain sam-

ples (Figures 6C and S6A), revealed significant enrichment of

multiple pathways in fibrosis relating to inflammation, wound

healing, transforming growth factor b (TGF-b) signaling, and

ECM remodeling. When we examined the proteins most highly

represented in the leading edge of enriched gene sets, we iden-

tified several prominent factors, including TGF-b1, WNT5A,

COL3A1, COL1A1, and DCN (Figure S6B). Next, we queried

the scRNA-seq data for cellular populations with high expression

of these leading-edge genes. We identified a subset of PDFLs

that showed high expression of scar-related proteins, which

were primarily associated with post-treatment samples (Fig-

ure 6D). This PDFL population tended to cluster with vascular

pericytes in dimensional reduction (Figures 2C and 6D) and

was localized to regions of post-treatment fibrosis in ST data

(Figure S6C). The larger pre-treatment pericyte phenotype clus-

ter was depleted following treatment, which suggests either a

selection for PDFLs over pericytes, or a possible differentiation

of pericytes toward the PDFL phenotype.

Next, we applied the NicheNet method to model potential

intercellular communication by linking upregulated genes to al-

terations in respective ligand-receptor expression.46 We inte-

grated spatial colocalization data derived from HIFI analysis

with NicheNet to weigh and filter cell communication interactions
Cancer Cell 42, 1507–1527, September 9, 2024 1515
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median, upper and lower quartile, whiskers show upper and lower extreme, datapoints and outliers shown as dots.

(C) Representative Xenium ST distribution plot of proliferating rebound tumor cells subdivided into 4 concentric zones based on distance from treatment-

associated fibrotic niche. Scale bar: 500 mm.

(D) Heatmap of DEG Z scores for ‘‘cluster 2’’ DEGs (Figure S5E) in ST analysis of proliferating tumor cells in untreated samples (n = 3), and zones 1–4 of rebound

samples (n = 3) vs. dormant tumor cells in 28-day treated samples (n = 3).

See also Figure S5.
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based on the probability of cellular association in vivo. We

found that many different cell types in BLZ945-treated tumors

contribute to networks of interactions that enhance pathways

identified in the analysis of the proteomics dataset (Figures 6E

and S6D). Cell populations corresponding to PDFLs appeared

to be the main biosensor of the environment, with many signals

from multiple cell types driving downstream target gene alter-

ations (Figures 6E and S6D). Of specific interest were enhanced

expression of Col1a1, Col1a2, Col3a1, and Mmp3 in PDFLs be-

ing linked to TGF-b signaling (via Tgfb1 and Tgfb2), and proin-

flammatory cytokine genes Tnf, Il1a, and Il1b from macro-

phages, microglia, and endothelial cells. Analysis of matched

HIFI and ST data showed that PDFLs specifically in the fibrotic

regions of 7-day post-treatment samples demonstrated the

highest co-expression of Col1a1 and Tgfbr2 (Figure S6E). This

indicates that PDFLs shortly after treatment had uniquely high

expression of both the key component of the TGF-b receptor

dimer, and a core constituent of fibrotic ECM. We therefore

explored the most significant gene expression changes in

PDFLs upon BLZ945 treatment (Table S6). Upregulated genes

included collagen IV (Col4a5 and Col4a3bp), the chemokine

Cxcl12, and the adhesion molecule Vcam1. Subsequent over-

representation analysis (ORA) of genes upregulated in PDFLs

in treated versus untreated glioblastomas revealed a multifac-

eted response incorporating Epithelial-Mesenchymal Transition

(EMT), indicative of fibroblast differentiation through EMT,47

interferon gamma response (IFN), and multiple pathways related

to ECM formation and organization (Figure 6F).

Together, these results suggest that PDFL cells are a major

contributor to treatment-induced scarring via the production of

ECM and recruitment of immune cells in response to TGF-b

and inflammatory signaling.

PDFL cells in TME show rapid and acute response to
BLZ945
The profound fibrotic response observed after just 7 days

of BLZ945 led us to investigate the temporal dynamics of fibrosis

and PDFLs following treatment. Indeed, IF to visualize ER-TR7+

PDFLs revealed a rapid cellular response to treatment initiation

with a significant expansion of PDFLs within the first 3 days

following treatment initiation, resulting in complete lesion

coverage by day 5 (Figure S7A).

Using integrated single-cell RNA-seq and spatial transcriptomic

data, we employed NicheNet analysis to interrogate the cellular
Figure 6. Cellular communication underlying protein composition of fi

(A) Volcano plot of differential protein abundance in mass-spec proteomic data

healthy brain controls (n = 5). Proteins with -log10 p-values >3 and log fold chan

(B) Heatmap of DEG Z scores from scRNA-seq analysis of DEGs corresponding

(C) GSEA enrichment mapping of significantly enhanced gene sets (p < 0.001) b

ployed Hallmark, Biocarta, Reactome, KEGG, and GO databases.

(D) UMAP projection of perivascular-derived fibroblast-like cells (PDFLs) and pe

treated (n = 3) and 14-day treated (n = 3) tumors. Blue-to-red gradient shows s

treatment samples.

(E) Circos plot of HIFI-weighted NicheNet cellular communication analysis of untr

seq analysis. Green arrows indicate interactions where both ligand and target gene

to untreated (n = 3).

(F) Overrepresentation analysis (ORA) of top 200 genes upregulated in PDFLs fro

ployed Hallmark and Reactome databases.

See also Figure S6 and Table S6.
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communication of PDFLs specifically within fibrotic scars at

7 days post-BLZ945 (Figure 7A). Based on our global cell commu-

nication analysis (Figure 6E), we focused on the TGF-b signaling

pathway and sender populations with the highest level of TGF-b

ligand expression; MonoMac, microglia, endothelial, and PDFLs

(Figure 7A). Interestingly, only Tgfb1 showed significantly

increased regulatory potential at 7 days post-treatment, driving

increased expression of the TGF-b receptor Tgfbr2, and multiple

ECM and ECM-remodeling pathway genes including Col1a2,

Elastin, and Junb (Figure 7A). This analysis further demonstrated

extensive TGF-b signaling to PDFL cells, driving the expression

of fibrotic scar-related genes, consistent with NicheNet analysis

of disaggregated scRNA-seq data (Figure 6E).

Overrepresentation analysis comparing PDFL single-cell gene

expression in 7-day-treated PDGs versus untreated PDGs

showed significant increases in gene sets related to EMT, ECM

organization, and interferon signaling (Figure 7B, top panel).

These processes are consistent with perivascular cells undergo-

ing EMT and differentiating into fibroblast-like cells that subse-

quently produce many of the same ECM proteins identified in

our proteomic analysis (Figure 2B). This indicates a rapid

response by this population following therapeutic perturbation.

When comparing PDFL gene expression at 14 days of treat-

ment versus 7 days of treatment, several of these same gene

sets were downregulated (Figure 7B, bottom panel), indicating

a transient activation state of PDFLs following the initiation of

treatment. Next, we generated four gene signatures (EMT,

ECM, IFNg, and IFNa) of PDFL treatment response based on

the HALLMARK and REACTOME gene sets, which showed dif-

ferential expression between the three treatment time points

(Table S7). Comparison of gene signature expression at each

time point revealed a rapid increase from untreated to 7 days

of treatment, followed by either a plateau or a marked decrease

in expression level at 14 days of treatment (Figure 7C). Together

with the HIFI data, these results suggest that the potential win-

dow to inhibit treatment-associated fibrosis is immediately at

the initiation of treatment, and up to �7–14 days thereafter.

Following this short window, stable fibrotic structures appear es-

tablished, and the targetable pathways resulting in their forma-

tion decrease spontaneously.

To investigate if similar early activation phenotypes were

present in the patient setting, we compared the scRNA-seq

expression profiles of 7- and 14-day post-treatment PDFLs to

single-cell transcriptomic studies of fibroblast-like cells in human
brosis

of 28-day post-BLZ945 treated fibrotic scar samples (n = 5) vs. contralateral

ge >0.5 labeled as increased (red) in fibrotic scar samples.

to proteins identified in Figure 6A.

etween fibrotic scars of rebound tumors versus untreated tumors. GSEA em-

ricyte clusters from scRNA-seq analysis of untreated (n = 3), 7-day BLZ945

caled Col1a1 expression. Black and green borders indicate cells from post-

eated and pooled 7- and 14-day-BLZ945 treated tumors derived from scRNA-

show increased expression in post-BLZ945 treated samples (n = 6) compared

m BLZ945-treated tumors (n = 6) versus untreated tumors (n = 3). GSEA em-
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brain vasculature.48,49 We computed a signature score compar-

ison of DEGs in PDFLs and two reference glioblastoma CAF pro-

files,48 finding a high concordance between these cell types (Fig-

ure S7B). This previous study performed pseudotime analysis

and found CAFs with ‘‘early’’ and ‘‘late’’ phenotypes, potentially

based on time following local activation.48 Notably, we found

that signature scores of our 7- and 14-day post-treatment

PDFLs were significantly associated with the ‘‘early’’ phenotype

vs. the ‘‘late’’ phenotype (Figure S7C). Pearson correlation anal-

ysis of all cell types identified in scRNA-seq of mouse PDG tu-

mors showed that PDFLs were the most highly correlated with

reference CAFs (Figure 7D). Similar studies of vascular fibro-

blast-like populations identified in scRNA-seq analysis of normal

and adherent human vasculature49 revealed this same correla-

tion between mouse PDFL and human brain vascular fibroblasts

(Figure S7D). Mouse PDFLs showed the highest degree of asso-

ciation with fibroblasts isolated from patients with arteriovenous

malformations among all cell types identified in the mouse

scRNA-seq data (Figures 7D and S7D). Together, these analyses

indicate that themurine PDFL treatment-induced phenotype has

potential human corollaries.

Inhibition of TGF-b and inflammation extends survival in
preclinical BLZ945 trials
Our pathway analyses of proteomic and scRNA-seq datasets

identified several pathways involved in wound healing, inflam-

mation, EMT, and ECM production following CSF-1R inhibition

(Figures 6C–6F, 7A, and 7B). Specifically, spatially resolved

NicheNet analysis revealed TGF-b and pro-inflammatory cyto-

kines as drivers of ECM-related genes in PDFLs in response to

treatment perturbation of the TME (Figure 6E), suggesting that

these pathways are potentially key mediators of fibrotic treat-

ment response. We thus investigated whether targeted inhibition

could eliminate this response and improve survival in preclinical

trials of CSF-1R inhibition. Designing an effective treatment

strategy was challenging, given that multiple cell types play a

role in treatment response, likely with overlapping and redundant

functions in CNS fibrosis. Due to the breadth of the biological

pathways involved, and the robustness of associated wound-

healing effects, we did not identify any single agent capable of

complete targeted inhibition of treatment-associated fibrosis

on its own (data not shown). Therefore, we instead developed

a combinatorial treatment regimen specifically targeted to the

most consistently upregulated pathways in our data; TGF-b

signaling and generalized inflammation. Moreover, we timed

the treatment intervention window (Figure 8A) to coincide with

the maximal PDFL activation period identified by our temporal

scRNA-seq pathway analysis.
Figure 7. Activation and dynamics of PDFL cells in post-treatment tum

(A) Circos plot of NicheNet cell communication derived from scRNA-seq analysis

the fibrotic niche of 7-day post-BLZ945 treated lesions. Red arrows indicate targe

(B) Overrepresentation analysis (ORA) of top 200 genes upregulated in PDFLs f

regulated genes in 14-day-treated versus 7-day-treated (bottom). Analysis empl

(C) Gene signatures of genes significantly enhanced in 7B (top) involved in EMT, EC

in PDFLs shown for each treatment time point.

(D) Heatmap of Spearman’s correlation of mouse PDFL gene signature compared

glioblastoma setting (Jain et al., JCI 2023) and malformed vascular setting.49

See also Figure S7 and Table S7.

1520 Cancer Cell 42, 1507–1527, September 9, 2024
We combined BLZ945 treatment with the corticosteroid dexa-

methasone (DEX) and the small molecule TGF-bRI inhibitor galu-

nisertib (GAL), each of which has been previously employed for

treatment of glioblastoma.50–52 Neither DEX nor GAL treatment

was found to have any anti-glioma efficacy as a single agent in

our preclinical trials (data not shown). We next treated PDG-

bearing mice with BLZ945 alone, in combination with DEX,

GAL, or the triple combination (BDG), and analyzed the treated

lesions during the dormancy phase at 28 days of treatment (Fig-

ure 8B). The inclusion of either DEX or GAL had no significant

impact on BLZ945-mediated tumor regression or treatment-

associated fibrosis (Figures 8B–8D). However, the BDG triple

combination resulted in a pronounced and significant inhibition

of treatment-induced fibrosis as defined by machine-learning

annotation of ECM fibrosis regions, and a significant reduction

in the total number of remaining tumor cells (Figures 8B–8D).

We repeated this trial in the RCAS PDGFB p53 knockdown

model (p53-PDG), a different glioma model with a distinct

TME, which also incorporated GFP labeling of transformed tu-

mor cells.10,11,53 p53-PDGgliomas demonstrated a highly similar

fibrotic response to BLZ945 at 28 days post-treatment, and a

comparable reduction in fibrosis and the number of remaining tu-

mor cells in response to the BDG triple combination (Figures 8E

and 8F).

Based on these findings, we initiated a long-term preclinical

trial with the BDG combination in the PDG tumor model.

The treatment regimen consisted of daily BLZ945 combined

with twice-daily treatment of GAL (50 mg/kg) for only the first

10 days, and 1 mg/kg DEX for 14 days, followed by progressive

tapering-off of DEX over the next 14 days. Another critical aspect

of timing DEX and GAL to only the early intervention window of

treatment-induced fibrosis was that it avoided the potential is-

sues of toxicity with long-term combinations of these drugs.

Long-term preclinical trials consisted of BLZ945 alone, DEX

with GAL (DG), BLZ945 + DEX, BLZ945 + GAL, and the triple

BDG combination. In the absence of BLZ945, the DG combina-

tion resulted in rapid tumor progression and morbidity in the first

weeks of the trial (Figure 8G). The combinations of BLZ945 +

DEX or BLZ945 + GAL showed no statistically significant differ-

ence versus the BLZ945-alone treatment arm. By contrast, the

triple BDG combination cohorts showed significantly improved

survival compared to BLZ945 alone, with only a single animal

showing a recurrent tumor throughout this months-long study.

These data strongly support the hypothesis that the fibrotic

treatment effect, and the associated protective spatial niche,

play a pro-tumoral role in glioblastoma survival and recurrence

following treatment, and that inhibition of this response can

markedly improve therapeutic efficacy.
ors

between sender cells in all spatial regions, and PDFLs determined to reside in

t genes increased in 7-day PDFLs (n = 3) compared to untreated PDFLs (n = 3).

rom 7-day BLZ945-treated tumors versus untreated tumors (top), and down-

oyed Hallmark and Reactome databases.

M, IFNg, and IFNa pathways. Average log fold-change for each gene signature

to publicly available scRNA-seq data for human brain vascular fibroblasts in the
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To investigate whether the fibrotic treatment response is also

implicated in patient outcomes, we applied our PDFL treatment-

response gene signature for ECM-related genes (Table S7) to

transcriptomic data of recurrent patient glioblastomas. Stratifi-

cation of 163 recurrent patient samples from the European

Organisation for Research and Treatment of Cancer (EORTC)

Study 1542, Glioblastoma, Stability of Actionable Mutations

(G-SAM)21 into high or low expression of the PDFL ECM gene

signature demonstrated that recurrent tumors with a high ECM

gene signature were associated with significantly shorter relapse

times (Figure 8H). Moreover, this same stratification also showed

that high ECM gene signature expression at recurrence was

associated with significantly shorter overall survival (Figure 8I).

These data, along with analyses in Figure 7D further support

the concept that fibrotic treatment effect in patients is connected

to the activity of PDFLs or other related fibrotic cells, and that this

adaptive response to anti-glioma therapy is associated with, or

potentially promoting, tumor recurrence.

DISCUSSION

In this study, we employed a comprehensive orthogonal multi-

omics strategy to robustly analyze the post-treatment glioblas-

toma microenvironment. Collectively, our data indicate that

anti-glioma therapies that aggressively perturb the glioblastoma

TME, such as immunotherapy, radiotherapy, and surgery, have

the potential to trigger a fibrotic treatment response. Addition-

ally, recurrent tumor growth was ubiquitously observed in direct

association with fibrotic regions, which were also enriched in

diverse mitogenic, neoangiogenic, and other growth-promoting

signaling factors. These findings align with observations made

in the clinical setting, where glioblastomasmost commonly recur

immediately adjacent to the site of the original lesion or the

resection cavity54,55 and are considered to be more aggressive

compared to the primary tumor. Moreover, our pathological

assessment of primary and recurrent glioblastoma patient sam-

ples herein revealed that fibrosis was observed significantly

more frequently in recurrent disease than in primary tumor le-

sions. In-depth immunofluorescence imaging analysis of recur-

rent patient samples revealed a dense deposition of collagens

and TNC near sites of prior treatment, consistent with our results

in mouse models. These findings are further supported by anal-

ysis of patient transcriptomic data, which showed that cell signa-

tures of post-treatment mouse PDFLs were correlated with
Figure 8. Inhibition of treatment-associated fibrosis extends survival i

(A) Schematic of preclinical treatment regimen for murine model of PDGFB-drive

and dexamethasone (DEX).

(B) Representative IF images of PDG samples treated for 28 days with BLZ945, BL

labeled with ER-TR7, fibrosis labeled with Col I and TNC. Scale bars: 500 mm.

(C) Quantification of regions annotated as fibrotic ECM in 28-day PDG samples fo

median, upper and lower quartile, whiskers show upper and lower extreme, data

(D) Total count of tumor cells in 28-day PDG samples for each treatment conditi

(E) Quantification of regions annotated as fibrotic ECM in 28-day p53-PDG sampl

(F) Total count of Tumor cells in 28-day p53-PDG samples treated with BLZ945

(G) Kaplan-Meier curves of BLZ945 + vehicle (n = 20) DEX + GAL (n = 6), BDG (n =

(log rank Mantel-Cox test). All-versus-all comparison between treatment group

compared to BLZ945 + vehicle, p = 0.0065.

(H and I) Kaplan-Meier survival analysis of recurrent patient gliomas from G-SAM

response gene signature.
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faster time-to-recurrence, and worse overall prognosis. These

alterations may be similar to the radiological phenomenon of

‘‘treatment-effects,’’ which are treatment-related changes

visible by MRI.56–58 The molecular basis for this so-called treat-

ment effect is currently unknown, but our data suggest that, at

least in some cases, treatment-induced scars may be the origin

of the observed radiological changes.

Our data also suggest that PDFLs are a key mediator of treat-

ment-induced CNS scarring. Time course imaging data suggest

that PDFLs associated with post-treatment fibrosis originate

from the glioma perivascular niche, proliferate, and differentiate

into fibroblast-like cells, similar to observations made in other

brain and spinal cord lesions.27,59 These cells then migrate

across the lesion responding to treatment, producing the fibrotic

ECM that forms the protective niche for surviving tumor cells.

However, the definitive lineage origin of these cells is currently

challenging to determine since different perivascular cell types

that have been described show similar expression profiles and

anatomical localization,14,35,60 including meningeal fibroblasts,

type A pericytes, perivascular fibroblasts, and myeloid-derived

fibrocytes. PDFLs were observed in post-treatment tumors in

multiple anatomic locations, both proximal to and distant from

the meninges in the prefrontal cortex, and in the hippocampal

HRas-GFAP-Cre tumors, suggesting that PDFLs are distinct

from meningeal fibroblasts. Moreover, high expression of fibro-

blast-associated genes in PDFLs, such as Col1a1, Col6a1,

Dcn, Lum, and Tnc, but not canonical pericyte genes (Kcnj8,

Higd1b, and Rgs5), suggests that they are different from

pericytes. However, all cells were collected from the pre- or

post-treatment TME, not from homeostatic conditions, making

identification of cellular origin challenging. Future research to

definitively isolate and define CNS perivascular cell types could

aid in identifying further actionable targets to inhibit glioma treat-

ment-associated fibrosis.

In this study, we focused on the use of a small-molecule

anti-CSF-1R inhibitor for glioblastoma treatment primarily due to

its potent efficacy in preclinical trials. BLZ945 is in phase I/II

clinical trials for patients with solid tumors, including glioblastoma

(https://doi.org/10.1158/1538-7445.AM2020-CT171), and is also

inphase II trials for the treatment of theneurologicaldiseaseamyo-

trophic lateral sclerosis (NCT04066244). Anti-CSF-1R inhibitors

are more effective in tumors that contain abundant macrophages,

which can be further enhanced by prior IR treatment.12 Identifica-

tion and inhibition of the potential resistance mechanisms to
n preclinical anti-CSF-1R trials

n glioblastoma treated with BLZ945, the TGF-beta inhibitor galunisertib (GAL)

Z945 + DEX (BD), BLZ945 +GAL (BG), and BLZ945 + DEX +GAL (BDG). PDFLs

r each treatment condition (n = 3). One-tailed t test *p = 0.0259. Boxplots show

points and outliers shown as dots.

on (n = 3). One-tailed t test *p = 0.0392.

es treated with BLZ945 (n = 7) and BDG (n = 9). One-tailed t test ****p < 0.0001.

(n = 7) and BDG (n = 9). One-tailed t test **p = 0.002.

18), BD (n = 12), and BG (n = 10) treated mice bearing high-grade PDG tumors

s, p < 0.0001. DEX + GAL compared to BLZ945 + vehicle, p < 0.0001. BDG

consortium stratified by high and low expression of the PDFL ECM treatment

https://doi.org/10.1158/1538-7445.AM2020-CT171
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anti-CSF-1R therapymay thus have important future clinical appli-

cations.Our findings herein notably indicate that addressing treat-

ment-associated fibrosis in the patient setting could improve the

efficacy of multiple treatment modalities, including surgical resec-

tion and IR treatment, as these both stimulated fibrotic treatment

responses. However, not all modes of CNS damage can be

considered equivalent, and different sources of perturbation may

elicit varying environmental responses.27 While several key fea-

tures of fibrotic treatment response were shared between anti-

CSF-1R treatment, surgical resection, and IR therapy in our

models, they also differed in the duration of dormancy, the extent

of tumor regression, and the levels of immune cell infiltration.

These differential responses to damage will likely require anti-

fibrosis treatments tailored to the type of perturbation. While the

use of dexamethasone in combination with galunisertib success-

fully inhibited anti-CSF-1R treatment-induced fibrosis, dexameth-

asone was previously shown to negatively impact survival in PDG

tumors treated with IR therapy,61 and thus may not be well suited

for this particular perturbation. A potential reason may be the im-

mune-suppressive effects of dexamethasone that, in this specific

scenario, inhibits the immunogenicity of IR therapy.61 In our study,

we designed an anti-fibrosis treatment regimen specifically

tailored for anti-CSF-1R mediated fibrosis, a therapy that re-edu-

cates the TME.22 While this may be translatable to other anti-gli-

oma therapies, futurestudies to improveSoCefficacyshouldaddi-

tionally focus on mechanisms specific to those treatments.

Enriched fibrotic treatment response gene signatures in pa-

tients treated with SoC therapy were found to be significantly

associated with faster relapse and decreased survival, irrespec-

tive of other clinical factors. Since prognostic gene signatures

were explicitly derived from PDFLs, these results suggest that

fibroblast-like cells may also be key mediators of fibrotic

response following treatment in patients and mouse models.

This implies that therapeutic targeting of fibroblasts or fibrotic

treatment effects could be an important strategy for extending

the benefit of SoC glioblastoma treatment. Our data also show

increased accumulation of T cells in areas of fibrosis in close as-

sociation with surviving cancer cells. However, these T cells ex-

pressed exhausted phenotypes, supporting the clinical strategy

of evaluating combinatorial anti-CSF-1R inhibition with immune

checkpoint inhibitors following SoC treatment (https://doi.org/

10.1158/1538-7445.AM2020-CT171). An important consider-

ation when designing future clinical trials is the timing and order

in which different drugswill be used. Our data suggest that, when

targeting treatment-associated fibrosis, there is only a short

therapeutic window. CNS scars develop very rapidly after treat-

ment initiation and breaking down a mature scar may be consid-

erably more challenging than preventing scar formation. More-

over, inhibiting an immune response using dexamethasone

may have adverse effects in the long term, especially when using

therapies that depend on immune activation such asCAR T cells.

Finally, in addition to providing therapeutic targets, the cellular

organization and super-structures associated with the fibrotic

treatment effect could serve as prognostic features for therapeu-

tic response.

Limitations of the study
It is currently unknown how the post-treatment fibrotic niche pro-

motes dormancy and stemness in resident glioblastoma cells.
Recent studies in extracranial tumors have found that dormancy

can be promoted via collagen III signaling through DDR1/

STAT1,20 which we also found to be highly expressed in treat-

ment-induced CNS scarring. This is an especially interesting

mechanistic question, as our study and several others show

that areas of fibrosis are high in potentially growth promoting sig-

nals, yet glioblastoma cells were found to remain dormant within

fibrosis for several months. If these scars drive glioma dormancy,

another interesting question is how the surviving tumor cells in

this niche regain proliferative capacity. In rebound tumormodels,

even in early stages, proliferating tumor cells are found directly

adjacent to the scar in the brain parenchyma, and have gene

expression profiles similar to dormant cells within the fibrotic

niche, suggesting that glioblastoma cells must first escape

from the fibrotic niche before switching to a proliferative pheno-

type. This may occur through active or stochastic cell migration

or through the breakdown of the fibrotic scar via ECM remodel-

ing. Further studies exploring the precise mechanisms and dy-

namics of ECM-mediated glioma dormancy and escape could

reveal additional therapeutic strategies to exploit treatment-

associated fibrosis to extend post-treatment dormancy.

A limitation in studying the impact of treatment-induced

fibrosis in the patient setting is the potential under-sampling of

fibrotic regions in surgical resections, and the possible loss of

fibroblast-like populations due to standard dissociation tech-

niques for single-cell analysis. More focused sample collection,

and single-cell in situ spatial transcriptomics combined with

customized HIFI panels would enrich single-cell omics analyses

of fibrotic niches in patient samples. This challenge limited the

scope of our study in exhaustively addressing the molecular

impact of dexamethasone and galunisertib treatment on the

TME. Advances in larger gene panels for in situ spatial transcrip-

tomic platforms would empower future studies to address the

multivariate impacts of targeted anti-fibrosis treatments.

A potential limitation in translating the anti-fibrosis strategies

employed in this study to clinical treatment of glioblastoma is

the use of the corticosteroid dexamethasone. In our model sys-

tem, the broad activity of dexamethasone was beneficial in

targeting the highly pleiotropic neuroinflammation pathways

activated following treatment with anti-CSF-1R treatment. How-

ever, dexamethasone also has immunosuppressive effects in the

patient setting, and so has potentially detrimental interactions

with therapeutic strategies that do not target immune cells in a

manner similar to anti-CSF-1R treatment. Further research into

the precise mechanistic role of inflammatory pathways in treat-

ment-associated fibrosis can identify better targeted therapeu-

tics against specific inflammatory pathways following different

types of treatment interventions.
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by the lead contact, Johanna Joyce (johanna.

joyce@unil.ch).
Material availability

Requests for resources and reagents should be directed to and will be fulfilled

by the lead contact, Johanna Joyce (johanna.joyce@unil.ch).
Cancer Cell 42, 1507–1527, September 9, 2024 1523

https://doi.org/10.1158/1538-7445.AM2020-CT171
https://doi.org/10.1158/1538-7445.AM2020-CT171
mailto:johanna.joyce@unil.ch
mailto:johanna.joyce@unil.ch
mailto:johanna.joyce@unil.ch


ll
OPEN ACCESS Article
Data and code availability

All code, models, and underlying data are available upon request. HIFI image

data are available upon request. scRNA-seq data are available via the NCBI

GEO repository, accession number GSE229409. The mass spectrometry pro-

teomics data have been deposited to the ProteomeXchange Consortium via

the PRIDE80 partner repository with the dataset identifier PXD041689. Xenium

spatial transcriptomic data are available via the NCBI GEO repository, acces-

sion number GSE266969. The combined scRNA-seq and Xenium data are

available as a SuperSeries via the NCBI GEO repository, accession number

GSE266971. Any additional data reported in this paper is available from the

lead contact upon reasonable request.

ACKNOWLEDGMENTS

Wegratefully acknowledge all current and former members of the Joyce lab for

insightful discussions and advice, and assistance with mouse experiments,

particularly Leire Bejarano, Paola Guerrero Aruffo, Marta Jordao, and Rui San-
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This study NA
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DAPI Thermo Fischer Scientific Cat#D1306
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Trypsin/LysC Promega Cat#V5073

Critical commercial assays
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Xenium In Situ 103 Genomics 1000481
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Mass Spectrometry Proteomic Data Proteomexchange Project Name: Fibrotic Response to anti-

CSF-1R Treatment Potentiates

Glioblastoma Recurrence

Project accession: PXD041689

Single Cell RNAseq FASTQ Files Gene Expression Omnibus (GEO) GEO accession: GSE229409

Xenium Spatial Transcriptomic Data Gene Expression Omnibus (GEO) GEO accession: GSE266969

Merged Single Cell RNA-seq and Xenium

Spatial Transcriptomic Data

Gene Expression Omnibus (GEO) GEO accession: GSE266971

Experimental models: Cell lines

GL261 NA CVCL_Y003

DF1 chicken fibroblasts ATCC CRL-12203

Experimental models: Organisms/strains

C57Bl6/J Charles River NA

Tg(NESTVA)J12Ech/Cdkn2atm1Rdp/J Prof. Eric Holland NA

FVB/N Charles River NA

Software and algorithms

Zeiss Zen blue Zeiss Ver. 3.6.095

QuPath Bankhead et al. Ver. 0.3.2
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StarDist Schmidt et al. NA

HIFI Alignment Tool Watson et al. Ver. 0.2

R version 4.2.1 R Foundation for Statistical Computing NA

imcRtools R Package Eling et al. Ver. 1.0.2

igraph R Package Csárdi et al. Ver. 1.3.5

nichenetr R package Browaeys et al. Ver. 1.1.0

GraphPad Prism GraphPad Software Ver. 9.4.1

Cell Ranger 103 Genomics Ver. 6.0.1

Cytoscape Cytoscape Ver. 3.8.0

Xenium Ranger 103 Genomics Ver. 2.0
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EXPERIMENTAL MODELS AND STUDY PARTICIPANT DETAILS

Experimental mouse models
All animal studies were approved by the Institutional Animal Care and Use Committees of the University of Lausanne and Canton

Vaud, Switzerland (License numbers: VD3804). Mice were housed in the Agora In Vivo Center (AIVC) animal facility in individually

ventilated cages, under a 12h light/dark schedule at 22�C and in the presence of 2–4 cage mates. Standard autoclaved lab diet

and water were provided ad libitum. The maximum humane endpoint tumor size approved per our animal protocols was 150 mm3

for all tumor models employed.

PDG

The Nestin-Tv-a; Ink4a/Arf�/� mouse line was generously provided by Dr. Eric Holland. The mice were bred to a C57BL/6J back-

ground for 10 generations in the Joyce lab. Even distribution of mouse sex was incorporated into each experimental design. Nestin-

Tv-a;Ink4a/Arf�/�mice were bred and maintained at the Agora Cancer Research Center, University of Lausanne (UNIL), Switzerland.

Murine genetically engineeredmousemodels (GEMMs) of glioblastomawere generated as previously reported.22,23,62,66 Briefly, 4- to

6-week-old mice were intracranially injected with DF1 cells as previously described.10,22,23,64 Mice were fully anesthetized using iso-

flurane inhalation anesthesia (2% isoflurane/O2 mixture), and a mixture of 2% lidocaine (Streuli Pharma) and 0.5% bupivacaine (Car-

bostesin; Aspen Pharma Schweiz) was applied as a local anesthetic (50 mL per mouse), and 0.02 mg/mL buprenorphine (Temgesic;

Indivior Schweiz) was given subcutaneously as a systemic anesthetic (100mL per mouse). Using a stereotactic apparatus, cells were

injected into the right frontal cortex (2 mm frontal, 1.5 mm lateral from bregma, 2 mm deep). Nestin-Tv-a; Ink4a/Arf�/� mice were

injected with 200,000 PDGFB-HA or PDGFB-HA-SV40-GFP DF1 cells (in 2 mL) and C57BL/6J mice with 40,000 GL261 cells (in

1 mL). The skin incision was sealed with Vetbond tissue adhesive (3M), and the mouse was placed on a heating pad and monitored

until fully recovered from anesthesia. Finally, Bepanthen cream (Bayer) was applied on the incision site before placing the animal back

in the cage, and each mouse was subsequently followed by regular monitoring.

HRas-GFAP-Cre

The initiation of LVRshp53 gliomas has been previously described.29 Briefly, and even mix of male and female FVB/NJ-GFAP-Cre

mice aged 8–12 weeks were intracranially injected with the pTomo HRasV12-Luc-shp53 lentivirus. This injection was conducted us-

ing a stereotactic frame while the mice were under full anesthesia induced by a combination of Fentanyl, Midazolam, and Medeto-

midine. The injections targeted the hippocampus, with coordinates set at 2.0 mm anterior/posterior, 1.5 mm medial/lateral, and

2.3 mm dorsal/ventral from the bregma. A small volume of the virus (0.8 mL, containing 1 3 108 international units) was infused at

a rate of 0.1 mL/min using an automatic pump. Following the procedure, animals were revived from anesthesia with a mixture of

Naloxone, Flumazenil, and Atipamezole.

GL261

Female C57BL/6J mice were injected orthotopically by intracranial delivery of 200,000 cells at matched age and cranial coordinates

for tumor initiation in the PDG model.

All mice were monitored biweekly with T2-weighted 1H MRI scans on a 3T MRI machine (Bruker) and enrolled in preclinical trials

when the tumors reached predetermined volumes.

Cells
DF1 chicken fibroblasts were obtained from the ATCC. RCAS virus vectors expressing PDGFB-HA or PDGFB-HA-SV40-GFP were

kindly provided by Dr. Tatsuya Ozawa and Dr. Eric Holland.53,63 DF1 cells were transfected with the RCAS vectors using FuGENE 6

(Promega) according to the manufacturer’s instructions. PDGFB-HA-SV40-GFP DF1 cells were sorted for GFP-positive cells by flow

cytometry to create a stable GFP-positive DF1 cell line. GL261 murine glioma cells were kindly provided by Dr. Sal Coniglio and

Dr. Jeff Segall. All cell lines were cultured in DMEM (Life Technologies) supplemented with 10% fetal bovine serum (Life Technolo-

gies), and penicillin and streptomycin (Life Technologies) under standard conditions.
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Patient samples
Patient tissue samples collected through the CHUV hospital were in strict compliance with the Canton of Vaud and Swiss Federal

requirements for patient privacy and confidentiality. All tumor samples were surgically resected from patients with primary or recur-

rent glioblastoma, unless otherwise indicated. No filtering criteria were applied to CHUV patient samples, as such they represent the

patient diversity treated at the CHUV hospital. Primary and recurrent glioblastoma samples from the Department of Neurosurgery at

Haaglanden Medical Center/Leiden University Medical Center were provided by Dr. Marike Broekman, and were collected in strict

compliancewith the biobank regulations at HaaglandenMedical Center/LeidenUniversityMedical Center and TheNetherlands’ rules

on patient privacy and confidentiality. All patient glioblastoma samples were embedded as formalin-fixed paraffin-embedded (FFPE)

blocks and sectioned onto Fisherbrand Superfrost Plus slides at 5 mm thickness prior to staining and imaging experiments.

METHOD DETAILS

Magnetic resonance imaging (MRI) of mouse glioblastoma models
MR imaging was performed using a 3 Tesla small animal MR scanner (Bruker BioSpin MRI, Ettlingen, Germany) with an 82-mm vol-

ume coil as transmitter combined with a 23 2 mouse brain phased array surface coil for signal reception. The mouse was fully anes-

thetized with 1–2% isoflurane/oxygen inhalation and placed on the imaging bed with the head held in place below the surface coil,

while monitoring respiratory rate and temperature. Data acquisition was performed using the Paravision 360 v2.0 software (Bruker

BioSpin MRI, Ettlingen, Germany). A 3-slice localizer was performed to assess the mouse head position. 2D turbo rapid acquisition

relaxation enhancement (Turbo-RARE) T2-weighted acquisition was performed with the following pulse sequence parameters: TR =

3000 ms, TE = 75 ms, NA = 6, number of slices 10, slice thickness (ST) = 0.7 mm, FOV = 203 20 mm2, pixel size 0.1563 0.156 mm2,

(ETL = 12, Tacq = 3min) with images being acquired in axial planes. After imaging, themouse was returned to the cage andmonitored

until it regained consciousness. Volumetric analysis of the tumors was performed onMRI DICOM files using the MIPAV software (Na-

tional Institutes of Health, USA).

Production and titration of lentiviral particles
High-titer lentiviral particles were generated following the method described by Salmon and Trono (2006). Initially, HEK293T cells

were plated at 9 3 106 cells per 15-cm dish one day prior to transfection. The transfection mix for each dish was prepared by

combining 22.5 mg of the transfer vector plasmid (supplied by I. Verma, pTomo H-rasV12-shp53-Luc), 7.9 mg of pMD2G (Addgene,

12259), and 14.6 mg of pCMVR8.74 (Addgene, 22036) with 0.66 mL of 0.13 TE buffer, 0.35 mL of distilled water, 113 mL of 2.5M

CaCl2, and 1.14 mL of 23 HeBS. The resulting precipitate was added gradually to the cells and incubation continued overnight.

The following day, the medium was refreshed, and the viral particles were harvested over three to four 12-h periods. The collected

supernatants were pooled, filtered through a 0.22 mm filter, and concentrated by ultracentrifugation at 25,000 rpm using a Hitachi

CP100NX ultracentrifuge. The concentrated viral particles were resuspended in PBS and stored at �80�C.65

Ionizing radiotherapy treatment
Mice with PDG tumors exceeding 30 mm3, HRas-GFAP-Cre tumors exceeding 20 mm3, or GL261 tumors exceeding 20 mm3 were

anesthetized by isoflurane and administered a single whole-brain focalized 10 Gy dose of ionizing radiation using the Precision X-ray

X-RAD SmART irradiator. MRI monitoring was continued following IR treatment, and mice were euthanized at experimental time

points as approved by the Institutional Animal Care and Use Committee.

Surgical tumor resection
Mice with tumors approximately 20 mm3 were anesthetized by isoflurane, then craniums were exposed by scalpel incision, followed

by MRI-guided craniotomy with a 2 mm biopsy punch. Partial resection was performed with a 2 mm biopsy punch lowered 2.5 mm

into the brain, followed by margin aspiration with sterile glass pipets.67 NeuroPatch (Braun) was used to seal craniotomies, VetBond

(3M) was used to seal scalp incisions, and mice were monitored for tumor recurrence by MRI, and euthanized at experimental time

points as approved by the Institutional Animal Care and Use Committee.

Multidrug treatments
BLZ945 (Novartis) was prepared at a 12.5 mg/mL concentration in 20% Captisol/sterile H2O. Mice received 200 mg/kg by daily oral

gavage. Dexamethasone sodium phosphate (Selleckchem) was prepared in 0.4 mg/mL, 0.2 mg/mL, and 0.1 mg/mL concentrations

in sterile saline. Mice received 1 mg/kg intraperitoneal (IP) injections of 0.4 mg/mL DEX twice daily for the first 14 days of treatment

trials. Mice were then tapered off DEX treatment by receiving 0.5 mg/kg IP injections of 0.2 mg/mL DEX for 7 days, then 0.025 mg/kg

IP injections of 0.1mg/mLDEX.Galunisertib (Selleckchem) was prepared at a 5mg/mL concentration 20%Captisol/sterile H2O.Mice

received a daily dose of 50 mg/kg GAL by oral gavage for the first 10 days of treatment trials. Mice under treatment were monitored

biweekly by MRI for signs of tumor recurrence. Mice in survival trials were treated until the 16-week endpoint, or when tumor recur-

rence exceeded double the volume of the dormant lesion, then euthanized for tissue harvest. Additionally, tissues for experimental

time points were collected by euthanizing mice at predetermined days post-treatment as approved by the Institutional Animal Care

and Use Committee.
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Animal euthanasia and tissue collection were performed by pentobarbital injection, followed by intracardiac perfusion with 10 mL

of PBS, followed by 10 mL of PLP buffer. PLP buffer consisted of 1% paraformaldehyde (PFA), 0.2% NaIO4, 37.5% L-lysine and

37.5% P-buffer (containing 81% of Na2HPO4, 19% of NaH2PO4 diluted in water, pH = 7.4) (Sigma Aldrich). Brains were harvested

and fixed in PLP overnight at 4�C with gentle shaking. Tissue samples were washed in PBS, then transferred to 30% sucrose over-

night at 4�C with gentle shaking. Finally, mouse brains were flash-embedded in Optimal Cutting Temperature (OCT) compound

(Tissue-Tek), then cryosectioned onto Fisherbrand Superfrost Plus slides at 10 mm thickness. All slides were stored at �80�C until

used for staining and imaging experiments.

Hyperplexed Immunofluorescence Imaging and spatial analysis
HIFI was performed as previously reported.30 Cryosectioned tissue slides were thawed at room temperature (RT) and allowed to dry

for 15 min, then OCT was removed in a PBS bath at RT for 5 min with gentle agitation. Post-fixation was performed in 4% PFA on ice

for 5 min, followed 23 5-min PBS washes and quenching in 0.1 M glycine for 20 min at RT. Dewaxing and antigen retrieval in pH 9.0

EDTA buffer was performed for FFPE sections. Slideswere placed into humidified chambers, and tissue sectionswere outlinedwith a

hydrophobic barrier using peroxidase-anti-peroxidase (PAP) pens. Sections were permeabilized with 0.2% Triton X-100 in PBS for

10 min at RT, then washed twice in PBS at RT with gentle agitation.

A panel of 16 antibodies was generated for cell types and ECM proteins of interest (Table S1). Multiple protein targets derived from

proteomic analysis were tested for each cell type and extracellular structure, and the most highly conserved and representative

markers were chosen for inclusion in the multiplexed staining panel. Specific ECMmarkers were selected for their ability to spatially

define regions of fibrosis, focusing only on the most consistently expressed proteins. Due to ubiquitous co-expression, collagen I,

collagen IV, and fibronectin are used interchangeably to define regions of fibrosis in this study. The panel consisted of 4 sets of 4

multiplexed antibodies. Prior to the first round of antibody labeling, all slides were initially imaged with only DAPI labeling to capture

the autofluorescence in each wavelength channel. Slides were stained for nucleic acid with DAPI at 1:2000 dilution in HIFI Staining

Buffer (HSB; 5% normal donkey serum (Merck) and 100 mM NH4Cl (Sigma Aldrich) in PBS) for 10 min at RT, then washed 3 times in

PBS at RT with gentle agitation. SlowFade Diamond (Invitrogen) mounting medium and 22 3 22 cm glass coverslips were used to

mount slides for imaging. Tissue sections were imaged at 203 magnification on a Zeiss Axio Scan Z1 tile-scanning fluorescent mi-

croscope with Colibri LED light source. Imaging channels were optimized for fluorophore emission wavelengths of 350 nm, 488 nm,

555 nm, 647 nm, and 750 nm.

Following imaging, coverslips were removed in a PBS bath with gentle agitation. Sections were blocked with HIFI Blocking Buffer

(HBB; 10% normal donkey serum (Merck), 150 mMMaleimide (Sigma Aldrich), and 100 mM NH4Cl (Sigma Aldrich) in PBS) for 1 h at

RT as previously described.68 HBBwas then removed and replacedwith the primary antibodymix in HSB and allowed to incubate for

1.5 h at RT on an orbital rocker. Slides were washed 3 times in PBS for 5 min at RT with gentle agitation following primary antibody

incubation, then secondary antibodymix with conjugated fluorophores in HSBwas added, and slides were incubated for 1 h at RT on

an orbital rocker. All secondary antibodies were raised in donkey to optimize compatibility. Slides were washed 3 times in PBS for

5 min at RT with gentle agitation following secondary antibody incubation, directly conjugated antibodies in HSB were added, and

slideswere incubated for 1 h at RT on an orbital rocker. If no conjugated antibodies were included in that HIFI round, slides proceeded

to the next step. Slides received three final washes in PBS for 5 min at RT with gentle agitation and were then mounted for imaging.

Slides were again imaged with fluorescent tile-scanning at 203magnification, and exposure times and LED power for each channel

were set to experimentally predetermined settings. Following imaging of the first round of markers, coverslips were again removed,

and antibodies were eluted by adding elution buffer (0.5 M Glycine, 3 M guanidine hydrochloride (Sigma Aldrich), 3 M Urea (Sigma

Aldrich), 40 mM tris(2-carboxyethyl)phosphine (Sigma Aldrich), in deionized H2O) for 3 min with gentle agitation at RT. The above

process was repeated for all rounds of antibody panels.

HIFI and fluorescence image processing
Immunofluorescence image post-processing was performed using the Zeiss Zen software (Version 3). Tile stitching and fusion were

performed for all images at the highest quality settings. Background subtraction was performed with the rolling-ball subtraction

method using a diameter of 75 mm. If necessary, images were cropped to the area of interest. Multiple rounds of sequential immu-

nolabeling for each sample were aligned and merged with the HIFI Alignment Tool30 to produce a single OME.TIFF high-dimen-

sional image.

The pre-labeling imaging step captured the autofluorescence present in each tissue. For FFPE patient samples, the ‘Background

Subtraction’ feature of the HIFI Alignment Tool was used to subtract this autofluorescence from the tissue at a pixel-by-pixel level for

all fluorescent channels.

Machine learning image segmentation and cell classification
Regional tissue annotation was performed in QuPath69 (version 0.3.2). Binary classifiers were generated to create ROIs for the entire

lesion, vessels, areas of ECM, and tumor versus surrounding parenchyma. All classifiers used the Random Forrest machine learning

algorithm, full resolution, and were trained on 25% of image data. The lesion classifier was trained using all available channels, holes

and fragments less than 20,000 pixels were removed from ROIs. Manual removal of tissue deformations resulting from tissue

sectioning ormisalignment was performed on all lesion ROIs. Vessel classifiers were trained using only CD31, CD13, andDAPI. Holes

and fragments of less than 20 pixels were removed. Vessel ROIs were expanded by 15 mm to create perivascular annotations. The
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ECM classifier was trained using the collagen I, CD13, and TNC channels. Holes less than 50 pixels and fragments less than 300

pixels were removed from ROIs.

Region classification for measurements of fibrosis in preclinical trial samples used DAPI, collagen IV, fibronectin, and ER-TR7 as

input channels. Fragments less than 200 pixels were removed from ROIs. Positive detection of the meninges or choroid plexus un-

related to the post-treatment tumor lesion were manually removed from ROIs.

Cell segmentation was performed with the CNN-based StarDist algorithm70 implemented in Qupath. For improved accuracy, a

model for deep learning segmentation was generated using manually segmented training data from PDG sample images.30 A prob-

ability score was generated for each nucleus predicted by StarDist to indicate nuclear segmentation confidence and used for sub-

sequent filtering. Nuclei with probability scores less than 0.6, and areas less than 9.5 mm or greater than 90 mm were removed from

data analysis. Each nucleus was expanded by 3 mm to approximate the surrounding cytoplasm. The expansion was constrained by

the size of the detected nuclei, so that a cell was not larger than 1.5 times the size of its nucleus. This produced 4measurement zones

per object: nucleus only, cytoplasm only, whole cell, and cell membrane. The followingmeasurements were taken of every single-cell

object: X-Y object centroid coordinates of each nucleus; area, perimeter, and circularity of each nucleus and cell; distance of each

object centroid to the nearest regional annotation border; distance of each object centroid to the nearest neighbor object of an alter-

nate cell type; and MFI for each of the 4 measurement zones.

Cell classification was performed by generating machine learning classifiers for each cell type of interest in QuPath. Training

was performed by murine glioma specialists providing manually annotation of select cell types based on the antibody marker panel.

Binary object classifiers were trained using the random forest method on 25% of image data and all available markers, and validated

on a separate 25% subset of image data. Object classifiers were applied sequentially to the unclassified pool of cells per image.

HIFI spatial analysis and quantification
Cell neighborhood and interaction analysis were performed in Rwith RStudio using the imcRtools37 package version 1.0.2, and near-

est neighbor distance network analysis used the igraph package.71 HIFI image measurements were repackaged into

SingleCellExperiment objects for analysis. An expansion radius of 30 mm was used to generate a spatial connectivity map for cells

within each image, connectivity maps for all images were pooled together and clustered to identify 13 distinct cell neighborhoods.

Cell object identifiers were reassigned with their respective cluster number and quantified for each image and treatment type. Inter-

action analysis was performed using the ‘classical’ method, randomly reassigning each cell type with 1000 iterations to create a null

distribution pattern for the statistical comparison of significant cellular interactions within each treatment type.

Mean nearest neighbor distance measurements for each treatment type were compiled into distance matrices of mean and stan-

dard deviation, and distance networks were generated with igraph using the Fruchterman-Reingold layout algorithm to set edge

lengths as proportional to the mean distance between two cell types. Edge widths were modified based on the standard deviation

of the mean, such that edge width was the inverse of variability (1/SD). Edge widths below a threshold were removed from each

network. The edge width threshold was determined as the median standard deviation of a network multiplied by an experientially

predetermined network heterogeneity cofactor constant. Node size for each cell type was based on binned percent-total popula-

tions, so that cell type nodes with populations. Network plots were clustered (gray outlines) using Louvain clustering with a resolution

of 1.1 to determine cell-type nodes with similar distance patterns.

Mass spectrometry proteomic analysis
Mice bearing PDGs >30mm3 in volumewere treated daily with BLZ945 and euthanized at predetermined experimental time points as

previously described. Brains were removed from mice following intracardiac perfusion with PBS (no fixative was used in tissue har-

vested for proteomic analysis). Samples were collected for untreated tumors (n = 6), 7 days of treatment (n = 3), 28 days of treatment

(n = 6), tumors that rebounded under treatment (n = 5), fibrotic scars from rebound tumors (n = 5), and tumors that stayed regressed

until the 16-week trial endpoint (n = 3). All brains were frozen unfixed in OCT compound, and serially sectioned. Tissues were

sectioned with alternating thicknesses; 2 sections were cut at 10 mm and the third was cut at 100 mm, then repeated throughout

the tissue block. For each set of 3 sections, one 10 mm section was stained with H&E, the other 10 mm stained with Picrosirius

Red (PSR), and the 100 mm section was left unstained and stored at �80�C. Manual microdissection was performed on dry ice

for multiple (5–8) 100 mm sections per sample using the H&E and PSR images as guides to excise areas of tumor, fibrotic scar,

and contralateral healthy brain.

Pooled tissue for each spatial zone in each sample was submitted to the UNIL Protein Analysis Facility (PAF) for proteomic analysis

by liquid chromatography coupled to mass spectrometry (LC-MS/MS). Samples were digested following a modified version of the

iST method72 (named miST method). Tissues were resuspended in 120 mL of miST buffer (1% sodium deoxycholate, 100 mM Tris

pH 8.6, 10 mMDTT), heated at 95�C for 10 min and sonicated on a Bioruptor system for 15 min and 23 5 s on a tip sonicator. Based

on tryptophane fluorescence quantification,73 20–200 mg of proteins were transferred to new tubes. Samples were diluted 1:1 (v/v)

withwater containing 4mMMgCl2 and benzonase (Merck #70746, 1003dil of stock = 250 units/mL), and incubated for 15min at RT to

digest nucleic acids. Reduced disulfides were alkylated by adding ¼ vol. of 160mM chloroacetamide (32mM final) and incubated for

45 min at RT in the dark. Samples were adjusted to 3 mM EDTA and digested with 2 mg Trypsin/LysC mix (Promega #V5073) for 1 h

at 37�C, followed by a second identical digestion step. Digests were desalted on a strong cation exchange (SCX) plate (Oasis

MCX; Waters Corp. #186001830BA) by centrifugation. After washing with isopropanol/1% TFA, peptides were eluted in 200 mL of
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80% MeCN, 19% water, 1% (v/v) ammonia, and dried by centrifugal evaporation. Peptides were redissolved in 2% acetonitrile,

0.05% TFA for LC-MS analysis in variable volumes to compensate for differences in amount based on protein quantitation.

Data-dependent LC-MS/MS analyses of samples were carried out on a Fusion Tribrid Orbitrap mass spectrometer (Thermo

Fisher Scientific) interfaced through a nano-electrospray ion source to an Ultimate 3000 RSLCnano HPLC system (Dionex). Pep-

tides equivalent to 1 mg of digested protein were separated on a reversed-phase custom packed 45 cm C18 column (75 mm ID,

100 Å, Reprosil Pur 1.9 mm particles, Dr. Maisch, Germany) with a 4–90% acetonitrile gradient in 0.1% formic acid (total time

140 min). Full MS survey scans were performed at 120,000 resolution. A data-dependent acquisition method controlled by Xca-

libur software (Thermo Fisher Scientific) was used that optimized the number of precursors selected (‘‘top speed’’) of charge 2+ to

5+ while maintaining a fixed scan cycle of 0.6 s. Peptides were fragmented by higher energy collision dissociation (HCD) with a

normalized energy of 32%. The precursor isolation window used was 1.6 Th, and the MS2 scans were done in the ion trap. The

m/z of fragmented precursors was then dynamically excluded from selection during 60 s. An aliquot of all samples was injected

the first time for a survey analysis on a short 40-min LC method (data not shown). Data were analyzed by MaxQuant and total

intensities obtained were used to adjust injection volumes in long gradient analyses to compensate for remaining differences in

total protein loading.

Data files were analyzed with MaxQuant 1.6.3.474 incorporating the Andromeda search engine.75 Cysteine carbamidomethylation

was selected as fixed modification while methionine oxidation and protein N-terminal acetylation were specified as variable modi-

fications. The sequence databases used for searching were the mouse (Mus musculus) reference proteome based on the UniProt

database (www.uniprot.org, version of January 31st, 2019, containing 54,211 sequences), and a ‘‘contaminant’’ database containing

the most usual environmental contaminants and enzymes used for digestion (keratins, trypsin, etc.). Mass tolerance was 4.5 ppm on

precursors (after recalibration) and 20 ppm on MS/MS fragments. Both peptide and protein identifications were filtered at 1% FDR

relative to hits against a decoy database built by reversing protein sequences. The ‘‘match between runs’’ option was activated and

the MaxLFQ algorithm was applied for quantitation.76

Initial processing of data was done with the Perseus software package.77 Reverse (decoy) database hits and contaminant proteins

were removed, and LFQ intensity values were log2-transformed. Data for 56 samples were retained in the final version of the analysis.

The initial dataset contained 7622 protein groups. Of these, 4561 were quantified in at least 75% of all samples and were retained for

further analysis. Missing values were inferred by imputation with standard Perseus parameters (width 0.3, down-shift 1.8 separately

for each column), followed by row normalization using Z score.78 Hierarchal clustering and principal component analysis (PCA) were

performed on the protein abundance data tables. Gene set enrichment analysis (GSEA) was performed for comparisons between

each sample type based on gene names for each identified protein. MSigDB databases employed were Hallmarks, Gene Ontology

(GO), KEGG, REACTOME, and BioCarta. Permutation type was set to Phenotype, with 1000 permutations per analysis. GSEA results

were analyzed by enrichment mapping in Cytoscape (version 3.8.0).

Single cell RNAseq analysis
PDG samples were harvested frommice with tumor volumes >30 mm3 prior to treatment (n = 3), 7 days post-treatment with BLZ945

as previously described (n = 3), and after 14 days of treatment (n = 4). Mice were euthanized with pentobarbital, perfused with cold

PBS, and whole brains were extracted. Tumors and treated lesions were dissected from brains and minced in cold PBS. For each

sample, gentleMACS C tubes (Miltenyi Biotec) were prepared with 4.8 mL 2% FBS in PBS with 100 mg/mL collagenase/dispase

(Sigma-Aldrich). Minced tissue samples were added to the gentleMACS C tubes, then incubated for 30 min at 37�C with constant

low-speed rotation. Samples were then centrifuged at 300 3 g for 5 min at 4�C and pellets were resuspended in 5 mL HBSS on

ice. Cells were passed through a sterile 100 mmfilter, centrifuged again at 3003 g for 5min at 4�C, pellets were resuspended inmyelin

removal bead mixture (1800 mL FACS buffer with 200 mL myelin removal beads II (Miltenyi Biotec)), and incubated for 15 min at 4�C.
18mL FACS buffer was added to each sample, centrifuged at 3003 g for 5min at 4�C, resuspended in 1mL FACS buffer, and filtered

through LS columns (Miltenyi Biotec). Samples were incubated with red blood cell lysis buffer for 15 min at room temperature, then

centrifuged at 3003 g for 5 min at 4�C and resuspended in 100 mm FACS buffer. Samples were incubated for 5 min at RT with DAPI

and Reddot, and sorted for live cells on an Astrios cell sorter (Beckman Coulter). Subsequently, samples were processed using the

Chromium Next GEM Single Cell 30 Reagent Kits v3.1 (Dual Index, 103 Genomics). Libraries were quantified by a fluorometric

method (Qubit, Thermo Fisher) and their quality was assessed on a Fragment Analyzer (Agilent Technologies) in the Lausanne

Genomic Technologies Facility (GTF) operated by the University of Lausanne. Samples were sequenced by GeneWiz on the

NovaSeq 6000 (Illumina).

Mapping was performed using CellRanger (version 6.0.1) with default parameters on the mouse reference transcriptome refdata-

gex-mm10-2020-A complemented with the following 2 sequences.

Transgene 1: eGFP

CATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGT

TCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCC

GTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGAC

TTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCG

AGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGC

ACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAA.
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CGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACC

CCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAA

GCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTA.

Transgene 2: hPDGFB

ATGAATCGCTGCTGGGCGCTCTTCCTGTCTCTCTGCTGCTACCTGCGTCTGGTCAGCGCCGAGGGGGACCCCATTCCCGAGGAG

CTTTATGAGATGCTGAGTGACCACTCGATCCGCTCCTTTGATGATCTCCAACGCCTGCTGCACGGAGACCCCGGAGAGGAAGATG

GGGCCGAGTTGGACCTGAACATGACCCGCTCCCACTCTGGAGGCGAGCTGGAGAGCTTGGCTCGTGGAAGAAGGAGCCTGGGT

TCCCTGACCATTGCTGAGCCGGCCATGATCGCCGAGTGCAAGACGCGCACCGAGGTGTTCGAGATCTCCCGGCGCCTCATAGAC

CGCACCAACGCCAACTTCCTGGTGTGGCCGCCCTGTGTGGAGGTGCAGCGCTGCTCCGGCTGCTGCAACAACCGCAACGTGCAG

TGCCGCCCCACCCAGGTGCAGCTGCGACCTGTCCAGGTGAGAAAGATCGAGATTGTGCGG.

AAGAAGCCAATCTTTAAGAAGGCCACGGTGACGCTGGAAGACCACCTGGCATGCAAGTGTGAGACAGTGGCAGCTGCACGGCC

TGTGACCCGAAGCCCGGGGGGTTCCCAGGAGCAGCGAGCCAAAACGCCCCAAACTCGGGTGACCATTCGGACGGTGCGAGTCC

GCCGGCCCCCCAAGGGCAAGCACCGGAAATTCAAGCACACGCATGACAAGACGGCACTGAAGGAGACCCTTGGAGCCGCCTAC

CCTTATGACGTGCCAGATTATGCCTAG.

Counts matrices were imported into R (version 4.0.3) and subsequently analyzed using the Seurat package (version 4.3.0). The

count matrix was filtered to retain the following: cells bearing between 200 and 7,500 genes, cells bearing with less than 10%ofmito-

chondrial gene counts, and genes detected in at least 5 cells.

Doublet prediction was performed per sample using DoubletFinder (version 2.0.3). PC neighborhood sizes (pK) were set to the

maximummean-variance normalized bimodality coefficient (BCmvn), and the pANN threshold (nExp) was set to 2.5%, 859 cells iden-

tified as doublets were filtered out, resulting in a final set of 37,300 cells and 21,979 genes. Gene counts were normalized using regu-

larized negative binomial regression for data normalization and variance stabilization, SCTransform (version 0.3.5). The percentage of

mitochondrial genes was used to regress out in a second non-regularized linear regression.

PCA was computed with the RunPCA function using 3000 most variable features and unsupervised cell clustering was performed

applying the graph-based clustering approach and Louvain algorithm implemented in the Seurat R package, with the distancemetric

which drives the clustering analysis based on previously identified 30 PCs. Uniform Manifold Approximation and Projection (UMAP)

dimensionality reduction was derived through the RunUMAP function based on the first 30 PCs. Marker genes were computed using

FindAllMarkers function, using the parameters min.pct = 0.25 and only.pos = TRUE, and used to identify clusters as cell populations.

Differential expression was computed on genes that are expressed in at least 10% of the cells of a given population, in at least one

sample of the 3 sample groups andwith average logCPM>5. Genes differentially expressed between clusters were determined using

the pseudobulk approach of edgeR implemented in muscat (version 1.4.0) after gene counts were aggregated by their sum per sam-

ple and cluster with the function aggregateData. Genes with an FC > 1.5 or <�1.5 and adjusted p-value <0.05 were kept for the ORA

analysis, executed through clusterProfiler (version 3.18.1). GSEA was also performed on the full list of genes ranked, using KEGG,

Hallmark and Reactome collections of msigdbr (version 7.5.1).

T cell subtype analysis was performed with the R package ProjecTILs.45 Briefly, the expression matrix was filtered to keep only

T cells and was projected on the precomputed a cross-study pan-cancer murine TIL Atlas version 1.0 (http://tilatlas.unil.ch/) based

on 16,803 high-quality single-cell transcriptomes from 25 samples (B16 melanoma and MC38 colon adenocarcinoma tumors) from

six different studies (available at https://doi.org/10.6084/m9.figshare.12478571, and interactively at https://spica.unil.ch/refs/TIL).

Pre-filtering of T cells (filter.cells option) and log-normalization of counts (skip.normalize option) were not performed. The prediction

of cell states was performed using a nearest-neighbor algorithm (dedicated R functions with default parameters).

Spatial transcriptomic analysis
Gene panel design and probe hybridization

We employed the Xenium In Situ technology platform (103Genomics) to detect gene expression in murine brain tumor samples. Our

customized gene panel was based on the standard Xenium Mouse Brain Panel and included an additional 100 genes selected from

single-cell RNAseq data of replicate samples. This panel featured 347 genes optimized for cell type identification and phenotypic

interrogation, including custom probes for eGFP and human-PDGFB transgenes.

Sample preparation and imaging

Fixed-frozenmouse brain sections were prepared at 8 mm thickness, mounted on Xenium slides, and processed through fixation and

permeabilization steps. 6-7 separate mouse tumor samples were placed in the analysis window of each Xenium slide. We hybridized

tissue sections with the customized 347-gene panel probes, maintaining stringent conditions to minimize non-specific binding. After

overnight hybridization at 50�C and subsequent stringent washes, probes were ligated and amplified using a rolling circle amplifica-

tion strategy. All tissue sections were subsequently imaged on the Xenium Analyzer v1.7.

Image acquisition and processing

The analyzer conducted 15 rounds of fluorescent probe hybridization and imaging, with a z-step resolution of 0.75 mm to compre-

hensively cover the tissue thickness. The captured z-stacks were processed to stitch together a comprehensive spatial map of

gene expression, employing puncta detection algorithms to localize mRNA molecules precisely. Each detected transcript was de-

coded based on its unique optical signature and assigned a quality score (Q-score) to ensure accurate identification. Transcripts with

a Q-score of 20 or higher were used for further analysis.
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Protein labeling and cell segmentation

Following image acquisition, slides were further processed for HIFI-based detection of 16 proteins. Each round of protein labeling

was corrected for pixel scale and aligned to the DAPI images acquired on the Xenium Analyzer for each sample. We employed

the iMAXT StarDist nucleus detection model on HIFI images in QuPath for cell segmentation.30,69,70 Protein MFIs were measured

for each cell in each sample in QuPath, and cell segmentation objects were exported to Xenium images using Xenium Ranger,

and nuclear objects were expanded by 5 mm to capture cytoplasmic RNA expression. The spatial distribution of mRNAswasmapped

to within cellular boundaries for downstream analysis.

Integrated spatial transcriptomic analysis
Preprocessing of the spatial transcriptomics data

The output files from Xenium Ranger were loaded into R and used to create a Seurat spatial transcriptomics object (one per sample)

using the LoadXenium function (Seurat package, verison 5.0.1). Cells with zero counts across all mRNAs were discarded. Normal-

ization and variance stabilization was performed using the SCTransform function.

Integration of the Xenium and HIFI data (protein MFIs and distances to fibrotic niches)

To match cells from Xenium and HIFI data corresponding to the same tissue section, we applied a fast nearest neighbor search al-

gorithm on the 0–1 scaled coordinates of the cellular centroids, using the get.knn function from the FNN R package (version 1.1.4).

Xenium cells that matched to the same HIFI cell as other Xenium cells, and Xenium cells that were too distant from their nearest HIFI

cell (cutoff based on an outlier analysis of distances using the boxplot.stats R function), were discarded.

Projection of cell population identities from the single cell RNA sequencing data onto the Xenium data

The single cell RNA sequencing data was used as a reference (all time points pooled) to project cell population identities onto the

Xenium spatial data. Projection was performed following the standard Seurat procedure for data transfer (FindTransferAnchors

and TransferData functions) with reference.reduction set to ‘‘pca’’, dims set to ‘‘1:30’’, and other parameters set to the default values.

Only cells with a cell population identity score R0.8 were annotated.

Cell population identification

Cells were split by sample according to their distance to the nearest fibrotic region (‘‘inside the fibrotic niche’’ if distance %5 mm,

‘‘outside the fibrotic niche’’ otherwise). PCA of the split data was performed using the RunPCA function and the first 30 principal com-

ponents were used for nearest-neighbor graph construction (FindNeighbors function) and UMAP non-linear dimensionality reduction

(RunUMAP function). Unsupervised clustering was performed using a shared nearest neighbor modularity optimization algorithm

(FindClusters function), with the resolution adjusted for aiming at around 30 clusters. Clusters were manually annotated with their

inferred cell population by considering the HIFI protein MFIs (trimmed at the 0.99 percentile and 0–1 scaled), cell population identities

projected from the single cell data, and signature scores from manually curated sets of Xenium panel genes (Supplemental table

‘‘Supp_Xenium_signatures.xls’’). Signature scores were computed using the AddModuleScore_Ucell function from the Seurat R

package, which uses theMann-Whitney U statistic from the UCell R package (version 2.4.0). To better identify lymphocytes and neu-

trophils, for which there was a low number of markers in the Xenium panel and no HIFI associated proteins, we excluded the neuronal

cells and their associated genes from the annotated data and repeated the dimensionality reduction and unsupervised clustering

procedures.

Splitting rebound tumor cells into zones

Cells were split into four concentric zones according to the quartiles of the distribution of distances from treatment-associated

fibrotic niche.

Differential gene expression analyses

Xenium transcriptomic data from different time points and fibrosis association compartments were integrated using the STACAS R

package (version 2.2.2) semi-supervised method (taking cell populations identities into account for guiding the alignment of the tran-

scriptional profiles). Analyses of differential gene expression between groups of cells were performed using the FindMarkers function

fromSeurat. Geneswith an absolute average log2 fold-change >1 and adjusted p-value <0.05were considered as significantly differ-

entially expressed.

T cell exhaustion signature scores

Scores were computed using the AddModuleScore_UCell function and the signature was composed of the Ctla4, Lag3, Pdcd1 and

Tigit genes.

Intercellular communication analysis of scRNA-seq data with integrated spatial colocalization data derived fromHIFI
We adapted the NicheNet method,46 implemented in the nichenetr R package (v1.1.0), by incorporating probabilities of cell-to-cell

communication inferred from spatial data.79 The NicheNet method is aimed at predicting which ligands from one or more sender cell

populations aremost likely to affect target gene expression in interacting receiver cell populations (ligand activity analysis), andwhich

specific target genes are affected by which of these predicted ligands. In NicheNet, ligand activities can be measured by the corre-

lation between their predicted potential to regulate target gene expression (based on a prior model of ligand-receptor-target

interactions) and the observed transcriptional response. We adapted this method by using weights for this measure that reflect

the probabilities of intercellular interactions inferred from cell vicinity compositions in HIFI data.
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Input data
d scRNA-seq dataset (as a Seurat v3 object with processed expression data): Glioblastoma cells and corresponding immune

microenvironment cells (TME) from untreated mice (‘‘UT’’) and mice treated with BLZ945 (sampled at 7 and 14 days after start

of treatment, pooled - ‘‘D7_D14’’). Different fibroblasts cell subpopulations were pooled into a single population. Different mi-

croglia cell subpopulations were pooled into a single population.

d HIFI spatial proteomics data: Data consisted of 4 sections per tissue 3 3 replicates = 12 images per ‘‘data point’’ (‘‘UT’’, ‘‘D7’’

and ‘‘D14’’), with dots corresponding to individual cells, whose coordinates (in mm) were retrieved. Cells were annotated with

their inferred population.

d Prior model of ligand-receptor, receptor-target and ligand-target interactions: We used the prebuilt NicheNet ligand-target

matrix ("https://zenodo.org/record/3260758/files/ligand_target_matrix.rds"), ligand-receptor network ("https://zenodo.org/record/

3260758/files/lr_network.rds") and weighted integrated network ("https://zenodo.org/record/3260758/files/weighted_networks.

rds"). Gene symbols were converted from human to mouse based on one-to-one orthology.

We considered the following cell populations as potential ‘‘sender’’ or ‘‘receiver’’ cell populations: CD8+ T cells ("CD8_Tcells"), Mi-

croglia ("microglia"), Fibroblasts ("fibroblast-like_cells"), Monocytes/macrophages ("MonoMac"), and Endothelial cells. ‘‘Tumor’’

cells and ‘‘Treg’’ were not considered for this analysis as there were no differentially expressed genes between treated and untreated

mice. All interactions between cell populations were tested, except self-self (autocrine) interactions.

The target gene set of interest was restricted to extracellular matrix (ECM) genes, according to Gene Ontology term GO:0031012,

that were potential targets according to the prior model. Furthermore, we only considered genes that were expressed in at least 10%

of cells in receiver cell populations and were significantly differentially expressed after BLZ945 treatment (p-value %0.05, average

fold change R1.5). We considered as potential ligands all genes expressed in at least 10% of cells in sender cell populations that

could bind receptors expressed in the receiver cell populations, according to the prior model.

Probabilities of interaction were inferred from cell vicinities in HIFI spatial data and were used downstream as weights for ligand

activity analyses. Data were first downsampled so that the fractions of cell populations per image corresponded to the predicted

fractions of cells sampled in the scRNA-seq experiment. Probability weights for each sender cell population – receiver cell population

interaction were computed from the frequencies of receiver cells in the vicinity (within 30 mmdistance) of sender cells computed from

pooled ‘‘D7’’ and ‘‘D14’’ images, using the spatstat R package (v2.3.4), according to the following formula:

Wi;j =
Fi;j

Fi

where:

Wi;j was the probability weight of the interaction between cells from population i and cells from population j (0 <Wi;j < number of cell

populations),

Fi;j was the frequency of cells from population j in the vicinity of cells from population i, and

Fi was the average frequency of all cell populations in the vicinity of cells from population i

Cell population i - cell population j specific ligand activities Li;j weremeasured by the Pearson coefficient of correlation between the

ligand’s regulatory potential (according to the prior model) and the observed transcriptional response in the receiver cells. Pearson

coefficients were weighted by theWi;j to take into account the probability of interaction between cells from population i and cells from

population j. Ligand activities with Li;j%0:13Fi were discarded, and the remaining were ranked according to Li;j. Finally, the top 100

ranked ligand activities were selected for downstream prediction of active ligand-receptor and ligand-target interactions.

We considered receptors as active if they were considered as potential receptors of the selected ligands (according to the

prior model) and were expressed in the receiver cells. We considered as active ligand-target interactions the interactions

between selected ligands and the top 200 potential target genes ordered by ligand-target regulatory potential (from the

prior model).

Intercellular Communication Analysis Between Sender Cells in All Spatial Regions and PDFLs in the Post-Treatment Fibrotic Niche.

Identification of the PDFL receiver cells in the scRNA-seq data

A ‘‘fibrotic niche’’ signature score was used to identify high resolution unsupervised PDFL clusters in the scRNA-seq data with a

‘‘fibrotic niche’’ profile. The signature was derived from the Xenium data and consisted of the set of differentially expressed genes

between PDFLs inside and outside the fibrotic niche (absolute average log2 fold-change >1.5 and adjusted p-value <0.05). The score

was computed using the AddModuleScore_UCell function.

NicheNet analysis

The NicheNet method, implemented in the nichenetR R package was used to predict the interactions between Tgfb1 or Tgfb2 (po-

tential ligands) in PDFLs, endothelial cells, microglia or monocytes/macrophages (untreated or 7-day, all spatial regions) and all po-

tential targets in PDFL receiver cells (7-day, in fibrotic niche). Only genes expressed in at least 1% of cells were considered for this

analysis. Ligands were considered active if the Pearson correlation between their potential to regulate target gene expression (ac-

cording to the prior model) and the observed transcriptional response was >0.1. The transcriptional response was derived from a

differential gene expression analysis of the scRNA-seq data comparing 7-day ‘‘fibrotic niche’’ PDFLs and untreated ‘‘fibrotic niche’’

PDFLs (absolute log2 FC > 1 and adjusted p-value <0.05). The top 20 active ligand-target interactions, ranked by regulatory potential

were selected.
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Pathology scoring
Scoring of pathological features was performed in accordance with Canton of Vaud and Swiss federal regulations regarding patient

privacy protection. Matched primary and recurrent patient FFPE samples (n = 18 for each) were sectioned at 5 mm and stained with

H&E and PSR. Primary and recurrent samples were slide scanned at 203magnification on the Zeiss Axio Scan Z1, and all identifying

data was removed. Images were scored for multiple features by an expert pathologist in a double-blinded study, then rematched to

patient metadata.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed in R with RStudio, or in GraphPad Prism (GraphPad 9.0 software). two-way ANOVA or unpaired

t-tests were used for between-group comparisons, with the level of significance defined as p < 0.05. Data are presented as means ±

SEM. Figure asterisks correlate to p-value thresholds: ns = > 0.05, * =% 0.05, ** =% 0.01, *** =% 0.001, **** =% 0.0001. For survival

curves, p-values were obtained by using the Log Rank (Mantel-Cox) test.
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