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Abstract

A model of cue-based probability judgment is developed within the framework of support

theory. Cue diagnosticity is evaluated from experience as represented by error-free frequency

counts. When presented with a pattern of cues, the diagnostic implications of each cue are as-

sessed independently and then summed to arrive at an assessment of the support for a hypoth-

esis, with greater weight placed on present than on absent cues. The model can also

accommodate adjustment of support in light of the baserate or prior probability of a hypoth-

esis. Support for alternatives packed together in a ‘‘residual’’ hypothesis is discounted; fewer

cues are consulted in assessing support for alternatives as support for the focal hypothesis in-

creases. Results of fitting this and several alternative models to data from four new multiple-

cue probability learning experiments are reported.

� 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Support theory (Rottenstreich & Tversky, 1997; Tversky & Koehler, 1994) pro-

vides a general framework for development of descriptive models of subjective
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probability. As elaborated below, support theory represents judged probability as the

balance of evidential support for the focal hypothesis relative to that for its alterna-

tive. While support theory has been used to successfully predict a number of judgmen-

tal phenomena, particularly effects of unpacking a hypothesis into its components, it

does not specify how the perceived support for a hypothesis is determined by the
available evidence. The support for a hypothesis may be based on ‘‘natural assess-

ments’’ (Tversky &Kahneman, 1983) of availability or representativeness, or onmore

effortful assessments of arguments, frequency estimates, or probabilistic cues.

In other words, the processes underlying the assessment of evidential support

will typically vary across different judgment tasks. A single model is unlikely to

be able to capture all of these diverse processes at a satisfactory level of detail. Sup-

port theory thus provides a general framework within which to develop models of

evidence evaluation that specify how support is assessed in a particular task or do-
main. In the present research, we develop such a model to describe how a set of

binary (present/absent) cues is evaluated in arriving at an assessment of the extent

to which a cue pattern supports a designated hypothesis, where the perceived diag-

nostic value of the cues is based on previous experience. Under these circumstances,

we assume that support is evaluated on the basis of the experienced frequencies

with which each cue value has been observed to co-occur with the outcome or hy-

pothesis of interest. As noted above, in other tasks and domains, assessments of ev-

idential support may be driven less by previously observed frequencies and more by
other considerations such as the representativeness of the outcome with respect to

the evidence at hand.

Multiple-cue probability learning studies have a long tradition in the study of hu-

man judgment (see Castellan, 1977, for a review of early work), interest in which is

generally attributed to the influential work of Brunswik (1956). This tradition fo-

cuses on judgments made in an uncertain environment characterized by cues that

are probabilistically related to an outcome variable of interest to the judge. The stan-

dard example is that of a physician attempting to diagnose a patient�s illness (the out-
come variable) on the basis of a set of diagnostic but less than perfectly predictive

symptoms (the cues). In multiple-cue probability learning experiments, participants

learn the predictive value of the cues on the basis of ‘‘experience’’ in the form of ex-

posure to a series of individual cases (i.e., training trials) for which they are provided

with information regarding the outcome and the associated cue values. Our focus is

on judgments of probability following such experience, in which participants rely on

what they have learned to judge the probability of a target outcome given a partic-

ular pattern of cues (e.g., judging the likelihood that a patient has a particular illness
on the basis of the symptoms exhibited by that patient).

There is substantial evidence that people can accurately encode and later reproduce

the frequency with which they have been exposed to the occurrence of various events

(e.g., Hasher & Zacks, 1984). Likewise, there is considerable evidence that people can

often identify diagnostic cues that are useful for predicting an event�s occurrence on
the basis of such experience (e.g., Klayman, 1988; Trope &Mackie, 1987). Finally, re-

search also indicates that people can integrate the implications of available diagnostic

cues in arriving at what are often reasonably accurate assessments of the associated
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outcome�s probability (e.g., Estes, 1976; Peterson, Hammond, & Summers, 1965). In
light of these observations, a number of models have been developed to account for

how peoplemake such judgments and to predict when their judgments will be accurate

or subject to systematic bias (e.g., Estes, Campbell, Hatsopoulos, & Hurwitz, 1989;

Gluck &Bower, 1988; Nosofsky, Kruschke, &McKinley, 1992). As elaborated below,
however, the support theory framework allows development of a model that can

account for certain aspects of such judgments which are not easily accommodated

by previous models.

Understanding judgments based on probabilistic cues is useful because they reflect

a fundamental way in which people rely on their past experience in making predic-

tions about future outcomes. Judgments based on learning from previous experience

with probabilistic cues play a critical role in many different types of decisions, includ-

ing, for example, consumer purchases (Hutchinson & Alba, 1991; Meyer, 1987; Van
Osselaer & Alba, 2000). Such experience may constitute an important component of

expertise in some domains, such as medicine, where diagnostic reasoning is heavily

influenced by previous cases observed by the physician (e.g., Brooks, Norman, & Al-

len, 1991). Development of descriptive models that accurately capture cue-based

judgments, then, could benefit those who wish to understand or improve judgments

and decisions made under conditions of uncertainty.

In this paper we develop and test one such model using the support theory

framework. In Section 1, we review the key aspects of support theory relevant to
the present treatment. In Section 2, we describe previous findings from multiple-

cue probability learning studies by Koehler (2000) that guided development of

the present model. In Section 3, we describe the new model, which we refer to as

an Evidential Support Accumulation Model (or ESAM) for reasons that will be-

come clear later. In Section 4, we provide an overview of four new cue learning ex-

periments. In Section 5, we use these new datasets to fit ESAM and then to

compare its performance on a feature-by-feature basis with alternative models as

a way of providing some corroboration for each of ESAM�s critical assumptions.
In Section 6, we develop a variant of ESAM that generalizes the Bayesian model.

We conclude by discussing related work and some issues that we suggest merit fur-

ther investigation.

2. Overview of support theory

In contrast to probability theory, in which probability is assigned directly to set-
theoretic events, support theory assigns probability to descriptions of events, re-

ferred to as hypotheses. Support theory is thus nonextensional, allowing different

probability judgments to be assigned to different descriptions of the same event. This

complication is necessary to accommodate the observation that people�s judgments
of an event�s probability are systematically influenced by the way in which that event
is described (e.g., Fischhoff, Slovic, & Lichtenstein, 1978).

Support theory consists of two basic assumptions. The first is that judged proba-

bility reflects the relative support for the focal and alternative hypotheses:
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P ðA;BÞ ¼ sðAÞ
sðAÞ þ sðBÞ : ð1Þ

That is, the judged probability of focal hypothesis A rather than alternative hy-
pothesis B is given by the evidential support for A, denoted sðAÞ, normalized relative
to that available for B, denoted sðBÞ. If, for example, A and B represent two mutually
exclusive diseases from which a patient might be suffering, the judged probability

that the patient has disease A rather than disease B, denoted P ðA;BÞ, is assumed to
reflect the balance of evidential support for A versus that for B.

Support theory distinguishes two kinds of hypotheses: explicit disjunctions, which

list their components, and implicit disjunctions, which do not. Support theory�s sec-
ond assumption is that if A is an implicit disjunction (e.g., the patient has a respira-
tory infection) that refers to the same event as an explicit disjunction of exclusive

hypotheses A1 and A2 (e.g., the patient has a viral respiratory infection or a bacterial
respiratory infection, denoted A1 _ A2), then

sðAÞ6 sðA1 _ A2Þ6 sðA1Þ þ sðA2Þ: ð2Þ

That is, the support of the implicit disjunction A is less than or equal to that of the

explicit disjunction A1 _ A2, which in turn is less than or equal to the sum of support
of its components when assessed individually (Rottenstreich & Tversky, 1997). In

short, unpacking the implicit disjunction A into its components A1 and A2 can only
increase its support, and hence its judged probability (cf. Fischhoff et al., 1978). The

relationship between the support of A and its components A1 and A2 is said to be
subadditive, in the sense that the whole receives less than the sum of its parts.

Support theory implies that, whenever an elementary hypothesis is evaluated rel-

ative to all of its alternatives taken as a group (referred to as the residual), the weight

given to an alternative included implicitly in the residual is generally less than what it

would have received had it been evaluated in isolation. Consider a case in which

there are three elementary hypotheses: A, B, and C. For instance, suppose a patient

is suffering from one (and only one) of three possible flu strains. According to sup-

port theory, when a person is asked to judge the probability that the patient is suf-
fering from Flu Strain A, the resulting ‘‘elementary’’ probability judgment P ðA;AÞ is
determined by the evidential support for Flu Strain A normalized relative to that for

its complement (the residual not-A, represented A). In this case, its complement is an
implicit disjunction of Flu Strains B and C. Support theory implies that packing

these alternatives together in an implicit disjunction (i.e., the residual) generally re-

sults in a loss of support, thereby increasing A�s judged probability.
As a result, if separate elementary judgments are obtained of the probability of

hypotheses A, B, and C, the total probability

T ¼ P ðA;AÞ þ P ðB;BÞ þ P ðC;CÞ ð3Þ

assigned to the three elementary hypotheses will generally exceed one, in violation of

probability theory. The degree of subadditivity in the elementary judgments can be

measured by the extent to which the total probability T assigned to them exceeds
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one; the greater the value of T, the greater the degree of subadditivity. One of the

goals of the present research is to develop a model that can account for variance in T,

that is, in the degree of subadditivity exhibited in a set of elementary judgments.

One drawback of this measure is that T is an aggregate representation of the gen-

eral degree of subadditivity across a set of elementary probability judgments. A more
precise measure of the degree of subadditivity associated with a single judgment is

given by a discounting factor wA that reflects the degree to which support is lost

by packing individual hypotheses into the residual A:

sðAÞ ¼ wA½sðBÞ þ sðCÞ�: ð4Þ

Support theory�s assumption of subadditivity (2) implies wA 6 1. Lower values of wA
reflect greater subadditivity, that is, greater loss of support as a result of packing

hypotheses B and C into the residual A.
Combining Eqs. (1) and (4), we see that the elementary probability judgment with

A as the focal hypothesis is given by

PðA;AÞ ¼ sðAÞ
sðAÞ þ wA½sðBÞ þ sðCÞ� : ð5Þ

This form illustrates the advantage conveyed to the focal hypothesis in the ele-

mentary judgment, in which it receives the full support accorded to it by the evi-

dence, while the support for its alternatives is discounted as a result of their being
packed in the residual.

In later work, Koehler, Brenner, and Tversky (1997) offered a simple linear-dis-

counting model according to which the support for the alternatives included in the

residual is discounted more heavily as the support for the focal hypothesis of the el-

ementary judgment increases:

wA ¼ 1� bsðAÞ; ð6Þ
where b P 0 is a free parameter. This model captures the intuition that when the

focal hypothesis is well supported by the available evidence, people are generally less

willing to consider how the evidence might also support its alternatives than when

the focal hypothesis is not well supported by the evidence. We refer to this phe-

nomenon as enhanced residual discounting. The model developed in this paper in-

corporates the assumption of enhanced residual discounting, though it is

implemented in a somewhat different manner than in previous research.

3. Support assessment in cue-based judgment: Review of previous findings

Koehler (2000) reported the results of several initial experiments investigating the

evidential determinants of subadditivity in cue-based probability judgments. Partic-

ipants played the role of a physician in a simulated medical diagnosis task. They were

presented with ‘‘patients’’ each known to be suffering from one of three possible flu
strains. Participants were presented with a series of patients, each characterized in
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terms of discrete binary-valued symptoms (i.e., cues) known to be present or absent

(e.g., cough, headache, and sore throat). In a training phase, participants indicated

which of the three flu strains they believed the patient to be suffering from, immedi-

ately followed by outcome feedback revealing which flu strain the patient actually

had. In this manner, participants eventually learned about the predictive relationship
between the symptoms and flu strains. Following the training phase, participants

were presented with a further series of patients (without feedback), and for each

judged the elementary probability that the patient was suffering from a designated

flu strain rather than from either of its two alternatives. Three elementary judgments

(one for each flu strain), separated from one another by a number of intervening

items, were elicited for every possible pattern of symptoms. As predicted by support

theory, these judgments were systematically subadditive, as indicated by their sum

T > 1.
This design allows investigation of how the degree of subadditivity observed in

the elementary judgments (as measured by T) varies as a function of the pattern

of symptoms or cues serving as the evidential basis of the judgment. Consider as

an example an experiment (Koehler, 2000, Experiment 3) that involved five symp-

toms. Three of the symptoms were diagnostic with respect to the patient�s flu strain:
The presence of a given diagnostic symptom was probabilistically associated with the

presence of a corresponding flu strain, with one diagnostic symptom mapped in this

fashion onto each of the three possible flu strains. The remaining two symptoms
were nondiagnostic, that is, they co-occurred equally often with each of the three

flu strains. The nondiagnostic symptoms differed in their overall prevalence, with

one being present for 75% of all patients and the other being present for only

25% of all patients.

Three characteristics of a given symptom pattern were examined as possible influ-

ences on the degree of subadditivity T for the set of elementary judgments associated

with that symptom pattern. First, the value of T increased with the number of flu

strains implicated by the symptom pattern, as measured by the number of diagnostic
symptoms present in the pattern. Second, the value of T also increased with the num-

ber of nondiagnostic symptoms present in the symptom pattern. The overall preva-

lence of a symptom (i.e., how frequently it was observed among patients in the

training phase), which was the third characteristic considered, had no influence on

the value of T.

These results provide an initial glimpse into the process by which cue-based ev-

idence is evaluated in assessing the support for a hypothesis. Based on these re-

sults, Koehler (2000) offered a tentative set of principles governing the support
assessment process, which are briefly reviewed here as they constitute the basis

for development of the current model. These principles presuppose support the-

ory�s basic assumptions and also rely on the enhanced residual discounting as-
sumption underlying the linear-discounting model of Koehler et al. (1997),

according to which greater values of T are associated with bodies of evidence that

provide a generally greater level of support for each in the set of hypotheses under

consideration. Adherence to the principles outlined below simplifies the computa-

tional and memory requirements of the support assessment process, but at the
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price of ignoring potentially useful information and deviating from the normative

requirements of the Bayesian approach.

(A) Composite residual formation. As implied by support theory, alternatives to

the focal hypothesis of the elementary judgment are packed together and evaluated

as a single entity, losing support in the process. The observation of T > 1 is consis-
tent with this claim.

(B) Evidence decomposition. Rather than assessing the implications of a pattern of

cues taken as a whole, each cue�s contribution to the support for a hypothesis is as-
sessed individually. The observation that cue patterns with identical diagnostic impli-

cations according to the Bayesian approach (such as the pattern in the experiment

described above with all three diagnostic symptoms present versus the pattern with

all three absent) produce systematically different values of T is consistent with this

claim.
(C) Cue presence/absence asymmetry. Given binary cues representing the presence

or absence of a feature, the support for a hypothesis appears to be determined primar-

ily by the present cues constituting the cue pattern. The observation that T increases

with the number of present cues in the cue pattern is consistent with this claim.

(D) Noncompensatory support assignment. The support for a hypothesis reflects

only those aspects of the evidence that directly implicate that hypothesis; evidence

that implicates an alternative hypothesis increases support for the alternative hy-

pothesis but does not directly decrease support for the non-implicated hypothesis.
The observation that T increases with the number of implicating cues is consistent

with this claim.

(E) Diagnosticity-based support assignment. The support assessment process ap-

pears to be sensitive to the diagnosticity of individual cues, such that the presence

of diagnostic cues increases the support for the implicated hypothesis. The observa-

tion that mere cue prevalence in the absence of any diagnostic value has no influence

on T is consistent with this claim.

(F) Support accumulation. The assessment of evidence can be characterized as one
in which positively valued support is accumulated over the individual pieces of evi-

dence (i.e., cues) as the body of evidence is evaluated. The observation that even the

presence of nondiagnostic cues in the cue pattern produces greater values of T is con-

sistent with this claim.

Although postulation of these principles goes well beyond the empirical results of

the Koehler (2000) study, they provide a characterization of the support assessment

process that can serve as the basis for development of a mathematical model. Ac-

cording to this characterization, when assessing the support for a hypothesis con-
veyed by evidence in the form of a cue pattern, the evidence is assessed one cue at

a time with a focus primarily on present rather than absent cue values. Each present

cue adds to the support of a hypothesis (to a greater extent than do absent cues),

with greater support being added the more diagnostic the cue is with respect to

the hypothesis in question. In the next section, we develop a model with these char-

acteristics that predicts the support for a hypothesis on the basis of previous obser-

vations of the frequency with which the relevant cues co-occur with the hypotheses

(i.e., outcomes) of interest.
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4. Evidential support accumulation model

Support theory describes the translation of support into probability but, as dis-

cussed in the introduction, does not specify how support is assessed in the evaluation

of the available evidence. Here we develop a model of the support assessment process
underlying judgments of probability based on patterns of binary (present/absent)

cues that follows the principles of support assessment offered in the previous section.

This model, called ESAM (for Evidential Support Accumulation Model), is a work

in progress that may be subject to revision in light of further testing. Furthermore,

we suspect that other models that behave in accord with the principles outlined

above are likely to perform comparably in terms of fit to people�s judgments. ESAM
is intended primarily as a demonstration of the usefulness of the support theory

framework in the development of models of evidential support assessment tailored
to specific judgment tasks.

4.1. Stored frequency counts

ESAM specifies how a set of observations represented in the form of frequency

counts regarding cue and hypothesis co-occurrence is used to assess the support

for a hypothesis provided by a particular cue pattern. For simplicity, we assume that

these frequency counts, obtained from experience in the probabilistic cue-based en-
vironment, are encoded and later retrieved without error. A more sophisticated ver-

sion of the model might relax this assumption by incorporating established principles

of memory that provide a more accurate representation of what people are actually

likely to recall from their previous experience. Estes (1986), for example, explores a

family of such array-based models and considers the implications of information loss

for subsequent judgments based on the imperfect memory array. Later in this paper

we do consider the consequences of imperfect memory for previous observations,

and find that the assumption of error-free frequency counts does not appear to de-
tract substantially from the model�s performance in our experiments. Nonetheless, it
should be said that our model is not directly concerned with the process by which cue

frequencies are learned, but rather with the process by which learned frequencies are

used in assessing evidential support in inferential judgments. (For models of learning

in multiple-cue environments, see Gluck & Bower, 1988; Kruschke & Johansen,

1999; Nosofsky et al., 1992.)

Because ESAM evaluates the available evidence on a cue-by-cue basis rather than

in terms of the entire cue pattern as a whole, it takes as input the co-occurrence fre-
quency with which each cue value (present or absent) has been observed in the pres-

ence of each possible hypothesis (or outcome) under evaluation. Although ESAM

can readily accommodate any number of hypotheses and cues (and cues with more

than two possible values), we will illustrate the model with the case of three possible

hypotheses and six binary cues. This case corresponds to new experiments, reported

below, involving the diagnosis of simulated ‘‘patients’’ suffering from one of three

possible flu strains on the basis of the presence or absence of six discrete symptoms.

In this case, the model requires for each of the six cues a count of how frequently that
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cue was observed as being present and as being absent given each of the three pos-

sible hypotheses (i.e., how often a particular symptom was present or absent in con-

junction with each of the three possible flu strains).

The frequency with which cue C is observed as present in cases where hypothesis

H holds is denoted f1ðC;HÞ; the frequency with which cue C is observed to be absent
in cases where hypothesis H holds is denoted f0ðC;HÞ. For example, if the judge had
observed 12 patients with a particular flu strain for whom a specific symptom was

present and six more patients with the same flu strain for whom the symptom was

absent, then f1 ¼ 12 and f0 ¼ 6. To predict every possible elementary judgment
(i.e., the judged probability of each hypothesis given every possible cue pattern) in

the general case of NH hypotheses and NC binary cues, the model requires 2NHNC

such frequency counts as represented in a frequency table with NH ðNC þ 1Þ degrees
of freedom. Later we also consider a simpler version of the model that relies only
on counts of cue presence (i.e., one that entirely ignores cue absence) and conse-

quently requires only half this number of values as input.

For purposes of exposition, it is useful to define the marginal frequencies with

which each hypothesis holds and each cue is either present or absent, as follows.

Let

f1ðCÞ ¼
X
j

f1ðC;HjÞ over hypotheses Hj; j ¼ 1; . . . ;NH ð7aÞ

represent the overall frequency with which cue C is observed as being present in the

set of stored observations, and likewise let

f0ðCÞ ¼
X
j

f0ðC;HjÞ ð7bÞ

represent the overall frequency with which cue C is observed as being absent. Finally,

let f ðHÞ represent the overall frequency with which hypothesis H holds in the set of

stored observations. Note that in the case of binary cues,

f ðHÞ ¼ f0ðCi;HÞ þ f1ðCi;HÞ for any cue Ci; i ¼ 1; . . . ;NC: ð8Þ
This value gives the ‘‘baserate’’ frequency with which hypothesisH holds in the set of
stored observations.

4.2. Diagnostic implication of a cue value for a hypothesis

ESAM assumes that the cue pattern serving as the basis of the probability judg-

ment is assessed one cue at a time, with the diagnostic implication of each observed

cue value being evaluated with respect to a target hypothesis. In accord with the

Bayesian approach to subjective probability, a piece of evidence is said to be diag-
nostic with respect to a hypothesis to the extent that the introduction of the evidence

justifies a change in the probability of that hypothesis relative to its prior or baserate

probability.

The diagnostic value d1ðC;HÞ of the presence of cue C with respect to a particular
hypothesis H is given as follows:
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d1ðC;HÞ ¼ f1ðC;HÞ=f ðHÞP
j½f1ðC;HjÞ=f ðHjÞ�

: ð9aÞ

The value of d varies between 0 and 1. If the presence of cue C is nondiagnostic with

respect to the hypothesis H, then d1ðC;HÞ ¼ 1=NH . If the co-occurrence of cue C �s
presence with hypothesis H is more frequent in the set of observations than would be

expected on the basis ofH �s baserate frequency f ðHÞ alone, then d1ðC;HÞ > 1=NH . If

the co-occurrence of cue C �s presence with hypothesis H is less frequent than would
be expected on the basis of H �s baserate frequency, then d1ðC;HÞ < 1=NH . This

calculation can be thought of as involving the distribution of one ‘‘unit’’ of diag-

nostic value among the set of competing hypotheses, with hypotheses implicated by

the cue�s presence receiving a larger share than hypotheses upon which the cue�s
presence casts doubt.

The diagnostic value d0ðC;HÞ of the absence of cue C with respect to a particular
hypothesis H is given by the parallel expression:

d0ðC;HÞ ¼ f0ðC;HÞ=f ðHÞP
j½f0ðC;HjÞ=f ðHjÞ�

: ð9bÞ

In this manner, the model assumes that the judge is sensitive to the diagnostic value

of individual cues without necessarily being sensitive to the diagnostic value of cue
patterns. Specifically, this calculation of diagnostic value is insensitive to conditional

dependence among cues. Consequently, as is elaborated in the general discussion, the

model will not capture configural cue processing effects (Edgell, 1978, 1980). The

calculation of diagnostic value is also uninfluenced by the baserate or prior proba-

bility of the hypothesis in question, as is the case for the likelihood ratio in Bayes�
rule.

4.3. Summation of diagnostic implications of individual cues

According to ESAM, the diagnostic implication of each cue value constituting the

cue pattern is individually assessed and then summed to arrive at an overall assess-

ment of the diagnostic value for a particular hypothesis of the cue pattern taken as a

whole. It is assumed that present cue values are given greater weight than are absent

cue values in the summation process. This assumption is consistent with previous re-

search investigating judgments of covariation and causation (e.g., Kao & Wasser-

man, 1993; Schustack & Sternberg, 1981; Shaklee & Mims, 1982; Smedslund,
1963) indicating that the presence of cues or the occurrence of events typically re-

ceives more weight in intuitive judgments than does the absence of cues or the

non-occurrence of events. The diagnostic value of cue pattern C for hypothesis H,

denoted dCðHÞ, is given by

dCðHÞ ¼ ð1� dÞ
Xpresent cues

i

d1ðCi;HÞ þ d
Xabsent cues

i

d0ðCi;HÞ for cues Ci;

i ¼ 1; . . . ;NC; in C: ð10Þ
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The free parameter d represents the weight placed on absent cues relative to that
placed on present cues in the cue pattern. Relative underweighting of absent cues

is indicated by d < 1=2, with d ¼ 0 representing the special case of complete
neglect of absent cues. Note that the value of dCðHÞ will generally tend to in-
crease with the number of cues constituting the cue pattern, with a maximum
value of NC.

4.4. Calculation of support

As described above, ESAM�s diagnostic value calculation controls for the baser-
ate frequency f ðHÞ of the hypothesis under evaluation, and in this sense is insensitive
to overall differences in baserate or prior probability among the competing hypoth-

eses. ESAM accommodates potential baserate sensitivity of the support assessment
process in the translation from diagnostic value to support. The support for hypoth-

esis H conveyed by cue pattern C, denoted sCðHÞP 0, is given by

sCðHÞ ¼ a
f ðHÞP
j f ðHjÞ

 "
� 1

NH

!
þ ð1� aÞdCðHÞ

#c

: ð11Þ

The free parameter a provides a measure of the extent to which the support for
hypothesis H, which is determined primarily by the diagnostic value dCðHÞ of the
cue pattern for that hypothesis, is adjusted in light of its baserate (i.e., observed

relative frequency in comparison with the alternative hypotheses). The adjustment is

positive in the case of high-baserate hypotheses whose relative frequency exceeds

1=NH , the value expected under a uniform partition; the adjustment is negative for

low-baserate hypotheses. With unequal baserates, a reflects the judge�s sensitivity to
this consideration. In the special case of equal baserates, this adjustment is zero and

the parameter a drops out of the model. The support calculation echoes that of the
Bayesian approach, in that it combines considerations of the diagnosticity of the

available evidence and the prior probability or baserate of the hypothesis. Note,

however, that in contrast to the Bayesian model, the form of ESAM�s baserate ad-
justment is not multiplicative, an assumption that is consistent with research on

intuitive use of baserate information (Birnbaum & Mellers, 1983; Novemsky &

Kronzon, 1999).

After combining the diagnostic value dCðHÞ of the cue pattern C in implicating
hypothesis H with an adjustment in light of H�s baserate, the resulting value is then
exponentiated to arrive at the support for the hypothesis conveyed by the cue pattern

(cf. Tversky & Koehler, 1994). The exponent c is a free parameter that influences the
extremity of the resulting judgments; categorization models often employ a similar

parameter (e.g., Nosofsky & Johansen, 2000). Its value can be interpreted as a mea-

sure of judgmental confidence, that is, the confidence with which the judge relies on

his or her previous experience in evaluating the evidence. The value of this parameter

might, for instance, be sensitive to the size of the set of observations upon which the

judgments are based and the learning conditions under which those observations
were made.
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4.5. Enhanced residual discounting

Recall that according to support theory, the residual hypothesis (i.e., the collection

of alternatives to the focal hypothesis) receives less support than the sum of the sup-

port its component hypotheses would have received had they been evaluated individ-
ually. As discussed above, Koehler et al. (1997) offered a simple linear discounting

model (6) according to which the greater the support for the focal hypothesis, the

greater the discounting of support for its alternatives by virtue of their being packed

together in the residual. This phenomenon of enhanced residual discounting reflects the

intuition that the judge is less likely to fully evaluate the extent to which the evidence

supports alternative hypotheses when support for the focal hypothesis is high than

when it is low. In ESAM, enhanced residual discounting is implemented by restricting

the number of cues that are consulted in accumulating support for (alternatives in-
cluded in) the residual. Specifically, in contrast to the computation of support for

the focal hypothesis, in which the diagnostic value of each cue in the cue patternmakes

a contribution, it is assumed that only a subset of cues are consulted with regard to

their contribution to the support for an alternative hypothesis included in the residual.

Put differently, we assume that the probability of a cue value being consulted and

contributing to the support for the focal hypothesis is 1 (i.e., each cue is always con-

sulted), but its probability of being consulted and contributing to the support for an

alternative hypothesis included in the residual is less than 1. For simplicity, we as-
sume that given a particular level of support for the focal hypothesis, the probability

q that a cue will be consulted and its diagnostic value added in the calculation of sup-

port for each alternative hypothesis included in the residual is the same for all of the

cues. In terms of expected value, this probability can be implemented in the form of a

discounting weight that reflects the proportion of its full diagnostic value, on aver-

age, that a given cue will contribute to the support for a hypothesis included in

the residual. This discounting weight, denoted qH , is assumed to be inversely propor-
tional to the support for the focal hypothesis H:

qH ¼ 1

bsðHÞ þ 1 : ð12Þ

The free parameter b determines how quickly qH decreases as sðHÞ increases.
Support for the residual is then given by

sCðHÞ ¼
X

Hj in H

a
f ðHjÞP
i f ðHiÞ

��
� 1

NH

	
þ ð1� aÞqHdCðHjÞ


c

: ð13Þ

In other words, the support for each alternative hypothesis included in the residual is

determined by the sum of the diagnostic value contributed by each cue, which is

discounted to reflect the restricted set of cues consulted in evaluating support for

hypotheses included in the residual. The perceived diagnostic value of the evidence is

then adjusted for the baserate of the hypothesis in the usual manner. The support for

the residual as a whole is given by the sum of the support thus calculated of each

alternative hypothesis that it includes.
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Note that in contrast to the linear-discounting model (see (4)–(6) above) of Koeh-

ler et al. (1997), in which support for alternatives included in the residual is directly

discounted, in ESAM it is only the diagnostic value component of the support cal-

culation that is discounted. This follows from our interpretation of q as the proba-

bility of consulting a particular cue in the support assessment process. Hence, in our
model, discounting of the residual support term as a whole is non-linear in its rela-

tionship to the support for the focal hypothesis. Due to this non-linear relationship,

it should be noted that while q can be viewed as an expectation with respect to a sto-

chastic cue-sampling process of the kind described above, the support value resulting

from (13) is not the expected support value that such a stochastic process would pro-

duce. Despite the difference in form between the current model and that of Koehler

et al. (1997), both produce enhanced residual discounting: Support for the residual is

discounted more extensively as the support for the focal hypothesis increases.

4.6. Summary of ESAM and comparison to Bayesian approach

To summarize, ESAM describes how the support for a hypothesis is assessed on

the basis of probabilistic cues when information regarding the usefulness of the cues

is available from previous observations represented in the form of stored frequency

counts. The model has four free parameters: a (baserate adjustment), b (enhanced
residual discounting), c (judgmental extremity), and d (absent cue weighting). Ac-
cording to the model, cue patterns are assessed one cue at a time. A cue value pro-

vides support for a particular hypothesis to the extent that it co-occurs with that

hypothesis more frequently than would be expected on the basis of the hypothesis�s
baserate alone. In this manner, the diagnostic value of each cue for a particular hy-

pothesis is assessed independently and then summed over the cues constituting the

cue pattern. The free parameter d reflects the weight placed on absent cues relative
to that placed on present cues in the summation process. The free parameter a re-
flects the extent to which the diagnostic value assessment is adjusted in light of the
baserate of the hypothesis under evaluation. The free parameter c reflects the extrem-
ity of the resulting support estimates. The free parameter b reflects the degree to
which, as the support for the focal hypothesis increases, the set of cues consulted

is restricted in assessing the support for hypotheses included in the residual.

In what ways would a Bayesian approach differ from that of ESAM in evaluating

the implications of a pattern of cues for a particular hypothesis in light of previous

experience with those cues? While there are a number of more or less complicated

approaches that could be developed from a Bayesian perspective (e.g., see Martignon
& Laskey, 1999), we will consider only the simplest one here, which relies heavily on

the assumption of conditional independence of cue values. If the cue values consti-

tuting the cue pattern are conditionally independent, then one can readily calculate

the probability of observing any particular cue pattern given that a designated hy-

pothesis holds (e.g., the probability of observing a particular pattern of symptoms

given that the patient has a designated flu strain) as the product of the conditional

probabilities of each individual cue given that hypothesis. This calculation serves

as the basis for evaluating the likelihood ratio in the Bayesian approach, which is
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then combined with the prior probability of the hypothesis in question to arrive at an

assessment of its posterior probability (i.e., its probability in light of the cue pattern).

Assuming that both the conditional probabilities of each cue value and the overall

prior probability of each hypothesis is estimated from a set of stored frequency

counts summarizing previous experience with the cues, the probability of a hypoth-
esis H given a pattern of cue values C is given by

P ðH j cue pattern CÞ

¼ f ðHÞ
QNC

i¼1ðf ðCi;HÞ=f ðHÞÞPNH
j¼1 f ðHjÞ

QNC
i¼1ðf ðCi;HjÞ=f ðHjÞÞ

� 
 for Ci in cue pattern C; ð14Þ

where f ðCi;HÞ is the frequency with which cue value Ci (absent or present) was

previously observed in conjunction with hypothesis H, and f ðHÞ is the overall fre-
quency with which H was previously observed.
The numerator of (14) can be viewed as corresponding to the extent to which, in

the Bayesian analysis, hypothesis H is supported in light of the available evidence.

The product term in the numerator corresponds to the diagnostic value of the evi-

dence, which is adjusted in light of the baserate or prior probability of the hypothesis

in question as reflected by f ðHÞ. The same calculation is used to assess the support
conveyed by the cue pattern for each of the competing hypotheses. As in ESAM, the

probability assigned to the hypothesis is given by its normalized support relative to

its alternatives. Unlike in ESAM, of course, there is no accommodation in the Bayes-
ian framework for discounting of support arising from packing together the alterna-

tives to the focal hypothesis in the residual. That is, in contrast to ESAM in

particular and support theory in general, the normative Bayesian framework pro-

duces judgments that are necessarily extensional (i.e., bound by rules of set inclusion)

and additive (i.e., over decomposition of events into subsets).

Another key difference between ESAM and the Bayesian model (14) described

above is that the Bayesian model integrates individual cue values (and considerations

of hypothesis baserate or prior probability) in a multiplicative manner, while ESAM
uses an additive integration form. A consequence is that in ESAM�s additive frame-
work, support tends to increase with the number of cues consulted, while in the

Bayesian model it tends to decrease. Furthermore, in the integration process, ESAM

accommodates differential weighting of cue absence and cue presence, while in the

normative Bayesian approach cue absence and cue presence are logically inter-

changeable. Because ESAM is not a generalization of the Bayesian model (14)

above, there are no parameter values for which ESAM will exactly reproduce the

corresponding judgments derived from the Bayesian approach. (A generalization
of the Bayesian model is offered in a later section.) ESAM does tend to produce judg-

ments that correlate highly with the corresponding Bayesian values, however, when

b ¼ 0 and d ¼ 1=2. The former represents the special case of ESAM that produces

additive judgments; and the latter places equal weight—as in the Bayesian model—

on cue absence and cue presence.

An alternative—also arguably normative—approach adopts a frequentist perspec-

tive, in which the current cue pattern serving as evidence is assessed against previous
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observations that exactly match that pattern. The judged probability of a designated

hypothesis is given by the proportion of previous cases matching the cue pattern in

which the hypothesis held (e.g., the proportion of previous patients with an identical

set of symptoms who suffered from the hypothesized flu strain). This approach rep-

resents the starting point in development of exemplar-based models of classification
learning (e.g., Brooks, 1978; Medin & Schaffer, 1978), and has the advantage of be-

ing able to accommodate cue structures for which conditional dependence does not

hold. Both ESAM and the Bayesian model outlined above, by contrast, assume con-

ditional independence of cues. The frequentist approach does, however, require a

very large sample of previous observations in order to produce reliable probability

estimates. It also requires stored frequency counts for every possible cue pattern,

the number of which increases exponentially with the number of cues. As descriptive

models, then, either ESAM or the Bayesian model outlined above might be more
useful in producing reasonably accurate judgments in the face of small sample sizes

and limited memory capacity. In the next section, ESAM�s fit to new data is assessed
and compared to that of alternative models, including those just described.

5. Experimental data

Data from four new experiments were used to assess the proposed model and to
compare its performance to that of alternative formulations. In this section we pro-

vide an overview of the experiments and their basic results.

5.1. Method

Participants were undergraduate students enrolled in an introductory psychology

course at the University of Waterloo, who received course credit in exchange for

their participation. The computer-based experiments were conducted in individual
sessions taking approximately an hour to complete.

The four experiments shared a common design, procedure, and instructions,

which closely followed that of Koehler (2000). Participants played the role of a phy-

sician in a simulated medical diagnosis task. Each ‘‘patient’’ presented to partici-

pants was known to be suffering from one of three possible flu strains (simply

numbered Flu Strain #1, #2, and #3). Participants attempted to diagnose the flu

strain of each patient on the basis of six binary symptoms (cough, chills, dizziness,

earache, headache, and sore throat) known to be present or absent for that patient.
In the training phase of the experiment, the participant was presented with a series

of 300 patients with the task of choosing which of the three flu strains each patient

was suffering from. Following their choice, the correct diagnosis was provided. In

this manner, participants learned about the probabilistic relationships between the

symptoms and flu strains. The training phase instructions warned participants that,

as in actual medical practice, it would not be possible to achieve perfect diagnostic

accuracy on the basis of the observable patient symptoms. Each participant in a

given experiment was presented with an identical set of 300 training trials, but in
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different, individually randomized orders. The fixed order in which the six symptoms

were listed was also determined randomly for each participant.

In the judgment phase of the experiment that followed, participants were pre-

sented with additional patients and, for each, judged the probability that the patient

was suffering from a designated flu strain. Probability judgments were made on an
11-point scale ranging from 0 to 100% in increments of 10%, where 100% indicates

certainty that the patient has the designated flu strain and 0% indicates certainty that

the patient does not have that flu strain. The judgment phase instructions empha-

sized that the flu strain designated as the target of judgment on a particular trial

would be selected arbitrarily, and that its designation should not be taken as having

any informational value regarding the patient�s diagnosis. No feedback was provided
in the judgment phase.

For each of the 64 possible symptom patterns, participants assigned a probability
to each of the three possible flu strains, for a total of 192 judgments. The 192 judg-

ments were elicited in an order that was randomly determined for each participant.

Specifically, an individual participant�s judgments of the three flu strains given a par-
ticular symptom pattern were made on separate trials, typically with a large number

of intervening judgments. In this design, it is difficult for participants to ensure that,

for each symptom pattern, the probability estimates they assign to the three flu

strains add consistently to one as required by probability theory. As is discussed

by Tversky and Koehler (1994), such a design is suitable for our interest in the per-
ceived support for a designated hypothesis provided by a particular body of evi-

dence; whether participants can revise such initial, essentially independent

judgments to meet additivity constraints, when they are made salient, is a separate

question not directly addressed in our research. It is worth noting in this regard that

while a judge may ensure that any particular set of probability estimates is additive,

this does not ensure additivity over different possible partitions of the sample space

(Tversky & Koehler, 1994; for examples, see Brenner & Koehler, 1999).

During the training phase, in which outcome feedback is provided on each trial,
participants made simple predictive choices rather than probability judgments as

they did during the subsequent judgment phase. The training phase is greatly sim-

plified and speeded by asking for a predictive choice rather than an explicit prob-

ability judgment on each trial. Koehler (2000) found similar results using either

type of response during the training phase of his experiments, with no evidence that

the probability judgments are less subadditive when accompanied by outcome feed-

back.

The four experiments differed only in their cue structure, that is, in the way in
which the symptoms serving as the basis of judgment were related to the three pos-

sible flu strains. In other words, the experiments differed in the set of training trials

presented to participants. Table 1 shows, for each experiment, the frequency with

which each flu strain co-occurred with the presence of each of the six symptoms.

The number of patients in the training set exhibiting each flu strain is also indicated,

from which the frequency of co-occurrence of symptom absence with each flu strain

can easily be calculated. In the experiments, the flu strains were simply labeled

#1, #2, and #3, but meaningful symptom labels (cough, chills, dizziness, earache,
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headache, and sore throat) were substituted for the abstract numerical labels shown

in the table. The particular symptom label assigned to the symptom numbers shown

in the table was determined randomly for each participant.

In all the experiments, Symptoms #1–3 were more diagnostic than Symptoms #4–

6. Within each level of diagnosticity, for each of the three flu strains there was one

symptom whose presence implicated that flu strain (except in Experiment 2). Thus,

the presence of Symptom #1 implicated Flu Strain #1, Symptom #2 implicated Flu

Strain #2, and Symptom #3 implicated Flu Strain #3, each with the same level of
diagnosticity. Likewise, the presence of Symptom #4 implicated Flu Strain #1,

Symptom #5 implicated Flu Strain #2, and Symptom #6 implicated Flu Strain

#3, each with the same lower level of diagnosticity than that afforded by Symptoms

#1–3. (In Experiment 2, as elaborated below, cue presence and cue absence were

reversed relative to Experiment 1.)

Table 1

Frequency of co-occurrence of flu strain with symptom presence over the 300 training trials of Experi-

ments 1–4

Flu Strain #1 Flu Strain #2 Flu Strain #3

Experiment 1 (n ¼ 100) (n ¼ 100) (n ¼ 100)
Symptom #1 92 29 29

Symptom #2 29 92 29

Symptom #3 29 29 92

Symptom #4 72 39 39

Symptom #5 39 72 39

Symptom #6 39 39 72

Experiment 2 (n ¼ 100) (n ¼ 100) (n ¼ 100)
Symptom #1 8 71 71

Symptom #2 71 8 71

Symptom #3 71 71 8

Symptom #4 28 61 61

Symptom #5 61 28 61

Symptom #6 61 61 28

Experiment 3 (n ¼ 100) (n ¼ 100) (n ¼ 100)
Symptom #1 92 50 8

Symptom #2 8 92 50

Symptom #3 50 8 92

Symptom #4 72 50 28

Symptom #5 28 72 50

Symptom #6 50 28 72

Experiment 4 (n ¼ 150) (n ¼ 100) (n ¼ 50)
Symptom #1 138 29 14

Symptom #2 43 92 14

Symptom #3 43 29 46

Symptom #4 108 39 19

Symptom #5 58 72 19

Symptom #6 58 39 36
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Symptom patterns were determined subject to these constraints on co-occurrence

of individual symptoms with the three flu strains. The presence or absence of each of

the six symptoms was intended to be conditionally independent of the other symp-

toms. Generation of a finite set of training trials introduces some minor deviations

from perfect conditional independence, but the resulting incidental conditional de-
pendencies among symptoms were weak and unlikely to have been detectable by par-

ticipants.

The first three experiments all involved equal-baserate flu strains, such that each

was observed in 100 of the 300 patients in the training sequence. Experiment 1 served

as a baseline study against which results of the remaining studies were compared. As

was the case for the diagnostic symptoms in the Koehler (2000) studies, in this exper-

iment the two flu strains not implicated by a particular symptom�s presence co-
occurred equally often with that symptom; that is, both were equally likely (and less
likely than the implicated flu strain) to co-occur with the presence of the symptom.

This was true for both the high-diagnosticity and low-diagnosticity set of symptoms.

To examine the influence of people�s tendency to focus on cue presence rather
than absence, Experiment 2 employed a logically equivalent set of training trials

in which symptom presence and absence were reversed relative to that of Experiment

1. For example, in Experiment 1 the presence of Symptom #1 co-occurred with Flu

Strain #1 a total of 92 times while its absence co-occurred with Flu Strain #1 a total

of 8 times; in Experiment 2, these frequencies were reversed. As a result, in Experi-
ment 2 it was the absence rather than the presence of Symptom #1 that implicated

Flu Strain #1, and so on. If people treat symptom presence and absence as equally

informative, learning performance during the training phase should be identical in

Experiments 1 and 2, and judgments conditioned on symptom absence in Experi-

ment 2 should be identical to those conditioned on symptom presence in Experiment

1. But if people tend to place greater weight on the diagnostic implications of present

symptoms, as we suspect, learning may be more difficult in Experiment 2 and the cor-

responding judgments will not be identical to those found in Experiment 1.
In Experiment 3, in contrast to Experiment 1, alternatives to the flu strain impli-

cated by a particular symptom were not equally supported by that symptom. In-

stead, symptoms had a graded association with the flu strains, with one flu strain

being more likely and another being less likely than the remaining flu strain in the

presence of a particular symptom. This design provides some generalizability of

any results from Experiment 1, showing that they hold even when the alternatives

to the implicated flu strain are not equally likely. Experiment 3 might also impose

greater memory demands on the participant than does Experiment 1, because it is
no longer sufficient to recall just the extent to which the presence of a symptom im-

plicates one flu strain over the other two, which now also differ from one another in

their association with the symptom. To introduce graded symptom associations, the

number of times a given symptom co-occurred with the two non-implicated flu

strains was redistributed relative to Experiment 1 while its frequency of co-occur-

rence with the implicated flu strain was maintained.

In contrast to the first three experiments, all of which involved equal baserates, in

Experiment 4 unequal baserates were introduced in which Flu Strain #1 occurred
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more frequently and Flu Strain #3 occurred less frequently than Flu Strain #2. The

training set was constructed by dropping 50 of the original 100 occurrences of Flu

Strain #3 in Experiment 1, and adding 50 additional occurrences of Flu Strain #1.

The conditional probability of each symptom given each flu strain was equivalent

to that in Experiment 1. In addition to providing an opportunity to generalize the
basic findings of the earlier experiments to the case of unequal baserates, this exper-

iment also allows examination of the usefulness of ESAM�s baserate adjustment pa-
rameter a. That is, only in the case of unequal baserates is it meaningful to compare
ESAM�s fit to the data with that of an otherwise comparable model that does not
accommodate adjustment of support for a hypothesis due to its overall baserate of

occurrence.

5.2. Results

Initially, the number of participants was 42, 42, 41, and 44 in Experiments 1–4,

respectively. As elaborated below, participants who showed poor learning perfor-

mance or who failed to complete the entire experiment were dropped from our main

analyses. The final number of participants was 34, 32, 33, and 35 in Experiments 1–4,

respectively.

5.2.1. Learning performance

Our focus is on the probability judgments made following the learning phase of

the experiment. Data from the learning phase are used primarily as a means of

screening out participants who show signs of having failed to learn the diagnostic re-

lationships between the symptoms and flu strains over the course of the training tri-

als. This is necessary because the current version of ESAM presumes reasonably

accurate learning in its use of veridical frequency counts to predict support assess-

ments. The model could, of course, be modified to account for what participants ac-

tually learn during the training phase, but for present purposes we restrict our
analyses to those participants who exhibit satisfactory learning performance.

One complication that arises in the screening process is that learning performance

differed substantially across experiments. As expected, learning performance as mea-

sured by proportion of correct diagnoses was generally much lower in Experiment 2,

where present and absent symptoms were reversed relative to Experiment 1. This ob-

servation is consistent with a tendency to focus on symptom presence. The average

proportion of correct diagnoses in the last half of the training trials was 59, 47, 56,

and 60% in Experiments 1–4, respectively. By comparison, at asymptote, a Bayesian
analysis assuming conditional independence of cues (14) would be expected to

achieve an accuracy rate of 74, 74, 88, and 79% in Experiments 1–4 respectively.

In short, the observed accuracy during the learning phase of the experiments was

well above chance but well below the theoretical maximum expected at the end of

the training sequence, perhaps due to the complex nature of the task (involving 6

cues and 3 possible outcomes).

We wished to eliminate from further analyses any participants who exhibited

poor learning performance, but due to the generally lower proportion of correct
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diagnoses, adopting a fixed cutoff value would result in the exclusion of a larger pro-

portion of participants in Experiment 2, arguably producing a more highly selected

sample not comparable to that included in the other experiments. To avoid this

problem, we chose to exclude the same proportion of relatively poor-performing par-

ticipants from each experiment on the basis of their proportion of correct diagnoses
over the last half of the training trials. By this measure, approximately 20% of par-

ticipants in Experiment 2 had accuracy scores near or below that expected by chance

alone (i.e., proportion correct¼ 1/3). By dropping these participants, the resulting
sample included only participants with a greater proportion of correct diagnoses

than that expected by chance. To maintain comparability of samples, the same pro-

portion of participants was dropped from Experiments 1, 3, and 4, that is, the low-

est-ranking 20% of participants as measured by proportion of correct diagnoses over

the last half of the training trials.

5.2.2. Probability judgments

Two additional participants in Experiment 2 were dropped because their judg-

ment data were incomplete, presumably due to their quitting before the end of the

experiment. We fit ESAM and alternative models to the set of mean probability

judgments in each experiment, and also to each individual�s judgment data as a
way of conducting inferential statistical tests on parameter values and fit indices.

For each experiment, the set of 192 mean probability judgments (the mean prob-
ability assigned to each of the three flu strains given each of the 64 possible symptom

patterns) was computed. To assess the general accuracy of these judgments, the cor-

responding Bayesian values were calculated as described above (14), assuming con-

ditional independence among the symptoms. Fig. 1 (unfilled circles) plots the mean

probability judgments against the Bayesian values separately for each experiment.

The accuracy of the mean judgments is generally quite impressive, though of course

the accuracy of individual judgments will tend to be less so. The correlation between

the mean judgments and the Bayesian values is .95, .85, .90, and .93 in Experiments
1–4, respectively. As would be expected given the imperfect correlations, judgments

associated with high Bayesian values tended to be too low, while those associated

with low Bayesian values tended to be too high. What is perhaps less obvious is that

the judgments generally tended to be too high, as indicated by a larger proportion of

the points on the scatterplot falling above rather than below the identity line. This

pattern is to be expected to the extent that such judgments exhibit systematic subad-

ditivity.

In Fig. 2, the degree of subadditivity is measured by the total probability T as-
signed to the three possible flu strains given a particular symptom pattern. The figure

shows the mean value of T (filled circles) as a function of the number of present

symptoms in the symptom pattern. The horizontal line designates the value

T ¼ 100% expected under the Bayesian analysis. Classification-learning models that
normalize the output associated with each category to arrive at a probability judg-

ment, such as ALCOVE (see Nosofsky et al., 1992) or Gluck and Bower�s (1988)
adaptive network model, also yield the prediction T ¼ 100%. Consistent with sup-
port theory, however, the figure shows that participants� judgments were generally
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subadditive as indicated by T > 100%. Furthermore, consistent with the results
of Koehler (2000), the value of T increases systematically with the number of

present symptoms in the symptom pattern upon which the judgments are based. This

Fig. 1. Mean probability judgments in Experiments 1–4 versus ESAM and Bayesian predictions.
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observation is one of the key findings that ESAM is designed to accommodate. We

are not aware of any current models of classification learning that, without further

modification, are able to account for variance in T.

Fig. 1. (continued)
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Fig. 2 shows that, in each experiment, T increases in an approximately linear fash-

ion as the number of present symptoms increases from 1 to 5. We have excluded

from the figure points corresponding to the special cases of 0 and 6 present symp-

toms, that is, the two cue patterns in which all the symptoms are either absent or

present. The value of T tends to be less predictable for these special cases, in part
because the means are based on fewer observations, and in part because participants

appear to treat them somewhat differently than the other symptom patterns. In par-

ticular, T tends to be substantially lower in the case in which all possible symptoms

are present than would be expected based on the general increasing trend. Koehler

Fig. 2. Predicted and observed mean values of T (the total probability assigned to the three possible flu
strains) as a function of the number of present symptoms in the symptom pattern in Experiments 1–4.
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(2000) observed the same phenomenon and suggested that these patterns may be per-

ceived as especially uninformative with regard to the patient�s diagnosis and hence as
not very supportive of any of the flu strains. It is worth noting that without further
modification that takes these special cases into account, ESAM�s general assumption
of support accumulation will fail to capture this aspect of the data. Of course, these

special cases represent only 2 of the 64 possible symptom patterns evaluated in each

experiment.

Recall that in each experiment, there were three high-diagnosticity and three low-

diagnosticity symptoms. While T was generally expected to increase with the number

of present symptoms, the assumptions upon which ESAM is based imply that this

Fig. 2. (continued)
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pattern should be more pronounced in the case of high-diagnosticity symptoms than

in the case of low-diagnosticity symptoms. If a symptom�s diagnostic value deter-
mines how much its presence contributes to the support for a hypothesis, then the
presence of high-diagnosticity symptoms will generally produce greater support than

the presence of corresponding low-diagnosticity symptoms, assuming that symptom

presence is weighted more heavily than absence. Because alternatives in the residual

are discounted more heavily as the support for the focal hypothesis increases, this

leads to the prediction that T should increase more quickly as a function of the num-

ber of high-diagnosticity symptoms present in the symptom pattern than as a func-

tion of the number of low-diagnosticity symptoms present. Fig. 3 shows that this is

indeed the case in all experiments except Experiment 2, where the much greater dif-
ficulty participants had in the training trials might have made it more difficult to de-

tect the difference in diagnosticity between the two sets of symptoms. In each of the

Fig. 3. Mean value of T as a function of the number of present high- and low-diagnosticity symptoms.
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remaining experiments, the correlation between the number of high-diagnosticity

symptoms present and T is significantly greater than that between the number of

low-diagnosticity symptoms and T.

6. Model fitting

In this section we first assess how well ESAM is able to fit the data from the four

experiments, and then compare its performance with that of alternative models.

6.1. Fitting ESAM to mean judgments

We first fit ESAM to the set of mean probability judgments from each experiment.

Best-fitting parameter values were estimated simultaneously using an iterated search

Fig. 3. (continued)
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algorithm that minimized the squared difference between predicted and observed

probability judgments. The top section of Table 2a shows the estimated parameter

values and provides a measure of the goodness of ESAM�s fit to the mean data in
each experiment. The observed mean judgments are plotted against the resulting pre-

dicted values in Fig. 1 (filled circles). Both the table and the figure indicate that
ESAM was able to quite closely reproduce the 192 observed mean judgments in each

experiment.

As a way of interpreting the measure of ESAM�s fit to the data as listed in
Table 2a, consider the following. Because ESAM�s predictions are based on the verid-
ical frequency counts determined by the cue structure in a given experiment, and be-

cause the cue structures used in Experiments 1 and 2 (and, to a lesser extent, in

Experiment 3) are highly symmetric, it turns out that ESAM provides only 40 (64

in Experiment 3) unique predicted judgments which are repeated over the full set
of 192 possible judgments in each experiment. For example, the predicted probability

Table 2a

Estimated parameter values and index of fit of 4-parameter ESAM and alternative models to mean judg-

ment data from Experiments 1–4

Model Experiment a b c d RMSE t

ESAM 1 — 0.10 2.96 0.22 4.82

2 — 0.66 1.14 0.27 6.19

3 — 0.32 1.62 0.27 6.85

4 0.25 0.28 2.52 0.22 6.88

Pattern

similarity

1 — 0.38 0.96 0.27 6.29 5.35




2 — 1.00 0.56 0.42 6.57 2.98




3 — 0.74 0.64 0.34 6.93 0.72

4 0.00 0.26 0.98 0.36 10.51 5.17




Redundant

baserate

4 0.00 0.80 0.69 0.00 16.4 8.67




Uncorrected

diagnosticity

4 )0.06 0.82 0.61 0.00 16.5 8.87




Constant

adjustment

4 )0.22 0.16 1.95 0.23 8.20 3.45




Constant

discounting

1 — 0.88 3.58 0.22 5.41 2.63




2 — 0.37 1.47 0.37 6.67 2.82




3 — 0.78 2.02 0.27 7.20 1.82


4 0.24 0.87 3.08 0.22 7.19 0.56

Bayesian ESAM 1 — 2.03 0.38 0.61 5.80 0.95

2 — 3.54 0.15 0.25 5.81 )1.69


3 — 2.37 0.20 0.42 6.48 )0.69
4 0.82 0.51 0.34 0.62 6.53 0.51


p < :10; 

p < :05; 


p < :01. Note. a, baserate adjustment; b, enhanced discounting; c, extremity; d,
absent cue weighting; RMSE, root mean squared error of ESAM�s fit to the set of 192 mean probability
judgments (on the 0–100% judgment scale) in each experiment; t, paired t test comparing fit of alternative
model to that of ESAM with equal number of free parameters, based on individual judgment data.
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assigned to Flu Strain #1 given a cue pattern in which only Symptom #1 is present is

identical to that assigned to Flu Strain #2 given a cue pattern in which only Symptom

#2 is present, and so on. (The same holds for predictions from the Bayesian ap-

proach.) Thus one reasonable baseline against which to compare ESAM�s perfor-
mance is the fit exhibited by a model that perfectly reproduces the cell means for
each of these 40 (or 64 in Experiment 3) cases. The predictive error associated with

this model is attributable to variance within a given cell, for example, if the mean

probability assigned to Flu Strain #1 given a cue pattern in which only Symptom

#1 is present does not exactly coincide with that assigned to Flu Strain #2 given a

cue pattern in which only Symptom #2 is present, and so on. The RMSE associated

with this cell-means model is 3.41, 5.02, and 4.64 in Experiments 1, 2, and 3, respec-

tively. (Due to the unequal hypothesis baserates, ESAM is capable of producing 192

unique predicted judgments in Experiment 4 and hence the corresponding cell-means
model would perfectly fit the data.) By comparison, ESAM produces a fit that is not

that much worse using only three free parameters. This analysis also highlights that a

poorer fit would be expected in Experiments 2 and 3 than in Experiment 1 solely on

the basis of the greater within-cell variance in the former than in the latter.

Fig. 1 indicates that ESAM provides a substantially better fit to the data than do

the Bayesian values, which serve as a benchmark of how predictable people�s judg-
ments are from the normative values computed from the same set of frequentistic ob-

servations serving as input for ESAM. Because they rely on the same input, the
Bayesian and ESAM predicted probabilities are highly correlated with one another

as well as with the observed judgments. The partial correlation between ESAM�s pre-
dictions and the observed mean judgments, controlling for the Bayesian values, is

.80, .49, .59, and .62 in Experiments 1–4, respectively, indicating that ESAM is able

to account for substantial variance in the observed judgments that is not captured by

the Bayesian model.

A critical advantage of ESAM over the Bayesian model, of course, is that ESAM

is intended to account for systematic variance in the subadditivity of elementary
judgments as measured by T, which according to the Bayesian approach should al-

ways equal 1 (or 100%). Fig. 2 shows that ESAM nicely reproduces the tendency for

T to increase with the number of present symptoms in the symptom pattern. The val-

ues of T predicted by ESAM in this figure are computed from its predictions regard-

ing the individual judgments, rather than on the basis of direct fitting of the model to

the observed T values themselves. The good fit achieved by this approach provides

some corroborating evidence for the postulated principles of support assessment

on which ESAM is based. Specifically, ESAM�s assumption that greater weight is
placed on cue presence than on cue absence produces generally greater support val-

ues for the focal hypothesis as the number of present cues in the cue pattern in-

creases, and its assumption of enhanced residual discounting then leads to greater

discounting of support for alternatives included in the residual (and hence greater

values of T) as the support for the focal hypothesis increases with the number of

present cues.

Inspection of Table 2a (or Fig. 1) shows that ESAM achieved a better fit to the

judgments in Experiment 1 than in any of the other experiments. This result may
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be related to the observation that learning performance and judgment accuracy

tended to be somewhat higher in this experiment. Experiment 1 arguably imposes

lower memory demands on participants because it involves a simpler cue structure

and equal baserates. Because our implementation of ESAM assumes perfect accu-

racy in encoding and retrieval of observed frequencies, the model will tend to pro-
duce a better fit to judgments under conditions that more closely meet this

assumption, as appears to have been the case in Experiment 1.

The estimated parameter values for ESAM in Table 2a are generally consistent

with two expectations based on the support assessment principles introduced earlier.

First, the observation of b > 0 indicates that: (a) support for hypotheses included in
the residual is discounted; and that (b) the degree of discounting increases as the sup-

port for the focal hypothesis increases. Second, the observation of d < 1=2 indicates
that absent symptoms are given less weight than present symptoms in the support
assessment process.

Further assumptions of ESAM are also corroborated by the estimated parameter

values. The observation of a > 0 in Experiment 4 (the only experiment in which bas-
erate varied) is consistent with some degree of baserate sensitivity, such that the sup-

port for a hypothesis based on the diagnostic value of the available cues is adjusted

in light of the hypothesis�s baserate. The observation of c > 1 suggests that the final
computation of support associated with a hypothesis tends to be more extreme than

the initial calculation of diagnosticity adjusted in light of baserate specified by
ESAM.

6.2. Fitting ESAM to individual judgments

To further investigate these parameter values, and in particular how they vary

across the four experiments, we fit ESAM to each individual participant�s set of
192 probability judgments. Obviously, these judgments are much noisier than the ag-

gregate set of mean judgments in each experiment, and as a result the fit of ESAM is
not nearly as good. The individual parameter estimates, however, tended to be rea-

sonably stable across participants in an experiment. Table 3 shows the median esti-

mate for each parameter value in a given experiment and provides the median

goodness of fit of ESAM to the individual data.

Because a drops out of ESAM in the case of equal baserates (as in Experiments 1–

3), we cannot examine how this parameter varies across experiments. We did exam-

ine the relationship between a participant�s learning performance (over the second
half of the training trials) and his or her estimated a value in Experiment 4, suspect-
ing that participants who exhibited better learning performance would also exhibit

greater baserate sensitivity. The correlation between learning performance and a,
however, was not statistically different from zero and in fact fell in the direction op-

posite to our expectations, r ¼ �:14.
Individual estimates of b tended to be negatively correlated with estimates of c in

all four experiments. This is sensible because judgments tend to become more ex-

treme as b increases, which can be compensated for by decreasing c, which has the
effect of making the judgments less extreme. Although we had no strong expectations
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on this point, it turned out that b varied significantly across experiments,

F ð3; 130Þ ¼ 5:19, p < :01. Specifically, the mean value of b was significantly greater
in Experiment 2 than it was in Experiments 1, 3, or 4. However, this is partly due to

the strong relationship between b and c. When c is used as a co-variate, b varied only
marginally between experiments, F ð3; 129Þ ¼ 2:25, p < :10.
The greater the value of b, the greater is the extent of discounting of support for

hypotheses in the residual, and hence the greater the value of T. Given this observa-

tion, it is not surprising to find that the estimated value of b for an individual cor-
related with his or her mean value of T, even after partialling out the effects of

experiment and controlling for the value of the c parameter, though the correlation
is fairly weak, r ¼ :20. However, the fit to several of the participants� data yielded
extreme values of the b parameter. Nine participants had standardized scores above
2.50 on the b parameter, and so could be considered outliers. After removing these
participants from the analysis, the relationship is much more strongly pronounced,

with the partial correlation being r ¼ :70. Given this, it seems likely that the differ-
ences in b across experiments is attributable to the greater degree of subadditivity in
Experiment 2 than in Experiments 1, 3, and 4, though of course these differences in

subadditivity still need to be explained.

The value of c determines the extremity of the support values and hence the result-
ing probability judgments, and can be taken as a measure of confidence in one�s
judgmental accuracy. Because we anticipated that participants would generally find
the diagnostic task more difficult in Experiments 2 and 3 than in Experiment 1 (as

discussed above), we expected that c would be lower in the former than in the latter.
The value of c did vary significantly across experiments, F ð3; 130Þ ¼ 11:9, p < :001,
with c being significantly lower in Experiments 2 and 3 than in Experiments 1 and 4
(using b as a co-variate did not affect this result). Furthermore, within each experi-
ment, c was the only parameter whose value correlated with the participant�s accu-
racy in the learning phase of the experiment (r ¼ :53, .83, .61, and .55 in Experiments
1–4, respectively). Perhaps not surprisingly, those participants who exhibited better
learning performance on the training trials subsequently made more extreme proba-

bility judgments.

Our main prediction regarding d was that it would tend to be less than 1/2, indi-
cating greater weight being placed on present than on absent symptoms. We specu-

lated that the value of d might tend to be greater in Experiment 2 than in the other
experiments because in that experiment it was symptom absence that picked out a

particular flu strain as being more likely than its alternatives. In fact, the value of

d did not differ significantly across experiments, F ð3; 133Þ ¼ 1:87, n.s., although both
the median and mean value of d was greater in Experiment 2 than in any of the other
experiments. The contrast comparing the value of d in Experiments 1 and 2 (in which
everything else was held constant except the reversal of absent and present symp-

toms) did show Experiment 2 to yield significantly higher values of d,
tð64Þ ¼ 2:37, p < :05. We also suspected that those participants in Experiment 2
who paid greater attention to absent symptoms might exhibit better learning perfor-

mance. Evaluation of this relationship is complicated by the presence of 3 individuals

with extreme d values (standardized scores greater than 2). When these outliers are
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included, the correlation between d and learning performance is non-significant,
r ¼ :24, but when they are excluded the correlation is much stronger, r ¼ :56,
p < :01.

6.3. Comparing ESAM to alternative models

In this section we consider alternative models that differ in key assumptions from

ESAM, and assess their fit to the data. Wherever possible, we attempt to formulate

models that differ by only one key assumption from and which have the same num-

ber of free parameters as ESAM. In such cases, the assumption being tested receives

some corroboration if ESAM outperforms the comparison model in its fit to the

data. Parameter estimates and indices of fit to the mean judgment data for ESAM

and each of the 4-parameter alternative models considered in this section are
presented in Table 2a. Inferential statistical tests for each experiment comparing

the fit of these alternative models to that of ESAM, based on fitting the models to

the individual participant data, are also reported in Table 2a. Some of the alternative

models we consider require only three free parameters, in which case we compare

their performance to a simpler 3-parameter version of ESAM in which absent cues

are ignored. Results of fitting the 3-parameter models to the judgment data are re-

ported in Table 2b.

6.3.1. Underweighting cue absence

To evaluate ESAM�s assumption that absent cues receive less weight in the judg-
ment than do present cues, we fit two simpler models to the data, one that completely

ignores absent cues (i.e., d ¼ 0), and one that places equal weight on cue presence
and absence (i.e., d ¼ 1=2). As would be expected given that it has an extra free pa-
rameter, ESAM outperforms both of these simpler models in terms of fit to the data.

As shown in Table 2b, the absent cue neglect model and the equal weighting model fit

the data about equally well on the whole; each outperforms the other in some exper-
iments, and the fit to the individual versus the mean data from the same experiment

produces some contradictory results. A comparison of the fit of the two models to

the data as a whole (with experiment as a covariate) reveals no significant difference,

F ð1; 133Þ < 1. It should be noted that the equal weighting model cannot reproduce
the tendency for T to increase with the number of present symptoms as depicted in

Fig. 2. The absent cue neglect model is a reasonable candidate for a simpler 3-param-

eter version of ESAM that retains the ability to reproduce this effect. When we con-

sider other alternative models that require only three free parameters (Table 2b), we
will use this special case of ESAM in which absent cues are ignored as the basis for

performance comparisons.

6.3.2. Evidence decomposition

ESAM assumes the support for a hypothesis conveyed by a pattern of cues is as-

sessed on a cue-by-cue basis rather than in terms of the cue pattern as a whole. To

evaluate this assumption, we constructed two models, in the frequentist vein as

discussed earlier, that maintain frequency counts for entire cue patterns instead of
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separate counts for each cue. The first is a simple pattern matching model, in which

the diagnostic implications of a target cue pattern are evaluated on the basis of how
many times that exact pattern was previously observed in conjunction with each out-

come (hypothesis), using the same calculation (9a) and (9b) as that used by ESAM,

only now as applied to the frequency counts for entire cue patterns rather than for an

individual cue. Because it evaluates cue patterns in their entirety, the pattern match-

ing model has no equivalent of ESAM�s d parameter; consequently, its performance
should be compared to the 3-parameter version of ESAM (absent cue neglect mod-

el). As shown in Table 2b, the pattern matching model does not fit the data nearly as

well as the comparable 3-parameter ESAM model that assumes neglect of absent
cues, F ð1; 133Þ ¼ 242, p < :001. Obviously, it also performs less well than the full
4-parameter ESAM model.

The pattern matching model relies only on previous observations with an exact

match to the target cue pattern, and as a result ignores all but a small proportion

of the previous observations. We also constructed a 4-parameter pattern similarity

model (cf. Medin & Schaffer, 1978) in which observations of cue patterns similar

to the target cue pattern serving as evidence also contribute to the support it pro-

vides. In this model, the similarity of the target cue pattern to each possible pattern
(for which frequency observations are stored in memory) is computed as dm where

m is the number of ‘‘mismatches’’ between cue values in the cue patterns being

Table 2b

Estimated parameter values and index of fit of 3-parameter ESAM (absent cue neglect) and alternative

models to mean judgment data from Experiments 1–4

Model Experiment a b c d RMSE t

ESAM

(absent cue

neglect)

1 — 0.09 2.63 — 5.91

2 — 0.83 0.94 — 7.09

3 — 0.33 1.43 — 7.65

4 0.25 0.25 2.20 — 8.64

Equal cue

weighting

1 — 0.12 3.09 — 6.48 )0.06
2 — 0.65 1.14 — 6.74 )1.65
3 — 0.32 1.64 — 7.55 )0.06
4 0.25 0.32 2.65 — 8.04 0.56

Pattern matching 1 — 1.06 0.50 — 16.5 6.03




2 — 1.38 0.23 — 27.4 11.0




3 — 1.15 0.23 — 29.1 11.7




4 0.34 2.19 0.43 — 19.4 10.3




Uncorrected

diagnosticity

4 — 0.80 0.69 0.00 16.5 7.63




No baserate

adjustment

4 — 0.14 2.45 0.21 8.28 1.72



p < :10; 

p < :05; 


p < :01. Note. a, baserate adjustment; b, enhanced discounting; c, extremity; d,
absent cue weighting; RMSE, root mean squared error of ESAM�s fit to the set of 192 mean probability
judgments (on the 0–100% judgment scale) in each experiment; t, paired t test comparing fit of alternative
model to that of ESAM with equal number of free parameters, based on individual judgment data.
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compared. The diagnostic implication of each possible cue pattern is calculated as in

(9a) and (9b) using frequency counts for entire cue pattern, then weighted by its sim-

ilarity dm to the target cue pattern serving as the basis of the judgment. The similar-

ity-weighted sum across all possible cue patterns yields dCðHÞ, which is then

translated into support in the same manner (11) as in ESAM. Note that the simple
pattern matching model described above is a special case of the pattern similarity

model with d ¼ 0. The pattern similarity model did not generally fit the data as well
as ESAM, F ð1; 133Þ ¼ 28:6, p < :001. Table 2a shows that ESAM�s advantage over
the pattern similarity model is substantial in Experiments 1 and 4, less pronounced in

Experiment 2, and negligible in Experiment 3.

6.3.3. Baserate-corrected diagnosticity calculation

ESAM�s calculation (9a) and (9b) of the diagnostic value of a cue ‘‘corrects’’ for
overall baserate differences among the hypotheses under consideration, such that the

observation that a cue co-occurs frequently with a particular hypothesis is dis-

counted as an indicator of diagnosticity to the extent that the hypothesis has a high

baserate or prior probability. To evaluate ESAM�s assumption that perceptions of
diagnostic value are in this sense corrected in light of baserate differences among hy-

potheses, we constructed an uncorrected diagnosticity model that simply normalizes

the co-occurrence frequencies without dividing each by the corresponding hypothesis

baserate. For example, in the case of present cues we have

d1ðC;HÞ ¼ f1ðC;HÞP
j f1ðC;HjÞ

: ð15Þ

This model incorporates baserate differences directly in the diagnostic value calcu-
lation (i.e., does not remove baserate influences from the calculation) and as such

does not require a separate baserate adjustment parameter a. The uncorrected
diagnosticity model is equivalent to ESAM in the case of equal baserates. Table 2b

shows that the uncorrected diagnosticity model does not fit the data from Experi-

ment 4 (the only experiment with unequal baserates) nearly as well as the 3-pa-

rameter absent cue neglect version of ESAM. For a more direct comparison to the

4-parameter ESAM model, we constructed a redundant baserate model that main-

tains the additive baserate adjustment associated with the a parameter and as a result
is potentially influenced twice by the hypothesis baserate (once in the diagnosticity

calculation and once in the additive adjustment). We also constructed a 4-parameter

uncorrected diagnosticity model in which a is not multiplied by the relevant

hypothesis baserate but instead serves as a constant additive adjustment (as in the

constant adjustment model discussed below). As is shown in Table 2a, both of these

alternative models fit the data from Experiment 4 less well than does ESAM.

6.3.4. Normalized diagnosticity calculation

ESAM�s calculation (9a) and (9b) of diagnostic value also involves normalization
over the set of possible hypotheses. This normalization ensures that each cue in the

cue pattern is weighted equally in terms of its contribution to the support of a hy-

pothesis despite differences in overall cue frequency, that is, how prevalent the cue�s
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presence (or absence) is across the different hypotheses. We evaluated this assump-

tion by constructing an unnormalized diagnosticity model. In the case of present

cue values, for example, diagnostic value is given by

d1ðC;HÞ ¼ f1ðC;HÞ=f ðHÞ: ð16Þ
The unnormalized diagnosticity model produces different predictions than ESAM

only when the cues under consideration vary in their overall frequency or prevalence,

which was not the case in Experiments 1–4. Cues did vary in frequency, however, in

Koehler�s (2000) Experiment 3, which provides an opportunity to evaluate the merits
of normalization. As shown in Table 4, ESAM provides a better fit to the data from

this experiment than does the unnormalized diagnosticity model, supporting the

normalization assumption, tð15Þ ¼ 3:31, p < :01. This result suggests that assessment
of the diagnostic implications of a cue is corrected for the cue�s overall prevalence.

6.3.5. Baserate adjustment of support

ESAM accommodates baserate sensitivity in the support assessment process via

the additive adjustment associated with the a parameter. We evaluate this assump-
tion by considering alternative models that make no adjustment for baserate. We

first constructed a constant adjustment model in which the diagnosticity calculation

is subject to a constant additive adjustment independent of baserates:

sCðHÞ ¼ a½ þ ð1� aÞdCðHÞ�c: ð17Þ
As shown in Table 2a, ESAM�s baserate adjustment assumption yields a better fit to
the data from Experiment 4 (the only one with unequal baserates) than does the

constant-adjustment model. As it happens, the best fit for the constant adjustment

model for the Experiment 4 data is achieved with a ¼ 0, such that the resulting
model is equivalent to a 3-parameter no-adjustment model for this data set. Thus we

also list a no baserate adjustment model that sets a ¼ 0 among the 3-parameter
models in Table 2b. This model performs marginally worse than the 3-parameter
version of ESAM that neglects absent cues, reflecting the fact that both of these

models exhibit approximately equivalent drops in performance relative to the full 4-

parameter version of ESAM. Despite the relatively weak corroboration received

from the present results, we suggest that it is worth retaining ESAM�s ability to
accommodate baserate sensitivity because judgments of probability have been ob-

served to be sensitive to baserates under at least some conditions (see Novemsky &

Kronzon, 1999).

6.3.6. Enhanced residual discounting

ESAM assumes that discounting of support for alternatives in the residual (via

restriction of the set of cues consulted in the assessment process) increases with

the support for the focal hypothesis. The general assumption of enhanced residual

discounting is already well supported by previous research (Brenner & Koehler,

1999; Koehler et al., 1997), but in the present treatment we have instantiated this as-

sumption in a different form that merits further testing. To test the enhanced dis-

counting assumption as implemented in ESAM, we constructed a constant
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discounting model in which the probability qH of a cue being consulted in the calcu-
lation of residual support (13) does not depend on the support for the focal hypoth-

esis (as in Eq. (12)), but instead is set to a constant qH ¼ b. Table 2a shows that the
constant discounting model does not fit the data as well as ESAM, F ð1; 133Þ ¼ 11:8,
p < :001.

6.3.7. Perfect memory

A major, arguably unrealistic, simplifying assumption of ESAM is its reliance on

a perfectly accurate set of stored frequency counts of cue and hypothesis co-occur-

rence, that is, an assumption of perfectly reliable encoding and retrieval of informa-

tion acquired from experience (i.e., training). To evaluate the costs of this

assumption in terms of fit to the observed data, we constructed a model that relies

on an imperfect representation of stored frequency counts, which can be thought
of either as due to unreliability of encoding during training or inaccuracy at the time

of later retrieval. By comparing ESAM�s fit to the data when provided with inaccu-
rate information as input (the imperfect memory model) to the fit achieved by the ori-

ginal version of ESAM, we can measure the loss of fit introduced by our simplifying

assumption of perfect memory.

On the assumption of perfectly reliable encoding and retrieval, the observation of

a particular cue value in conjunction with a given hypothesis (or outcome) adds 1 to

the frequency count associated with their co-occurrence and 0 to all other co-occur-
rence frequencies for which the model maintains counts. Imperfect memory could in-

troduce two types of errors in the frequency counts, depending on whether the model

‘‘forgets’’ which cue value or which hypothesis (outcome) was observed. Let a rep-

resent the probability of correctly encoding and retrieving the observed hypothesis

or outcome, and assume that the probability of one of the other hypotheses being

incorrectly encoded or retrieved instead is equal for all the remaining hypotheses;

that is, each alternative to the observed hypothesis has a probability of

ð1� aÞ=ðNH � 1Þ of being incorrectly associated with the observed cue value in the
stored frequency counts. Likewise, let b represent the probability of correctly encod-

ing and retrieving the observed cue value (i.e., as present or absent) in association

with the observed hypothesis (or outcome); therefore the probability of incorrectly

encoding or retrieving the cue value (i.e., mistaking presence for absence or vice ver-

sa) is 1� b. Assuming these two types of errors occur independently, calculating
their joint probabilities is straightforward, but to maintain a tractable number of free

parameters we estimate a assuming b ¼ 1 and vice versa. As long as a and b are rel-

atively close to 1 when estimated separately, this simplifying assumption is unlikely
to have a large effect on the results.

The first imperfect memory model, then, involves errors in encoding or retrieval of

the appropriate hypothesis, where a represents the probability that the observed

hypothesis is properly counted. The original version of ESAM assuming perfect

memory sets a ¼ 1. The imperfect memory model allowing inaccurate hypothesis
counts is bound to provide a better fit to the data because it includes a as an addi-

tional free parameter. The question is whether the improvement in fit justifies inclu-

sion of the additional free parameter. Table 2c shows the fit of this 5-parameter
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imperfect memory model along with the fit of the original 4-parameter version of

ESAM for comparison. The imperfect memory model fits the data no better than

the original version of ESAM in Experiment 1, marginally better in Experiment 2,

and significantly better in Experiments 3 and 4. As expected, its fit to the overall data

is significantly better than that of ESAM assuming perfect memory, F ð1;
133Þ ¼ 12:0, p < :001. The relatively modest magnitude of improvement in the fit
to the mean judgment data shown in Table 2c, however, suggests that the cost

of ESAM�s perfect memory assumption may be outweighed by the benefits of its
relative simplicity.

To evaluate further our interpretation of the a parameter as reflecting memory er-

rors in encoding or retrieval of the training trial information, we examined whether

the estimated value of an individual�s a parameter was associated with the individ-
ual�s choice accuracy in the training phase of the experiment. After all, if the a pa-
rameter measures the fidelity of an individual�s memory, then it should correlate
with his or her training accuracy. As explained before, c is also correlated with train-
ing accuracy. After controlling for c and experiment, the correlation between a and

training accuracy is still statistically significant, r ¼ :31. Although the observed im-
provement in fit due to inclusion of the a parameter is fairly modest, this analysis

suggests that this parameter does capture meaningful differences among individuals

in their memory for training trial information.

The other imperfect memory model, allowing encoding and retrieval errors
in which cue presence and absence are reversed and incorrectly associated with the

Table 2c

Estimated parameter values and index of fit of 4-parameter ESAM assuming perfect memory compared

with that of alternative models assuming imperfect memory

Model Experiment a b c d a=b RMSE t

ESAM 1 — 0.10 2.96 0.22 — 4.82

2 — 0.66 1.14 0.27 — 6.19

3 — 0.32 1.62 0.27 — 6.85

4 0.25 0.28 2.52 0.22 — 6.88

Imperfect 1 — 0.10 2.96 0.22 1.00 4.82 0.00

memory 2 — 0.31 2.12 0.37 0.70 6.00 )1.67


(Hypothesis) 3 — 0.17 2.69 0.37 0.72 6.76 )3.31




4 0.23 0.26 2.67 0.24 0.98 6.81 )2.83




Imperfect 1 — 0.10 2.96 0.22 1.00 4.82 )0.20
memory 2 — 0.33 2.03 0.36 0.78 6.00 )1.71


(abs/pres) 3 — 0.17 2.69 0.37 0.80 6.76 )3.56




4 0.25 0.28 2.53 0.22 1.00 6.88 )2.56



Note. a, baserate adjustment; b, enhanced discounting; c, extremity; d, absent cue weighting; a/b,
memory accuracy; RMSE, root mean squared error of ESAM�s fit to the set of 192 mean probability
judgments (on the 0–100% judgment scale) in each experiment; t, paired t test comparing fit of alternative
model to that of ESAM with equal number of free parameters, based on individual judgment data.

* p < :10.
** p < :05.
*** p < :01.
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relevant hypothesis, yielded nearly identical results (see Table 2c). One might suspect

that our exclusion from the data of participants with poor performance in the train-

ing phase of the experiment might have played a role in this result; that is, perhaps

the imperfect memory models would exhibit a more pronounced advantage over the
original ESAM model had we included the judgment data from these participants in

the analysis. In investigating this possibility, however, we found that the small

advantage of the imperfect memory models over the original version of ESAM that

assumes perfect memory did not change much in magnitude even when the poor-

performing participant data were included in the model-fitting comparison.

Taken together, the results from fitting the imperfect memory models suggest

that, at least in the experimental context we investigated, ESAM�s perfect memory
assumption may often be a useful simplification. The imperfect memory versions
of ESAM may be more appropriate under less ideal learning conditions as, for ex-

ample, when training takes place under conditions of divided attention or when

the number of cues or hypotheses increases to the point where encoding and retrieval

errors are more prevalent.

7. Generalization of the Bayesian model

As noted earlier, because of several key differences in form between ESAM and

the Bayesian model, there are no parameter values for which ESAM will reproduce

the corresponding Bayesian values exactly. This makes it somewhat difficult to eval-

uate parameter estimates (in particular, the values of a and c) in ESAM from the

Table 3

Median estimated ESAM parameter values and median index of model fit to individual judgment data

from Experiments 1–4

Experiment a b c d RMSE

1 — 0.08 2.88 0.16 24.0

2 — 0.77 1.16 0.29 28.7

3 — 0.31 1.58 0.25 30.4

4 0.24 0.29 2.55 0.23 24.5

Note. RMSE, median root mean squared error of ESAM�s fit to an individual�s set of 192 probability
judgments (on the 0–100% judgment scale).

Table 4

Comparison of ESAM and unnormalized diagnosticity model fit to probability judgment data from Koeh-

ler (2000) Experiment 3, along with estimated parameter values

Model a b c d RMSE

ESAM — 0.68 1.38 0.24 8.75

Unnormalized diagnosticity — 0.41 1.39 0.21 9.29

Note. RMSE, root mean squared error of ESAM�s fit to the set of 96 mean probability judgments (on
the 0–100% judgment scale) of Koehler (2000) Experiment 3.
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normative perspective offered by the Bayesian model. In this section, as a means of

addressing this potential drawback, we introduce a generalization of the Bayesian

model (which we will refer to as Bayesian ESAM) using the same basic principles

(and corresponding parameters) used to develop the original version of ESAM. Ear-

lier it was suggested that any model developed from the principles of evidential sup-
port assessment outlined in Section 2 would produce a reasonably close fit to the

data. The Bayesian generalization offers a test of this claim, and yields a variant

of ESAM that might be particularly useful when judgment data are fit with an em-

phasis on their accuracy or correspondence to the output of a Bayesian analysis.

We start with the Bayesian model (14) assuming—as does ESAM—conditional in-

dependence of cues. In the Bayesian model, the value corresponding to the support

for a hypothesis is given by

sCðHÞ ¼ f ðHÞ
YNC

i¼1

f ðCi;HÞ
f ðHÞ over cues Ci in cue pattern C: ð18Þ

If the support for each hypothesis is calculated as in (18), the (Bayesian) probability
of a hypothesis is given by its support normalized relative to that of its alternatives.

In the Bayesian version of ESAM, the support for a hypothesis is given by

sCðHÞ ¼ f ðHÞa
YNC

i¼1

dif ðCi;HÞ
f ðHÞ

" #c

over cues Ci in cue pattern C; ð19Þ

where di ¼ 1 for present cue values and di ¼ d for absent cue values. The free pa-
rameter d is expected to be less than 1 if absent cue values are underweighted. The
free parameters a and c, as in the original version of ESAM, reflect the relative
weight placed on the baserate of the hypothesis under evaluation and the extremity

of the resulting support values, respectively. If the baserate of the hypothesis is

underweighted relative to the diagnostic value of the evidence (i.e., cue pattern), then

a < 1. If judgments based on the available evidence are more or less extreme than is
justified according to the Bayesian analysis, then c will tend to be greater or less than
1, respectively. The support calculation (19) is equivalent to that of the Bayesian

model when a ¼ c ¼ d ¼ 1.
The assumption of enhanced residual discounting is incorporated in Bayesian

ESAM by discounting the contribution of each cue value according to its probability

of being consulted, where the discounting weight qH is calculated as in the original
version of ESAM (12) using the free parameter b. The support for the residual hy-
pothesis H is then given by

sCðHÞ ¼
X

Hj in H

f ðHjÞaqH
YNC

i¼1

dif ðCi;HjÞ
f ðHjÞ

" #c

: ð20Þ

When b ¼ 0 (i.e., qH ¼ 1), the model produces additive judgments as in the Bayesian
approach. Positive values of b indicate that support for alternative hypotheses is dis-
counted to a greater extent, producing increasingly subadditive judgments, as support

for the focal hypothesis increases. The resulting model, then, is a generalization of the
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Bayesian approach, based on the principles used to develop ESAM, that reduces to the

Bayesian model when a ¼ 1, b ¼ 0, c ¼ 1, and d ¼ 1.
Because of the common underlying principles on which they are based, we ex-

pected that Bayesian ESAM would fit the data from our experiments about as well

as the original version of ESAM. Bayesian ESAM�s performance was indeed ex-
tremely close to that of the original version of ESAM. Table 2a indicates that,

on average, neither model fits the data better than the other, F ð1; 133Þ ¼ 0:87,
n.s. The reason for their similar performance, of course, is that the two models

produce highly correlated predictions, as would be expected given their shared

roots. The 192 predicted judgments made by the two models when fit to the mean

judgments from each study, for example, were highly correlated with one another

(r ¼ :98 across all four experiments). Furthermore, the best-fitting parameter val-
ues for an individual participant were highly correlated across the original and
Bayesian versions of ESAM, with r ¼ :73 for a, r ¼ :73 for b, r ¼ :97 for c, and
r ¼ :37 for d.
Not surprisingly, predictions from the Bayesian ESAM model correlate more

highly with the corresponding Bayesian values than do those of ESAM: with

r ¼ :97, .92, .93, and .96 in Experiments 1–4, respectively, as opposed to r ¼ :94,
.88, .88, and .93, respectively, for the original version of ESAM. As was the case

for the original version of ESAM, Bayesian ESAM is also able to account for sub-

stantial variance in the observed judgments that is not accounted for by the standard
Bayesian model. The partial correlation between Bayesian ESAM�s predictions and
the observed mean judgments, controlling for the corresponding Bayesian values, is

.62, .50, .54, and .58 in Experiments 1–4, respectively.

Bayesian ESAM is also able to reproduce the tendency for T to increase with the

number of present cues in the cue pattern. This may seem somewhat surprising given

that, as pointed out in our earlier discussion of the Bayesian model, the product form

of the integration method in (18) yields decreasing support as the number of cues

consulted increases. Recall that ESAM reproduces the pattern of increasing T be-
cause support for the focal hypothesis increases more quickly than support for the

alternative hypotheses as the number of present cue values in the cue pattern

increases. Bayesian ESAM, by contrast, reproduces the pattern of increasing T

because support for the focal hypothesis decreases less quickly than does support

for the alternative hypotheses as the number of number of present cue values in

the cue pattern increases.

The free parameter estimates that result from fitting Bayesian ESAM to the judg-

ments data from the four experiments are largely consistent with the theoretical ac-
count upon which the original version of ESAM was based. The tendency to

underweight cue absence is reflected in estimates of d being consistently less than
1. Enhanced residual discounting is reflected in values of b that are consistently
greater than 0. The construction of Bayesian ESAM as a generalization of the Bayes-

ian approach provides additional interpretability of the a and c parameter estimates.
The observation of a < 1 indicates that the baserate of the hypothesis is under-
weighted in the support assessment process relative to the requirements of the stan-

dard Bayesian model. The observation of c < 1 across all four experiments indicates
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that the observed judgments were less extreme than would be those of a true Bayes-

ian, reflecting a tendency toward conservatism (Edwards, 1968).

Given that the estimated parameter values from the original and Bayesian version

of ESAM are highly correlated, it is not surprising that the relationships found be-

tween the best fitting parameters in ESAM and certain other measures of individual
differences in judgments also hold for the Bayesian version of ESAM. For instance,

the estimated value of b for an individual in Bayesian ESAM is highly correlated

with his or her mean value of T; after removing the individuals who were outliers

on this parameter, partialling out the effects of experiment and controlling for the

value of the c and d parameters, r ¼ :64, p < :001. And once again, the estimated va-
lue of c correlated with a participant�s choice accuracy during the training phase of
the experiment; after partialling out the effects of experiment and controlling for the

value of the b and d parameters, r ¼ :48, p < :001.

8. Conclusions and remaining questions

Despite its simplicity, ESAM was found to provide a reasonably good fit to the

observed judgments in four experiments. Alternative models differing from ESAM

by one or more key assumptions tended to fit the data less well. Specifically, models

that consider entire cue patterns rather than single cues, models that fail to place
greater weight on cue presence than on cue absence, models that use different meth-

ods for calculating the diagnostic value of a cue, models that do not adjust for the

baserate of a hypothesis, and models that assume no relationship between the sup-

port for the focal hypothesis and discounting of support for its alternatives, all fit

the data less well than ESAM. The model�s simplifying assumption of perfectly ac-
curate frequency counts of previous cue-hypothesis co-occurrence proved to cost

relatively little in terms of fit to the experimental data. The specific details of our im-

plementation of ESAM are less important than the general conclusion that evidential
support assessment in probability judgment can be characterized as a process in

which the diagnostic implications of a body of evidence are evaluated on a

cue-by-cue basis in light of previous experience with those cues. The comparable

performance of a variant of ESAM based on a generalization of the Bayesian model

is consistent with this view.

For the experiments we reported, ESAM tended to produce reasonably accurate

judgments as evaluated by a comparison to the corresponding Bayesian values. The

accuracy achieved by ESAM is impressive because the model ignores or under-
weights some information (absent cues) used in the Bayesian approach and also

uses simpler (e.g., additive instead of multiplicative) rules for combining the impli-

cations of different pieces of evidence. The model nonetheless can produce reason-

ably accurate judgments because it is capable of evaluating and aggregating the

diagnostic implications of each cue in the cue pattern. Indeed, the model incorpo-

rates the basic definition of diagnosticity used in the Bayesian approach and, as

with Bayes� rule, integrates considerations of the diagnosticity of the evidence
and of the baserate or prior probability of the hypothesis. The observation that
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ESAM and the Bayesian approach produce highly correlated output is consistent

with previous research showing that as long as they correctly identify and integrate

the direction of each cue�s diagnostic implication, information-integration models
will often produce output that corresponds quite closely to the output of the cor-

responding normative model even if they differ in the weights attached to the cues
and in the specific form of the combination rule they employ (e.g., Anderson, 1981;

Dawes, 1979).

In evaluating the diagnostic value of a cue pattern, ESAM integrates separate as-

sessments of the implications of each individual cue value constituting the cue pat-

tern, and hence implicitly assumes conditional independence of cues. Effectively,

then, ESAM can be viewed as employing a prototype representation of cue informa-

tion, in which the interpretation of each cue value is uninfluenced by other cue values

in the cue pattern. This assumption is shared by other recent models of classification
learning and probability judgment, including an adaptive network model developed

by Gluck and Bower (1988). An alternative approach is offered by exemplar-based

models, such as Medin and Schaffer�s (1978) context model and Kruschke�s (1992)
ALCOVE, which presume storage and evaluation of entire cue patterns (i.e., exemp-

lars).

Exemplar-based models have the potential advantage of detecting and exploiting

configural information in cases where conditional dependencies exist among cue

values, but at the cost of substantially higher memory storage requirements. For
example, in the case of six binary cues (i.e., symptoms) and three competing hy-

potheses as investigated in our experiments, counts must be maintained of the fre-

quency with which each of the 64 possible cue patterns co-occur with each

hypothesis in an exemplar representation. The prototype representation requires

only 12 counts (i.e., an absence and a presence count for each cue) per hypothesis,

rather than 64, because it maintains counts for each separate cue value rather than

for entire cue patterns. In essence, the prototype representation as employed by

ESAM discards information that the exemplar representation retains. One benefit
of retaining additional information in the exemplar representation, as discussed

previously, is that it allows use of configural information in the case of condition-

ally dependent cues. Another benefit is flexibility: The counts maintained in

ESAM�s prototype representation require designation of an outcome variable

(i.e., hypothesis) around which the frequency counts are organized; a separate set

of counts would be required if the designation of one variable as the outcome

and another as a cue were to be reversed. The exemplar representation, by contrast,

allows reorganization around any variable that might be designated as the outcome
of interest because it maintains information on the co-occurrence of all variables

under evaluation.

The formulation of ESAM as taking as input information in a prototype repre-

sentation does not, of course, preclude the possibility that an exemplar-based repre-

sentation is also maintained in memory. An exemplar representation could be used

as the starting point, for instance, in calculating the individual cue-hypothesis co-oc-

currence frequencies that ESAM takes as input. The main point of our results is

merely that ESAM can produce what turn out to be reasonably accurate judgments

192 D.J. Koehler et al. / Cognitive Psychology 46 (2003) 152–197



on the basis of a relatively small number of stored frequency counts using a proto-

type representation.

That said, it is also possible, at least in complex uncertain environments charac-

terized by a large number of diagnostic cues, that memory for exemplar frequencies

is not stored directly but instead is reconstructed from individual cue-outcome co-
occurrence frequencies. As might be expected if this were the case, Koehler (2000)

observed a pattern of systematic subadditivity and enhanced residual discounting

in judgments of absolute frequency (of exemplars) in a task very similar to that

of the present experiments. In that task, participants given a particular symptom

pattern first estimated how many patients with that exact pattern they had seen

during training, and second estimated of those how many had a designated flu

strain. The resulting proportions were slightly less subadditive than a correspond-

ing set of probability judgments from another experiment, but both exhibited con-
sistent subadditivity that increased with the number of present symptoms in the

symptom pattern. The model developed in this paper can be used to capture such

influences on judgments of the frequency with which various exemplars have been

observed, on the assumption that these judgments are in turn based on accurate

frequency counts of the co-occurrence of individual cues with the hypotheses of in-

terest.

In light of the accuracy it achieves despite numerous simplifying assumptions,

ESAM might be viewed as belonging to a larger family of judgmental heuristics, in-
troduced by Tversky and Kahneman (1974), that often produce reasonably accurate

judgments but that also exhibit systematic biases under certain conditions. In con-

trast to the work of Tversky and Kahneman, however, which emphasizes judgments

derived from ‘‘natural assessments’’ (Tversky & Kahneman, 1983) of similarity or

availability, the process by which ESAM translates stored frequency counts into as-

sessments of evidential support can perhaps be more precisely described as a cogni-

tive algorithm. Recently, a number of researchers, most notably Gigerenzer and his

colleagues (Gigerenzer, Todd, & The ABC Research Group, 1999), have explored
similar algorithms that produce acceptably accurate judgments, which they describe

as ‘‘fast and frugal,’’ reflecting their goal that these algorithms should be as compu-

tationally simple and informationally undemanding as possible. Gigerenzer and col-

leagues have focused much of their attention on one particular algorithm called

‘‘Take the Best’’ (TTB; Gigerenzer & Goldstein, 1996), the origin of which lies in

their earlier research on probabilistic mental models of judgmental confidence (Gige-

renzer, Hoffrage, & Kleinb€oolting, 1991). Because of its prominence, it may be in-
structive to compare TTB to ESAM, even though the models were developed to
carry out somewhat different tasks.

The task of TTB is to determine which member of a pair of judgment targets (e.g.,

cities) has the higher value on a given dimension (e.g., population) and also, in the

original probabilistic mental models formulation, to assign a probability that the re-

sulting judgment is correct. The most obvious similarity between TTB and ESAM is

that both rely on (perfectly accurate) stored counts summarizing the frequency with

which various cues have been observed to co-occur with some outcome variable of

interest to the judge. In TTB, the frequency counts are used to determine and rank
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order the cues by their predictive validity. Then, to choose the pair member judged to

have the higher value on the dimension in question, the cues are consulted one at a

time, in order of decreasing predictive validity, until one is found for which the two

pair members have different values. The cue thus selected is used to make the choice

between the pair members, and the judged probability of the choice being correct is
given by the validity of that cue.

In addition to their being developed for different judgmental tasks, the key differ-

ences between TTB and ESAM are as follows:

1. TTB consults only a subset of the available cues in arriving at a judgment;

ESAM consults all the available cues in assessing the support for the focal hypoth-

esis, and consults a subset of the cues in assessing the support for alternatives in-

cluded in the residual. TTB consults a smaller number of cues when the members

of the pair of judgment targets are highly discriminable (i.e., share fewer attributes
or cue values) than when they are less discriminable; ESAM consults a smaller num-

ber of cues in assessing the support for alternative hypotheses included in the resid-

ual as the support for the focal hypothesis increases.

2. TTB renders a decision and a probability estimate on the basis of a single cue

and therefore does not have to integrate the implications of multiple cues; ESAM

integrates the independently assessed implications of each in the set of cues consulted

(i.e., assuming conditional independence of cue values). In other words, TTB is a

noncompensatory model while ESAM is a (partially) compensatory model.
3. TTB requires substantial ‘‘precomputation’’ of the stored frequency counts to

determine and rank order the cues by their predictive validity, which is defined as the

proportion of cases, out of all possible pairs of judgment targets, that the cue cor-

rectly indicates the pair member with the higher value on the dimension in question;

ESAM can be viewed as carrying out all its computations on the stored frequency

counts at the time of judgment. That said, as formulated, ESAM has no mechanism

for narrowing a set of potentially useful cues to a manageable number; its diagnostic

value calculation would seem a natural starting point for such a process, but such a
possibility will have to be explored in future work.

4. TTB produces judgments that are unbiased and additive; ESAM produces

judgments that are generally subadditive, with the degree of subadditivity being pre-

dictable from characteristics of the cue pattern on which the judgments are based.

TTB also requires supplementary assumptions to model judgments concerning more

than two competing hypotheses (e.g., Berretty, Todd, & Martignon, 1999).

Despite their differences, both TTB and ESAM exemplify growing interest in the

development of simple models that produce accurate judgments. Whether such mod-
els describe how people actually make probability judgments is another question.

The preliminary evidence reported here indicates that ESAM is promising in this re-

gard; to date, relatively little effort has been put into comparing the predictions of

TTB to observed probability judgments, with at best equivocal results from recent

work on this question (Br€ooder, 2000; Rieskamp & Hoffrage, 1999; Slegers, Brake,

& Doherty, 2000), although in this regard it should be noted that TTB has no free

parameters and as such it is somewhat complicated to directly compare its ‘‘fit’’ to

that of models such as ESAM. Clearly, further research will be necessary to more
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fully evaluate the adequacy of such models as descriptive accounts of human judg-

ment.

While ESAM as it is currently implemented appears to hold some promise, it will

require more extensive testing and possible revisions in light of that testing. First, the

model could usefully be extended to cases of missing information, that is, circum-
stances in which only a subset of the relevant cue values are known to the judge. Sec-

ond, it will be necessary to investigate whether or not ESAM�s performance
generalizes to cases in which conditional independence of cues does not hold. It

seems implausible that people will entirely ignore obvious conditional dependencies

among cues, as implied by the prototype representation employed by the current ver-

sion of ESAM. Instead, people may employ configural judgment strategies in which

they focus on the implications of clusters of conditionally dependent cue values (e.g.,

Edgell, 1978, 1980). In such cases, a better understanding of how people segregate
cues into roughly independent clusters may allow application of the model to a wider

variety of judgmental settings.

References

Anderson, N. H. (1981). Foundations of information integration theory. New York: Academic Press.

Berretty, P. M., Todd, P. M., & Martignon, L. (1999). Categorization by elimination: Using few cues

to choose. In G. Gigerenzer & P. M. Todd et al. (Eds.), Simple heuristics that make us smart (pp.

235–254). Oxford: Oxford University Press.

Birnbaum, M. H., & Mellers, B. A. (1983). Bayesian inference: Combining base rates with opinions of

sources who vary in credibility. Journal of Personality and Social Psychology, 45, 792–804.

Brenner, L. A., & Koehler, D. J. (1999). Subjective probability of disjunctive hypotheses: Local-weight

models for decomposition of evidential support. Cognitive Psychology, 38, 16–47.

Br€ooder, A. (2000). Assessing the empirical validity of the ‘‘Take the Best’’ heuristic as a model of human

probabilistic inference. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26,

1332–1346.

Brooks, L. R. (1978). Non-analytic concept formation and memory for instances. In E. Rosch & B. B.

Lloyd (Eds.), Cognition and categorization (pp. 169–211). Hillsdale, NJ: Erlbaum.

Brooks, L. R., Norman, G. R., & Allen, S. W. (1991). Role of specific similarity in a medical diagnostic

task. Journal of Experimental Psychology: General, 120, 278–287.

Brunswik, E. (1956). Perception and the representative design of experiments. Berkeley, CA: University of

California Press.

Castellan, N. J., Jr. (1977). Decision making with multiple probabilistic cues. In N. J. Jr., Castellan, D. B.

Pisoni, & G. R. Potts (Eds.), Cognitive theory (Vol. II, pp. 117–147). New Jersey: Erlbaum.

Dawes, R. (1979). The robust beauty of improper linear models. American Psychologist, 34, 571–582.

Edgell, S. E. (1978). Configural information processing in two-cue probability learning. Organizational

Behavior and Human Performance, 22, 404–416.

Edgell, S. E. (1980). Higher order configural information processing in nonmetric multiple-cue probability

learning. Organizational Behavior and Human Performance, 25, 1–14.

Edwards, W. E. (1968). Conservatism in human information processing. In B. Kleinmutz (Ed.), Formal

representation of human judgment (pp. 17–52). New York: Wiley.

Estes, W. K. (1976). The cognitive side of probability learning. Psychological Review, 83, 37–64.

Estes, W. K. (1986). Array models for category learning. Cognitive Psychology, 18, 500–549.

Estes, W. K., Campbell, J. A., Hatsopoulos, N., & Hurwitz, J. B. (1989). Base-rate effects in category

learning: A comparison of parallel network and memory storage-retrieval models. Journal of

Experimental Psychology: Learning, Memory, and Cognition, 15, 556–571.

D.J. Koehler et al. / Cognitive Psychology 46 (2003) 152–197 195



Fischhoff, B., Slovic, P., & Lichtenstein, S. (1978). Fault trees: Sensitivity of estimated failure probabilities

to problem representation. Journal of Experimental Psychology: Human Perception and Performance, 4,

330–344.

Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast and frugal way: Models of bounded

rationality. Psychological Review, 103, 650–669.

Gigerenzer, G., Hoffrage, U., & Kleinb€oolting, H. (1991). Probabilistic mental models: A Brunswikian

theory of confidence. Psychological Review, 98, 506–528.

Gigerenzer, G., Todd, P. M., & The ABC Research Group. (1999). Simple heuristics that make us smart.

Oxford: Oxford University Press.

Gluck, M. A., & Bower, G. H. (1988). From conditioning to category learning: An adaptive network

model. Journal of Experimental Psychology: General, 117, 227–247.

Hasher, L., & Zacks, R. T. (1984). Automatic processing of fundamental information: The case of

frequency of occurrence. American Psychologist, 39, 1372–1388.

Hutchinson, J. W., & Alba, J. W. (1991). Ignoring irrelevant information: Situational determinants of

consumer learning. Journal of Consumer Research, 18, 325–345.

Kao, S.-F., & Wasserman, E. A. (1993). Assessment of an information integration account of contingency

judgment with examination of subjective cell importance and method of information presentation.

Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 1363–1386.

Klayman, J. (1988). Cue discovery in probabilistic environments: Uncertainty and experimentation.

Journal of Experimental Psychology: Learning, Memory, and Cognition, 14, 317–330.

Koehler, D. J. (2000). Probability judgment in three-category classification learning. Journal of

Experimental Psychology: Learning, Memory, and Cognition, 26, 28–52.

Koehler, D. J., Brenner, L. A., & Tversky, A. (1997). The enhancement effect in probability judgment.

Journal of Behavioral Decision Making, 10, 293–313.

Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of category learning.

Psychological Review, 99, 22–44.

Kruschke, J. K., & Johansen, M. K. (1999). A model of probabilistic category learning. Journal of

Experimental Psychology: Learning, Memory, and Cognition, 25, 1083–1119.

Martignon, L., & Laskey, K. B. (1999). Bayesian benchmarks for fast and frugal heuristics. In G.

Gigerenzer & P. M. Todd et al. (Eds.), Simple heuristics that make us smart (pp. 169–188). Oxford:

Oxford University Press.

Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. Psychological Review,

85, 207–238.

Meyer, R. J. (1987). The learning of multiattribute judgment policies. Journal of Consumer Research, 14,

155–173.

Nosofsky, R. M., & Johansen, M. K. (2000). Exemplar-based accounts of ‘‘multiple-system’’ phenomena

in perceptual categorization. Psychonomic Bulletin & Review, 7, 375–402.

Nosofsky, R. M., Kruschke, J. K., & McKinley, S. C. (1992). Combining exemplar-based category

representations and connectionist learning rules. Journal of Experimental Psychology: Learning,

Memory, and Cognition, 18, 211–233.

Novemsky, N., & Kronzon, S. (1999). How are base-rates used, when they are used: A comparison of

additive and Bayesian models of base-rate use. Journal of Behavioral Decision Making, 12, 55–69.

Peterson, C. R., Hammond, K. R., & Summers, D. A. (1965). Optimal responding in multiple-cue

probability learning. Journal of Experimental Psychology, 70, 270–276.

Rieskamp, & Hoffrage, (1999). When do people use simple heuristics, and how can we tell. In G.

Gigerenzer & P. M. Todd et al. (Eds.), Simple heuristics that make us smart (pp. 141–167). Oxford:

Oxford University Press.

Rottenstreich, Y., & Tversky, A. (1997). Unpacking, repacking, and anchoring: Advances in support

theory. Psychological Review, 104, 406–415.

Schustack, M. W., & Sternberg, R. J. (1981). Evaluation of evidence in causal inference. Journal of

Experimental Psychology: General, 110, 101–120.

Shaklee, H., & Mims, M. (1982). Sources of error in judging event covariations: Effects of memory

demands. Journal of Experimental Psychology: Learning, Memory, and Cognition, 8, 208–224.

196 D.J. Koehler et al. / Cognitive Psychology 46 (2003) 152–197



Slegers, D. W., Brake, G. L., & Doherty, M. E. (2000). Probabilistic mental models with continuous

predictors. Organizational Behavior and Human Decision Processes, 81, 98–114.

Smedslund, J. (1963). The concept of correlation in adults. Scandinavian Journal of Psychology, 4,

165–173.

Trope, Y., & Mackie, D. M. (1987). Sensitivity to alternatives in social hypothesis-testing. Journal of

Experimental Social Psychology, 23, 445–459.

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185,

1124–1131.

Tversky, A., & Kahneman, D. (1983). Extensional vs. intuitive reasoning: The conjunction fallacy in

probability judgment. Psychological Review, 91, 293–315.

Tversky, A., & Koehler, D. J. (1994). Support theory: A nonextensional representation of subjective

probability. Psychological Review, 101, 547–567.

Van Osselaer, S. M. J., & Alba, J. W. (2000). Consumer learning and brand equity. Journal of Consumer

Research, 27, 1–16.

D.J. Koehler et al. / Cognitive Psychology 46 (2003) 152–197 197


	An evidential support accumulation model of subjective probability
	Introduction
	Overview of support theory
	Support assessment in cue-based judgment: Review of previous findings
	Evidential support accumulation model
	Stored frequency counts
	Diagnostic implication of a cue value for a hypothesis
	Summation of diagnostic implications of individual cues
	Calculation of support
	Enhanced residual discounting
	Summary of ESAM and comparison to Bayesian approach

	Experimental data
	Method
	Results
	Learning performance
	Probability judgments


	Model fitting
	Fitting ESAM to mean judgments
	Fitting ESAM to individual judgments
	Comparing ESAM to alternative models
	Underweighting cue absence
	Evidence decomposition
	Baserate-corrected diagnosticity calculation
	Normalized diagnosticity calculation
	Baserate adjustment of support
	Enhanced residual discounting
	Perfect memory


	Generalization of the Bayesian model
	Conclusions and remaining questions
	References


