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Key Points: 

• GCB DLBCL are characterized by a defective IRE1-XBP1 pathway 

• XBP1 expression reduces GCB DLBCL tumour growth in a mouse xenograft model 

 

Abstract:  

The endoplasmic reticulum kinase IRE1 and its downstream target XBP1 drive B cell 

differentiation towards plasma cells and have been shown to contribute to multiple 

myeloma development; yet little is known on the role of this pathway in Diffuse Large B 

cell Lymphoma (DLBCL). Here we show that in Germinal Center B cell-like (GCB) 

DLBCL subtype, IRE1 expression is reduced to a level that prevents XBP1 activation. 

Gene expression profiles indicated that, in GCB DLBCL cancer samples, expression of 

IRE1 mRNA was inversely correlated with the levels and activity of the epigenetic 

repressor, histone methyltransferase EZH2. Correspondingly, in GCB derived cell lines, 

the IRE1 promoter carried increased levels of the repressive epigenetic mark H3K27me3. 

Pharmacological inhibition of EZH2 erased those marks and restored IRE1 expression and 

function in vitro and in vivo. Moreover, reconstitution of the IRE1 signaling pathway, by 

expression of the XBP1 active form, compromised GCB DLBCL tumor growth in a mouse 

xenograft cancer model. These findings indicate that IRE1-XBP1 downregulation 

distinguishes GCB DLBCL from other DLBCL subtypes and contributes to tumor growth.  
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Introduction 

Diffuse Large B cell Lymphoma (DLBCL) represents the most common category of Non-

Hodgkin Lymphomas and accounts for 30 to 40% of the newly diagnosed patients 1. Gene 

expression profiling of patient-derived DLBCL tumors has uncovered two main and noticeably 

distinct DLBCL molecular subtypes 2,3. Activated B cell-like or ABC DLBCL subtype is 

characterized by expression of genes typically induced during in vitro activation of peripheral B 

cells. Most prominent oncogenic events that characterize ABC lymphomas include constitutive 

NFκB signaling 4-9 and frequent genetic inactivation of Blimp1, a master regulator of terminal 

plasma B cell differentiation 10,11.  

The second main molecular subtype exhibits transcriptional programs characteristic of germinal 

center B cells and is named Germinal Center B cell-like or GCB DLBCL. This subtype is 

characterized by overexpression of BCL6 12, a transcriptional suppressor that down-regulates 

genes involved in plasma cell differentiation 13,14 and contributes to disease onset by blocking B 

cells in the germinal center stage 15,16. Histone methyl-transferase EZH2 is another frequently 

mutated 17,18 transcriptional regulator that co-operates with aberrant BCL6 activity to promote 

GCB DLBCL pathology 19,20. EZH2, the catalytic subunit of the Polycomb Repressor Complex 2, 

mediates Histone 3 Lysine 27 methylation (H3K27me3) leading to chromatin condensation and 

repression of its target genes 21,22. Similar to BCL6, mutated EZH2 permanently down-regulates 

genes involved in plasma cell differentiation, including Blimp1 and IRF4 23, and thereby blocks 

terminal differentiation to promote disease development. Therefore, constitutive inhibition of 

differentiation programs represents a general strategy that GCB DLBCL deploy to promote 

tumor growth.  
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B cell differentiation towards plasma cells is also highly dependent on functional IRE1 signaling 

24-26. IRE1 is a ubiquitously expressed transmembrane kinase and endoribonuclease localized 

within the Endoplasmic Reticulum (ER). IRE1 detects stress caused by misfolded proteins that 

accumulate within the ER lumen. Upon activation, IRE1 mediates XBP1 mRNA maturation 

leading to production of the transcription factor XBP1s that translocates to the nucleus to trigger 

the expression of ER stress response genes such as DNAJB9, SEC23b and SRPR. In addition to 

its main role in catalyzing XBP1 mRNA maturation, IRE1 can degrade several mRNA molecules 

in a process called Regulated IRE1-dependent decay (RIDD) 27. Upon exposure to stress the 

signaling pathways steaming from IRE1 promote increased ER folding capacity and restore 

homeostasis 28,29 

In plasma cells, the IRE1-XBP1s signaling expands the ER network in order to equip these 

secretory cells with extensive ER folding machinery competent of handling large amounts of 

immunoglobulins 30. In addition, XBP1s binds the IL6 promoter, leading to production of this 

cytokine that is required for appropriate plasma cell differentiation 24. Intriguingly, constitutive 

expression of the IRE1-downstream product XBP1s in murine B cells promotes a disease that 

resembles multiple myeloma (MM) 31. Furthermore, pharmacological inhibition of the IRE1 

activity has been described as a promising therapeutic option in MM indicating addiction of 

plasma cell derived cancers to IRE1-XBP1s signaling pathway 32,33.  

While the importance of the IRE1-XBP1 pathway in multiple myeloma is well established, the 

role of this pathway in Diffuse Large B Cell Lymphoma remains rather unclear. Comparison 

between molecular characteristics of ABC and GCB DLBCL subtypes indicated a dichotomy in 

expression of XBP1s target genes 34. However, the causes and therapeutic significance of this 

dichotomy was unknown. Here we describe that specific downregulation of IRE1 expression 
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impairs XBP1s production and renders GCB DLBCL more sensitive to ER stress inducing 

agents. The analysis of IRE1 expression, in a cohort of 350 DLBCL patients, confirmed that 

IRE1 is specifically downregulated in GCB DLBCL, therefore suggesting that IRE1 levels could 

serve as a novel marker in DLBCL classification. We identified the epigenetic regulator EZH2 as 

a key factor that predefined basal levels of IRE1 expression. Pharmacological inhibition of EZH2 

enzymatic activity restored IRE1 expression and function in GCB DLBCL. Moreover, 

reconstitution of the IRE1 pathway by ectopic XBP1s expression compromised tumor growth in 

a GCB DLBCL xenograft mouse model. This indicates that, in contrast to its tumor-promoting 

role in multiple myeloma, the IRE1-XBP1s activity might negatively impact tumor growth in 

GCB DLBCL. 

  

Materials and Methods 

 

Methods for Cell culture and Drug Treatment, Immunoblot analysis, Chromatin 

immunoprecipitation (ChIP), RT-PCR, XBP1 splicing assay and Lentivirus production and 

cell lines infection are detailed described in the Supplemental section. 

 

Mice 

Animal experiments were approved by the Veterinary Office of the Canton de Vaud and the 

Animal Ethics Committee (authorization 2883). Immuno-compromised AGR 129 (IFN-α/β, 

IFN-γ receptor and RAG-2 deficient) mice were provided by M. Gilliet (Department of 

dermatology, CHUV, Lausanne) and housed at the University of Lausanne in accordance to local 

and national guidelines. Six to eight-week-old females were randomly distributed in two groups 
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and tumor cells were injected subcutaneously in 200μl volume of 1:1 PBS:Matrigel (BD 

Biosciences). Each mouse was injected with 3 x 106 SUDHL4 cells in the left flank and the same 

number of SUDHL4-XBP1s cells (SUDHL4 infected with the vector expressing XBP1s under 

Doxycycline) was injected in the right flank. The same experimental procedure was followed to 

generate the ABC xenograft mouse model using 2.5 x 106 HBL1 or HBL1-XBP1s cells (HBL1 

infected with the vector expressing XBP1s under Doxycycline). Control group was treated with 

vehicle (5% sucrose in H2O). Second group was treated with Doxycycline (5% sucrose, 1 mg/ml 

Doxycycline in H2O). Treatments were administered orally through water. Bottles with vehicle 

or Doxycycline were replaced every 2 days. Tumors were measured 3 times per week and the 

volumes were calculated using the formula V=(length x width2)/2. Doxycycline was acquired 

from Sigma (D9891-10G). To evaluate in vivo effects of GSK126 the AGR129 mice were 

subcutaneously injected with 3 x 106 Karpas422 cells in 200μl volume of 1:1 PBS:Matrigel. 

When palpable tumors were established, vehicle (20% SBE-β-CD adjusted to pH 4-4.5 with 1N 

acetic acid) or GSK126 at concentration of 150 mg/kg were daily injected (during 10 days) in the 

final volume of 0.2ml per injection as previously described 35.   

Statistical Analysis 

All data are representative of at least three different experiments. Statistical significance was 

ascertained by performing appropriate tests described in figure legends. Significant differences 

were indicated by * (p≤0.05), ** (p≤0.01) or *** (p≤0.001). 

Data-mining from published microarray data sets 

Raw expression profiles (CEL files) were downloaded from the publicly available data-sets 

(GSE10846 36, GSE23501 37, GSE4097135, GSE56315 38) imported and normalized using RMA 

(Robust Multiarray Average) algorithm in Partek Genomics Suite 6.4 (Partek, St. Louis, MO, 
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USA). Differences of expression between groups using the Wilcoxon rank-sum test and Pearson 

correlations were calculated using Stata/SE v.12.1 (StataCorp, College Station, TX, USA), the 

Pearson correlations P values with the tool available at www.socscistatistics.com. Genes were 

considered differentially expressed between groups if bearing a p<0.005, q-value <0.05 and an 

absolute log ratio > 0.3 in both cohorts. 

Results  

IRE1 signaling is defective in a subset of diffuse large B cell lymphomas 

In conditions of ER stress IRE1 engages its endoribonuclease activity to promote unconventional 

processing of XBP1 mRNA leading to production of mature, spliced XBP1 mRNA. The spliced 

XBP1 mRNA product is consequently translated into the active transcription factor XBP1s. Gene 

expression profiles have indicated that ABC DLBCLs express XBP1 target genes at higher levels 

than GCB DLBCLs. This suggested that the IRE1/XBP1 pathway is differentially regulated 

between the two DLBCL subtypes and led to the hypothesis that ABC DLBCL display enhanced 

basal XBP1s protein 34. To further evaluate this, we studied IRE1 activity in four representative 

DLBCL cell lines. To trigger IRE1 activation, we treated DLBCL cells with tunicamycin, an 

inhibitor of N-linked glycosylation that triggers robust ER-stress, and measured gene expression. 

The induction of XBP1 target genes was impaired in the representative GCB DLBCL lines 

compared to ABC DLBCL cells (Figure 1A). Along these lines, XBP1 mRNA maturation and 

XBP1s protein expression were almost completely abolished in these two GCB DLBCL lines 

(Figure 1B). Inability of GCB DLCBL cells to splice XBP1 mRNA was combined with reduced 

levels of IRE1 protein (Figure 1B), indicating that IRE1 downregulation may impair the 

activation of a functional ER-stress response in GCB DLBCL cells. To extend these findings 

further, we analyzed a larger panel of DLBCL cell lines and found that 9 out of 11 GCB DLBCL 
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cells had an impaired IRE1 expression that correlated with defective production of active XBP1s 

upon 6 hours treatment with tunicamycin (Figure 1C). In line with these observations, we found 

that ER-stress mediated induction of the XBP1 target gene DNAJB9 was impaired in GCB 

DLBCL compared to ABC DLBCL (Supplemental Figure 1A) while expression of the RIDD 

target Bloc1S1 mRNA, was not affected upon ER-stress induction in GCB DLBCL 

(Supplemental Figure 1B), further indicating that IRE1 functions are defective in GCB DLBCL. 

Importantly, other ER stress response pathways were similar in both subtypes, as measured by 

ATF6 and PERK levels (Figure 1C).  Moreover, upon exposure to tunicamycin, PERK activation 

and production of its downstream effectors, phospho-eIF2α and ATF4, were unaffected in GCB 

DLBCL cells (Figure 1C and Supplemental Figure 1C and 1D). This indicated that these cells 

can mount a response to tunicamycin and do not display a global ER-stress response defect but 

rather a specific down-modulation of the IRE1/XBP1 signaling branch. Next, we treated DLBCL 

with various pharmacological inducers of ER-stress pathways. Administration of proteasome 

inhibitor bortezomib led to specific activation of PERK-ATF4 pathway without promoting 

robust IRE1-XBP1 activation in both subtypes. However, treatment with other stress inducers 

such as thapsigargin, dithiothreitol (DTT), brefeldin A or nelfinavir specifically affected 

production of XBP1s in representative GCB cells when compared to ABC DLBCL  (Figure 1D, 

Supplemental Figure 1E). In stark contrast, IRE1 levels and response appeared functional in 

other experimental models, such as Jurkat T cell leukemia cells, lymphoblastoid B-cell line 

CB33, human blood B cells and in panel of Burkitt’s lymphomas that similar to GCB DLBCL 

are germinal center B-cell-derived cancers (Supplemental Figure 2A-D).  

To interrogate whether IRE1 expression modulated the ability of DLBCL to cope with stress, we 

monitored cell viability in a panel of IRE1 high and IRE1 low DLBCL treated with the stress 

inducers tunicamycin or nelfinavir. Cells with reduced IRE1 displayed a significantly impaired 
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viability in presence of stress (Figure 1E), indicating that decreased IRE1 expression affected 

optimal stress-adaption programs in GCB DLBCL. 

IRE1 expression is regulated at transcriptional level in GCB DLBCL  

The identification of cell types that downregulate IRE1 to non-functional levels, revealed an 

unanticipated mechanism of regulation of the ER-stress response. IRE1 is expected to be 

expressed and functional in virtually all eukaryotic cells to elicit a swift response to homeostatic 

changes. To investigate protein degradation mechanisms that may regulate its expression, we 

monitored IRE1 protein levels in presence of the proteasome inhibitor MG132. As expected we 

found that proteasome inhibition stabilized XBP1 unspliced (XBP1u) protein 39 in GCB DLCBL 

cells similar to the protein levels observed in ABC DLBCL (Figure 2A). This indicated that GCB 

DLBCL cells are capable of producing XBP1 mRNA. However no recovery of IRE1 protein 

expression or XBP1s production was observed in GCB DLBCL cells (Figure 2A). This suggests 

that proteasomal degradation of IRE1 does not contribute to the observed IRE1 phenotype in this 

lymphoma subtype. To investigate whether IRE1 regulation occurred at the transcriptional level, 

we analyzed IRE1 mRNA expression in a dataset profiling GCB DLBCL tumors and tonsil-

derived B cell subtypes 38 and observed that IRE1 expression was reduced in GCB DLBCL 

compared to normal B cells, including germinal center B cells (Supplemental Figure 2E). Then, 

we investigated IRE1 mRNA expression in two genes expression datasets profiling 167 ABC and 

183 GCB DLBCL tumors 36. In both groups, clinical samples classified as GCB DLBCL had 

significantly lower IRE1 mRNA expression compared to ABC DLBCL tumors (Figure 2B). 

Similarly, IRE1 mRNA levels in DLBCL cell lines were significantly reduced in GCB DLBCL 

cells compared to ABC DLBCL cells (Figure 2C). In contrast, other stress related genes, such as 

ATF4, Chop, PERK and ATF6 were not significantly reduced in GCB DLBCL compared to ABC 
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DLBCL (Figure 2D and E; Supplemental Figure 3). Thus, IRE1 mRNA downregulation is a 

hallmark of GCB DLBCL tumors that occurs independently of the other branches of the ER-

stress response.  

EZH2 regulates IRE1 expression in DLBCL  

Gain-of-function EZH2 mutations are typical features that discriminate GCB from ABC DLBCL 

17,40. EZH2 is the catalytic subunit of the PRC2 complex that catalyzes the mono through 

trimethylation of lysine 27 on histone H3 (H3K27). Trimethylation of H3K27 suppresses 

transcription of specific genes that are proximal to the site of histone modification, a mechanism 

that may contribute to tumor growth 41. Previously it has been demonstrated that in GCB 

DLBCL, through the generation of de novo bivalent domains, EZH2 downregulates the genes 

involved in plasma cell differentiation and keeps the tumors arrested in germinal center-like 

developmental stage 23. In the two available DLBCL genes expression-profiling datasets 36, we 

observed that within the GCB DLBCL clinical samples EZH2 expression negatively correlated 

with IRE1 mRNA levels (Figure 3A). No such correlation was observed between EZH2 and 

PERK expression levels (Supplemental Figure 4A). Moreover, analysis of gene expression 

profile datasets from GCB patients 37 and GCB cell lines 35 indicated that EZH2 gain-of-function 

mutations correlated with decreased IRE1 expression (Figure 3B and Supplemental Figure 4B). 

To confirm that EZH2 modulates IRE1 expression and stress responses, we generated HeLa cells 

expressing EZH2 gain-of-function mutant form (Y641F) that is typically observed in GCB 

DLBCL 18. Compared to control cells, EZH2Y641F-expressing cells showed increased levels of 

H3K27me3 while IRE1 expression was reduced (Supplemental Figure 4C). Consistently, IRE1-

mediated gene expression upon treatment with tunicamycin was impaired in EZH2Y641F-

expressing cells (Supplemental figure 4D). This suggested that EZH2 could specifically silence 
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IRE1 expression through epigenetic modification of its promoter. To test this hypothesis we 

measured by chromatin immunoprecipitation (ChIP) H3K27me3 marks within the proximal 

promoter region of IRE1 and found that GCB cells displayed an increased enrichment of 

H3K27me3 marks compared to ABC cells (Figure 3C). As expected IRF4, an EZH2 regulated 

gene in GCB 19 showed a similar profile. In contrast, the promoters of the house-keeping gene 

GAPDH and of the constitutively expressed Bcl6 gene had no detectable H3K27me3 marks 

while the differentiation factors MyoD and HoxA7 harbored H3K27me3 marks in both ABC and 

GCB cells as previously reported 23. In addition to repressive marks, we noticed that the IRE1 

promoter harbored H3K4me3 activating marks (Supplemental Figure 4E), suggesting that its 

activity is poised and could potentially be restored by erasing the H3K27me3 marks 42. To test 

this we treated cells with a cell permeable EZH2 inhibitor GSK343 43. EZH2 inhibition decreased 

H3K27me3 marks on the IRE1 promoter (Figure 4A) and increased IRE1 mRNA (Supplemental 

Figure 4F) and protein levels in the GCB subtypes (Figure 4C). Increased IRE1 expression 

correlated with decreased overall H3K27 trimethylation in GCB cells. In contrast PERK 

expression was not significantly affected by EZH2 inhibition, further demonstrating that the two 

ER-stress signaling branches are controlled by different mechanisms. Finally, EZH2 inhibition 

restored IRE1 functionality in GCB cells as demonstrated by the production of active XBP1s in 

presence of tunicamycin (Figure 4C). To rule out the possibility that the effects on IRE1 

expression are exclusive to GSK343 we treated the cells with GSK126, another selective EZH2 

inhibitor 35. We demonstrated that, similar to GSK343, GSK126 increased IRE1 levels in various 

GCB DLBCL lines (Supplemental Figure 4G). Then we analyzed whether this effect could be 

reproduced in vivo. We implanted Karpas422 GCB DLBCL into immunodeficient AGR129 

(IFN-α/β, IFN-γ receptor and RAG-2 deficient) mice 44 and treated the animals with GSK126 for 

ten days. Analysis of postmortem tumor biopsies showed that pharmacological EZH2 inhibition 
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in vivo promoted IRE1 protein and mRNA expression and increased the levels of the XBP1 

target gene DNAJB9 (Figure 4D and 4E). Altogether these data show that increased EZH2 

activity in DLBCL contributes to decreased IRE1 levels and that pharmacological inhibition of 

H3K27 trimethylation can restore a functional IRE1 pathway.  

Enhanced EZH2 activity regulates IRE1 levels in different tumor types 

EZH2 function is predominant during embryonic development and in differentiating tissues, 

however its activity decreases in the majority of differentiated cells 45. Nevertheless, aberrantly 

increased EZH2 activity has been reported in multiple malignancies including cervical cancer 41 

46,47. To assess the epigenetic status of IRE1 promoter in the context of another malignancy 

characterized by increased EZH2 activity, we quantified IRE1 histone modifications in cervical 

cancer-derived HeLa cells (Supplemental Figure 5A). We observed that repressive (H3K27me3) 

and activating (H3K4me3) marks coexisted at the IRE1 promoter, indicating promoter bivalency 

in this cancer cell line. In contrast to GCB DLBCL and HeLa cells, IRE1 promoter from non-

tumoral mouse embryonic fibroblasts was labeled only with the activating H3K4me3 epigenetic 

mark (Supplemental Figure 5B). Next, we tested whether EZH2 inhibition affected IRE1 

expression in HeLa cells. These cells have detectable IRE1 levels, yet in presence of EZH2 

inhibitor, we observed an increase in IRE1 protein that correlated with a decrease in H3K27 

trimethylation (Supplemental Figure 5C). Similarly, IRE1 mRNA was augmented upon EZH2 

inhibition (Supplemental Figure 5D). Consistently, upon deletion of the EZH2 gene by 

CRISR/Cas9, IRE1 expression was increased, enhancing XBP1s protein production in presence 

of mild ER-stress (Supplemental Figure 5E). These data indicate that in different tumors 

characterized by enhanced EZH2 function, IRE1 expression levels are predefined by aberrant 

epigenetic activity that controls its signaling outputs.  
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Reactivation of the IRE1 pathway contributes to toxic effects of EZH2 inhibitors in GCB 

DLBCL 

EZH2 inhibition was demonstrated to be specifically toxic to GCB lymphomas 23,35. Similar to 

previous reports we observed that EZH2 inhibition with GSK343 predominantly affected GCB 

growth in vitro (Supplemental Figure 6A). To evaluate the contribution of IRE1, we generated 

IRE1 deficient SUDHL4 (GCB DLBCL) cells (Figure 4F) and analyzed cell viability upon 

treatment with GSK343. We found that EZH2 inhibition mediated toxicity was reduced in IRE1 

deficient clones compared to controls (Figure 4G). These data indicate that reactivation of the 

IRE1 pathway contributes, at least partially, to the anti-tumoral effects of EZH2 inhibitors. 

Expression of XBP1s impairs tumor growth in a GCB DLBCL xenograft model 

Because aberrantly decreased IRE1-XBP1s pathway is a feature of most GCB DLBCL, we 

interrogated the contribution of this pathway to tumor growth. We generated HBL1 (ABC 

DLBCL) and SUDHL4 (GCB DLBCL) cells that produce a doxycycline-inducible XBP1s 

protein. These cells were transplanted into the flanks of immunodeficient AGR129 mice 44, and 

tumor growth was monitored over time. We found that doxycycline administration did not affect 

growth of the ABC tumors (Figure 5A). On the other hand, treatment with doxycycline resulted 

in impaired growth of the grafted GCB tumors (Figure 5C). As expected, analysis of post-

mortem tumor biopsies showed that, in both models, doxycycline administration increased 

XBP1s expression and its downstream target DNAJB9 (Figure 5B and 5D). Interestingly, in the 

GCB xenograft model XBP1s induced expression of the pro-apoptotic gene Chop (Figure 5D). 

Doxycycline per se, did not impair the growth of tumors originating from parental HBL1 and 

SUDHL4 cells (Supplemental Figure 7A and 7C). Similarly, this treatment did not promote the 

transcription of DNAJB9 as measured in the tumor biopsies (Supplemental Figure 7B and 7D). 
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These data indicate that XBP1s can decrease tumor growth in GCB DLBCL, further suggesting 

that decreased IRE1 activation in particular cancers types may contribute to tumorigenesis 48.  

Discussion 

Here, we demonstrate that EZH2 mediated epigenetic regulation pre-defines basal IRE1 

expression levels. In GCB DLBCL, where EZH2 frequently carries gain-of-function mutations, 

IRE1 promoter is labeled by high amounts of H3K27me3 repressive marks. This promotes IRE1 

down-regulation and blunts ER stress responses as demonstrated by inability of GCB DLBCL to 

activate XBP1 or downregulate the targets of IRE1-mediated mRNA decay. IRE1 expression and 

function could be restored upon EZH2 inhibition, demonstrating the role of this regulation in 

DLBCL. Additionally, in a cervical cancer cell line, characterized by enhanced EZH2 activity, 

we observed a similar mode of epigenetic downregulation of the IRE1 promoter, indicating that 

this regulatory mechanism is conserved among different tumors.  

The IRE1-XBP1 pathway plays an important role in secretory cell differentiation and 

maintenance 30,49. It is therefore conceivable that differentiation programs may engage epigenetic 

modifiers to establish IRE1 protein levels and therefore couple ER-stress response capacity to 

the physiological requirements. In line with this hypothesis EZH2 has been involved in the 

differentiation and maintenance of secretory cells including pancreatic β-cells 50. Similarly, 

EZH2 regulates the genetic programs associated with differentiation of germinal center B-cells to 

plasma cells or memory B-cells 19,23, a process that is also dependent on the IRE1-XBP1 pathway 

24,26. The mechanisms involved in IRE1 activation during B cell differentiation are still poorly 

understood. Studies have shown that XBP1s production in this context precedes ER-stress 51. Our 

findings indicating that EZH2 status regulates IRE1 expression raise the question of whether, 

during B cells differentiation, increased IRE1 expression could be mediated by decreased EZH2 
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activity 52. It was shown that overexpression of IRE1 promotes its own activation 53, thus 

enhanced IRE1 expression during differentiation could be sufficient to initiate the pathway and 

trigger XBP1s production. 

In multiple myeloma, activation of the IRE1-XBP1s signaling pathway has been considered as a 

tumor-promoting event 31,33,54. In contrast, here we found that in GCB DLBCL this pathway 

affects tumor growth and is therefore downregulated . Reconstitution of XBP1s signaling 

specifically impaired the growth of GCB DLBCL tumors in vivo. These data highlight the key 

role of the IRE1-XBP1 pathway in malignancies and suggest that it can contribute to both, 

tumor-promoting and tumor-repressing roles depending on the tumor type.  

While our results indicate that XBP1s is an important regulator of GCB DLBCL growth 

downstream of IRE1, we cannot exclude that other pathways steaming from IRE1, such as 

RIDD, could also play a role and further affect GCB tumor growth. XBP1 may regulate GCB 

DLBCL tumors by different mechanisms. It drives expression of the UPR network genes that is a 

hallmark of plasma cell differentiation 30.  Therefore, decreasing XBP1s production, by means of 

EZH2-mediated inhibition of IRE1 may contribute to differentiation arrest and thereby promote 

tumorigenesis in GCB DLBCL. In addition we observed that expression of the pro-apoptotic 

gene Chop was induced downstream XBP1s exclusively in GCB DLBCL. It is therefore possible 

that XBP1s directly engages pro-apoptotic programs that may contribute to decreased tumor 

growth in this lymphoma subtype.  

The identification of mechanisms controlling IRE1 expression in DLBCL suggests that 

differences in the XBP1 signatures between ABC and GCB DLBCL 34 could be a consequence of 

the specific down-regulation of IRE1 signaling observed in GCB DLBCL. Despite a possible 

scenario where, due to an advanced differentiation state, IRE1 activation takes place in some 
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ABC tumors, we clearly demonstrated that GCB cells suffer an obvious shortage in IRE1 

expression and downstream XBP1 signaling. Therefore we suggest that IRE1 expression level 

could be a robust biomarker of DLBCL classification. 

While we cannot exclude that additional mechanisms may contribute to IRE1 downregulation in 

GCB DLBCL, the fact that the pathway could be restored in vivo upon treatment with EZH2 

inhibitors is quite remarkable. This indicates that these drugs that have been developed as cancer 

therapeutics 41 could be positioned to modulate ER-stress responses in human diseases 

characterized by epigenetic deregulation of the IRE1/XBP1 pathway 55. Because IRE1 plays a 

role in tumorigenesis 33,54,56, it would be important to interrogate how these drugs affect ER-stress 

responses and what consequences this may have on tumor progression in treated patients. 

IRE1 is a key pathway that determines cellular fate in various tissues and cancers. Emerging 

regulatory mechanisms that tune IRE1 expression and function, such as EZH2, could play an 

important role in various pathologies and conditions.  It is therefore likely that further studies of 

these mechanisms will uncover their importance beyond their role in DLBCL, including during 

differentiation programs, in the course of stress responses and in other tumors.   
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Figure 1.  GCB DLBCL display impairment in IRE1 expression that affects the ER stress 
response.  (A-B) Representative ABC DLBCL and GCB DLBCL cell lines were treated with 5 

μg/ml tunicamycin (TM) for 6 h and analyzed by quantitative real-time PCR for expression of 

XBP1 target genes Sec23b, DNAJB9 and SRPR mRNA levels relative to β-actin (mean and SD 

of technical triplicates of one representative experiment out of three) (A). XBP1 mRNA splicing 

was measured by RT-PCR analysis of XBP1 mRNA maturation (B), DNA electrophoresis 

above). Protein levels of XBP1s and IRE1 protein were analyzed by immunoblot. Tubulin (Tbl) 

is used as loading control (B, below). (C) DLBCL cell lines were treated for 6 h with 5 μg/ml 

tunicamycin (TM) or vehicle and analyzed by immunoblot for XBP1s, IRE1, ATF4, PERK, 
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ATF6 and tubulin (Tbl). (D) Representative ABC and GCB cell lines were treated with different 

ER stress inducers, tunicamycin (TM), thapsigargin (Tpg), brefeldin A (Bref A), 1,4-

Dithiothreitol (DTT) and Bortezomib (Btz) for 6 h. IRE1, XBP1s, PERK, ATF4 and Tubulin 

(Tbl) expression was analyzed by immunoblot. (E) Viability of IRE1 high and IRE1 low DLBCL 

cells assessed by MTS/PMS assay after treatment for the indicated time course with 0.05 μg/ml 

Tunicamycin or 12.5 μM Nelfinavir. P values were calculated using 2way ANOVA. * P value ≤ 

0.05 *** P value ≤ 0.001 
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Figure 2. IRE1 mRNA levels are downregulated in GCB DLBCL.  (A) 2 ABC and 2 GCB 

DLBCL cell lines were treated for 4 or 6 h with 10 μM proteasome inhibitor MG132. IRE1, 

XBP1u and XBP1s protein expression was analyzed by immunoblot. Tubulin (Tbl) is used as 

loading control. (B) IRE1 mRNA levels in GCB-DLBCL (GCB) compared with ABC-DLBCL 

(ABC) molecular subtype in two independent gene expression-profiled DLBCL datasets 

GSE10846. Genes were considered differentially expressed between ABC and GCB if bearing a 

P value <0.005, q-value <0.05 and an absolute log ratio > 0.3 in both cohorts. (C-E) 

Representative ABC and GCB DLBCL cell lines were analyzed for mRNA expression levels of 

IRE1 (C), PERK (D) and ATF6 (E) relative to β-actin. Relative IRE1 expression (mean and SD 

of technical triplicates of one representative experiment) for each cell line tested is shown in C 

(left panel). Statistical analyses were done using unpaired T test to compare relative mRNA 

expression between ABC and GCB cells. *** P value ≤ 0.001, ns: P value > 0.05. 
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Figure 3. IRE1 promoter in GCB DLBCL carries high levels of repressive histone mark 

H3K27me3. (A) Correlations as measured by the Pearson correlation coefficient r between 

EZH2 expression and IRE1 expression in GCB DLBCL clinical samples from two datasets 

extracted from GSE10846. (B) IRE1 mRNA levels in EZH2 wild type and EZH2 mutated GCB 

DLBCL patients. Data extracted from gene expression datasets GSE23501. Wilcoxon signed-

rank test * P value ≤ 0.05 (C) Chromatin immunoprecipitation (ChIP) was performed on ABC 

and GCB DLBCL cell lines using H3K27me3 specific antibody. Enrichments of indicated 

promoters were probed by realtime PCR (mean and SD of technical triplicates of one 

representative experiment out of three). MyoD and Hoxa7 regions are positive controls for 

H3K27me3 mediated repression. GAPDH and BCL6 promoters are negative controls for 

H3K27me3 mediated repression.  
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Figure 4. IRE1 expression levels and activity are regulated by histone methyltransferase 

EZH2. (A) Karpas422 cells treated for 5 days with 2.5 μM of the EZH2 inhibitor GSK343 or 

vehicle were analyzed by ChIP for H3K27me3 promoter marks on MyoD and IRF4 (EZH2 

dependent), GAPDH (negative control) and IRE1 (mean and SD of technical triplicates of one 

representative experiment out of three). (B) Representative ABC and GCB DLBCL cell lines 

treated with GSK343 or vehicle were probed by immunoblot for IRE1, PERK, H3K27me3, H3 

total and Tubulin (Tbl). IRE1 protein levels were quantified and plotted (right panel). Paired T 

test (non-treated vs. treated). * P value ≤ 0.05 (C) Representative GCB DLBCL cell lines were 

treated for 5 days with 2.5 μM EZH2 inhibitor GSK343. Then, 5 μg/ml tunicamycin (TM) was 

added to the cells for 6 h. Immunoblots were revealed using antibodies against XBP1s, IRE1, 

PERK, ATF4, H3K27me3 and Tubulin (Tbl). (Experiment representative of three). (D) 

Karpas422 cells were subcutaneously injected in immunodeficient AGR129 mice. Mice were 

injected during 10 days with the vehicle or 150 mg/kg GSK126 as described in Materials and 

Methods. IRE1, H3K27me3, H3 total and Tubulin (Tbl) levels were analyzed by immunoblot. 

(E) Human IRE1 and DNAJB9 relative mRNA values were assessed in postmortem biopsies. (F) 

Parental and IRE1 deficient SUDHL4 cells were treated for 4 days with vehicle or 5 μM 

GSK343. IRE1, H3K27me3, H3 total and Tubulin (Tbl) levels were assessed by immunoblot. 

(G) Viability of IRE1 proficient and IRE1 deficient SUDHL4 cells was assessed by MTS/PMS 

assay after treatment with 10 μM GSK343 for 48 h. P values were obtained using Unpaired T 

test. ** P value ≤ 0.01. 
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Figure 5. XBP1 signaling impairs GCB DLBCL tumor growth. (A-D) Immunodeficient 

AGR129 mice were injected subcutaneously with 2.5 x 106 HBL1 (A-B) or 3 x 106 SUDHL4 

cells (C-D) that express XBP1s under treatment with Doxycycline. Mice were daily-administered 

vehicle or Doxycycline at concentration 1 mg/ml through water as described in Materials and 

Methods. Mean tumor volume measurements were represented against the days of treatment (A 

and C). P values were calculated using 2way ANOVA followed by Bonferroni post-test. ns: P 

value > 0.05, *P value ≤ 0.05, **P value ≤ 0.01 *** P value ≤ 0.001. Efficiency of Doxycycline-

induced XBP1s expression and its target genes was validated by immunoblot and RQ-PCR for 

the mice carrying HBL1 (B) or SUDHL4 tumors (D) Each dot in the graph represents relative 

gene expression for a single mouse (B and D, lower panels). P values were calculated using 

Unpaired T test to compare non-treated vs. treated groups *** P value ≤ 0.001.  
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