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LTS 5, École Polytechnique Fédérale de Lausanne, Switzerland
?Institute and Observatory of Geophysics Antananarivo (IOGA), University of Antananarivo, Madagascar
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ABSTRACT

After a major flood catastrophe, a precious information is the
delineation of the affected areas. Remote sensing imagery,
especially synthetic aperture radar, allows to obtain a global
and complete view of the situation . However, the detection
of the flooded areas remains a challenge, especially since the
reaction time available for ground teams is very short. This
makes the application of automatic detection routines very
appealing. Such methods must avoid heavy parametrization,
heavy computational time and long intervention by the oper-
ator. We propose an automatic three steps strategy, starting
by re-balancing the different types of pixels (non-water, per-
manent water and flooded) using digital elevation model in-
formation, then isolating water pixels and finally separating
flooded from permanent water pixels using non-linear clus-
tering in dedicated feature spaces through appropriate com-
posite kernels. Experiments on two sets of ASAR images
show the effectiveness of the method competing with super-
vised standard log-ratio thresholding.

Index Terms— log-ratio, feature space, Synthetic Aper-
ture Radar, change detection, remote sensing

1. INTRODUCTION

When a major catastrophe strikes, one of the most impelling
needs is the allocation of human resources on the field. In
recent years, Earth observation has shown its potential to pro-
vide a global image of affected regions and has been acknowl-
edged to play a major role in the allocation of human re-
sources. In the case of floods, that often happen in conjunc-
tion with heavy rains and cloud cover, the recourse to Syn-
thetic Aperture Radar (SAR) becomes almost compulsory [1]:
SAR imagery is not affected by weather conditions and, since
it does not rely on sunlight, can also be operated at night. For
this reasons, there has been a strong research current dealing
with the development of change (flood) detection tools using
this type of imagery. Among the many techniques deployed
in the literature, techniques based on the log-ratio image have

shown very desirable properties and are enabled by an easy
access to reference non-flooded SAR images. After trans-
formation of the data, the methods rely on automatic tresh-
olding, modelling the distributions either using generalized
Gaussians [2], Nakagami-Gamma, Weibull or log-normal [3]
models. The unsupervised estimation of distribution param-
eters can be done through Expectation-Maximization algo-
rithms [4].

In flood detection problems, the flood class is often
weakly represented and is therefore unseen in an histogram
of the backscattering values. Thresholding methods fitting
a certain distribution on the histogram fail at detecting the
small flood class present in the lower backscattering values
of the flooded image. For this reason, the change detection
approaches require a way of focusing automatically on water
pixels in order to be used for flood detection. In [5], an ap-
proach based on multiple tiles is proposed to detect thresholds
per tile to be more robust to this small sample problem. In [6],
flood detection is performed on a single post-event image by
segmenting the flooded region in a semi-automatic fashion
with an active contour model in conjunction with the rivers
network. The final distinction between permanent water and
flooded regions is done by supervised classification. In [7], a
robust segmentation of very high resolution SAR images uses
morphological profiles at multiple scales to remove speckle
noise. The final classification exploits an electromagnetic
model simulating the backscattering of the landcover types.

Digital Elevation Models (DEM) can be used to overcome
the small sample problem and improve the flood detection ro-
bustness. The probability of floods is higher in low altitude
regions, low-slope regions and concave areas, as well as in
regions close to water bodies (rivers, lakes). This information
can be integrated in a model, for example in a fuzzy classifi-
cation scheme [8].

In this paper, we propose to use a non-parametric un-
supervised approach with landscape topography as flooding
prior, followed by non-linear clustering in an appropriate Re-
producible Kernel Hilbert Spaces (RKHS) to detect flooded
areas.



2. METHODOLOGY

Consider two registered SAR backscattering images Xt1 and
Xt2 acquired at two times steps t1 and t2. To derive the flood-
induced changes between the acquisitions, different combi-
nation of the images can be used. The widely used log-ratio,
LR = log(X

t1+a
Xt2+a ) = log(Xt1 +a)− log(Xt2 +a) = Xt1

log−
Xt2
log, with a = 0.1 to avoid infinite values, has an histogram

characterized by three modes: a major mode (LR ≈ 0) for
the unchanged pixels, a positive mode (LR >> 0) for pixels
showing an increase of backscattering and a negative mode
(LR << 0) for pixels showing a decrease of backscattering.
The latter mode corresponds to flooded pixels , which show
low backscattering values at time t2. These different modes
are extremely unbalanced, typically with a very small number
of pixels corresponding to flooded areas, when compared to
the unchanged (permanent water and non-water) pixels. Thus,
it is very difficult to fit a specific distribution to this last mode
without using prior knowledge. The proposed methodology
is a three steps strategy (see Fig. 1):

• STEP 1: Balance the classes of non-water, permanent
water and flooded by importance sampling (IS) based
on a “flooding” probability derived from DEM features
(a priori information).

• STEP 2: Isolate water pixels at t2 using clustering on
the backscattering values of Xt2

log.

• STEP 3: Separate flooded from permanent water pix-
els using non-linear clustering on the log-ratio or ratio
between the two images.

The 2D plot in Fig. 1 represents the pixels along the log-
ratio and the log-scaled image Xt2

log, respectively. The first
step re-balances the histogram by decreasing the number of
non-water pixels with respect to permanent water and flooded
pixels. The second step clusters the backscattering values
of Xt2

log in a nonlinear way, to let the model focus on per-
manent water and flooded pixels. Finally, the third step de-
tects flooded pixels by non-linear clustering in an appropriate
RKHS derived from the ratio or log-ratio image.

2.1. Importance sampling from “flooding” probability

In flood detection problems, the pixels of interest often rep-
resent a very small percentage of the image. Moreover in an
automatic processing of images over large regions, it cannot
be assumed that flooded regions will cover a large part of the
image. In order to overcome this small sample problem, we
propose to sub-sample the image according to some a priori
knowledge on how a flood is likely to happen in the differ-
ent regions of the image. Floods are more likely to happen
along river networks and in regions having specific geomor-
phological attributes. Flat and concave regions have higher

Fig. 1. 2D plot of the log-ratio and log-scaled flooded im-
age at time t2. A clustered structure can be observed between
flooded, permanent water and non-water pixels. The left his-
togram shows the typical unbalanced situation between abun-
dant non-water and water pixels (plain black) and after im-
portance sampling (IS) at STEP 1 (blue stripes), which re-
balances the histogram using flooding probability. STEP 2
isolates water pixels and STEP 3 detects the flooded pixels.

probability of being flooded [8]. We propose a flooding prob-
ability function based on terrain altitude, slope and concavity,
derived from a DEM and on the proximity to water bodies.

Let us consider the altitude Z, the slope is obtained as the
norm of the smoothed (Z̆) horizontal and vertical gradient:

|∇(Z)| =

√
∇h(Z̆)2 +∇v(Z̆)2 which shows low values in

flat regions. The concavity is obtained from the difference of
two Gaussians convoluted with the Z (DoG), as in [9]. The
second Gaussian bandwidth, the substracted one, is chosen
smaller than the first one to have the highest DoG values cor-
responding with most concave regions. The smoothed nega-
tive X̆t2

log indicates water proximity.

p(flooding|Z, |∇(Z)|, DoG(Z)) =
1

4
[

τ(−Z) + τ(−|∇(Z)|)
+τ(DoG(Z))

+ · τ(−(X̆t2
log))] (1)

with τ(·) a normalization operator clamping each term be-
tween 0 and 1. The flooding probability from eq. (1) is high
in low altitude, flat and concave regions close to water bodies.
A Gaussian distribution is fitted to p(flooding|...) with mean
µf and standard deviation σf . Our IS scheme takes the Nf
most probable pixels having p(flooding|...) > µf + 2σf .
In Fig. 2, examples of the different attributes and the corre-
sponding flooding probability are presented.

2.2. Isolating water areas in post-event image

The distinction of water and non-water pixels in the image
Xt2
log (see Fig. 1 STEP 2) is performed with a clustering ap-
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Fig. 2. (a) SAR backscattering over Tewkesbury region after floods, (b) negative DEM altitude, (c) negative gradient norm, (d)
concavity and (e) resulting flooding probability.

proach. This strategy allows to perform detection in a com-
pletely unsupervised way, since it does not require user in-
tervention to initialize the flooded region, contrarily to active
contour methods [6]. The IS step (STEP 1) described previ-
ously eases the task of separating the two clusters, since the
histogram to be partitioned is less biased towards non-water
pixels. Nonetheless, a bias can still remain towards non-water
pixels and fitting a mixture of 2 Gaussians or partitioning
using linear k-means algorithm would still fail at separating
the two groups correctly. For these reasons, we opted for a
nonlinear clustering methods, kernel k-means, which has al-
ready shown desirable properties in unsupervised change de-
tection [10].

The kernel k-means partitioning algorithm minimizes the
sum-of-square distances among the cluster center and the
samples attributed to the center in a feature space induced by
a mapping function Φ [11]. This mapping function Φ enables
the algorithm to handle non-Gaussian clusters of different
sizes. Given samples xi ∈ X, i = 1, ..., N and K cluster
centers, the within-group scattering to be minimized is

Sw =
1

N

K∑
k=1

N∑
i∈Ck

‖Φ(xi)− µk‖2 (2)

with Ck the set of samples corresponding to cluster k
and µk its center. The center can be expressed as µk =

1
Nk

∑
i∈Ck

Φ(xi). By replacing the center expression in eq.
(2) the within-group scattering can be expressed in terms of
dot products among the mapped samples Φ(xi) and kernel
functions k(x, x) = 〈φ(x), φ(x)〉 can be applied. By doing
so, eq. (2), scaled by N , becomes

N ·Sw = k(xi, xi)−
2

Nk

∑
j∈Zk

k(xi, xj)+
1

N2
k

∑
j,l∈Zk

k(xj , xl)

(3)

2.3. Flood detection with composite kernels

Once the water pixels have been isolated, it is possible to dis-
tinguish permanent water from flooded areas (STEP 3). This
is usually done by thresholding the log-ratio [2, 3]. However,

the optimal separation is not a vertical threshold on the log-
ratio as depicted in Fig. 1 but function of the backscattering
values of Xt2

log (diagonal separation in the figure).
To this purpose, it is common to use the ratio image: X =

Xt1

Xt2+ε , ε being added to avoid singularities, or the log-ratio
image: X = Xt1

log −Xt2
log and then to map these inputs in an

appropriate Reproducing Kernel Hilbert space (RKHS) space
using a kernel function (see Section 2.2). In the experiments,
we will refer to this strategies as ‘Input Space’, since the ra-
tios are computed directly using the original images. To be
more specific to the change detection problem, we also ex-
tended this straightforward formulation to more complex fea-
ture spaces, where the ratio images are computed directly in
the RKHS feature space [12]. In the experiments, we will
refer to these strategies as ‘Feature space’.

The image ratio in the feature space can be defined as
Φ(·)ratio =

{(√γA2ϕ(Xt2))T ,(A1ϕ(Xt1))T }T√
<A2ϕ(Xt2),A2ϕ(Xt2)>

, with At a sym-

metric positive definite scaling matrix and ϕ(·) the implicit
mappings. Following this idea, the kernel is expressed as

KΦratio(xi, xj) =
K(xt1i , x

t1
j )

K(xt2i , x
t2
j ) + ε

+ γδij (4)

The regularization parameter γ = 10−8 is added to ker-
nel’s diagonal to ensure its positive definiteness.

The log-ratio image can be defined similarly to the dif-
ference image in the feature space in [12] using the log of
the images, since this is equivalent to the logarithm of the ra-
tio. The difference of the log images in the feature space is
Φ(·)log−ratio = A2ϕ(Xt2

log) − A1ϕ(Xt1
log). The associated

kernel is expressed as

KΦlog−ratio(xi, xj) =K(xt1log,i, x
t1
log,j) +K(xt2log,i, x

t2
log,j)

−K(xt1log,i, x
t2
log,j)−K(xt2log,i, x

t1
log,j)

(5)

This composition of kernels exhibits the two single time
kernels (for Xt1 and Xt2) and the cross-time kernels encod-
ing similarities between images at time t1 and t2.



2.4. Post-processing

The spatial location of detected flooded pixels should be ex-
ploited to reduce false alarms. Since flooded regions are not
extremely localized but grouped over connected locations, the
pixels detected as flooded alone in a region has a high prob-
ability of being a false alarm. A median filter with a window
of 5x5 pixels is convoluted with the output of our flood detec-
tion algorithm and allows to reduce a certain number of false
alarms.

3. EXPERIMENTS

3.1. Data & preprocessing

To test the proposed methodology, we considered two chal-
lenging SAR datasets. Both are composed of two ENVISAT-
ASAR images and a DEM from ASTER:

- Kinkony: Two SAR images acquired respectively on
October 19th, 2011 during dry season and on Febru-
ary 16th, 2012 just after a cyclone strike in the north of
Madagascar. See top row of Fig. 3.

- Tewkesbury: Two SAR images acquired on May 30th

and on July 23rd 2007, respectively before and after
an important flood event in Gloucestershire, U.K. See
bottom row of Fig. 3.

The images and the DEM are co-registered using georef-
erenced tie points. A 3x3 Enhanced Lee filter is used to re-
duce the speckle noise in the SAR images [13]. The num-
ber of pixels after sub-sampling (importance or random sam-
pling) is set to N = 1000. The test set consist in 8351 and
7116 pixels respectively. The DoG standard deviations are set
experimentally to 8 and 6. The gradient of the altitude Z is
smoothed by a GaussianN (0, 6). The kernels are radial basis
function (RBF) with a bandwidth parameter set to the sum of
the standard deviation of the different variables. For stability
reasons, bandwidths of the dedicated kernels in a composi-
tion are set equal to each other.

Results for both experiments are reported in terms of Co-
hen’s κ statistic in Table 1, along with the standard log-ratio
threshold set to maximize κ accuracy using 1000 labeled pix-
els (500 flooded and 500 non-flooded). Note that this ap-
proach is thus eased by the presence of labeled pixels, while
our proposed method is completely unsupervised.

3.2. Results and discussion

The IS at STEP 1 is affecting drastically the results of both
datasets, with the exception of the case considering the log-
ratio in the feature space in STEP 3: in that case better results
are obtained with random sampling. The ratio in the feature
space gives the best κ accuracy with importance sampling. In
Tewkesbury, IS strongly affects the results and leads to better

(a) (b) (c)

Fig. 3. SAR images of the experiments (a) before floods and
after floods with overlayed flood detection from (b) super-
vised log-ratio thresholding (post-processed) and (c) ratio in
Feature Space for Kinkony (top row) and log-ratio in Input
space for Tewkesbury (bottom row), all post-processed.

results for the ratio and log-ratio in input space only. The vari-
ability and low results for the in ‘Feature space’ experiments
are due to a series of non-water pixels clustered as water in
STEP 2. This results in biased separation of flooded and per-
manent water clusters at STEP 3. These remaining pixels of
non-water can induce a radically different separation for the
more complex feature mappings (ratio and log-ratio in feature
space), sometimes pushing the boundary almost orthogonaly
to the ideal separation depicted in Fig. 1. Our unsupervised
approach compared to the supervised log-ratio thresholding
reaches equivalent or better results for both datasets. More-
over, the flood detection maps are neater with less false alarms
(see the two right columns of Fig. 3).

4. CONCLUSION

We proposed a three-steps strategy for unsupervised flood de-
tection. First, the distribution of water pixels is enhanced by
importance sampling based on a prior on topography and then
water areas are detected with nonlinear clustering. Finally, the
flooded pixels are distinguished from permanent waters using
non-linear clustering on the ratio or log-ratio images in ded-
icated feature spaces through appropriate composite kernels.
The experiments shows the benefit of importance sampling
prior to clustering and similar accuracies than supervised log-
ratio thresholding. Further perspectives are on the robustness
of the two first steps for the complex feature spaces in any
situation, the use of other clustering algorithms [14] and the
extension to very-high resolution SAR images using contex-



Dataset Kinkony Tewkesbury
Ratios in Input space Feature space Input space Feature space

Ratio type ratio log-ratio ratio log-ratio ratio log-ratio ratio log-ratio

RS Raw 0.48 (0.26) 0.32 (0.38) 0.26 (0.40) 0.86 (0.08) 0.48 (0.01) 0.48 (0.02) 0.34 (0.16) 0.41 (0.05)
PP 0.48 (0.25) 0.32 (0.38) 0.25 (0.40) 0.93 (0.06) 0.53 (0.01) 0.53 (0.02) 0.36 (0.19) 0.51 (0.07)

IS Raw 0.96 (0.01) 0.93 (0.02) 0.98 (0.01) 0.39 (0.41) 0.64 (0.00) 0.67 (0.00) 0.45 (0.03) 0.32 (0.03)
PP 0.97 (0.01) 0.95 (0.02) 0.99 (0.01) 0.38 (0.42) 0.68 (0.00) 0.72 (0.00) 0.47 (0.03) 0.32 (0.03)

LR Raw 0.97 (0.01) 0.64 (0.01)
LR PP 0.98 (0.00) 0.71 (0.00)

Table 1. Averaged κ over 10 random runs. RS: Random Sampling, IS: Importance Sampling, LR: log-ratio thresholding
(supervised), PP: post-processed (Section 2.4)

tual kernel composites.
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