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SEM3De: image restoration for FIB-SEM
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Abstract
Motivation: FIB-SEM (Focused Ion Beam—Scanning Electron Microscopy) is a technique to generate 3D images of samples up to several
microns in depth. The principle is based on the alternate use of SEM to image the surface of the sample (a few nanometers thickness) and of
FIB to mill the surface of the sample a few nanometers at the time. In this way, huge stacks of images can thus be acquired.

Although this technique has proven useful in imaging biological systems, the presence of some visual artifacts (stripes due to sample milling,
detector saturation, charge effects, focus or sample drift, etc.) still raises some challenges for image interpretation and analyses.

Results: With the aim of meeting these challenges, we developed a freeware (SEM3De) that either corrects artifacts with state-of-the-art
approaches or, when artifacts are impossible to correct, enables the replacement of artifactual slices by an in-painted image created from
adjacent non-artifactual slices. Thus, SEM3De improves the overall usability of FIB-SEM acquisitions.

Availability and implementation: SEM3De can be downloaded from https://sourceforge.net/projects/sem3de/ as a plugin for ImageJ.

1 Introduction

FIB-SEM (Focused Ion Beam—Scanning Electron Microscopy)
is a technique to generate 3D images of samples up to several
microns in depth. It bridges the gap between serial block face
SEM and transmission electron tomography in terms of field of
view and resolution (Xu and Hess 2011, Peddie and Collinson
2014). The principle is based on the alternate use of SEM to
image the surface of sample (a few nanometers thickness) and
of FIB to mill the surface of the sample a few nanometers at the
time. Alternating imaging and milling allow acquiring large
images stacks.

Although this technique has proven useful in imaging biolog-
ical systems (Kizilyaprak et al. 2014, Xu et al. 2021), it still
presents some challenges that may limit its broader use in bio-
logical sciences. Among the most common challenges, it is
worthwhile to mention image anisotropy, presence of some
artifacts (presence of stripes, charge effects, focus or sample
drift, and detector saturation), and time required to acquire
stacks of images. In recent years, the data anisotropy problem
has been successfully addressed by interpolation using deep
learning (Heinrich et al. 2017) or optical flow (González-Ruiz
et al. 2022) algorithms. Likewise, stripes can be removed by
compressed sensing approaches (Schwartz et al. 2019) and
charge effects can be addressed by using “rolling-ball”-based
algorithms as implemented in ImageJ (Sternberg 1983). Focus
correction is done by deconvolution-based approach as de-
scribed by Fernandez et al. (2020). Finally, sample drift can be

rectified by multi-scale cross-correlation (Messaoudi et al.
2013). However, there are times when artifacts are too promi-
nent to be corrected (or simply cannot be addressed as for de-
tector saturation). This, in turn, result in images that are too
degraded to be used in quantitative analyses. In these cases,
and especially if the degraded image is one occurring around
the middle of the stacks (i.e. capturing the middle portion of
the sample’s volume), the entire dataset is most often discarded.
The only way to salvage an image stack with missing or de-
graded frames is to proceed with image restoration.
Approaches addressing the problem of image anisotropy could
theoretically be used to handle the problem of image restora-
tion. However, there is also a number of inpainting methods
designed for this very purpose (Bertalm�ıo et al. 2014).

We developed a freeware (SEM3De) that improves usability
of FIB-SEM acquisitions by correcting the above-mentioned
artifacts with state-of-the-art approaches and, when correc-
tion is not possible, removing artifactual images and replacing
them by new inpainted ones. Here, from the several existing
inpainting methods, we describe the use of those based on
continuity of object contours.

2 Methods

2.1 Inpainting approaches in SEM3De

Inpainting is a large family of algorithms dedicated to the res-
toration of missing image parts. The different kind of
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algorithms may be classified into two main families: textural
and structural inpainting. Textural inpainting includes patch-
based (Demir and Ünal 2018) or exemplar-based (Buyssens
et al. 2015) inpainting. These algorithms try to find a texture
that fits correctly in the missing area by using an “atlas of
textures,” either created from the image itself or from a cata-
log of reference images. This family of approaches is not
adapted for FIB-SEM images because it can generate non-
existing objects by duplicating entire texture patches in
images. The family of structural inpainting approaches
(Bertalm�ıo et al. 2014, Schönlieb 2015) works by extending
contours to get the structures of objects back. In this family,
algorithms are based on partial differential equation resolu-
tion, on total variation minimization or isophote propagation.
The restoration is propagated using information from nearest
pixels/voxels to the missing ones. This reduces the risk of gen-
erating non-existing objects. The drawback of these
approaches is that large areas cannot be restored and, if an
object fits entirely in the missing region, it cannot be recov-
ered. Therefore, structural inpainting is suitable when few
regions are missing or degraded (Masnou 2002), for instance
when only a few images need to be restored in a FIB-SEM
stacks.

Four algorithms are proposed in SEM3De. The first one is
a simple multiscale processing (Adelson et al. 1984) close to
linear interpolation of pixels. Images are scaled down until no
pixel is missing and values are propagated from scaled-down
images. The second algorithm iteratively uses discrete cosine
transform to smooth evenly spaced data (Garcia 2010) and
thus to reconstruct missing data in-between images in a stack.
This is the default inpainting method in Matlab, we recoded it
in java for use in ImageJ. The third one is Harmonic inpaint-
ing (Schönlieb 2015). The algorithm uses partial differential
equations to solve the problem of missing data. It diffuses in-
formation homogeneously from known areas in all directions
using the Laplacian operator. Finally, the fourth algorithm
uses the principle of compressed sensing. It consists of itera-
tively filtering data, with a total variation minimization, while
reinjecting original pixels values where they were defined
(Schönlieb 2015).

2.2 SEM3De implemented artifacts corrections

SEM3De proposes the following approaches to artifacts
correction:

1) Charge effects are visible as gradients or “ghosting”
effects on images. Most of them can be removed using a
classic rolling ball algorithm (Sternberg 1983).

2) Stripe removal from images, the corresponding frequen-
cies in the Fourier space representation of images can be
removed and images reconstructed. Some additional arti-
facts can arise due to the missing information as the sup-
pressed frequencies contain information on both objects
and stripes. The main difficulty is to determine the best
fitting-stripes form (removing enough frequencies but
preserving signal). Schwartz (Schwartz et al. 2019) pro-
posed a solution by retrieving the missing data via com-
pressed sensing using total variation minimization. This
approach by Schwartz was implemented and is available
in the software.

3) The best results with the FIB-SEM technique require that
the focus is maintain on the top of the sample through-
out data acquisition. However, as the sample is milled in

between image acquisi-tions, there can be a focus drift
from one acquisition to the other. Fernandez (Fernandez
et al. 2020) proposed to determine the point spread func-
tion of each image and use it in a deconvolution algo-
rithm to improve image quality and correct for focus
drift. SEM3De implements this approach of Point
Spread Function (PSF) determination and improves the
algorithm by offering the possibility to choose the decon-
volution algorithm from those available in
DeconvolutionLab2 (Sage et al. 2017).

4) Sample drift is corrected using cross-correlation ap-
proach in a multi-scale optimization.

3 Results

SEM3De was tested on gold-labeled tetanus antigen adsorbed
into AlOOH adjuvants. During acquisition of data on this
sample, focus variation and sample drift occurred making the
images stack useless for further analyses. Two slices are
shown in Fig. 1, the first (slice 283 shown in A) corresponds
to an acquisition without artifacts and the second (slice 293
shown in B) to an artifactual one.

The first step to improve the artifactual image was to apply
a charge effect correction, followed by focus correction using
Richardson–Lucy algorithm with 50 iterations. This algo-
rithm was used because it was the one giving the smaller area
for gold beads. The version without total variation regulariza-
tion was preferred for speed computation. The resulting
images are displayed in Fig. 1C and D.

To evaluate the sharpness of images, we used the standard
deviation of filtered images using a Laplacian of Gaussian.
The gain is visible on slice 283 and validated by the measure
of sharpness increasing from 966 to 3271. On the out of focus
image (plane 293), the same filtering also improves the
image’s sharpness from 826 to 1125. However, the resulting
image (Fig. 1D) is not quite satisfactory and does not allow
further analysis due to artifactually generated low frequen-
cies. In this case, such as for out of focus images 225, 237,
294, and 295, also selected on sharpness measurement; these
images were removed and inpainted using DCT (Garcia
2010). This inpainting approach increased values close to
non-artifactual images, i.e. 3540 for slice 283 (Supplementary
Fig. S1).

To estimate the acceptability of the solution provided by
inpainting we have chosen a numerical quality descriptor able
to consider simultaneously all structures occurring in the
images independently of their sizes shapes and potential imag-
ing artifacts. A descriptor fitting these criteria is the Fourier
Ring Correlation (FRC), which measures the signal coherence
between the Fourier transforms of 2 images. The FRC is de-
fined as:

FRC rð Þ ¼
P

ri2r F1 rið Þ � F2ðriÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ri2r F1 rið Þ
�� ��2 �Pri2r F2 rið Þ

�� ��2
q :

Where F1 is the Fourier transform of image 1, F2
� is the

complex conjugate Fourier transform of image 2, and ri is the
individual pixel element at radius r. We used the global FRC
score computed as the average of all FRC(r).

The comparison was done between no artifactual images
and corrected ones with a range of 3 planes (Fig. 1F). The
range of 3 planes was chosen because 3 consecutive slices are
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artifactual on this experimental dataset. Thus, the comparison
for artifactual images is done with images that are not directly
next to any artifactual image. We can observe that before
inpainting the correlation score is lower for out of focus
images than for focused images. After inpainting the average
global FRC score increase to a better value than the one
obtained for non-artifactual images. However, the created

data are plausible since no significant differences on global-
FRC are observed between non-artifactual and corrected
images (Supplementary Fig. S2), whereas both significatively
differs from the artifactual ones. Therefore, corrected data
can now be used for further (quantitative) analysis.

To evaluate accuracy of SEM3DE, two additional public
datasets (Lucchi et al. 2013, Ludin et al. 2016) have been

Figure 1. Example of use of inpainting to restore data using different implemented algorithms. Two slices from a FIB-SEM volume are shown in A

(no-artifactual, slice 283) and B (artifactual, slice 293). The slice in B is strongly out of focus. C and D are the slices corresponding to A and B after the

deconvolution step. The gain in the spot’s definition is visible in C but for D the defocus was too strong to be compensated. E and F (corrected) are the

slices corresponding to C and D after removal and inpainting of slice D. E was not changed compared to C. F shows an image with same definition as

E and in accordance with densities visible in D.
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tested. The test was performed by removing images from the
full datasets and comparing the restored sets to the original
ones (Supplementary S3 and S4).

4 Conclusion

SEM3De offers a toolbox to improve the quality of FIB-SEM
stacks by correcting several common artifacts. It also integrates
a number of inpainting solutions to address situations where
standard artifact correction approaches are not sufficient. In
these cases, artifactual images can be removed from the stacks
and replaced with inpainted ones. Process has been parallelized
improving proceeding time up to 8 (Supplementary S5).

SEM3De can be downloaded from https://sourceforge.net/
projects/sem3de/ as a plugin for ImageJ (screenshots in
Supplementary S6–S9).
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