
NeuroImage 282 (2023) 120388

A
1

Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/ynimg

Inter-regional correlation estimators for functional magnetic resonance
imaging
Sophie Achard a,∗, Jean-François Coeurjolly a, Pierre Lafaye de Micheaux b,c,d, Hanâ Lbath a,
Jonas Richiardi e

a Univ. Grenoble Alpes, CNRS, Inria, Grenoble-INP, LJK, 38000 Grenoble, France
b AMIS, Université Paul Valéry Montpellier 3, France
c PreMeDICaL - Precision Medicine by Data Integration and Causal Learning, Inria Sophia Antipolis, France
d Desbrest Institute of Epidemiology and Public Health, Univ Montpellier, INSERM, Montpellier, France
e Department of Radiology, Lausanne University Hospital and University of Lausanne, Switzerland

A R T I C L E I N F O

Keywords:
Functional connectivity
Correlation
Aggregated data
Familial correlations
Serial correlations

A B S T R A C T

Functional magnetic resonance imaging (fMRI) functional connectivity between brain regions is often computed
using parcellations defined by functional or structural atlases. Typically, some kind of voxel averaging is
performed to obtain a single temporal correlation estimate per region pair. However, several estimators can
be defined for this task, with various assumptions and degrees of robustness to local noise, global noise, and
region size.

In this paper, we systematically present and study the properties of 9 different functional connectivity
estimators taking into account the spatial structure of fMRI data, based on a simple fMRI data spatial
model. These include 3 existing estimators and 6 novel estimators. We demonstrate the empirical properties
of the estimators using synthetic, animal, and human data, in terms of graph structure, repeatability and
reproducibility, discriminability, dependence on region size, as well as local and global noise robustness.

We prove analytically the link between regional intra-correlation and inter-region correlation, and show
that the choice of estimator has a strong influence on inter-correlation values. Some estimators, including the
commonly used correlation of averages (ca), are positively biased, and have more dependence to region size
and intra-correlation than robust alternatives, resulting in spatially-dependent bias. We define the new local
correlation of averages estimator with better theoretical guarantees, lower bias, significantly lower dependence
on region size (Spearman correlation 0.40 vs 0.55, paired t-test T=27.2, 𝑝 = 1.1𝑒−47), at negligible cost to
discriminative power, compared to the ca estimator.

The difference in connectivity pattern between the estimators is not distributed uniformly throughout
the brain, but rather shows a clear ventral-dorsal gradient, suggesting that region size and intra-correlation
plays an important role in shaping functional networks defined using the ca estimator, and leading to non-
trivial differences in their connectivity structure. We provide an open source R package and equivalent Python

implementation to facilitate the use of the new estimators, together with preprocessed rat time-series.
1. Introduction

Functional connectivity of the brain is estimated from observa-
tions using non invasive techniques such as electroencephalography
(EEG), magnetoencephalography (MEG) or functional Magnetic Reso-
nance Imaging (fMRI). Each recording provides time series associated
to spatial locations within regions of the brain. Functional connec-
tomes, that is, graphs representing the estimated connectivity, are
then constructed by computing dependence measures between the time
series. These connectomes are used in fundamental neuroscience, for
example to study development (Fan et al., 2021; Tooley et al., 2021),
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and in clinical neuroscience, to characterize psychiatric (Fornito et al.,
2017) or neurological (Fornito et al., 2015) disorders. They form a
compact yet expressive representation of brain activity that can be used
for downstream analysis tasks such as diagnosis (Castellanos et al.,
2013) or more generally machine learning approaches (Richiardi et al.,
2013; Dadi et al., 2019).

For graph construction, typically, each region of the brain, defined
by a structural or functional parcellation, is associated to a given set
of voxels amongst the thousands for which a signal is recorded. The
idea is then to extract a representative of the set of voxels to attach
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one time series to each region. When structural atlases are used, the
most common approach is to take the average of the voxel time series
at each time point. Indeed, almost 70% of papers on PubMed that
used the Human Connectome Project dataset to conduct functional-
connectivity-related studies in the last five years (e.g., Ogawa (2021),
Figueroa-Jimenez et al. (2021), Bolt et al. (2017) and Zhang et al.
(2016)) use this method (cf. Appendix A). While there are numerous
other approaches to connectivity estimation (including the related tech-
niques for estimating parcellation from connectivity, see, e.g., Eickhoff
et al., 2015, or using regional medians Braun et al., 2012 or eigenvec-
tors Büchel and Friston, 1997; Braun et al., 2012 instead of means),
we focus on correlations between averaged regional time-courses, and
argue that this technique introduces bias in the estimation of the
functional connectomes.

The choice of acquisition sequence and hardware, physiological
noise (Caballero-Gaudes and Reynolds, 2017), preprocessing (Braun
et al., 2012), and subject motion all impact correlation estimators.
Acquisition effects are site-dependent, causing heterogeneity problems
in multi-site studies, although various harmonization techniques have
been proposed as mitigation (Castrillon et al., 2014; Chen et al., 2022).
In addition, it has been shown that computation of connectomes is af-
fected by three main parameters: the length of the acquisition (Whitlow
et al., 2011; Van Dijk et al., 2010), the number of regions (Stanley
et al., 2013; Cao et al., 2019) and the chosen frequency band (Cordes
et al., 2001; Salvador et al., 2005; Braun et al., 2012; Chen and Glover,
2015). Finally, sample size will also play a role in terms of group
comparisons (Termenon et al., 2016).

Aggregation across voxels is often used because one wishes to
increase the signal to noise ratio. This approach is also common in other
areas of statistical analysis, for instance because the data are collected
in different groups, organizations, or regions. However, difficult chal-
lenges arise due to the presence of correlations within the collected
datasets.

Measurement errors can impact inter-region correlations. They have
been well studied in fMRI, and are related to both the hardware and
the subject (Greve et al., 2013). They are known to impart correlation
structure to the data that is not linked to neural activity (Jo et al.,
2010; Murphy et al., 2013), at various spatial scales. This problem is
also common in other areas of statistical analysis. For example, Ostroff
(1993) studied correlations between the score variables job satisfac-
tion and technology (i.e., perception of the amount of standardization
f tasks performed) both at the individual and organizational levels
individuals grouped into organizations such as companies). When
rganization-level estimates of correlation (i.e., correlations based on
ggregated data) are obtained by averaging individual-level estimates
f correlations, they showed that the ratio of individual to organiza-
ional correlations varied widely depending on measurement errors as
ell as other factors. This is an instance of the fallacy of the wrong level,

when ‘‘correlations at a more macro level are used to make inference
about individuals, or vice versa’’ (Ostroff, 1993).

Region size can also influence inter-region correlations. In fMRI, the
dependence of inter-region correlations on brain region size has been
noted (Achard et al., 2011), showing a positive relationship between
region size and correlation values to the rest of the brain. This is
particularly problematic because many atlases have some dependency
between region size and spatial location (e.g. some deep gray mat-
ter structure may be parcellated into smaller regions or subregions
than cortical structures). It has also been shown that temporal au-
tocorrelation increases with region size, both for volume-based and
surface-based parcellation (Afyouni et al., 2019), and that at a small
scale regional homogeneity (Zang et al., 2004) – also called local con-
nectivity and measured by the Kendall correlation coefficient of small
neighborhood time series — is larger for 9-voxel than for 27-voxels
neighborhoods (Jiang and Zuo, 2016).

In studies of familial data (Rosner et al., 1977), specific character-
2

istics are obtained for different families with different sizes: correlation
between the children and parents and the average of correlations between
all children and parents are not equal in the majority of cases, due to
differing number of children per family.

Finally, the spatial aspect of the data also complicates correlation
estimation, in particular due to spatial autocorrelation between voxels
(more simply named spatial correlation in the rest of the paper).
Spatial correlation means that observations in neighboring voxels are
not independent. However, independence is an assumption many sta-
tistical estimators rely on to simplify hypothesis testing by enabling the
application of the central limit theorem, leading to false positives and
artificially low 𝑝-values. Spatial correlation has been identified to be
present in fMRI data previously, in particular in activation studies. Even
if the methods to take into account the spatial correlation are different
from the functional connectivity, it is worth detailing these specific
approaches here. The common point between our problem in this paper
and the activation studies is that spatial correlation has an impact
on the design of the methodological approaches. Indeed, two classical
approaches in fMRI activation studies are to either assume voxel inde-
pendence, or conversely to smooth the data (Hartvig and Jensen, 2000).
Smoothing itself can lead to location and amplitude mis-estimation (De-
scombes et al., 1998); alternatively, estimating smoothness from data
allows adjusting effective number of degrees of freedom and reducing
false positives, but can itself lead to variability in 𝑝-values from hy-
pothesis tests (Poline et al., 1995). Spatial correlation has also been
shown to deflate 𝑝-values in structural imaging (Burt et al., 2020), and
has long been recognized as an issue in functional connectivity, for
instance with early voxelwise (PET) connectivity approaches removing
correlation ‘‘between neighboring voxels which can be attributed to
spatial correlation’’ (Cao and Worsley, 1999). More recently, methods
from spatial statistics have been applied for clustering fMRI data (Ye
et al., 2009, 2011), and spatial correlation-preserving null models have
been proposed to compare functional network maps (Alexander-Bloch
et al., 2018; Markello and Misic, 2021) and thus avoid deflated 𝑝-values
due to spatial correlation. Computing correlations is also common when
geostatistics is applied to ecology, geography, climate studies, and
more. The data collected in these fields are attached to a spatial position
and usually with spatial correlation. The problem was first reported
by Student (1914), and studied in Clifford et al. (1989) for two spatial
processes. Applications of these methods can be found for example in
the study of meteorological data (Gunst, 1995).

In all these fields of application, the main difficulty is to take into
account spatial correlation when the goal is to construct estimators of
correlation and to build testing procedures when the averaged variables
are not independent.

In light of the above, preferable inter-correlation estimators should
exhibit at least four properties (i) face validity, (ii) high repeatability,
(iii) preservation of the differences between individuals (discriminative
power), and (iv) independence from region size. In this paper, we
question the default choice of using correlations of averages of voxel
timecourses, and examine in details the assumptions of various methods
and their robustness to various types of noise. We propose first a simple
definition of a spatial model of fMRI with intra-correlations within
brain regions. Then, computations of correlations are described and
we show the potential bias in the estimators. Based on simulations, we
illustrate the good behavior of the newly introduced estimators. Finally,
we conclude with results on human data and rat data.

2. Proposed estimators of correlation

2.1. Definition of the proposed spatial model for fMRI data

Let  ⊂ Z𝑑 , 𝑑 ∈ N∗, be a finite compact set of multi-indices.
n the context of our application, 𝑑 = 3 and  contains all 3-tuples

indexing the voxels of a three-dimensional image of a brain. Each brain

is virtually partitioned into 𝐽 regions of interest which are represented
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through their subsets of voxels 𝑗 of cardinality #𝑗 = 𝑁𝑗 , 𝑗 = 1,… , 𝐽 .
We thus have

 = ∪𝐽
𝑗=1𝑗 and # =

𝐽
∑

𝑗=1
𝑁𝑗 .

For any 𝑑-tuple 𝑖 ∈ , a signal 𝑌𝑖(⋅) sampled at times 𝑡 = 1,… , 𝑇 is
observed and we assume that it can be decomposed as follows

𝑌𝑖(𝑡) = 𝑋𝑖(𝑡) + 𝜀𝑖(𝑡) + 𝑒(𝑡), (1)

where 𝑋𝑖(⋅) is an unobserved signal of interest, 𝜀𝑖(⋅) is a local noise
contaminating locally the signal 𝑋𝑖(⋅), and 𝑒(⋅) is a global noise corrupt-
ing in the same way the signal measured in each voxel indexed by an
element of . This can be, e.g., a consequence of thermal or background
noise (Lazar, 2008; Greve et al., 2013), which at high field strength has
been shown to explain a high proportion of noise variance (Greve et al.,
2011).

We make a few assumptions on these different components. First,
we assume that all random variables are centered. We also assume that
the signals 𝑋𝑖(⋅), 𝜀𝑖(⋅) and 𝑒(⋅) are mutually independent and indepen-
dent in time. This is not an overly restrictive assumption as for the
applications presented in Section 3 we preprocess the data by applying
a wavelet transform. And it is now well-known (Moulines et al., 2007),
that if a random time series has short or long memory characteristics,
after a wavelet decomposition, this signal can be approximated to be
decorrelated in time for large wavelet scales. In addition, assuming that
the 𝑋𝑖’s are centered is coherent as it is a well-known fact that a wavelet
decomposition based on a wavelet mother with 𝐾 vanishing moments
cancels out every polynomial trend with degree 𝐾 − 1. Assuming that
the local and global noises are homoskedastic with a variance denoted
respectively by 𝜎𝜀 and 𝜎𝑒 is also not restrictive. Finally, we will be
assuming (again following the literature Lazar, 2008; Greve et al., 2011,
2013) that the local noise 𝜀 is not too strongly spatially dependent and
more precisely that two voxels far away have uncorrelated local noise.
This is made more precise in Section 2.2.

2.2. Spatial correlation structure induced by model (1)

Let 𝑖, 𝑖′ ∈ , 𝑗, 𝑗′ = 1,… , 𝐽 (𝑗 ≠ 𝑗′) and for all 𝑡 = 1,… , 𝑇 , we assume
that there exists 𝜎𝑗 > 0, 𝜎𝜀 ≥ 0, 𝑟𝑗𝑗′ ∈ [−1, 1], 𝜌𝑖𝑖′ ∈ (0, 1], 𝜂𝑖𝑖′ ∈ [−1, 1]
such that

E[𝑋𝑖(𝑡)𝑋𝑖′ (𝑡)] =

{

𝜎𝑗𝜎𝑗′ 𝑟𝑗𝑗′ if 𝑖 ∈ 𝑗 , 𝑖′ ∈ 𝑗′ , 𝑗 ≠ 𝑗′,

𝜎2𝑗 𝜌𝑖𝑖′ if 𝑖, 𝑖′ ∈ 𝑗

and

E[𝜀𝑖(𝑡)𝜀𝑖′ (𝑡)] = 𝜎2𝜀𝜂𝑖𝑖′ if 𝑖, 𝑖′ ∈ 𝑗 .

The parameter 𝑟𝑗𝑗′ represents the correlation between two (unob-
served) signals of two different regions 𝑗 and 𝑗′ and is called
inter-correlation between regions 𝑗 and 𝑗′ in the following. This is
the parameter of interest we focus on in the rest of the paper. The pa-
rameter 𝜌𝑖𝑖′ represents the intra-correlation between two (unobserved)
signals inside a common region. Moreover, the parameter 𝜂𝑖𝑖′ represents
the spatial correlation between two local noises inside a common
region. We assume that inside each region, the signals of interest
have positive intra-correlation. This is supported by literature (Uddin
et al., 2008; Tomasi and Volkow, 2010; Jiang and Zuo, 2016). We also
assume that for each time 𝑡 and for 𝑗 = 1,… , 𝐽 , {𝑋𝑖(𝑡), 𝑖 ∈ 𝑗} (resp.
{𝜀𝑖(𝑡), 𝑖 ∈ }) is a second-order stationary and isotropic (with respect to
the uniform norm) random field defined over 𝑗 (resp. ). This means
in particular that both the correlations 𝜌𝑖𝑖′ (for any 𝑖, 𝑖′ ∈ 𝑗 for some
𝑗) and 𝜂𝑖𝑖′ (for 𝑖, 𝑖′ ∈ ) depend only on the (uniform) distance (that
is the usual distance on the lattice, e.g. Gaetan et al. (2010)) between
the two voxels 𝑖 and 𝑖′. For brevity, we still denote 𝜌

|𝑖′−𝑖| by 𝜌𝑖𝑖′ and
𝜂
|𝑖′−𝑖| by 𝜂𝑖𝑖′ where for 𝑥 ∈ Z𝑑 , the notation |𝑥| stands for the uniform
3

norm. Our a priori hypothesis is that the intra-correlation 𝜌𝛿 is close
to 1 for moderate distances 𝛿, meaning that close neighbors are strongly
(positively) correlated. Finally, we assume that the local noise is 𝑝-
dependent, i.e., 𝜂𝛿 = 0 for any 𝛿 > 𝑝. Without loss of generality, we
also intrinsically assume that for all 𝑖 ∈ 𝑗 and 𝑖′ ∈ 𝑗′ , 𝜀𝑖(𝑡) and 𝜀𝑖′ (𝑡)
are uncorrelated. This simplifies the presentation in the next sections.
Furthermore, in the sequel, employing a slight abuse of language, we
refer to the correlation between two voxels instead of the correlation
between the signals originating from those voxels.

Hence, this results in the following (spatial) correlation structure for
the signals 𝑌𝑖 and 𝑌 ′

𝑖 at time 𝑡:

E[𝑌𝑖(𝑡)𝑌𝑖′ (𝑡)] =

⎧

⎪

⎨

⎪

⎩

𝜎𝑗𝜎𝑗′ 𝑟𝑗𝑗′ + 𝜎2𝑒 if 𝑖 ∈ 𝑗 , 𝑖′ ∈ 𝑗′ , 𝑗 ≠ 𝑗′,

𝜎2𝑗 𝜌|𝑖−𝑖′| + 𝜎2𝜀𝜂|𝑖−𝑖′| + 𝜎2𝑒 if 𝑖, 𝑖′ ∈ 𝑗 and |𝑖 − 𝑖′| ≤ 𝑝

𝜎2𝑗 𝜌|𝑖−𝑖′| + 𝜎2𝑒 if 𝑖, 𝑖′ ∈ 𝑗 and |𝑖 − 𝑖′| > 𝑝.

Given a parcellation of the brain, the objective is to estimate inter-
correlations 𝑟𝑗𝑗′ for each pair of regions of interest, independently
of the parameters 𝜎𝑗 , 𝜎′𝑗 , 𝜎𝜀, 𝜎𝑒, 𝜌𝑖𝑖′ , 𝜂𝑖𝑖′ which are viewed as nuisance
parameters. We do not model the distribution of 𝑌𝑖 but only its second-
order properties (through 𝑋𝑖, 𝜀𝑖, 𝑒). As said before, we consider the
intra-correlations, the correlation of the local noise and the different
variances as nuisance parameters that we do not want to estimate. In
the next section, we present various estimators of 𝑟𝑗𝑗′ built in order
to address one (or several) of the following cases: (1) the regions of
interest 𝑗 and 𝑗′ may contain a different number of voxels; (2)
the intra-correlation may deviate strongly from 1 (especially for large
regions); (3) there may be a non negligible local noise 𝜀𝑖 affecting the
signal in each region; (4) there may be a global noise affecting all
regions.

2.3. Inter-correlation: notation and properties

Let 𝐘1 = (𝑌1(1),… , 𝑌1(𝑇 )) and 𝐘2 = (𝑌2(1),… , 𝑌2(𝑇 )) denote two
voxel time-series of length 𝑇 . The notation Ĉov(𝐘1,𝐘2), Ĉor(𝐘1,𝐘2)
and 𝜎2(𝐘1) stand for the sample covariance between 𝐘1 and 𝐘2, the
sample correlation between 𝐘1 and 𝐘2 and the sample variance of
𝐘1, respectively. For any 𝑗 = 1,… , 𝐽 , we define a 𝜈-neighborhood
and denote it by  as a subset of 𝑛𝜈 ∶= (2𝜈 + 1)𝑑 indices, all of
which are at a distance less than or equal to 𝜈 from the center 𝑗
of the neighborhood. For any set of indices 𝐸 (which could be a 𝜈-
neighborhood or a region of interest) and any spatio-temporal field
𝑍𝑖(𝑡) (which could be 𝑌𝑖, 𝑋𝑖, 𝜀𝑖,. . . ) we denote by �̄�𝐸 (𝑡) for 𝑡 = 1,… , 𝑇
the time series spatially averaged over 𝐸, that is

�̄�𝐸 (𝑡) =
1
#𝐸

∑

𝑖∈𝐸
𝑍𝑖(𝑡).

o sum up, we reserve the bold notation to mainly denote a vector of
ength 𝑇 , the notation ⋅̂ to denote an average over time while ⋅̄ will
enote an average over space. Hence, for instance �̂�2(�̄�𝐸 ) denotes the
ample variance of the vector with components (#𝐸)−1

∑

𝑖∈𝐸 𝑌𝑖(𝑡) for
= 1,… , 𝑇 . We also let

̄𝐸 = 1
(#𝐸)2

∑

𝑖,𝑖′∈𝐸
𝜌𝑖𝑖′ and �̄�𝐸 = 1

(#𝐸)2
∑

𝑖,𝑖′∈𝐸
𝜂𝑖𝑖′ . (2)

he quantity �̄�𝐸 represents the (spatial) average intra-correlation inside
he set 𝐸. If 𝐸 corresponds to a 𝜈-neighborhood with moderate 𝜈, we
ay expect �̄� to be close to 1. Such an observation is probably less

ealistic when 𝐸 = 𝑗 especially for large regions. The quantity �̄�𝐸
s related to the (spatial) correlation structure of the local noise. By
ssuming this noise to be 𝑝-dependent (that is 𝜂𝛿 = 0 when 𝛿 ≥ 𝑝), it is
lear that the larger #𝐸 the smaller �̄�𝐸 .

Using the assumption given in Section 2.1, for any 𝐸 ⊆ 𝑗 and
′ ⊆ 𝑗′ , we deduce

ov[𝑌𝐸 (𝑡), 𝑌𝐸′ (𝑡)] =

{

𝜎𝑗𝜎𝑗′ 𝑟𝑗𝑗′ + 𝜎2𝑒 , if 𝑗 ≠ 𝑗′,
2 2 ′
𝜎𝑗 �̄�𝐸,𝐸′ + 𝜎𝑒 , if 𝑗 = 𝑗 ,
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Fig. 1. Graphical overview of the inter-regional correlation estimators ca, ac, 𝓁ca, and r discussed in this paper. Gray dots represents voxels. Dashed black lines represent brain
regions. Edges between voxels represent voxel-voxel temporal correlations. Blue rectangles show the region and level of aggregation (voxels or correlations). 𝑟𝑗𝑗′ shows quantities
involved in the computation of the inter-regional correlations. Illustrations are approximate, please refer to the relevant equations for the exact definition. Neighborhood versions
of the estimators (starting with 𝓁) use the same principles but involve aggregating in small neighborhoods within regions.
�̂�

t
a

where

̄𝐸,𝐸′ = 1
(#𝐸)(#𝐸′)

∑

𝑖∈𝐸,𝑖′∈𝐸′
𝜌
|𝑖−𝑖′|.

he variance can also be deduced as follows:

ar[𝑌𝐸 (𝑡)] = 𝜎2𝑗 �̄�𝐸 + 𝜎2𝜀 �̄�𝐸 + 𝜎2𝑒 .

The detail of this result is given in Proposition C.1.
To lighten the expression of estimators proposed in the next sec-

ions, we define for 𝑗, 𝑗′ ∈ {1,… , 𝐽}

𝜀,𝑗 =
𝜎𝜀
𝜎𝑗

, 𝜎𝑒,𝑗 =
𝜎𝑒
𝜎𝑗

, and 𝜎𝑒,𝑗𝑗′ =
𝜎𝑒

√

𝜎𝑗𝜎𝑗′
. (3)

In the next sections, we set 𝑗, 𝑗′ and thus aim to estimate 𝑟𝑗𝑗′ indepen-
dently of the other parameters. The definition of standard estimators as
well as novel estimators may look complicated due to the large amount
of notation induced by the spatio-temporal correlation structure of 𝑌
and the methods themselves. However, we have postponed as much as
possible theoretical contents to Appendix and present the estimation
methods from an intuitive point of view in Figs. 1–2 in order to make
next sections readable and reproducible.
4

p

2.4. Existing inter-correlation estimators

We first review existing inter-regional correlation estimators using a
unified notation throughout.1 Results on consistency of the estimators
are provided in Appendices C–G.4.

2.4.1. Correlation of averages (method ca)
In order to increase the signal-to-noise ratio, the most standard

method in fMRI is to average (or sometimes convolve with a Gaussian
kernel) the signal in space (in each region of interest). The aggregated
correlation estimator corresponds to the standard estimator (see Sec-
tion 1) considered for example in Achard et al. (2006), Bolt et al. (2017)
or Ogawa (2021):

ca
𝑗𝑗′ =

Ĉov(�̄�𝑗
, �̄�𝑗′

)

𝜎(�̄�𝑗
)𝜎(�̄�𝑗′

)
. (4)

1 In a previous study (Achard et al., 2011), we already described three of
he estimators discussed here (ca, ac, 𝓁ca), but not with a unified notation,
s well as a fourth estimator which is only discussed in the Appendix of the
resent paper.
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This estimator, illustrated in Fig. 1 was designed to reduce the local
noise. Indeed, in the absence of global noise (𝜎2𝑒 = 0), this estimator
tends to 𝑟𝑗𝑗′∕

√

(�̄�𝑗
+ 𝜎2𝜀,𝑗 �̄�𝑗

)(�̄�′
𝑗
+ 𝜎2𝜀,𝑗′ �̄�′

𝑗
). The interest of averaging

before computing correlations is clear: the local noise is smoothed, thus
�̄�𝑗

= (1∕𝑁𝑗 ) is probably very small. However, even in absence of
noise (𝜎𝜀 = 𝜎𝑒 = 0), �̂� ca𝑗𝑗′ has a serious drawback since it estimates

𝑗𝑗′∕
√

�̄�𝑗
�̄�𝑗′

which is highly dependent on intra-correlation. Just to
give an example, assume 𝑟𝑗𝑗′ = 1∕2, 𝑁𝑗 = 𝑁𝑗′ = 2, 𝜌1 = 0 then
�̄�𝑗

= �̄�𝑗′
= 1∕2 then �̂� ca𝑗𝑗′ will converge towards 1 and not 1/2. This

is a caricature but illustrates what may happen for large regions when
some of the signals 𝑋𝑖 are not enough positively intra-correlated. That
fact was already pointed out by Achard et al. (2011).

2.4.2. Average of correlations (method ac)
Instead of evaluating correlation of spatial averages, it is natural to

perform the (spatial) average of correlations. This estimator, illustrated
in Fig. 1, is given by:

ac
𝑗𝑗′ =

1
𝑁𝑗𝑁𝑗′

∑

𝑖∈𝑗 ,
𝑖′∈𝑗′

Ĉor(𝐘𝑖,𝐘𝑖′ ). (5)

As seen from Table 1, in absence of global noise (𝜎2𝑒 = 0) and when
he variances are equal to 1, this estimator estimates the quantity
𝑗𝑗′∕(1 + 𝜎2𝜀 ) which makes this estimator robust to large regions (for
hich �̄�𝑗

may be far from 1) but more sensitive to local noise than
he estimator �̂� ca𝑗𝑗′ .

.4.3. Replicates for correlations (method r)
In order to cancel out the effect of local noise, we introduce to

MRI a slight adaptation of the estimator introduced by Bergholm et al.
2010), in the context of image analysis. This is based on the concept of
eplicates within the same region, and denoted by �̂�R (r for replicates).

The idea is to take two samples within each region, called replicates, to
be able to compute correlation using these replicates to cancel out the
local noise. These replicates can be chosen randomly a certain number
of times denoted 𝐵. This estimator, illustrated in Fig. 1, is then obtained
as a Monte-Carlo mean (or bootstrap) over different random replicates

R
𝑗𝑗′ =

1
𝐵

𝐵
∑

𝑏=1

1
4
∑2

𝛼,𝛽=1 Ĉor(𝐘𝑖(𝑏)𝛼
,𝐘𝑖′(𝑏)𝛽

)
√

|Ĉor(𝐘𝑖(𝑏)1
,𝐘𝑖(𝑏)2

) Ĉor(𝐘𝑖′(𝑏)1
,𝐘𝑖′(𝑏)2

)|
(6)

where for 𝑏 = 1,… , 𝐵, 𝑖(𝑏)1 , 𝑖(𝑏)2 ∈ 𝑗 are such that |𝑖(𝑏)2 − 𝑖(𝑏)1 | = 𝛿 ≥ 𝑝. In
the same way, 𝑖′(𝑏)1 , 𝑖′(𝑏)2 ∈ 𝑗′ are such that |𝑖′(𝑏)2 − 𝑖′(𝑏)1 | = 𝛿 ≥ 𝑝. Under
equal variances and absence of global noise, �̂�R𝑗𝑗′ estimates 1∕|𝜌𝛿| which
is clearly independent of 𝜎2𝜀 and may be expected to be close to one if
𝛿 is small.

2.5. Novel estimators: discarding the effect of global and/or local noise

2.5.1. Use of a priori uncorrelated regions (method d based on differences)
We now present an estimator which handles the problem of global

noise. To achieve this task, we assume that among the regions where
the signal is recorded there are at least two regions say 𝑘 and 𝑘′

which are uncorrelated between themselves and from all the other ones.
With a slight abuse of notation, 𝑘, 𝑘′ will be used for the indices of
these two regions, while 𝑗, 𝑗′ will be used when we are interested in
the inter-correlation between regions 𝑗 and 𝑗′ (hence 𝑟𝑗𝑘 = 𝑟𝑗𝑘′ =
𝑟𝑗′𝑘 = 𝑟𝑗′𝑘′ = 0). This assumption is realistic in the context of fMRI data
where we are interested in the correlations between cortical regions.
Indeed, the field of view is typically larger than the brain itself, and
the definition of extra regions is possible, for instance using air voxels
or muscle voxels. The estimator is illustrated in Fig. 2.
5

We propose the following strategy: for 𝑏 = 1,… , 𝐵 let 𝑖(𝑏), 𝑖′(𝑏), 𝑘(𝑏)
and 𝑘′(𝑏) be voxels of 𝑗 , 𝑗′ , 𝑘 and 𝑘′ .

D
𝑗𝑗′ =

1
𝐵

𝐵
∑

𝑏=1
C̃or(𝐘𝑖(𝑏) ,𝐘𝑖′(𝑏) ;𝐘𝑘(𝑏) ,𝐘𝑘′(𝑏) ), (7)

where for four vectors 𝐘1, 𝐘2, 𝐘3 and 𝐘4 (with same length)

C̃or(𝐘1,𝐘2;𝐘3,𝐘4) =
Ĉov(𝐘1 − 𝐘3,𝐘2 − 𝐘4)

�̂�(𝐘1,𝐘3,𝐘4) �̂�(𝐘2,𝐘3,𝐘4)
(8)

and where for three vectors 𝐔, 𝐕 and 𝐖 with same length

𝑠2(𝐔,𝐕,𝐖) =
(

𝜎2(𝐔 − 𝐕) + 𝜎2(𝐔 −𝐖) − 𝜎2(𝐕 −𝐖)
)

∕2.

he intuition of this estimator is quite simple. Assume that the local
oise has zero variance. Since the noise 𝑒(⋅) is global, subtracting from
𝑖(𝑏) (𝑡) the value 𝑌𝑘(𝑏) (𝑡) and from 𝑌𝑖′(𝑏) (𝑡) the value 𝑌𝑘′(𝑏) (𝑡) discards the
lobal noise. And since the regions 𝑘 and 𝑘′ are not correlated
nd not correlated to the other ones, the numerator (for each 𝑏) is an
stimate of 𝜎𝑗𝜎𝑗′ 𝑟𝑗𝑗′ . Then, we just have to divide by estimates of 𝜎𝑗
and 𝜎𝑗′ ). We observe that this cannot be done using simply 𝜎2(𝐘𝑖(𝑏) −

𝑘(𝑏) ) which estimates 𝜎2𝑗 + 𝜎2𝑘 + 2𝜎2𝜀 . This justifies the introduction of
𝑠2.

Note that �̂�D𝑗𝑗′ is still biased with respect to local noise (see Table 1).
An illustration of estimator d is provided in Fig. 2, and a more formal

roposition and proof for this estimator are provided in Appendix E.

.5.2. Replicates and use of a priori disconnected regions: method rd
Combining replicates and the idea based on differences motivates

s to propose the following estimator (see Sections 2.4.3 and 2.5.1 for
otation)

RD
𝑗𝑗′ = 1

𝐵

𝐵
∑

𝑏=1

1
4
∑2

𝛼,𝛽=1 C̃or(𝐘𝑖(𝑏)𝛼
,𝐘𝑖′(𝑏)𝛽

;𝐘𝑘(𝑏) ,𝐘𝑘′(𝑏) )
√

|C̃or(𝐘𝑖(𝑏)1
,𝐘𝑖(𝑏)2

;𝐘𝑘(𝑏) ,𝐘𝑘′(𝑏) ) C̃or(𝐘𝑖′(𝑏)1
,𝐘𝑖′(𝑏)2

;𝐘𝑘(𝑏) ,𝐘𝑘′(𝑏) )|

(9)

It is worth pointing out that 𝑟RD𝑗𝑗′ is independent of 𝜎𝜀 and 𝜎𝑒 and equals
the unknown 𝑟𝑗𝑗′ if 𝜌𝛿 is close to 1. A more formal proposition and proof
for this estimator are provided in Appendix F.

2.6. Localized versions of inter-correlation estimators

As mentioned previously, when noisy signals are averaged, the
signal to noise ratio increases. A very popular method in neuroimaging
analyses is to apply a Gaussian smoothing on the fMRI volumes (Wors-
ley et al., 1992, 1996; Poline et al., 1997). However, applying a large
kernel width may have dramatic effect on brain connectivity (Triana
et al., 2020). Some earlier work on PET connectivity used a local
neighborhood centered around voxels of interest to smooth the signal
in each region prior to connectivity estimation (Köhler et al., 1998).
We introduce in this section estimators using local neighborhoods to
control the smoothing effect on correlation estimations.

2.6.1. Local correlation of averages (method 𝓁ca)
Motivated by the first two estimators, we propose to estimate 𝑟𝑗𝑗′

using an empirical average of local spatial averages. For 𝑏 = 1,… , 𝐵,
let  (𝑏)

𝑗 (resp.  (𝑏)
𝑗′ ) be a 𝜈-neighborhood of 𝑗 (resp. 𝑗′ ). We define

𝑟𝓁ca𝑗𝑗′ = 1
𝐵
∑

Ĉor(�̄� (𝑏) , �̄� (𝑏) ). (10)

𝐵 𝑏=1 𝑗 𝑗′
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Fig. 2. Main steps involved in computing the inter-regional correlation estimator d. Dashed black lines represent brain regions of interest 𝑗 and 𝑗′ . Dotted black lines represent
a priori uncorrelated region (e.g. air or muscle voxels) 𝑘 and 𝑘′ . Colored rectangles show the voxels involved in the computation. The final inter-regional correlation estimator
𝑟𝑗𝑗′ is defined in terms of the intermediate quantities computed in these three steps. See Fig. 1 for more details and other estimators.
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2.6.2. Local average of replicates (method 𝓁r)
This estimator consists in replacing single indices by neighborhoods

in (6). For 𝑏 = 1,… , 𝐵, let  (𝑏)
𝑗1

and  (𝑏)
𝑗2

(resp.  (𝑏)
𝑗′1

and  (𝑏)
𝑗′2

) be two 𝜈-

neighborhoods in 𝑗 (resp. 𝑗′ ) such that for any 𝑖(𝑏)1 ∈  (𝑏)
𝑗1

, 𝑖(𝑏)2 ∈  (𝑏)
𝑗2

,

|𝑖(𝑏)1 − 𝑖(𝑏)2 | = 𝛿 ≥ 𝑝 (resp. |𝑖′(𝑏)1 − 𝑖′(𝑏)2 | = 𝛿 ≥ 𝑝 for any 𝑖′(𝑏)1 ∈  (𝑏)
𝑗′1

,

𝑖′(𝑏)2 ∈  (𝑏)
𝑗′2

). The local average of replicates based estimator is defined
by

𝑟𝓁R𝑗𝑗′ = 1
𝐵

𝐵
∑

𝑏=1

1
4
∑2

𝛼,𝛽=1 Ĉor(�̄� (𝑏)
𝑗𝛼
, �̄� (𝑏)

𝑗′𝛽

)

√

|Ĉor(�̄� (𝑏)
𝑗1
, �̄� (𝑏)

𝑗2
) Ĉor(�̄� (𝑏)

𝑗′1

, �̄� (𝑏)
𝑗′2

)|
. (11)

2.6.3. Local averages and use of disconnected regions (method 𝓁d)
We use in particular notation introduced in Sections 2.6.2 and 2.5.1

to propose the estimator �̂�𝓁D𝑗𝑗′ given by

𝓁D
𝑗𝑗′ = 1

𝐵

𝐵
∑

𝑏=1
C̃or(�̄� (𝑏)

𝑗
, �̄� (𝑏)

𝑗′
; �̄� (𝑏)

𝑘
, �̄� (𝑏)

𝑘′
). (12)

2.6.4. Replicates, local averages and use of a priori disconnected regions
(method 𝓁rd)

This estimator is a local version of �̂�RD𝑗𝑗′ and is defined by

𝑟𝓁RD𝑗𝑗′ = 1
𝐵

𝐵
∑

𝑏=1

1
4

∑2
𝛼,𝛽=1 C̃or(�̄� (𝑏)

𝑗𝛼
, �̄� (𝑏)

𝑗′𝛽

; �̄� (𝑏)
𝑘
, �̄� (𝑏)

𝑘′
)

√

C̃or(�̄� (𝑏)
𝑗1
, �̄� (𝑏)

𝑗2
; �̄� (𝑏)

𝑘
, �̄� (𝑏)

𝑘′
) C̃or(�̄� (𝑏)

𝑗′1

, �̄� (𝑏)
𝑗′ 2

; �̄� (𝑏)
𝑘
, �̄� (𝑏)

𝑘′
)
.

(13)

2.7. Summary of estimators

We have formalized 9 estimators for inter-region correlation in
fMRI, 6 of which are novel to the best of our knowledge. They vary
in terms of their theoretical sensitivity to three factors: differences
in region sizes and region intra-correlations (�̄�𝑗

≪ 1), local noise
(𝜎𝜀), and global noise (𝜎𝑒). Table 1 summarizes estimators properties
qualitatively using − for estimators that are sensitive to these factors,
+ for estimators that are insensitive, and ± for those that are in-
between. The ca, 𝓁ca, ac, and r estimators are sketched in Fig. 1 and
the d estimator is illustrated in Fig. 2.

As an example, let us interpret the properties of ca shown in Table 1
in terms of these factors. First, we observe that the limit of �̂� ca strongly
6

𝑗𝑗′
depends on the region size. Indeed, even in absence of noise this limit
is 𝑟𝑗𝑗′∕

√

�̄�𝑗
�̄�𝑗′

, which can be quite far from 𝑟𝑗𝑗′ especially for very
large regions (so the estimator is sensitive to local noise and denoted−
in the corresponding column). Now imagine that �̄�𝑗

�̄�𝑗′
= 1 and that

𝜎2𝑒 = 0 then the limit becomes 𝑟𝑗𝑗′∕
√

(1 + 𝜎2𝜀,𝑗 �̄�𝑗
)(1 + 𝜎2𝜀,𝑗′ �̄�′

𝑗
). Since

t is expected that �̄�𝐸 is small (see (C.3)), especially for large sets 𝐸,
his limit should be quite close to 𝑟𝑗𝑗′ in this situation (+). Finally, if
̄𝑗

�̄�𝑗′
= 1 and 𝜎2𝜀 = 0, and assume for simplicity that 𝜎𝑗 = 𝜎𝑗′ = 1, then

ca
𝑗𝑗′ would converge towards (𝑟𝑗𝑗′ + 𝜎2𝑒 )∕(1 + 𝜎2𝑒 ) which can significantly

deviate from 𝑟𝑗𝑗′ when the global noise is strong (−).
This does not describe at all finite sample properties of the different

estimators. Obviously, we could be tempted to always use the last
two estimators (methods RD ad 𝓁RD) which seem to be the most
robust to additional noises. However, these last estimators will be less
robust to small sample size. We propose to investigate these finite
sample properties in a simulation study (Section 3.1) and real datasets
(Sections 3.2 and 3.3).

We note that evaluating asymptotic variances of the different esti-
mators would add too much notation, assumptions and technicalities,
and is left for future work.

3. Description of simulated and real datasets

We employed three distinct datasets to assess the performance of
our estimators. These datasets encompassed a simulated dataset, a
dataset involving rats that comprised both deceased and living animals,
and a dataset from a healthy human subject, which included test-retest
data.

3.1. Simulated data

The paper being focused on pairwise spatial (auto)correlation es-
timation, it is sufficient to investigate the finite sample properties of
our estimators for just two regions, say 𝑗 and 𝑗′ (whose sizes are set
here to 20 and 40 voxels, respectively). Also, to save time and memory,
we restrict ourselves, w.l.o.g., to one-dimensional regions (𝑑 = 1,
regions are simply intervals so they are simply made of ‘voxels’ along
a line). For the estimators based on differences (methods D, 𝓁D, 𝓁RD),

e consider two extra regions, say 𝑘 and 𝑘′ , that are disconnected
(i.e., 𝑟𝑗𝑘 = 𝑟𝑗𝑘′ = 𝑟𝑘𝑘′ = 𝑟𝑗′𝑘 = 𝑟𝑗′𝑘′ = 0). We consider two scenarios:
the ‘‘relatively strong inter-correlation case’’ (𝑟𝑗𝑗′ = 0.6) and the ‘‘no
inter-correlation case’’ (𝑟 = 0). The intra-correlation for any given
𝑗𝑗′
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Table 1
Expected limits and properties for existing and novel estimators of inter-correlation
𝑟𝑗𝑗′ , under the model (1). We refer the reader to Section 2.3 for details on notation.
In particular 𝜎2

𝑒,𝑗 , 𝜎2
𝜀,𝑗 and 𝜎2

𝑒,𝑗𝑗′ are given by (3) while �̄�𝐸 , �̄�𝐸 and �̄�𝐸,𝐸′ for two sets of
indices 𝐸,𝐸′ are given by (2) and (C.7). Sensitivity of estimators to three factors are
reported: differences in region sizes and region intra-correlations (�̄�𝑗

≪ 1), local noise
(𝜎𝜀), and global noise (𝜎𝑒). Estimators that are sensitive to these factors are denoted−
hose that are insensitive are denoted+ and those in-between are denoted insensitive

.
Estimator Limit 𝑟∙𝑗𝑗′ Sensitivity to

�̄�𝑗
≪ 1 𝜎𝜀 𝜎𝑒

�̂� ca (see (4))
𝑟𝑗𝑗′ +𝜎2

𝑒,𝑗𝑗′
√

(�̄�𝑗 +𝜎
2
𝜀,𝑗 �̄�𝑗 +𝜎

2
𝑒,𝑗 )(�̄�𝑗′

+𝜎2
𝜀,𝑗′

�̄�𝑗′
+𝜎2

𝑒,𝑗′
)

− + −
�̂� ac (see (5))

𝑟𝑗𝑗′ +𝜎2
𝑒,𝑗𝑗′

√

(1+𝜎2
𝜀,𝑗+𝜎

2
𝑒,𝑗 )(1+𝜎

2
𝜀,𝑗′

+𝜎2
𝑒,𝑗′

)
+ − −

�̂�𝓁ca (see (10))
𝑟𝑗𝑗′ +𝜎2

𝑒,𝑗𝑗′
√

(�̄�+𝜎2
𝜀,𝑗 �̄�+𝜎

2
𝑒,𝑗 )(�̄�+𝜎

2
𝜀,𝑗′

�̄�+𝜎2
𝑒,𝑗′

)
+ ± −

�̂�R (see (6))
𝑟𝑗𝑗′ +𝜎2

𝑒,𝑗𝑗′
√

|(𝜌𝛿+𝜎2
𝑒,𝑗 )(𝜌𝛿+𝜎

2
𝑒,𝑗′

)|
+ + −

�̂�𝓁R (see (11))
𝑟𝑗𝑗′ +𝜎2

𝑒,𝑗𝑗′
√

|(�̄� ,′ ,𝛿+𝜎2
𝑒,𝑗 )(�̄� ,′ ,𝛿+𝜎

2
𝑒,𝑗′

)|
+ + −

�̂�D (see (7)) 𝑟𝑗𝑗′
√

(

1+𝜎2
𝜀,𝑗

)(

1+𝜎2
𝜀,𝑗′

)

+ − +
�̂�𝓁D (see (12)) 𝑟𝑗𝑗′

√

(�̄�+𝜎2
𝜀,𝑗 �̄� )(�̄�+𝜎

2
𝜀,𝑗′

�̄� )
+ ± +

�̂�RD (see (9)) 1
|𝜌𝛿 |

+ + +
�̂�𝓁RD (see (13)) 1

|�̄� ,′ ,𝛿 |
+ + +

region is modeled (alike within any region 𝑗 ,𝑗′ ,𝑘,𝑘′ ) using the
following spatial model

𝜌𝑖𝑖′ = 1 − (1 − 𝜈)
(

1 −
|𝑖 − 𝑖′|
40

)

(14)

hich only depends on the distance |𝑖 − 𝑖′| between two voxels, say
and 𝑖′, belonging to the same region. We selected either the value
= 0.8 or 𝜈 = 0, and designated accordingly the region as strongly or
eakly intra-correlated. Hence, when 𝜈 = 0, the two voxels furthest
part in the region of size 40 are uncorrelated, i.e., 𝜌𝑖𝑖′ = 0 when

|𝑖 − 𝑖′| = 40. When 𝜈 = 0.8, they are highly correlated with 𝜌𝑖𝑖′ =
.8. Fig. 3 represents the correlation structure of (14), as well as the
uantity �̄�𝐸 for sets of indices 𝐸 ⊆ {1,… , 40} with increasing size
𝐸, for both intra-correlation models. We generated independently
00 series of length 𝑇 = 1000 according to model (1), and used 500
eplicates for the method R and also 500 (Monte-Carlo or bootstrap)
eplications of choices of neighborhoods for methods 𝓁ca, 𝓁R, 𝓁D, 𝓁RD
where we set the length of the neighborhood to 3). The local noises
𝑖(𝑡) and 𝜀𝑖′ (𝑡) are assumed to be uncorrelated, so for some set of indices
, �̄�𝐸 = 𝜎𝑒∕#𝐸. This is also represented in Fig. 3.

Finally, we chose two values for the variance of the global noise,
2
𝑒 = 0 and 𝜎2𝑒 = 0.1, and two values for the variance of the local noise,
2
𝜀 = 0 and 𝜎2𝜀 = 0.1. Results consist of 500 estimates for 9 methods,
intra-correlation models, 2 values for 𝜎2𝑒 and 2 values for 𝜎2𝜀 , that

s 16 different scenarii (involving each time the 9 methods). They are
resented and discussed in Section 6.1.

.2. Rats data

Using a 9.4T machine (Paravision 6.0.1, Bruker, Ettlingen, Ger-
any), fMRI data were acquired for both dead and alive rats in Pawela

t al. (2008). Twenty-five rats were scanned and identified in 4 differ-
nt groups: DEAD, ETO-L (Etomidate), ISO-W (Isoflurane) and MED-
(Medetomidine). The first group contains dead rats and the three
ast groups correspond to different anesthetics. In this paper, we show
esults with data from three rats, one dead and two alive with different
nesthetics (ETO-L, ISO-W).
7

o

The duration of the scanning was 30 min, using single-shot echo-
lanar imaging with TR/TE = 500/20 ms, so that 3600 time points

were available at the end of experiment. The resolution was 0.47 ×
.47 × 1.00 mm, slice gap 0.1 mm, 9 slices. After preprocessing as
xplained in Becq et al. (2020b), 51 brain regions for each rat were
xtracted using an in-house atlas. Sufficiently large regions are needed
o be able to use the r estimator. We hence discarded regions that
ontained fewer than 40 voxels, and were left with 18 brain regions:
he anterior cingulate cortex (ACC), bilateral Insular cortex (Ins_r
nd Ins_l), bilateral primary motor cortex (M1_r and M1_l), bilateral
omatosensory 1 (S1_r and S1_l), bilateral somatosensory 1 barrel field
S1BF_r and S1BF_l), bilateral auditory cortex (AU_r and AU_l), bilateral
audate-putamen (striatum) (CPu_r and CPu_l), bilateral thalamus (Th_r
nd Th_l), bilateral basal forebrain region (BF_r and BF_l), bilateral
ippocampus (HIP_r and HIP_l).

Voxel time series were wavelet-filtered using Daubechies orthonor-
al compactly supported wavelet of length 8.

.3. Human connectome project data

We also evaluated our estimators on a subset of the Human Con-
ectome Project (HCP) Young Adult 1200 Subjects release, WU-Minn
onsortium pre-processed (Glasser et al., 2013) (connectome db data
ackage Resting State fMRI 1/2 Preprocessed). We selected 100 subjects
ith two rs-fMRI acquisitions on different days. The TR was 720 ms
nd the duration of acquisition was 14 min and 24 s.

The preprocessed fMRI data was segmented into 89 regions with
PM New Segment using a modified AAL template: merging some of the
egions, reducing the parcellation to 89 regions. Merged regions are:
rontal medial orbital and rectus (one region for left and one for right
emisphere); occipital superior, middle and inferior (one region for
eft and one for right hemisphere); temporal pole superior and medial
one region for left and one for right hemisphere); the cerebral crus
one region for left and one for right hemisphere); areas III, IV, V and
I of cerebellum (one region for left and one for right hemisphere);
reas VII, VIII, IX, X of cerebellum (one region for left and one for
ight hemisphere) and finally, the vermis (one single region for both
emispheres). Other details are available in Termenon et al. (2016).

Voxel time series were wavelet filtered using Daubechies orthonor-
al compactly supported wavelet of length 8.

. Evaluation and metrics

First, on simulated data, we qualitatively inspected the bias and
ariance of the distribution of correlation values with respect to known
round truth for various levels of global and local noise.

Then, using rat data, we performed a face validity analysis of the
stimators, with the premise that dead rats should show no functional
onnectivity (the correlation distribution should be centered at zero).
n order to quantify the differences between correlation values obtained
or dead and live rats, we computed the Wasserstein distance between
he correlation distributions of each anesthetized rat in comparison to
hat of a dead rat. A low value of the Wasserstein distance indicates
hat correlations values of live and dead rats are comparable and counts
egatively in the evaluation of an estimator.

To evaluate the repeatability of the proposed estimators on the rat
ataset, we split the time series in two equal parts. We computed the
orrelations on each part using the whole range of proposed estimators,
nd computed the Concordance Correlation Coefficient (CCC) (Lin,
989) between splits to provide a scaled measure of agreement, where
is perfect agreement and 0 is no agreement. A preferable estimator

hould be more repeatable and have higher CCC.
To quantify the similarity of connectivity graphs between estima-

ors, we computed the number of common edges between graphs

btained from each estimator. To this end we used a sparsity threshold
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Fig. 3. Simulation setup and results. (A) The two simulated one-dimensional regions (one with 40 ‘‘voxels’’, the other with 20 ‘‘voxels’’, shown as an inset) and their intra-correlation
structure. Intra-correlation 𝜌𝑖𝑖′ is given by (14) (with 𝜈 = 0.8 for the strong intra-correlation and 𝜈 = 0 for the weak intra-correlation) and decays with distance. (B) Intra-correlation
(vertical axis) as a function of the size of region 𝐸 (horizontal axis). From top to bottom: �̄�𝐸 (orange): average intra-correlation of signal in the strong case; �̄�𝐸 (blue): average
intra-correlation of signal in the weak case; �̄�𝐸 (black): average intra-correlation of noise. Average noise intra-correlation decays sharply with region size.
equal to 20% of the total number of edges (i.e., 27 edges in our case
with 18 regions).

For human data, we used rs-fMRI sessions from different days, in
order to evaluate reproducibility of correlation coefficients. This was
analyzed using CCC, again with a preferable estimator being more
reproducible and having higher CCC.

We also evaluated the reproducibility of graph metrics between
sessions. To this end we used a sparsity threshold equal to 20% of the
total number of edges, keeping only edges with the highest correlation
(i.e., 783 edges in our case with 89 regions), and binarized the edges. In
order to compute graph metrics, we forced the graph to be connected by
applying a minimum spanning tree (Alexander-Bloch et al., 2010). Then
we computed classical graph metrics: betweenness centrality, transitiv-
ity, global and local efficiencies using package iGraph. Reproducibility
was evaluated using the CCC.

We also summarized the differences of connectivity graphs between
estimators, by computing the number of common edges between graphs
obtained from ca and 𝓁ca using thresholding at the 20th percentile
(i.e., 783 edges with 89 regions), and visualized the difference qualita-
tively by taking absolute values of correlation values for each estimator,
rank-transforming, and computing median difference in ranks across all
subjects,

Additionally, we also evaluated discriminative power of the various
estimators via three metrics: inter vs. intra-subject graph distance, a
non-parametric test of the same, and identification rate using functional
connectome fingerprinting (Finn et al., 2015). A desirable estimator
should provide estimates that preserve inter-individual differences.

We defined the intra-subject distance as the distance between the
graph representing the first rs-fMRI session and the graph representing
the second rs-fMRI session. The inter-subject distance was computed
between each subject’s first session and all other subject’s first sessions.
Separation between the intra-subject distances and the inter-subject
distances was quantified by mean and standard deviation of the dis-
tributions, and by a Wilcoxon rank-sum test on multiple random splits
of subject data, to avoid having multiple measurements of the same
subjects. Here, we repeated 10 times the following procedure for each
estimator of interest: first, split the subjects into two disjoint sets —
one used to compute intra-distances (50 subjects), and one to compute
inter-distances (50 subjects). Within the inter-distances set, 25 subject
pairs were formed randomly. We tested the null hypothesis of no
difference between inter- and intra-distances, against the alternative
hypothesis that intra-subject distance < inter-subject distance, based
on the assumption that subjects are more similar to themselves than
to other subjects. Given the relatively narrow age range of our sample
8

of HCP subjects (all 22–35 except one 36+), and given that our goal
was to compare estimators using fixed splits, we did not adjust for
covariates or match samples across splits We used a one-sided Wilcoxon
rank-sum test, yielding a W statistic and a 𝑝-value for each of the 10
runs. We then computed the average W value across runs, as well as
the harmonic mean 𝑝-value (Wilson, 2019) across runs, a procedure
with strong family-wise error rate (FWER) control even for positively
dependent tests.

To compute identification rate, functional connectome fingerprint-
ing represent each subject’s graph 𝑔 as a vectorized version 𝐚 of the
upper-triangular (or lower-triangular) part of the full inter-region cor-
relation matrix (whose entries are 𝑟𝑖𝑖′ ), and computes the fingerprinting
distance between graphs as 𝑑(𝑔1, 𝑔2) = 1−Ĉor(𝐚1, 𝐚2), where Cor denotes
Pearson correlation. From the (intra, inter) fingerprinting distance
distributions, the identification counts as correct if the intra-subject
distance is lower than all inter-subject distances. This is equivalent to
a top-1 recognition rate. We note there are many other possibilities to
compute distances between such brain graphs (Richiardi et al., 2013;
Ng et al., 2016; Dadi et al., 2019), including computing distances
between graph embeddings, which could substantially alter results.

Finally, we evaluated the dependence on region size by computing
Spearman correlations between atlas region size and the average of
correlations in which the region is involved (itself averaged across
subjects). A preferable estimator should minimize dependence to re-
gion size, and show lower Spearman correlation. We tested differ-
ences between estimators using a paired t-test between these Spearman
correlations.

5. Data and code availability

R and Python code implementing all estimators, to generate simu-
lated data, and to extract the time-series from the preprocessed HCP
data is available at https://gitlab.inria.fr/q-func/ireco4fmri.

The pre-extracted, wavelet-filtered time series for the rat data are
available at https://dx.doi.org/10.5281/zenodo.7254133. Human Con-
nectome Project data is available at https://www.humanconnectome.
org/.

6. Results

6.1. Evaluation on simulated data

Simulation setup is described in Section 3.1. Fig. 4 shows boxplots
of estimates of 𝑟𝑗𝑗′ = 0.6 for all methods and different intra-correlation
models, and different levels of local and global noise. In terms of

bias, overall, the method 𝓁RD is the best, but it is also the one with

https://gitlab.inria.fr/q-func/ireco4fmri
http://dx.doi.org/10.5281/zenodo.7254133
https://www.humanconnectome.org/
https://www.humanconnectome.org/
https://www.humanconnectome.org/
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Fig. 4. Estimates of the inter-correlation parameter 𝑟𝑗𝑗′ = 0.6 between two regions, based on 500 simulation runs of the general model (1). Situations for two intra-correlation
models and situations with no noise, local noise and/or global noise are considered. The true inter-correlation is depicted by a red dashed line.
the highest variance. In the strong intra-correlation case, and when
𝜎𝜖 = 0, all methods are almost unbiased. When 𝜎𝜖 is increased to
0.1, the estimators ac, 𝓁ca, D, and 𝓁D clearly lose this property. In
the weak intra-correlation case, only the estimators ac, 𝓁R and 𝓁RD
are unbiased, or close to, with 𝓁RD being the best overall for this
criterion, while still being the more variable. Fig. 5 shows boxplots
of estimates of 𝑟𝑗𝑗′ = 0 for all methods and different intra-correlation
models, and different levels of local and global noise. When 𝜎𝑒 = 0 all
estimators are unbiased, both in the strong and weak intra-correlation
case. This property remains true when 𝜎𝑒 is increased to 0.1 only for
the estimators D, 𝓁D and RD. Here again, the estimator 𝓁RD is the
more variable. We can also notice that when 𝜎𝜖 = 0.1, the estimator
ac exhibits very good properties, while 𝓁RD is the worst.

6.2. Evaluation on rat data

Fig. 6(A) shows the correlation values obtained on rats for all
pairs of brain regions, 153 in our case. For this data set, we know
that for the dead rat we are under the full null hypothesis as no
legitimate functional activity should be detected. Thus the estimated
correlations should be close to zero. This is the case for estimators ac,
r, 𝓁ca, d and 𝓁d. However, the other estimators showcase a clear bias
towards positive values. The method ca namely yields unexpectedly
high values of correlations. These correlations correspond to regions
9

that are close together (Becq et al., 2020a). In order to validate these
methods, we also apply our estimators to live rats. The results of two
live rats is shown in Fig. 6(A, right). As expected, due to the local
noise, the methods ac and d do not provide satisfactory results as the
correlation values are very close to zero. One of the best method in
this case is 𝓁ca, where sufficient non-zero correlations are obtained.
Wasserstein distance computations (Fig. 6(C)) show that ac, d, and
rd have the lowest Wasserstein distance values, indicating that the
correlation distribution of the live rats resemble that of a dead rat.

Fig. 6(B) shows Concordance Correlation Coefficient results. Consis-
tent with the all-noise nature of the data, the dead rat exhibited very
low repeatability, with 𝓁ca providing the highest at 0.22. On the live
Eto-L rat, estimators had approximately the same repeatability, with rd
showing the lowest CCC at 0.62 and ac tied with 𝓁ca for highest at 0.87.
For the Iso-W rat, 𝓁r had the lowest CCC at 0.46, ca the second lowest
at 0.54, and 𝓁d the highest at 0.73.

Combining all of these results, 𝓁ca, r and 𝓁d hence seem to be the
most adequate correlation estimators. However, as shown in formula
(G.4), the estimator 𝓁d is difficult to implement. Indeed, it requires the
definition of two other regions uncorrelated with the main brain re-
gions of the parcellation and uncorrelated with themselves. Moreover,
r cannot be estimated when regions are too small, which is often the
case in rat data. From now on, we will hence focus on estimator 𝓁ca.
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Fig. 5. Estimates of the inter-correlation parameter 𝑟𝑗𝑗′ = 0 between two regions, based on 500 simulation runs of the general model (1). Situations for two intra-correlation models
and situations with no noise, local noise and/or global noise are considered. The true inter-correlation is depicted by a red dashed line.

Fig. 6. Rat data results. A. Empirical distribution of the correlation estimators for all pairs of brain regions for a dead and two anesthetized rats, for all proposed estimators. In
the dead rat, the correlation of averages (CA) estimator is providing high values where null correlations should be observed. For the live rat the average of correlation estimator
(AC) is providing very low values where non null correlations should be observed. B. The Concordance Correlation Coefficient (CCC) for the repeatability of the different estimators
for all rats, calculated between the first and second half of the BOLD time series. Higher CCC corresponds to a more repeatable estimator. C. Wasserstein distances between the
correlation distribution of each anesthetized rat and that of the dead rat, for all estimators. ac, D, RD have a very low distance, indicating that correlation values are similar
between dead and live rats for these estimators.
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Fig. 7. Human data results. A. Empirical distribution of inter-regional correlations for three selected estimators for all pairs of brain regions for four human subjects. Each subject
was scanned twice, on different days. B. and C. Concordance correlation Coefficient (CCC) for the reproducibility of the inter-regional correlation values obtained by different
estimators for all human subjects, computed between the two examinations. Higher CCC indicates a more repeatable estimator. All estimators have broadly similar reproducibility.
D. and E. reproducibility of a topological graph metric (betweenness). Again all estimators give broadly similar results, with slightly higher reproducibility for ac.
We then quantified the edges in common between the networks
obtained via the two estimators ca (which is currently the most widely
used estimator) and 𝓁ca. For the dead rat, 67% of edges are in common
between the two estimators. Additionally, 60% and 77% of edges are
similar for the live rats.

6.3. Evaluation on human data

Based on our findings on the rats datasets, we evaluate the perfor-
mances of the three estimators ca (most common estimator, highest
dead-live rat distance), ac (low dead-live rat distance) and 𝓁ca (high
dead-live rat distance) for 100 subjects of the HCP dataset.

Fig. 7(A) reports the correlation values among all pairs of regions
for four randomly selected HCP subjects. Consistent with the rat results,
the estimator ca yields the largest values of correlations, estimator ac
yields very low values, while 𝓁ca values are different from zero, but
smaller that ca values.
11
Reproducibility results for correlation estimates are shown in
Fig. 7(B,C). The Concordance Correlation Coefficient was similar be-
tween estimators (average (sd) across 100 subjects for ca: 0.64 (0.13),
ac: 0.66 (0.20), 𝓁ca: 0.62 (0.17), r: 0.56 (0.17), 𝓁r: 0.52 (0.14)), with
variations in reproducibility reflecting inter-subject variability more
than differences between estimators. For graph metrics reproducibility,
we report only the results with betweenness in Fig. 7(D,E), since similar
results are obtained with other metrics. Here, the methods differed
more, with average (sd) across 100 subjects for ca: 0.29 (0.14), ac:
0.55 (0.17), 𝓁ca: 0.4 (0.16), r: 0.37 (0.14), 𝓁r: 0.26 (0.15). 𝓁ca had
significantly lower CCC than ac (T = −6.8, 𝑝 = 1.6𝑒−10), However, 𝓁ca
has significantly higher CCC than ca (T = 5.1, 𝑝 = 8𝑒−07) and 𝓁r (T
= 6.3, 𝑝 = 2𝑒−9). Finally 𝓁ca and r are not significantly different (T =
1.35, 𝑝 = 0.18). These differences are robust to the choice of threshold
(cf, Appendix G.5).
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Fig. 8. Largest differences between the ca and 𝓁ca estimators, median over 100 HCP subjects. Only the top 20% differences are shown. Inter-regional correlations are taken
in absolute value and rank-transformed prior to computing differences (rank 1 for the strongest correlation, rank 2 for the second-strongest, and so on). Red indicates absolute
correlations that are higher for the 𝓁ca than the ca estimator, while blue indicates the reverse. Node size is proportional to region size in the atlas. Estimator ca on average shows
hyperconnectivity in occipital and generally dorsal posterior regions, and hypoconnectivity in frontal, temporal, and general ventral anterior regions.
Table 2
Discriminative power of estimators on the human dataset. intra: Within-subject average and standard deviation of graph
distances between first and second imaging session across 100 subjects; inter: same for between-subjects, using only the first
session. W: average one-sided Wilcoxon rank-sum test value on 10 random splits, with corresponding harmonic mean 𝑝-
value.
Estimator Intra (sd) Inter (sd) W (𝑝-value) Identification rate

ca 0.29 (0.10) 0.49 (0.10) −5.82 (𝑝ℎ𝑚𝑝 = 1.5𝑒−10) 72%
ac 0.19 (0.10) 0.32 (0.10) −4.88 (𝑝ℎ𝑚𝑝 = 3.6𝑒−9) 69%
𝓁ca 0.26 (0.10) 0.43 (0.10) −3.315.58 (𝑝ℎ𝑚𝑝 = 1.2𝑒−9) 72%
In the thresholded graphs, the percentage of edges in common
between estimators ca and 𝓁ca was on average equal to 70% for the one
hundred subjects used in this analysis for both sessions. Fig. 8 shows
median differences between the estimators in brain space across the
HCP subjects.

Looking at dependence on region size, the ca estimator showed
significantly more correlation with region size than the 𝓁ca estimator
(average (sd) across 100 subjects 0.55 (0.10) vs. 0.40 (0.09), T = 27.2,
𝑝 = 1.1𝑒−47).

In terms of discriminative power between subjects, for connectome
fingerprinting, ca and 𝓁ca achieved the same performance (72% correct
identification), while ac had slightly lower performance (68% correct
identification). Group differences were also similar between estimators.
Table 2 provides details.

7. Discussion

In this paper we illustrate the effect of averaged data on estimators
of correlation when two types of noises are present, local and global
noise. The use of the classical correlation of averages is hindered
by the presence of these noises in addition to the presence of intra-
correlations. We proposed alternative estimators including correction
terms to compensate the intra-correlations, local and global noises.
The performance of these estimators was evaluated on simulations, rats
data, and human data, yielding several observations.

7.1. The correlation of averages estimator is highly biased

The CA estimator tends to be highly biased, as illustrated on syn-
thetic data where the ground truth is known, but also compared to
other estimators, as shown on live rats and human data, where the
mode of the distribution of correlation values is systematically among
the highest found. We hypothesize that this is driven by a combination
of low intra-correlation and large region sizes, which further lowers
intra-correlation. This can be seen from the estimator definition in
Eq. (4). We also note that the 𝓁ca estimator effectively reduces this
influence of region size.

In addition, Fig. 8 revealed a systematic spatial bias between the
ca and 𝓁ca estimator, exhibiting dorsal posterior hyper-connectivity for
12
ca, and corresponding ventral anterior hypo-connectivity. The figure
also suggests that the largest differences between the two estimators
appear between regions that are the largest, further highlighting the
reduced dependency to region size for the 𝓁ca estimator. The spatial
distribution of these differences suggests that caution is in order when
examining large-scale resting-state networks derived from the ca esti-
mator, as some apparent topological properties of brain networks, such
as modularity, could be driven in part by region size and region intra-
correlation. Indeed, in our experiments, thresholded graphs differed
in a large proportion of edges, both in rats (around 30%–50% edge
differences) and humans (around 30% edge differences). Thus, it is
probable that both edge-level and graph-level metrics obtained from
the ca estimator are biased due to their over- or under-estimation
of actual functional connectivity, in a spatially-dependent manner.
For clinical applications, this phenomenon could either emphasize or
reduce differences between patients and controls. Since we have no
ground truth available for in-vivo functional connectivity, in practical
situations, we therefore recommend that results obtained with the ca
estimator be re-run at least with the 𝓁ca estimator as a sensitivity
analysis. The computational cost is not excessive, and differences in
results could indicate that estimator-induced bias was at play.

7.2. Local noise and intra-correlation link to long-range correlation

In this paper, we explain the bias observed in ca estimator by intro-
ducing hypotheses on both intra-correlation and noise. Indeed, previous
studies on regional homogeneity (Zang et al., 2004) showed relevant
results on classification of pathologies based only on intra-regional
properties. This was confirmed by a recent work on classification of
intra-correlation (Petersen et al., 2016) using Wasserstein distances.
Based on these findings, we hypothesize that bias observed on inter-
correlation is driven by intra-correlation and noise. Our simple simu-
lation model illustrates the effect of local noise and intra-correlation.
This is clearly displayed in Figs. 4–5, where the boxplots for the various
estimators are plotted. However, it is important to note that under local
noise, in this framework with controlled intra-correlation, estimator
ca is relatively close to the exact value. This may be explained by a
trade-off in the denominator of the limit as expressed in Table 1. In

our simulation, we also observed that the ca estimators bias depends
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on the intra-correlation and local noise. Indeed, high values of ca
ends to be observed when low values of intra-correlation are observed.
hese low values of intra-correlation have already been mentioned in
he study of dynamics of neural networks (Deco et al., 2014) where
ocal decorrelation was reported in real datasets. In our paper, for
he first time, we proved a statistical explanation of the link between
ocal decorrelations and long-range correlations using aggregated time
eries.

The model chosen in this paper for intra-correlation and local noise
as driven by statistical motivations to be able to write explicit formu-

as for the limit of the estimators. However, as observed in Jiang and
uo (2016) and Deco et al. (2014), these hypotheses are realistic for
esting-state fMRI data, where local decorrelations are observed. These
ocal decorrelations can come from two factors: a low intra-correlation
as modeled by the choice of the intra-correlation coefficients of the
atrix), or a strong local noise. The stationarity assumption may be not

dequate based on raw data. However, as mentioned in Section 2.1,
t becomes very reasonable after performing a wavelet transform of
ach time series voxelwise. This preprocessing significantly reduces non
tationary artefacts.

.3. Repeatability and reproducibility

Repeatability of correlation values in dead rats was very low for
ll estimators, consistent with the random nature of the data. For
ive rats, the CCC ranged from 0.46 to 0.87 depending on specimen
nd estimator. For humans, ca and 𝓁ca showed approximately the

same reproducibility (0.63 average (0.2)), and ac was slightly superior
(0.66 average (0.2)). But reproducibility differences between estimators
were much less pronounced than reproducibility differences between
individual subjects.

As a representative for the reproducibility of graph metrics, we
investigated betweenness. Here, ac offered the highest reproducibility
(average (sd): 0.55 (0.17)) and 𝓁ca improved markedly over ca (0.4
(0.16) vs. 0.29 (0.14)). This is contrast to another study that found no
effect of aggregation method (region mean time series versus region
median versus 1st eigenvariate of the region) on the reproducibility of
graph metrics (Braun et al., 2012) (although in that study sessions were
weeks apart).

7.4. Discriminability

Estimators ca, ac,𝓁ca showed similar values for discriminability,
ith slightly lower identification rate and intra-subject to inter-subject
istribution separation for ac than the two others, and slightly lower
ntra-inter separation for 𝓁ca than ca. This suggests that the improved

robustness to region size and intra-correlation effects of 𝓁ca does not
result in a sizeable impact on discriminative ability, although this
warrants further evaluation.

7.5. Limitations

Our signal model, and therefore the derived estimators, is a trade-
off between model realism and tractability of the analysis of estimator
properties. This comes with important limitations.

First, assuming stationarity and additivity of the local noise fails
to capture effects like system instability due to B0 inhomogeneity, RF
power variations, or gradient fluctuations (Lazar, 2008; Greve et al.,
2013; Liu, 2016). Independently of the model, note that effects such as
drift are mitigated by using wavelet coefficient time series as we did in
this study, and that such instabilities explain proportionally less of the
noise variance than thermal noise at high field (Greve et al., 2011).

Second, motion effects, and in particular differential long-vs. short-
range effects on correlations (Van Dijk et al., 2010; Yan et al., 2013),
were not studied, and their interplay with the spatial bias exhibited by
13

estimator ca in Fig. 8 was not examined.
Third, our new estimators come with the added burden of choos-
ing hyperparameters such as neighborhood size. These are currently
selected empirically, and no systematic sensitivity analysis has been
performed. However, our proposed approach may be used to redefine
the brain regions by grouping voxels with high intra-correlation. This
would allow to define new brain regions using intra-correlation in
addition to anatomical criterion.

Despite these limitations, we believe our empirical tests served to
bridge the gap towards applicability, since our model yielded at least
an estimator, 𝓁ca, with useful properties for use in neuroimaging —
namely, reduced dependency to region size and low intra-correlation,
and improved reproducibility of graph metrics.
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Appendix A. Brain functional connectivity review

The literature review was conducted on PubMed using the keywords
‘‘brain connectivity graph resting state ‘human connectome project’’’ on
September 30, 2021. The search returned 32 papers written between
2014 and 2021. Out of those papers, 5 were not open access and 2
papers were literature reviews, and were not considered further. 3
papers were either using seed-based or voxel-to-voxel correlation. Out
of the remaining 24 papers 71% (17/24) first averaged voxels before
computing the inter-regional correlations and 88% (21/24) employed
some kind of spatial aggregation method, including but not limited to

averaging over voxels, ICA or dictionary learning.
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Appendix B. Hypotheses for the spatio-temporal model

The assumptions on the model can be written as follows. For any
𝑖, 𝑖′ ∈  and 𝑠, 𝑡 = 1,… , 𝑇 ,

E[𝑋𝑖(𝑡)] = E[𝜀𝑖(𝑡)] = E[𝑒(𝑡)] = 0,

E[𝑋𝑖(𝑠)𝑋𝑖(𝑡)] = E[𝜀𝑖(𝑠)𝜀𝑖(𝑡)] = 𝐸[𝑒(𝑠)𝑒(𝑡)] = 0,

E[𝑋𝑖(𝑠)𝜀𝑖′ (𝑡)] = E[𝑋𝑖(𝑠)𝑒(𝑡)] = E[𝜀𝑖(𝑠)𝑒(𝑡)] = 0,

E[𝑒(𝑡)2] = 𝜎2𝑒 .

Let 𝜮 be the covariance matrix of the vector (𝑌𝑖(𝑡))𝑖∈,𝑡=1,…,𝑇 . In this
paper, we assume without referring specifically to this assumption that
the parameters 𝜎2𝑗 , 𝜎2𝜀 , 𝜎2𝑒 , 𝜌𝑖𝑖′ , 𝜂𝑖𝑖′ , 𝑟𝑗𝑗′ are such that 𝜮 is a positive
definite matrix.

We also assume that the random variables are independent in time.
This is not overly restrictive: in particular, if the random variables have
long memory, after a wavelet decomposition, the random variables
can be approximated to be decorrelated in time for large wavelet
scales (Moulines et al., 2007). In addition, assuming that the 𝑋𝑖’s
are centered is coherent as it is a well-known fact that a wavelet
decomposition based on a wavelet mother with 𝐾 vanishing moments
cancels out every polynomial trend with degree 𝐾 − 1.

Finally, to apply the law of large numbers, we also assume that all
random variables are absolutely integrable, that is E[|𝑍𝑖(𝑡)|] < ∞ for
𝑍 = 𝑋, 𝜀, 𝑒, 𝑖 ∈  and 𝑡 = 1,… , 𝑇 .

Appendix C. Properties of the estimators of interest

For any set of indices 𝐸 with cardinality #𝐸, we let

̄𝐸 = 1
(#𝐸)2

∑

𝑖,𝑖′∈𝐸
𝜌𝑖𝑖′ and �̄�𝐸 = 1

(#𝐸)2
∑

𝑖,𝑖′∈𝐸
𝜂𝑖𝑖′ . (C.1)

The results of the paper are based on this proposition:

Proposition C.1. Consider the notation of Section 2.1 and assumptions
described in Appendix B. Let 𝑗, 𝑗′ ∈ {1,… , 𝐽}.

(i) Let 𝐸 ⊆ 𝑗 , then for any 𝑡 = 1,… , 𝑇

ar[�̄�𝐸 (𝑡)] = 𝜎2𝑗 �̄�𝐸 (C.2)

Var[�̄�𝐸 (𝑡)] = 𝜎2𝜀 �̄�𝐸 = (1∕(#𝐸)) (C.3)

Var[𝑒𝐸 (𝑡)] = Var(𝑒(𝑡)) = 𝜎2𝑒 (C.4)

Var[𝑌𝐸 (𝑡)] = 𝜎2𝑗 �̄�𝐸 + 𝜎2𝜀 �̄�𝐸 + 𝜎2𝑒 . (C.5)

ii) Let 𝐸 ⊆ 𝑗 and 𝐸′ ⊆ 𝑗′ , then

ov[𝑌𝐸 (𝑡), 𝑌𝐸′ (𝑡)] =

{

𝜎𝑗𝜎𝑗′ 𝑟𝑗𝑗′ + 𝜎2𝑒 if 𝑗 ≠ 𝑗′

𝜎2𝑗 �̄�𝐸,𝐸′ + 𝜎2𝑒 if 𝑗 = 𝑗′
(C.6)

here

�̄�𝐸,𝐸′ = 1
(#𝐸)(#𝐸′)

∑

𝑖∈𝐸,𝑖′∈𝐸′
𝜌
|𝑖−𝑖′|. (C.7)

iii) Let 𝑖 ∈ 𝐸 ⊆ 𝑗 and 𝑖′ ∈ 𝐸′ ⊆ 𝑗′ and assume for any 𝑖 ∈ 𝐸 and
𝑖′ ∈ 𝐸′

|𝑖 − 𝑖′| ≥ 𝑝 (in the case 𝑗 = 𝑗′). Then as 𝑇 → ∞, the following
tatements hold almost surely.

𝜎2(𝐘𝑖)
𝑎.𝑠.
→ Var[𝑌𝑖(1)] and Ĉov[𝐘𝑖,𝐘𝑖′ ]

𝑎.𝑠.
→ Cov[𝑌𝑖(1), 𝑌𝑖′ (1)] (C.8)

𝜎2(�̄�𝐸 )
𝑎.𝑠.
→ Var[𝑌𝐸 (1)] and Ĉov[�̄�𝐸 , �̄�𝐸′ ]

𝑎.𝑠.
→ Cov[𝑌𝐸 (1), 𝑌𝐸′ (1)].

(C.9)

Proposition C.1 is given without proof. (i)–(ii) ensue from the
odel (1) while (iii) is quite straightforward since we have assumed

ndependence in time.
As seen from Proposition C.1, the quantity �̄�𝐸 is related to the

correlation structure of the local noise. By assuming this noise to be
𝑝-dependent (that is 𝜂𝛿 = 0 when 𝛿 ≥ 𝑝), it is clear that the larger #𝐸
he smaller �̄� .
14

𝐸

Appendix D. Consistency results for the existing estimators

D.1. Consistency of �̂� ca𝑗𝑗′

Proposition C.1 shows �̂� ca𝑗𝑗′ is a strongly consistent estimator of 𝑟 ca𝑗𝑗′
as 𝑇 → ∞ where

𝑟 ca𝑗𝑗′ = 𝑟𝑗𝑗′
1 + 𝜎2𝑒,𝑗𝑗′∕𝑟𝑗𝑗′

√

(�̄�𝑗
+ 𝜎2𝜀,𝑗 �̄�𝑗

+ 𝜎2𝑒,𝑗 )(�̄�𝑗′
+ 𝜎2𝜀,𝑗′ �̄�𝑗′

+ 𝜎2𝑒,𝑗′ )
. (D.1)

Another way to correct the size effect is to compensate the inter-
correlation by the intra-correlation. This would lead to the following
estimator:

ãc
𝑗𝑗′ =

1
𝑁𝑗𝑁𝑗′

⎛

⎜

⎜

⎝

∑

𝑖,𝑖′∈𝑗

Ĉor(𝐘𝑖,𝐘𝑖′ )
∑

𝑖,𝑖′∈𝑗′

Ĉor(𝐘𝑖,𝐘𝑖′ )
⎞

⎟

⎟

⎠

1∕2

�̂� ac. (D.2)

The two estimators (5) and (D.2) have the important property to
remove the size effect (since when 𝜎𝜀 = 𝜎𝑒 = 0, 𝑟 ac𝑗𝑗′ = 𝑟𝑗𝑗′ ). Note that
both estimators tend to the same limit.

D.2. Consistency of �̂� ac𝑗𝑗′

Proposition C.1 shows that �̂� ac𝑗𝑗′ is a strongly consistent estimator of
𝑟 ac𝑗𝑗′ given by

𝑟 ac𝑗𝑗′ = 𝑟𝑗𝑗′
1 + 𝜎2𝑒,𝑗𝑗′∕𝑟𝑗𝑗′

√

(1 + 𝜎2𝜀,𝑗 + 𝜎2𝑒,𝑗 )(1 + 𝜎2𝜀,𝑗′ + 𝜎2𝑒,𝑗′ )
. (D.3)

As revealed by (D.1) and (D.3), �̂� ca𝑗𝑗′ and �̂� ac𝑗𝑗′ do not converge towards

𝑟𝑗𝑗′ when a local noise or global noise is present. We could ask why �̂� ca𝑗𝑗′
is interesting. Actually, a first spatial averaging tends to decrease the
effect of the local noise. Indeed, when 𝜎2𝑒 = 0 (and with equal unit
variances to simplify), we have

𝑟 ca𝑗𝑗′ =
𝑟𝑗𝑗′

√

(�̄�𝑗
+ 𝜎2𝜀 �̄�𝑗

)(�̄�𝑗′
+ 𝜎2𝜀 �̄�𝑗′

)
and 𝑟 ac𝑗𝑗′ =

𝑟𝑗𝑗′
1 + 𝜎2𝜀

.

Hence, if we expect that �̄�𝑗
≈ �̄�𝑗′

≈ 1, �̂� ca𝑗𝑗′ will be a better estimator

since �̄�𝑗
= (1∕𝑁𝑗 ). A natural compromise between �̂� ca𝑗𝑗′ and �̂� ca𝑗𝑗′ can

e defined using local neighborhood as defined by 𝓁ca.

.3. Consistency of �̂�R𝑗𝑗′

From Proposition C.1, as 𝑇 → ∞

1
4

2
∑

𝛼,𝛽=1
Ĉor(𝐘𝑖(𝑏)𝛼

,𝐘𝑖′(𝑏)𝛽
)
𝑎.𝑠.
→

𝜎𝑗𝜎𝑗′ 𝑟𝑗𝑗′ + 𝜎2𝑒
√

(

𝜎2𝑗 + 𝜎2𝜀 + 𝜎2𝑒
)(

𝜎2𝑗′ + 𝜎2𝜀 + 𝜎2𝑒
)

and

Ĉor(𝐘𝑖(𝑏)1
,𝐘𝑖(𝑏)2

)
𝑎.𝑠.
→

𝜎2𝑗 𝜌𝛿 + 𝜎2𝑒
𝜎2𝑗 + 𝜎2𝜀 + 𝜎2𝑒

,

whereby we deduce that �̂�R is a strongly consistent estimator of

𝑟R𝑗𝑗′ = 𝑟𝑗𝑗′
1 + 𝜎2𝑒,𝑗𝑗′∕𝑟𝑗𝑗′

√

|(𝜌𝛿 + 𝜎2𝑒,𝑗 )(𝜌𝛿 + 𝜎2𝑒,𝑗′ )|
. (D.4)

From (D.4), we observe that when 𝜎𝑒 = 0 then for any unknown value
of 𝜎𝜀, �̂�R𝑗𝑗′ estimates consistently 𝑟𝑗𝑗′∕|𝜌𝛿| which should be close to 𝑟𝑗𝑗′

if we take 𝛿 = 𝑝 and expect that 𝜌𝑝 is close to 1. In other words, the
estimator �̂�R𝑗𝑗′ is robust to the size of the regions and robust to a possible
local noise.

To reduce the assumption that 𝜌𝑝 is close to 1, we can combine this
idea of replicates with local averaging. This is the topic of the next
section.
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Appendix E. Consistency of �̂�D
𝒋𝒋′

The following result is the key ingredient:

roposition E.1. Under the notation of this section, as 𝑇 → ∞, the
ollowing statements hold almost surely.
(i)

ôv(𝐘𝑖(𝑏) − 𝐘𝑘(𝑏) ,𝐘𝑖′(𝑏) − 𝐘𝑘′(𝑏) )
𝑎.𝑠.
→ 𝜎𝑗𝜎𝑗′ 𝑟𝑗𝑗′ .

(ii)

2�̂�2(𝐘𝑖(𝑏) ,𝐘𝑘(𝑏) ,𝐘𝑘′(𝑏) )
𝑎.𝑠.
→ 2𝜎2𝑗 + 2𝜎2𝜀 . (E.1)

Proof. (i) Using the independence in time, it is clear that the left-
hand side converges almost surely to Cov(𝑌𝑖(𝑏) (1) − 𝑌𝑘(𝑏) (1), 𝑌𝑖′(𝑏) (1) −
𝑌𝑘′(𝑏) (1)) = 𝜎𝑗𝜎𝑗′ 𝑟𝑗𝑗′ + 𝜎2𝑒 − 2𝜎2𝑒 + 𝜎2𝑒 since the two regions 𝑘 and 𝑘′

are disconnected, which leads to the result.
(ii) In the same way, the left-hand side tends to Var(𝑌𝑖(𝑏) (1)−𝑌𝑘(𝑏) (1))+

Var(𝑌𝑖(𝑏) (1) − 𝑌𝑘′(𝑏) (1)) −Var(𝑌𝑘(𝑏) (1) − 𝑌𝑘′(𝑏) (1)) = 𝜎2𝑗 + 𝜎2𝑘 + 𝜎2𝑘′ +4𝜎2𝜀 − 𝜎2𝑘 −
𝜎2𝑘′ − 2𝜎2𝜀 which yields the stated limit. □

In other words, Proposition E.1 shows that �̂�D𝑗𝑗′ is a strongly consis-
tent estimator of 𝑟D𝑗𝑗′ given by

𝑟D = 𝑟𝑗𝑗′
1

√

(

1 + 𝜎2𝜀,𝑗
)(

1 + 𝜎2𝜀,𝑗′
)

(E.2)

which, in the situation where 𝜎𝜀 = 0, is nothing else than 𝑟𝑗𝑗′ .

Appendix F. Consistency of �̂�RD
𝒋𝒋′

The following result is a consequence of Propositions C.1–G.1.

Proposition F.1. As 𝑇 → ∞, the following statements hold almost surely.
(i) For any 𝑖1, 𝑖2 ∈ 𝑗 , 𝑖′1, 𝑖

′
2 ∈ 𝑗 𝑖𝑘 ∈ 𝑘 and 𝑖𝑘′ ∈ 𝑘′ , such that

|𝑖2 − 𝑖1| = |𝑖′2 − 𝑖′1| = 𝛿 ≥ 𝑝

√

|C̃or(𝐘𝑖1 ,𝐘𝑖2 ;𝐘𝑖𝑘 ,𝐘𝑖𝑘′
)C̃or(𝐘𝑖′1

,𝐘𝑖′2
;𝐘𝑖𝑘 ,𝐘𝑖𝑘′

)|
𝑎.𝑠.
→

𝜎𝑗𝜎𝑗′ |𝜌𝛿|
√

(𝜎2𝑗 + 𝜎2𝜀 )(𝜎
2
𝑗′ + 𝜎2𝜀 )

(F.1)

(ii) For any 𝜈-neighborhoods 𝑗1 ,𝑗2 ∈ 𝑗 , 𝑗′1
,𝑗′2

∈ 𝑗′ 𝑘 ∈ 𝑘

 ∈  , such that for any 𝑖 ∈  , 𝑖 ∈  , 𝑖′ ∈  ′ , 𝑖′ ∈  ′ ,
15

𝑘′ 𝑘′ 1 𝑗1 2 𝑗2 1 𝑗1 2 𝑗2
|𝑖1 − 𝑖2| = |𝑖′1 − 𝑖′2| = 𝛿 ≥ 𝑝

|C̃or(�̄�𝑗1
, �̄�𝑗2

; �̄�𝑘 , �̄�𝑘′ )C̃or(�̄�𝑗′1
,�̄�𝑗′2

; �̄�𝑘 , �̄�𝑘′ )|
𝑎.𝑠.
→

𝜎2𝑗 𝜎
2
𝑗′𝜌

2
 , ′ , 𝛿

(𝜎2𝑗 �̄� + 𝜎2𝜀 �̄� )(𝜎
2
𝑗′ �̄� + 𝜎2𝜀 �̄� )

(F.2)

here  ,  ′ are two 𝜈-neighborhoods at distance 𝛿.

Propositions G.1–F.1 show that �̂�RD𝑗𝑗′ is a strongly consistent estima-
or of 𝑟RD𝑗𝑗′ given by

RD
𝑗𝑗′ =

𝑟𝑗𝑗′
|𝜌𝛿|

(F.3)

Appendix G. Consistency of localized versions of estimators

G.1. Consistency of �̂�𝓁ca𝑗𝑗′

We can apply Proposition C.1 to show that 𝑟𝓁ca𝑗𝑗′ is a strongly
consistent estimator of

𝑟𝓁ca𝑗𝑗′ = 𝑟𝑗𝑗′
1 + 𝜎2𝑒,𝑗𝑗′∕𝑟𝑗𝑗′

√

(�̄� + 𝜎2𝜀,𝑗 �̄� + 𝜎2𝑒,𝑗 )(�̄� + 𝜎2𝜀,𝑗′ �̄� + 𝜎2𝑒,𝑗′ )
(G.1)

here  is any 𝜈-neighborhood. When there is no global noise (𝜎𝑒 = 0)
and for moderate 𝜈, it may be expected than the denominator of 𝑟𝓁ca𝑗𝑗′
s closer to 1 than the ones of 𝑟 ca𝑗𝑗′ and 𝑟 ac𝑗𝑗′ .

.2. Consistency of �̂�𝓁R𝑗𝑗′

Proposition C.1 shows that �̂�𝓁R𝑗𝑗′ is a strongly consistent estimator of
𝓁R
𝑗𝑗′ defined by

𝓁R
𝑗𝑗′ = 𝑟𝑗𝑗′

1 + 𝜎2𝑒,𝑗𝑗′∕𝑟𝑗𝑗′
√

|(�̄� , ′ ,𝛿 + 𝜎2𝑒,𝑗 )(�̄� , ′ ,𝛿 + 𝜎2𝑒,𝑗′ )|
(G.2)

where �̄� , ′ ,𝛿 is defined by (C.7) with  and  ′ two 𝜈-neighborhoods at
distance 𝛿. Similarly to the estimator �̂�R, when 𝜎𝑒 = 0, the previous ex-
pression reduces to 𝑟𝓁R𝑗𝑗′ = 𝑟𝑗𝑗′∕|�̄� , ′ ,𝛿| and again it is not unreasonable
to think that �̄� , ′ ,𝛿 is close to 1.
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G.3. Consistency of �̂�𝓁D𝑗𝑗′

The following result is an adaptation of Proposition E.1 to local
verages.

roposition G.1. As 𝑇 → ∞, the following statements hold almost surely.
(i)

ôv(�̄� (𝑏)
𝑗

− �̄� (𝑏)
𝑘
, �̄� (𝑏)

𝑗′
− �̄� (𝑏)

𝑘′
)
𝑎.𝑠.
→ 𝜎𝑗𝜎𝑗′ 𝑟𝑗𝑗′ .

(ii)

2�̂�2(�̄� (𝑏)
𝑗
, �̄� (𝑏)

𝑘
, �̄� (𝑏)

𝑘′
)
𝑎.𝑠.
→ 2𝜎2𝑗 �̄� + 2𝜎2𝜀 �̄� . (G.3)

Using Proposition G.1 (for which proof follows along similar lines as
Proposition E.1), we deduce that �̂�𝓁D𝑗𝑗′ is a strongly consistent estimator
f 𝑟𝓁D𝑗𝑗′ given by

𝓁D
𝑗𝑗′ = 𝑟𝑗𝑗′

1
√

(�̄� + 𝜎2𝜀,𝑗 �̄� )(�̄� + 𝜎2𝜀,𝑗′ �̄� )
(G.4)

where  is any 𝜈-neighborhood.

G.4. Consistency of �̂�𝓁RD𝑗𝑗′

Propositions G.1–F.1 show that �̂�𝓁RD𝑗𝑗′ is a strongly consistent estima-
tor of 𝑟𝓁RD𝑗𝑗′ given by

𝑟𝓁RD𝑗𝑗′ =
𝑟𝑗𝑗′

|�̄� , ′ ,𝛿|
(G.5)

where  and  ′ are two 𝜈-neighborhoods at distance 𝛿. Similarly to the
previous estimator, �̂�𝓁RD𝑗𝑗′ is robust to an additive global and local noise.

.5. Robustness of CCC differences in terms of threshold

In the main text, we presented the difference of CCC for the different
stimators based on a single threshold corresponding to 20% of the
dges of the graph. Fig. G.9 displays the variability of CCC according to
ifferent number of edges selected to construct the graph. This shows
he robustness of our findings where 𝓁ca has always higher CCC than
ca for all possible thresholds.

References

Achard, S., Coeurjolly, J.-F., Marcillaud, R., Richiardi, J., 2011. fMRI functional
connectivity estimators robust to region size bias. In: IEEE Workshop on Statistical
Signal Processing, SSP2011. Nice, France, pp. 813–816.

Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E., 2006. A resilient,
low-frequency, small-world human brain functional network with highly connected
association cortical hubs. J. Neurosci. 26 (1), 63–72.

Afyouni, S., Smith, S.M., Nichols, T.E., 2019. Effective degrees of freedom of the
Pearson’s correlation coefficient under autocorrelation. NeuroImage 199, 609–625.

Alexander-Bloch, A.F., Gogtay, N., Meunier, D., Birn, R., Clasen, L., Lalonde, F.,
Lenroot, R., Giedd, J., Bullmore, E.T., 2010. Disrupted modularity and local
connectivity of brain functional networks in childhood-onset schizophrenia. Front.
Syst. Neurosci. 4.

Alexander-Bloch, A.F., Shou, H., Liu, S., Satterthwaite, T.D., Glahn, D.C., Shi-
nohara, R.T., Vandekar, S.N., Raznahan, A., 2018. On testing for spatial
correspondence between maps of human brain structure and function. NeuroImage
178, 540–551.

Becq, G.G.J.-P.C., Barbier, E., Achard, S., 2020a. Brain networks of rats under anesthesia
using resting-state fMRI: comparison with dead rats, random noise and generative
models of networks. J. Neural Eng..

Becq, G.J.-P., Habet, T., Collomb, N., Faucher, M., Delon-Martin, C., Coizet, V.,
Achard, S., Barbier, E.L., 2020b. Functional connectivity is preserved but
reorganized across several anesthetic regimes. NeuroImage 219, 116945.

Bergholm, F., Adler, J., Parmryd, I., 2010. Analysis of bias in the apparent correlation
coefficient between image pairs corrupted by severe noise. J. Math. Imaging Vis.
37, 204–219.

Bolt, T., Nomi, J.S., Rubinov, M., Uddin, L.Q., 2017. Correspondence between evoked
and intrinsic functional brain network configurations. Hum. Brain Mapp. 38 (4),
1992–2007, https://onlinelibrary.wiley.com/doi/pdf/10.1002/hbm.23500.
16
Braun, U., Plichta, M.M., Esslinger, C., Sauer, C., Haddad, L., Grimm, O., Mier, D.,
Mohnke, S., Heinz, A., Erk, S., Walter, H., Seiferth, N., Kirsch, P., Meyer-
Lindenberg, A., 2012. Test–retest reliability of resting-state connectivity network
characteristics using fMRI and graph theoretical measures. NeuroImage 59 (2),
1404–1412.

Büchel, C., Friston, K.J., 1997. Modulation of connectivity in visual pathways by
attention: cortical interactions evaluated with structural equation modelling and
fMRI. Cerebral Cortex 7 (8), 768–778.

Burt, J.B., Helmer, M., Shinn, M., Anticevic, A., Murray, J.D., 2020. Generative
modeling of brain maps with spatial autocorrelation. NeuroImage 220, 117038.

Caballero-Gaudes, C., Reynolds, R.C., 2017. Methods for cleaning the BOLD fMRI signal.
NeuroImage 154, 128–149.

Cao, H., McEwen, S.C., Forsyth, J.K., Gee, D.G., Bearden, C.E., Addington, J.,
Goodyear, B., Cadenhead, K.S., Mirzakhanian, H., Cornblatt, B.A., Carrión, R.E.,
Mathalon, D.H., McGlashan, T.H., Perkins, D.O., Belger, A., Seidman, L.J., Ther-
menos, H., Tsuang, M.T., van Erp, T.G.M., Walker, E.F., Hamann, S., Anticevic, A.,
Woods, S.W., Cannon, T.D., 2019. Toward leveraging human connectomic data in
large consortia: Generalizability of fMRI-based brain graphs across sites, sessions,
and paradigms. Cerebral Cortex 29 (3), 1263–1279.

Cao, J., Worsley, K., 1999. The geometry of correlation fields with an application
to functional connectivity of the brain. Ann. Appl. Probab. 9 (4), 1021–1057,
Publisher: Institute of Mathematical Statistics.

Castellanos, F.X., Di Martino, A., Craddock, R.C., Mehta, A.D., Milham, M.P., 2013.
Clinical applications of the functional connectome. NeuroImage 80, 527–540.

Castrillon, J.G., Ahmadi, A., Navab, N., Richiardi, J., 2014. Learning with multi-site
fMRI graph data. In: 2014 48th Asilomar Conference on Signals, Systems and
Computers. pp. 608–612, ISSN: 1058-6393.

Chen, J.E., Glover, G.H., 2015. BOLD fractional contribution to resting-state functional
connectivity above 0.1 Hz. NeuroImage 107, 207–218.

Chen, A.A., Srinivasan, D., Pomponio, R., Fan, Y., Nasrallah, I.M., Resnick, S.M.,
Beason-Held, L.L., Davatzikos, C., Satterthwaite, T.D., Bassett, D.S., Shinohara, R.T.,
Shou, H., 2022. Harmonizing functional connectivity reduces scanner effects in
community detection. NeuroImage 256, 119198.

Clifford, P., Richardson, S., Hemon, D., 1989. Assessing the significance of the
correlation between two spatial processes. Biometrics 45 (1), 123–134.

Cordes, D., Haughton, V.M., Arfanakis, K., Carew, J.D., Turski, P.A., Moritz, C.H.,
Quigley, M.A., Meyerand, M.E., 2001. Frequencies contributing to functional
connectivity in the cerebral cortex in ‘‘resting-state’’ data. Am. J. Neuroradiol. 22
(7), 1326–1333, Publisher: American Journal of Neuroradiology Section: BRAIN.

Dadi, K., Rahim, M., Abraham, A., Chyzhyk, D., Milham, M., Thirion, B., Varo-
quaux, G., 2019. Benchmarking functional connectome-based predictive models for
resting-state fMRI. NeuroImage 192, 115–134.

Deco, G., Ponce-Alvarez, A., Hagmann, P., Romani, G.L., Mantini, D., Corbetta, M.,
2014. How local excitation-inhibition ratio impacts the whole brain dynamics. J.
Neurosci. 34 (23), 7886–7898.

Descombes, X., Kruggel, F., Von Cramon, D., 1998. fMRI signal restoration using a
spatio-temporal Markov random field preserving transitions. NeuroImage 8 (4),
340–349.

Eickhoff, S.B., Thirion, B., Varoquaux, G., Bzdok, D., 2015. Connectivity-based
parcellation: Critique and implications. Hum. Brain Mapp. 36 (12), 4771–4792.

Fan, F., Liao, X., Lei, T., Zhao, T., Xia, M., Men, W., Wang, Y., Hu, M., Liu, J., Qin, S.,
Tan, S., Gao, J.-H., Dong, Q., Tao, S., He, Y., 2021. Development of the default-
mode network during childhood and adolescence: A longitudinal resting-state fMRI
study. NeuroImage 226, 117581.

Figueroa-Jimenez, M.D., Cañete-Massé, C., Carbó-Carreté, M., Zarabozo-Hurtado, D.,
Peró-Cebollero, M., Salazar-Estrada, J.G., Guàrdia-Olmos, J., 2021. Resting-state
default mode network connectivity in young individuals with Down syndrome.
Brain Behav. 11 (1), e01905, https://onlinelibrary.wiley.com/doi/pdf/10.1002/
brb3.1905.

Finn, E.S., Shen, X., Scheinost, D., Rosenberg, M.D., Huang, J., Chun, M.M., Pa-
pademetris, X., Constable, R.T., 2015. Functional connectome fingerprinting:
identifying individuals using patterns of brain connectivity. Nature Neurosci. 18
(11), 1664–1671.

Fornito, A., Bullmore, E.T., Zalesky, A., 2017. Opportunities and challenges for
psychiatry in the connectomic era. Biol. Psychiatry: Cogn. Neurosci. Neuroimaging
2 (1), 9–19.

Fornito, A., Zalesky, A., Breakspear, M., 2015. The connectomics of brain disorders.
Nat. Rev. Neurosci. 16 (3), 159–172.

Gaetan, C., Guyon, X., et al., 2010. Spatial Statistics and Modeling, Vol. 90. Springer.
Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L.,

Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., Van Essen, D.C., Jenkinson, M.,
2013. The minimal preprocessing pipelines for the Human Connectome Project.
NeuroImage 80, 105–124.

Greve, D.N., Brown, G.G., Mueller, B.A., Glover, G., Liu, T.T., Function Biomedical
Research Network, 2013. A survey of the sources of noise in fMRI. Psychometrika
78 (3), 396–416.

Greve, D.N., Mueller, B.A., Liu, T., Turner, J.A., Voyvodic, J., Yetter, E., Diaz, M.,
McCarthy, G., Wallace, S., Roach, B.J., Ford, J.M., Mathalon, D.H., Calhoun, V.D.,
Wible, C.G., Brown, G.G., Potkin, S.G., Glover, G., 2011. A novel method for
quantifying scanner instability in fMRI: Quantifying scanner instability in fMRI.
Magn. Reson. Med. 65 (4), 1053–1061.

http://refhub.elsevier.com/S1053-8119(23)00539-6/sb1
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb1
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb1
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb1
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb1
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb2
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb2
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb2
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb2
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb2
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb3
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb3
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb3
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb4
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb4
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb4
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb4
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb4
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb4
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb4
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb5
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb5
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb5
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb5
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb5
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb5
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb5
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb6
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb6
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb6
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb6
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb6
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb7
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb7
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb7
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb7
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb7
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb8
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb8
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb8
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb8
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb8
https://onlinelibrary.wiley.com/doi/pdf/10.1002/hbm.23500
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb10
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb10
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb10
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb10
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb10
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb10
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb10
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb10
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb10
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb11
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb11
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb11
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb11
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb11
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb12
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb12
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb12
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb13
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb13
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb13
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb14
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb14
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb14
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb14
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb14
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb14
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb14
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb14
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb14
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb14
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb14
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb14
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb14
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb15
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb15
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb15
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb15
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb15
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb16
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb16
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb16
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb17
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb17
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb17
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb17
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb17
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb18
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb18
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb18
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb19
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb19
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb19
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb19
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb19
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb19
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb19
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb20
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb20
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb20
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb21
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb21
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb21
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb21
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb21
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb21
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb21
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb22
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb22
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb22
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb22
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb22
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb23
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb23
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb23
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb23
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb23
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb24
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb24
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb24
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb24
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb24
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb25
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb25
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb25
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb26
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb26
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb26
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb26
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb26
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb26
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb26
https://onlinelibrary.wiley.com/doi/pdf/10.1002/brb3.1905
https://onlinelibrary.wiley.com/doi/pdf/10.1002/brb3.1905
https://onlinelibrary.wiley.com/doi/pdf/10.1002/brb3.1905
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb28
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb28
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb28
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb28
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb28
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb28
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb28
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb29
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb29
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb29
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb29
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb29
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb30
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb30
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb30
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb31
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb32
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb32
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb32
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb32
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb32
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb32
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb32
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb33
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb33
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb33
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb33
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb33
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb34
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb34
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb34
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb34
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb34
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb34
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb34
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb34
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb34


NeuroImage 282 (2023) 120388S. Achard et al.
Gunst, R.F., 1995. Estimating spatial correlations from spatial-temporal meteorological
data. J. Clim. 8, 2454–2469.

Hartvig, N.V., Jensen, J.L., 2000. Spatial mixture modeling of fMRI data. Hum. Brain
Mapp. 11 (4), 233–248.

Jiang, L., Zuo, X.-N., 2016. Regional homogeneity: A multimodal, multiscale
neuroimaging marker of the human connectome. Neuroscientist 22 (5), 486–505.

Jo, H.J., Saad, Z.S., Simmons, W.K., Milbury, L.A., Cox, R.W., 2010. Mapping sources of
correlation in resting state FMRI, with artifact detection and removal. NeuroImage
52 (2), 571–582.

Köhler, S., McIntosh, A.R., Moscovitch, M., Winocur, G., 1998. Functional interactions
between the medial temporal lobes and posterior neocortex related to episodic
memory retrieval. Cerebral Cortex 8 (5), 451–461.

Lazar, N.A., 2008. Noise and data preprocessing. In: The Statistical Analysis of
Functional MRI Data. In: Statistics for Biology and Health, Springer New York,
New York, NY, pp. 37–51, ISSN: 1431-8776.

Lin, L.I.-K., 1989. A concordance correlation coefficient to evaluate reproducibility.
Biometrics 45 (1), 255–268, Publisher: [Wiley, International Biometric Society].

Liu, T.T., 2016. Noise contributions to the fMRI signal: An overview. NeuroImage 143,
141–151.

Markello, R.D., Misic, B., 2021. Comparing spatial null models for brain maps.
NeuroImage 236, 118052.

Moulines, E., Roueff, F., Taqqu, M.S., 2007. On the spectral density of the wavelet
coefficients of long-memory time series with application to the log-regression
estimation of the memory parameter. J. Time Series Anal. 28 (2), 155–187.

Murphy, K., Birn, R.M., Bandettini, P.A., 2013. Resting-state fMRI confounds and
cleanup. NeuroImage 80, 349–359.

Ng, B., Varoquaux, G., Poline, J.B., Greicius, M., Thirion, B., 2016. Transport on
Riemannian manifold for connectivity-based brain decoding. IEEE Trans. Med.
Imaging 35 (1), 208–216.

Ogawa, A., 2021. Time-varying measures of cerebral network centrality correlate
with visual saliency during movie watching. Brain Behav. 11 (9), e2334, https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/brb3.2334.

Ostroff, C., 1993. Comparing correlations based on individual-level and aggregated data.
J. Appl. Psychol. 78 (4), 569.

Pawela, C.P., Biswal, B.B., Cho, Y.R., Kao, D.S., Li, R., Jones, S.R., Schulte, M.L.,
Matloub, H.S., Hudetz, A.G., Hyde, J.S., 2008. Resting-state functional connectivity
of the rat brain. Magn. Reson. Med. 59 (5), 1021–1029.

Petersen, A., Zhao, J., Carmichael, O., Müller, H.-G., 2016. Quantifying individual
brain connectivity with functional principal component analysis for networks. Brain
Connect. 6 (7), 540–547.

Poline, J.B., Worsley, K.J., Evans, A.C., Friston, K.J., 1997. Combining spatial extent
and peak intensity to test for activations in functional imaging. NeuroImage 5 (2),
83–96.

Poline, J.-B., Worsley, K.J., Holmes, A.P., Frackowiak, R.S.J., Friston, K.J., 1995.
Estimating smoothness in statistical parametric maps: Variability of p values. J.
Comput. Assist. Tomogr. 19 (5), 788–796.

Richiardi, J., Achard, S., Bunke, H., Van De Ville, D., 2013. Machine learning with
brain graphs: Predictive modeling approaches for functional imaging in systems
neuroscience. IEEE Signal Process. Mag. 30 (3), 58–70.

Rosner, B., Donner, A., Hennekens, C., 1977. Estimation of interclass correlation from
familial data. Appl. Stat. 26, 179–187.
17
Salvador, R., Suckling, J., Schwarzbauer, C., Bullmore, E., 2005. Undirected graphs
of frequency-dependent functional connectivity in whole brain networks. Philos.
Trans. R. Soc. B 360 (1457), 937–946.

Stanley, M.L., Moussa, M.N., Paolini, B.M., Lyday, R.G., Burdette, J.H., Laurienti, P.J.,
2013. Defining nodes in complex brain networks. Front. Comput. Neurosci. 7.

Student, 1914. The elimination of spurious correlation due to position in time and
space. Biometrika 10, 179–181.

Termenon, M., Jaillard, A., Delon-Martin, C., Achard, S., 2016. Reliability of graph
analysis of resting state fMRI using test-retest dataset from the Human Connectome
Project. Neuroimage 142, 172–187.

Tomasi, D., Volkow, N.D., 2010. Functional connectivity density mapping. Proc. Natl.
Acad. Sci. 107 (21), 9885–9890.

Tooley, U.A., Bassett, D.S., Mackey, A.P., 2021. Environmental influences on the pace
of brain development. Nat. Rev. Neurosci. 22 (6), 372–384.

Triana, A.M., Glerean, E., Saramäki, J., Korhonen, O., 2020. Effects of spatial smoothing
on group-level differences in functional brain networks. Netw. Neurosci. 4 (3),
556–574.

Uddin, L.Q., Kelly, A.C., Biswal, B.B., Margulies, D.S., Shehzad, Z., Shaw, D., Ghaf-
fari, M., Rotrosen, J., Adler, L.A., Castellanos, F.X., Milham, M.P., 2008. Network
homogeneity reveals decreased integrity of default-mode network in ADHD. J.
Neurosci. Methods 169 (1), 249–254.

Van Dijk, K.R.A., Hedden, T., Venkataraman, A., Evans, K.C., Lazar, S.W., Buckner, R.L.,
2010. Intrinsic functional connectivity as a tool for human connectomics: Theory,
properties, and optimization. J. Neurophysiol. 103 (1), 297–321.

Whitlow, C.T., Casanova, R., Maldjian, J.A., 2011. Effect of resting-state functional MR
imaging duration on stability of graph theory metrics of brain network connectivity.
Radiology 259 (2), 516–524.

Wilson, D.J., 2019. The harmonic mean p -value for combining dependent tests. Proc.
Natl. Acad. Sci. 116 (4), 1195–1200.

Worsley, K.J., Evans, A.C., Marrett, S., Neelin, P., 1992. A three-dimensional statistical
analysis for CBF activation studies in human brain. J. Cereb. Blood Flow Metab.
12 (6), 900–918, Publisher: SAGE Publications Ltd STM.

Worsley, K.J., Marrett, S., Neelin, P., Vandal, A.C., Friston, K.J., Evans, A.C.,
1996. A unified statistical approach for determining significant signals
in images of cerebral activation. Hum. Brain Mapp. 4 (1), 58–73,
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291097-
0193%281996%294%3A1%3C58%3A%3AAID-HBM4%3E3.0.CO%3B2-O.

Yan, C.-G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R.C., Di Martino, A., Li, Q.,
Zuo, X.-N., Castellanos, F.X., Milham, M.P., 2013. A comprehensive assessment
of regional variation in the impact of head micromovements on functional
connectomics. NeuroImage 76, 183–201.

Ye, J., Lazar, N.A., Li, Y., 2009. Geostatistical analysis in clustering fMRI time series.
Stat. Med. 28 (19), 2490–2508.

Ye, J., Lazar, N., Li, Y., 2011. Sparse geostatistical analysis in clustering fMRI time
series. J. Neurosci. Methods 199, 336–345.

Zang, Y., Jiang, T., Lu, Y., He, Y., Tian, L., 2004. Regional homogeneity approach to
fMRI data analysis. NeuroImage 22 (1), 394–400.

Zhang, C., Cahill, N., Arbabshirani, M., White, T., Baum, S., Michael, A., 2016. Sex
and age effects of functional connectivity in early adulthood. Brain Connect. 6.

http://refhub.elsevier.com/S1053-8119(23)00539-6/sb35
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb35
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb35
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb36
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb36
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb36
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb37
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb37
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb37
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb38
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb38
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb38
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb38
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb38
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb39
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb39
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb39
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb39
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb39
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb40
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb40
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb40
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb40
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb40
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb41
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb41
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb41
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb42
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb42
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb42
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb43
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb43
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb43
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb44
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb44
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb44
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb44
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb44
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb45
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb45
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb45
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb46
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb46
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb46
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb46
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb46
https://onlinelibrary.wiley.com/doi/pdf/10.1002/brb3.2334
https://onlinelibrary.wiley.com/doi/pdf/10.1002/brb3.2334
https://onlinelibrary.wiley.com/doi/pdf/10.1002/brb3.2334
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb48
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb48
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb48
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb49
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb49
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb49
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb49
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb49
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb50
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb50
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb50
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb50
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb50
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb51
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb51
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb51
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb51
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb51
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb52
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb52
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb52
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb52
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb52
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb53
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb53
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb53
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb53
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb53
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb54
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb54
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb54
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb55
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb55
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb55
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb55
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb55
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb56
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb56
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb56
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb57
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb57
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb57
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb58
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb58
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb58
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb58
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb58
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb59
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb59
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb59
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb60
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb60
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb60
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb61
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb61
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb61
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb61
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb61
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb62
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb62
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb62
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb62
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb62
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb62
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb62
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb63
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb63
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb63
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb63
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb63
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb64
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb64
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb64
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb64
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb64
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb65
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb65
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb65
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb66
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb66
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb66
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb66
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb66
https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291097-0193%281996%294%3A1%3C58%3A%3AAID-HBM4%3E3.0.CO%3B2-O
https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291097-0193%281996%294%3A1%3C58%3A%3AAID-HBM4%3E3.0.CO%3B2-O
https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291097-0193%281996%294%3A1%3C58%3A%3AAID-HBM4%3E3.0.CO%3B2-O
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb68
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb68
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb68
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb68
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb68
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb68
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb68
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb69
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb69
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb69
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb70
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb70
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb70
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb71
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb71
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb71
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb72
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb72
http://refhub.elsevier.com/S1053-8119(23)00539-6/sb72

	Inter-regional correlation estimators for functional magnetic resonance imaging
	Introduction
	Proposed estimators of correlation
	Definition of the proposed spatial model for fMRI data
	Spatial correlation structure induced by model eq:model 
	Inter-correlation: notation and properties
	Existing inter-correlation estimators
	Correlation of averages (method ca)
	Average of correlations (method ac)
	Replicates for correlations (method r)

	Novel estimators: discarding the effect of global and/or local noise
	Use of a priori uncorrelated regions (method d based on differences)
	Replicates and use of a priori disconnected regions: method rd

	Localized versions of inter-correlation estimators
	Local correlation of averages (method ℓca)
	Local average of replicates (method ℓr)
	Local averages and use of disconnected regions (method ℓd)
	Replicates, local averages and use of a priori disconnected regions (method ℓrd)

	Summary of estimators

	Description of simulated and real datasets
	Simulated data
	Rats data
	Human Connectome Project data

	Evaluation and metrics
	Data and Code Availability
	Results
	Evaluation on simulated data
	Evaluation on rat data
	Evaluation on human data

	Discussion
	The correlation of averages estimator is highly biased
	local noise and intra-correlation link to long-range correlation
	Repeatability and reproducibility
	Discriminability
	Limitations

	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Brain functional connectivity review
	Appendix B. Hypotheses for the spatio-temporal model
	Appendix C. Properties of the estimators of interest
	Appendix D. Consistency results for the existing estimators
	Consistency of widehat rjj′ca
	Consistency of widehat rjj′∼
	Consistency of widehat rjj′R

	Appendix E. Consistency of widehat rjj′D
	Appendix F. Consistency of widehat rjj′RD
	Appendix G. Consistency of localized versions of estimators
	Consistency of widehat rjj′ℓca
	Consistency of widehat rjj′ℓR
	Consistency of widehat rjj′ℓD
	Consistency of widehat rjj′ℓRD
	Robustness of CCC differences in terms of threshold

	References


