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Current methods for inference of phylogenetic trees require running
complex pipelines at substantial computational and labor costs, with
additional constraints in sequencing coverage, assembly and annotation
quality, especially for large datasets. To overcome these challenges, we
present Read2Tree, which directly processes raw sequencing reads into
groups of corresponding genes and bypasses traditional steps in phylogeny
inference, such as genome assembly, annotation and all-versus-all sequence
comparisons, while retaining accuracy. Inabenchmark encompassing
abroad variety of datasets, Read2Tree is10-100 times faster than
assembly-based approaches and in most cases more accurate—the exception
being when sequencing coverage is high and reference species very distant.
Here, toillustrate the broad applicability of the tool, we reconstruct a yeast
tree of life of 435 species spanning 590 million years of evolution. We also
apply Read2Tree to >10,000 Coronaviridae samples, accurately classifying
highly diverse animal samples and near-identical severe acute respiratory
syndrome coronavirus 2 sequences on asingle tree. The speed, accuracy and

versatility of Read2Tree enable comparative genomics at scale.

Phylogenetic trees depict evolutionary relationships among biological
entities. These entities can be species—asin the tree of life'*. They can
also be cancerous cells in tumor progression trees’ or developmental
lineage trees®, viral and bacterial strains ininfectious outbreaks’, cells,
or genes in trees used to propagate molecular function annotations
among model and nonmodel species®’. Owing to this pervasiveness,
methods toinfer phylogenetic trees are among the most used and cited
software tools in all of life sciences.

In the context of species tree inference, the availability of
genome-wide sequencing has made it routine to consider as many
marker genes per taxon as the genomes provide. This ‘phylogenomic’
approach has resolved many key aspects of the eukaryotic tree of
life, such as the relation among deep angiosperm clades', the posi-
tion of sea squirts within chordates", the Ecdysozoa clade®, the

Lophotrochozoa clade”and relations among main myriapod clades™,
among many others.

Nevertheless, despite rapidimprovementsin the quality and cost
of sequencing’'*, the dataanalysis required to infer phylogenetic trees
remains extremely laborious and computationally intensive". Phy-
logenomic studies require multiple costly steps, each of which can be
major researchendeavors (Fig.1): the curation of raw reads, the denovo
assembly oftenincluding multiple rounds of error corrections and scaf-
folding either with one or multiple technologies'®, the annotation and
characterization ofimportant genes, the identification and comparison
of orthologous genes, and the tree inference from orthologous mark-
ers. The current best practices optimize this process with combinations
oftechnologies, suchaslong- and short-read sequencing, and multiple
rounds of parameter optimizations across multiple pipelines.
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Fig.1|Strategy and pipeline explanation. a, Read2Tree aims at side stepping many time-intensive and costly pipeline steps to obtain a phylogenetic tree when using
many species, therefore going fromread to tree. b, Overview of the Read2Tree pipeline.

The current trend is to sequence ever more species and samples.
The Earth BioGenome Project, launched in November 2018, aims at
sequencing ‘all 1.5 million known animal, plant, protozoan and fungal
species on Earth’ within the coming decade”. The constituting consor-
tia are making progress streamlining and optimizing the sequencing
and annotation process, but the orthology inference and tree inference
steps remain highly challenging. In parallel, considerable genome
sequencing activity is taking place in individual laboratories, with
samplessizes of hundreds to thousands of genomes per study becoming
common'®. However, depending on the species of interest, high-quality
reference genomes are often lacking, and individual laboratories often
lack the computational infrastructure or expertise to fully leverage
the data across individual analysis steps. This is exemplified in major
consortia-led studies requiring years and millions of dollars to elu-
cidate the evolution of certain species of interest or, most recently,
the use of various pipelines to assess variation and report assemblies
fromsevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Thus, amajor bottleneck is becoming the harmonized analysis of these
large-scale datasets to avoid certain biases or artifacts.

Inthis Article, we introduce Read2Tree, an approach toinfer spe-
cies trees, which works by directly processing raw sequencing reads
into groups of corresponding genes—bypassing genome assembly,
annotation or all-versus-all sequence comparisons. Read2Tree is able
to provide afull phylogenetic comparison of hundreds of samplesina
fraction of time compared with current established pipelines. Crucially,
the speedup is achieved without compromising the accuracy of the
resultingtrees. Inaddition, Read2Treeis able to also provide accurate
trees and species comparisons using only low-coverage (0.1x) datasets
as well as RNA versus genomic sequencing and operates on long or
shortreads. This makes Read2Tree a highly versatile method to obtain
key insights from asingle sample, scaling up to thousands of samples.
To establish this approach, we assess its performance on a battery of
genomic and transcriptomic datasets spanning different kingdoms,
divergence time and sequencing technology. Subsequently, we apply
Read2Treeto constructalarge yeast tree of life and apply it to compare
SARS-CoV-2 samples—thus highlighting the accuracy (for example,

compared with National Center for Biotechnology Information (NCBI)
classification) and speed of Read2Tree.

Results

State-of-the-art phylogenomic pipelines require many steps, which can
beboth time consumingand error prone (Fig.1a). With Read2Tree, we
directly process raw sequencing reads and reconstruct sequence align-
ments for conventional tree inference methods (Fig. 1b and Supple-
mentary Fig.1). We start by aligning raw reads to nucleotide sequences
derived from the genome-wide reference orthologous groups (OGs; we
used Mafft*° as default) (Fig. 1b, 1). Within each OG, we reconstruct pro-
tein sequences from reads aligned to reference sequences (Fig. 1b, 2).
Importantly, these sequences in reference OGs are not restricted to
single-copy marker genes, such as the mitochondrial cytochrome ¢
oxidase lgene or BUSCO genes”; they alsoinclude multiple paralogous
genes as wellas nonuniversal genes. Thisis achieved by leveraging OGs
computed from 2,500 diverse genomes analyzed in the Orthologous
Matrix (OMA) resource developed in our laboratory?*. Next, we retain
the best reference-guided reconstructed sequence, using the number
of reconstructed nucleotide bases as criterion (Fig. 1b, 3 and Supple-
mentary Fig. 2). Subsequently, the selected consensusis added to the
OG’s multiple sequence alignment (MSA) (Fig. 1b, 4). Finally, puta-
tive OG selection and tree inference can proceed using conventional
methods (we use IQTREE* by default; Fig. 1b, 5). For greater detail on
theindividual steps, see Methods.

This way, Read2Tree is able to report key information across
putative OGs in a fraction of the time over conventional compara-
tive genomic pipelines—by bypassing genome assembly, annotation,
homology and orthology inference. Furthermore, because each sample
is processed independently, Read2Tree can process the input genomes
in parallel, and scales linearly with respect to the number of input
genomes.

Impact of coverage and distance to reference on accuracy
We tested Read2Tree on a wide array of conditions, with two kinds of
sequence (DNA versus RNA), three target species (Arabidopsis thaliana,
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Fig. 2| Benchmark of Read2Tree using three different datasets, six different
coverage levels and three sequencing technologies. a, Phylogenetic trees of
reference datasets. Indark purple (bottom) are the species used for mapping.
The colors represent species removal to assess the dependency on closest
neighborsin the reference datasets. Timepoints were obtained from timetree.
org*. b, Read2Tree sequences are more similar (percentage identity) and more
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Saccharomyces cerevisiae and Mus musculus), three types of sequenc-
ing technology (Illumina, PacBio and Oxford Nanopore Technologies
(ONT)), six levels of sequencing coverage (ranging from 0.2x to 20x)
andsix different sets of reference species (increasingly distant from the
targets spanningover 1billion years of evolution) (Fig. 2a). For sequence
reconstructionaccuracy (Fig. 2b), we measured both the correctness of
thereconstructed sequences (‘precision’) and the completeness of the
reconstructed sequences (‘recall’). For tree reconstruction accuracy
(Fig.2cand Supplementary Fig. 6), we compare the reconstructed tree
with the known species phylogeny and report both the precision and
the recall of the reconstructed trees, in terms of the branches with at
least 90% support.

In general, Read2Tree was able to maintain a high precisionin
terms of sequence reconstruction (Fig. 2b) and tree reconstruction
(Fig.2c) across all datasets, with varying levels of recall depending on

the dataset difficulty. First, we assessed the effect of coverage ranging
from 0.2xt020x of the individual datasets. We observed thatincreasing
the sequencing coverage had littleimpact on precision, and mainly low-
ered recall:in most configurations, Read2Tree could maintain 90-95%
precision at the sequence level even with coverages as low as 0.2x
(Fig. 2b). The best low-coverage results were obtained on transcrip-
tomic short-read data in mice, where precision reached 98.5% at 0.2x
coverage. To assess the versatility of Read2Tree, we benchmarked
it across DNA and RNA datasets. This did not have a large impact in
general, but transcriptomic RNA results (in the mouse dataset) are
marginally lessimpacted by differencesinaverage coverage, perhaps
due to the large coverage variance from uneven gene expression lev-
els in these data (Fig. 2b,c). Next, we assessed whether Read2Tree is
capable of utilizing the range of current sequencing technologies.
For this, we applied it across traditional short reads, Oxford Nanopore
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red), the assembly approach is more accurate and gray indicates no difference
between the methodologies. b, Acomparison of wall time needed from reads to
availability of concatenated MSA showing the dependencies of available closest
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and PacBio longreads. To enable this, Read2Tree has slightly different
mapping strategies built in for long versus short reads (Methods). As
Fig. 2b,c shows, Read2Tree maintained a high accuracy across each
sequencing technology, but we observed the highest accuracy over
traditional short reads. We have not assessed more recent sequenc-
ing technologies such as PacBio HiFi or Illumina infinity that might
change thisresult.

Finally, we assessed the robustness of Read2Tree with respect to
theevolutionary distance between the sample at hand and the closest
relativein the reference set. This is often critical as one might not know
the closest ancestor that is assembled or it is not available”. Thus, we
tested Read2Tree across awide range of evolutionary distances rang-
ing from7 millionyears ago to over1.1billion years ago. While these are
certainly extreme scenarios, overall Read2Tree was able to cope with
them successfully. Figure 2b,c shows that the choice of reference set
mainly impacted recall, with closer reference genomes leading to more
reconstructed positions. Remarkably, Read2Tree was able to maintain
high accuracy even in the datasets with very distant references—for
example, processing mouse RNA sequencing (RNA-seq) data without
any vertebrate genomein the reference set.

We also tested Read2Tree on simulated data, for coverages
between 0.1x and 10x and distance to the closest reference varying
between 2 and 150 point accepted mutation (PAM) units—where 100
PAM corresponds to one substitution per site on average. The recon-
structed trees were perfect in all but the most extreme scenarios
(PAM >120 or coverage <0.5%; Supplementary Fig. 7).

Given the extensive benchmarks across species, coverage,
sequencingtechnology, assay (DNA and RNA) and simulated data, we
observe that Read2Tree is indeed a highly versatile and accurate tool
toreconstruct phylogeny directly from raw reads.

Faster and often more accurate than assembly-based trees

Next, we compared the performances of Read2Tree with conventional
assembly pipelines. For this, we generated de novo assemblies and
protein predictions across the same datasets as from the previous
section, using Canu* for PacBio and ONT data and Megahit® together

with SoapDeNovo?® for the lllumina reads (Methods). The conven-
tional assemblies were processed using OMA standalone, including the
same exported reference genomes, as OMA standalone was previously
shown to identify the most accurate phylogenetic marker genes”. For
the inclusion of orthologous markers in the concatenated alignment
used for tree inference, we required acommonly set minimum thresh-
old of 80% taxon presence. As above, we varied the closest remaining
species in the dataset by removing species along the reference tree
(Fig. 2a). With different coverages and reference sets, we obtained 42
data points per species. For each of these data points, we performed
the orthology inference separately and recorded its computation time.
The proportion of sequences placed into the respective OGs showed
highlevels of variation (Supplementary Fig. 8a). For each assembly and
variation of proteomes, we computed the topological distance between
the resulting tree from assembly or Read2Tree with trees obtained
using high-quality genome assemblies for A. thaliana and S. cerevisiae.

Figure 3 shows the overall results, highlighting the performance
of Read2Tree. Perhaps unsurprisingly, we observed that coverage
levels had a profound impact on the performance of assembly-based
approaches, rendering themincapable of dealing with coverages below
5-10x%. Thus, for these datasets, we report only Read2Tree results.

Where both approaches can be compared, the only cases where
the conventional de novo assembly approach outperformed Read2Tree
were with high coverage and very distant (>500 Mya) to the closest
reference species (Fig. 3a, upper right region of each graph). In all
otherscenarios, Read2Tree outperformed the conventional approach
in accuracy. Specifically, on the yeast dataset at a higher coverage
level, both assembly and Read2Tree performed well overall-we never
observed more than two differentbranches between the obtained and
reference trees. With at least 10x coverage and distant reference spe-
cies, the conventional assembly approach outperformed Read2Tree
(Fig.3aand Supplementary Fig. 4).

By contrast, on the more complex A. thaliana and M. musculus
datasets, Read2Tree outperformed the assembly approach—with
fewer differences to the reference (up to two different branches
for Read2Tree, versus up to four for the conventional approach).
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Onthe ONT data—characterized by longer reads but higher error rate—
Read2Tree outperformed the conventional approach on both datasets.

Finally, interms of compute time, Read2Tree was generally much
faster than the conventional approach, up to 100 times faster on the
larger genomes (Fig. 3b and Supplementary Fig. 8b).

Altogether, these resultsindicate that Read2Treeis fasterinall con-
ditions, and produces reliable trees in low-coverage datasets and other
datasets where the conventional approach fails entirely (long-read tran-
scriptomics). At higher coverage levels, the treesinferred by Read2Tree
rivalin quality those obtained from assembled reference species with a
full pipeline, particularly when applied to more complex genomes, and
unlessthe closest reference speciesis very distant (>500 million years).

We also compared Read2Tree with Mash, a fast k-mer-based
approach®® commonly used on bacterial genomes. While the
alignment-free approach of Mash was much faster than even Read2Tree,
the resulting trees were much less accurate than either Read2Tree or
the assembly-based approach (Supplementary Fig. 5). Thisillustrates
why alignment-free approaches such as Mash, while very useful for fast
approximations, are typically not suitable to reconstruct high-quality
phylogenetic trees.

Accurate reconstruction of a 435 species yeast tree of life

To assess a potential large-scale application for Read2Tree, we applied
it toreconstruct a large yeast phylogeny from raw reads. Thanks to
Read2Tree’s ability to process low-coverage datasets, we could extend
our analysis to all lllumina single- and paired-end, ONT, PacBio and
454 sequencing read datasets available for budding yeast in the NCBI
Sequence Read Archive (SRA) database (November 2018, 404 species)
and31reference species obtained from the OMA database (release 2018,
3,063 OGs). Using an automated approach for retrieval and mapping,
we were able to obtain direct sequences for 404 species (Supplemen-
tary File1). Read2Tree could process these datasets inaround amonth
of computation (adding each species sequentially and performing the
mapping on 30 central processing units (CPUs)—one CPU per refer-
ence—in parallel), due to its ‘embarrassingly parallel’ architecture,
with every sample being processed independently up to phylogenetic
inference (10x lllumina: ~20 min using four threads).

A large proportion of these datasets were recently used to con-
struct aphylogeny across 363 budding yeast species®. Thisincluded a
dataset of 196 new assemblies and their annotations™. This large effort
provided a delineation of the yeast tree of life into 13 main clades and
highlighted the influence of horizontal gene transfer in the evolution
of yeast species™. Due to the complexity of state-of-the-art pipelines,
it also consumed millions of CPU hours and years of work. Further-
more, the conventional assembly-based approach could not include
low-coverage samples into their analysis. We were able to extend this
work using Read2Tree using a fraction of the resources.

Using Read2Tree, we were able to compute and produce this large
phylogeny across 435 samples (including 31 species as reference). Some
ofthe samples failed due to their too low coverage levels of around 3.1x
assuming a 12-Mbp-long average genome size. Nevertheless, using
Read2Tree we were able toinclude multiple samples even at coverage
levels below 5%, whichwere reported with over 2,500 sequences placed
inOGs (Supplementary Fig.14). Read2Tree was able to reconstruct the
phylogeny and also reported the phylogeny-relevant genes assembled
persample, which overallshowed similar GC levels asthe reference data
(Supplementary Fig. 15). This was also exemplified by the fact that we
did not observe a correlation between the number of sequences placed
into OGs per species and their individual coverage (Supplementary
Fig.14, correlation 0.2).

Considering the subset of species in common, our results were
highly congruent with those of Shen et al.” (Fig. 4 and Supplemen-
tary Figs. 12 and 13): both trees exhibited similar distances to the
NCBI taxonomy tree—297 splits in ours versus 291 splits in Shen et al.
In direct comparison, Shen et al. and Read2Tree were more similar

with one another, with only 128 different splits (20% difference of the
branches), than either was to the NCBI taxonomy. After collapsing
branches with a support below 90, the difference in the number of
splits between the conservative NCBI tree and ours was 29 splits, and
25splitsbetween ours and Shen et al. Twenty-four of these splits werein
commonbetweenRead2Tree and Shenetal. Toget moreinsightintothe
nature of these differences, we assessed the agreement with the NCBI
taxonomy for two different levels of resolution: family and genus. At
the coarser family level, Read2Tree was more consistent with the NCBI
taxonomy for six families, while Shen et al. was more consistentinone
family (Supplementary Fig.10). At the finer genus level, Read2Tree was
more consistent with the NCBI taxonomy for four genera, versus ten
for Shen et al. (Supplementary Fig. 11).

Nevertheless, there are still certain differences between Read2Tree
and the NCBI taxonomy remaining. While resolving most such
instances would constitute entire follow-up studies in their ownright,
we were able to explain one apparent disagreement: Naumovozyma
dairenensisis placed in the CUG-Ser1 classification, while according to
the NCBItaxonomy, it should be anascomycetous yeastin the Saccha-
romyces sensu lato group within the family Saccharomycetaceae. How-
ever, thisis a case of erroneous metadata reported in the literature®>>,

Giventhis phylogeny, we can now easily update and extend it using
Read2Tree in a matter of minutes with additional sequences being
generated. This enables a deep dive into the comparative genomics
of yeast and to further explore their differences between the strains
and theirimpact on life, food production and so on. This is also easily
reproducible for other organisms as Read2Tree is capable of spanning
large evolutionary distances with respect to the reference tree.

Read2Tree for zoonotic surveillance and human epidemiology
To further illustrate the versatility of Read2Tree, we used it to recon-
structaphylogeny encompassing various coronaviruses fromthe OMA
coronavirus database, as well as 215 raw coronavirus sequencing sam-
ples deposited to the SRA. Besides the putative SARS-CoV-2 sequence,
we also included two samples from bat (SRR11085797 (ref. 34) and
SRR11085736 (ref. 35)) and one from mink?® (SRX9605666).

Thereconstructed phylogeny wasin complete agreement with the
lineage classification obtained from the UniProt reference proteomes.
In particular, the tree recovered not only the main coronavirus genera
(Alpha-, Beta-, Gamma- and Deltacoronavirus) but also all subgenera
with complete consistency (Fig. 5).

The first bat sample corresponds to the reads of RaTG13, which
is the closest relative of SARS-CoV-2 identified yet**. Indeed, in our
tree it falls right outside the SARS-CoV-2 clade. The other bat sample
could also be confirmed as an Alphacoronavirus, subgenus Rhina-
covirus®. Likewise, we could confirm the classification of the mink
sample, identified as an Alphacoronavirus, subgenus Minacovirus by
the authors®.

The position of the SARS-CoV-2 sequences within the coronavi-
rus tree of life is also consistent with our prior knowledge on them.
The reference genome, the Wuhan-Hu-1 sequence reported in early
January 2020 (ref. 37), is at the base of the subtree. The only three
sequences that branch out before it are SRR11092056-8—which were
obtained from patients with severe pneumonia at the beginning of the
pandemic’’. Finally, we note that the variants of concern included in
the analyses appear clearly as distinct clades on the tree.

To empirically test the scalability of our method, we also used
Read2Tree to process 10,283 SARS-CoV-2samples. The reconstructed
tree clustered the sequences according to Centers for Disease Con-
trol variants of concerns classification, providing further evidence
that the tool can be used to quickly and reliably classify SARS-CoV-2
variants (Supplementary Fig.17). The same observation held for addi-
tional controls—running Read2Tree using coding-gene markers only
(Supplementary Fig. 16), and using FastTree*® as the tree inference
method (Supplementary Fig.18).
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Overall, this application of Read2Tree to diverse coronaviruses
sequences illustrates the ability of the tool to deal both with the con-
siderable phylogenetic breath of this family of virus® and the depth
required to classify individual SARS-CoV-2 variants of concerns. This
makes Read2Tree suitable for both zoonotic surveillance and human
epidemiology*’.

Discussion

We presented Read2Tree, an approach to scale and ease the laborious
process of comparative genomics: assembly, annotation and phyloge-
netic comparison. These steps are computationally costly and error
prone and require specialized knowledge. Using Read2Tree, we can

directly reconstruct phylogenetic-relevant genes from raw reads, and
thus enable a placement and comparison of the species at hand with
minimum computing and coverage requirements. The efficiency of
the approach makes it possible to process alarge number of samples
inparallel, using a consistent methodology and without compromising
accuracy compared with state-of-the-art pipelines.

Current inherent problems of large-scale comparative genom-
ics, or in general comparative genomics projects, recently shifted
from obtaining accurate assemblies to annotation and curation of
these assemblies. This was in part possible due to sequencing tech-
nology advancements over long reads'®'®, but also due to innovations
in assembly algorithms**2, These steps still require high DNA quality
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and are in general more expensive, but enable large projects such
as the Vertebrate Genome Project*, the human pangenome** and
telomere-to-telomere* projects. Nevertheless, in all of these cases, the
annotation of the genomes and the improvements in terms of continu-
ity and accuracy remain major bottlenecks. Additionally, we showed
that Read2Tree enables accurate analysis across all three sequencing
technologies (Illumina, ONT and PacBio), in a fraction of the time.
Furthermore, large-scale consortia could also benefit from running
Read2Tree, despite having high-coverage datasets, to independently
quality control (QC) their assembly and tree building approaches.

One major advantageisthat, despite side stepping de novo assem-
bly, Read2Tree can operate in the absence of close reference genomes;
indeed, we demonstrated accurate tree reconstruction involving
sequencing reads from species separated by hundreds of millions
of years of divergence. Though we also reached some limits to this
robustness, when subjecting Read2Tree to both very high divergence
and low sequencing coverage, it should be noted that evolutionary
distances will tend to diminish as ever more species get sequenced
acrossthetree of life.

Furthermore, while most authors of genome resources deposit
annotation sets alongside the assembled sequences, not all of them
do. The ability to process genomes directly from raw reads not only
circumvents this limitation, but it can also reduce the biases arising
from overreliance on specific reference genomes. There have been

some initial efforts to ‘dehumanize’ nonhuman great ape genomes*®
but many other clades still suffer from analogous biases, which canbe
greatly reduced by processing raw reads.

We demonstrated the speed and accuracy of Read2Tree over a
large-scale yeast dataset. Here Read2Tree was able to reconstruct a
high-quality tree from raw read samples directly retrieved from the
SRA. This was achieved despite variation in coverage levels and other
possible technical biases.

Inasecondillustrative application, we reconstructed a tree from
raw coronavirus sequencing data, including 10,000 samples from
the ongoing SARS-CoV-2 pandemic. Here Read2Tree was again able
to classify and place all samples correctly, beit across the full breadth
of the Coronaviridae family, or across the depth of minute variations
among SARS-CoV-2 samples, where the optimal choice of phylogenetic
marker genes typically depends on the level of sequence divergence®.

We also compared Read2Tree with an ultrafast, alignment-free
approach (Mash) where Read2Tree achieved a much higher accuracy
(Supplementary Fig.5). Inits current form, Read2Tree serves a distinct
function from metagenomic classifiers such as Kraken2 (ref. 48) or
Centrifuge®. Indeed, while these tools seek to exploit known charac-
teristic sequences for read-level taxonomic classification, Read2Tree
aims atefficiently extracting the genome-wide (or transcriptome-wide)
phylogenetic signal by inferring large multi-locus input datamatrices
for phylogenetic tree inference tools, a step that has been shown to
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be critical for resolving difficult phylogenies”**°-**, Nevertheless,
Read2Tree could be further developed to process metagenomic sam-
ples—by combining it with a genome binning preprocessing step. In
recent years, a number of different approaches for genome binning
havebeen proposed, beit through ‘differential coverage’ approaches,
which exploit correlated abundance across samples to identify reads
coming from the same species®* >, using Hi-C protocols, which make
it possible to identify parts of DNA in close physical proximity>**, or
single-cell technologies™.

Overall, Read2Tree is an approach for reconstructing phyloge-
neticimportant genes and characterizing the sample athand or entire
sample collections, enabling the study of alarge number of genes and
their evolution with no preprocessing, few computational resources
and minimal bioinformatic expertise. This will enable faster and more
comprehensive phylogenetic reconstruction efforts—from tiny virus
genomes to large eukaryotic ones, but also cell lineage, cancer trees
and other kinds of phylogenies across biology and medicine.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41587-023-01753-4.
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Methods

Description of the Read2Tree method

Read2Tree incorporates various publicly available tools for some of
its steps (MAFFT?°, NextGenMap®® and Samtools®) and uses these in
astructured manner to go from reads and reference OGs to a concat-
enated alignment that is fed directly into a tree inference tool, which
by default is IQTREE?. For this purpose, it needs two sets of input
data: (1) aset of reference OGs that can be obtained directly from the
OMA database and (2) the reads to be mapped coming from a single
species. The Read2Tree pipeline works in the following way. First, it
retrieves DNA sequences using the REST-API from the OMA browser
from the selected reference OGs, then sorts these into one file per
species. In parallel, it computes alignments using the AA sequence
with MAFFT?, and then uses the codon information to generate DNA
alignments. Once computed, all reads are mapped against the DNA
reference species and a consensus sequence is constructed (local
assembly). Since our local assemblies are reference guided, they can
never be longer or shorter than the longest or shortest sequence
part of an OG. Local assemblies are then placed into the alignments
using the coordinates of the best selected reference. Therefore, no
new alignment is necessary and we can assure that the right AA/DNA
is placed in the right position in the alignment. The resulting align-
ments for each OG are then concatenated and a tree is computed.
More details about the inner workings of Read2Tree are provided in
Supplementary Fig. 1.

Read2Tree can be parallelized using multiple instances across
the mapping step. It is recommended to compute the reference set
first. The mapping step can then be split such that each mapping can
be performed as single job submission on high-performance clusters.

OGsselection

0Gs were selected from OMA® using the marker gene export func-
tionality (https://omabrowser.org/oma/export_markers/).For all spe-
cies, the maximum number of covered species was set to 0.8 and the
maximum number of markers to -1 (unlimited). Species selected are
displayedinFig.1a.

Reads

Whole genome sequencingreads for A. thaliana and S. cerevisiae were
obtained from the SRA database for technologies PacBio, Illumina
and Oxford Nanopore. Messenger RNA-seq reads for M. musculus
were also obtained for all three technologies from the SRA database.
Subsampling of reads was performed in Python (ref. 63). For PacBio
and ONT reads, subsampling was optimized such that the cumulative
number of bases fits to the expected coverage. For the coverage test,
reads were subsampled assuming a38 Mbp accumulated gene length
(transcriptome) for mouse, and 120 Mbp thale cress and 12 Mbp yeast
genome lengths. Reads were sampled to obtain 20x, 10%, 5x, 1x, 0.5%
and 0.2x coverage levels. Reads for the big yeast tree were obtained
from the SRA database (Supplementary File 1). Reads for coronavirus
were obtained from the SRA database (Supplementary File 1). Al SRA
numbers are available in Supplementary File 1.

Reference tree construction

Reference trees for the three evaluated species were computed using
the species as defined in Fig. 2a. Species were selected from OMA® as
described in the OG selection. Individual OGs (gene markers) were
aligned using MAFFT? version 7.310 (-maxiter 1000-local), and trees
were inferred with IQTREE* version 1.6.9 (-m LG -nt 4 -mem 4 G -seed
12345 -bb 1000). For reference trees that were used for testing the
dependency on the reference dataset, specific species were deleted
from existing alignments and trees were computed with IQTREE as
stated before. All reference trees are available in Supplementary File
2. To highlight the years of evolution, we collected the time using
timetree® (April 2022).

Read2Treeruns

For the single species runs (Figs. 2 and 3), Read2Tree was run with
default parameters. For the large yeast tree (Fig. 4), Read2Tree was
runinmultiple steps. First, the reference dataset was obtained (using
the -reference option). Then, mapping was parallelized such that for
each species the mapping against a single reference was performed
individually (using -single_mapping option). This means that, for
eachspecies, 31 parallelized mappings were performed. Additionally,
species with reads with more than 20x coverage were sampled to 20x
coverage assuming agenome length of 12 Mbp. Subsampling of reads
is integrated into the Read2Tree workflow. Finally, all mapped spe-
cies were merged together and concatenated to provide the multiple
sequence output (using -merge_all_mappings).

Accuracy assessment

We assessed the accuracy of sequence reconstruction by taking each
Read2Tree reconstructed sequence (for each species, coverage, tech-
nology and removal level) placed in an OG and performed a blastp
(ncbi-blast, version 2.8.1) search against its original OG that contained
the original sequence coming from a high-quality assembly for the
species of interest. The accuracy was measured as the blast percent-
age identity and recall as the total number of obtained amino acids in
the concatenated MSA of all 0Gs. Additionally, we evaluated whether
thetop hitof the Read2Tree reconstructed sequence was most similar
to its assembled same-species counterpart, or the sequence used as
reference for reconstruction or any other random sequence part of
that particular OG (Supplementary Fig. 3).

Assemblies

For the three species, whole-genome data were assembled with indi-
vidual sequencing technology specific assembly programs, follow-
ing best practice or default parameters. For Illumina, we first used
megahit” (version 1.2.9) with default parameters for assembling the
contigs. Subsequently, SOAPdenovo? (version 2.04-r241) was used for
scaffolding: first, SOAPdenovo-fusion-D -K 41-c megahit.contigs.fa-g
scaffold_prefix -p 20 followed by SOAPdenovo-63mer map and scaff
withrecommended parameters over the config file. For ONT reads, we
assembled the reads using Canu? (version 2.0) with aspecified genome
size (genomeSize) gnuplotTested = true -nanopore-raw and useGrid =
false parameterstorunitlocally ononly onenode on the cluster. Lastly,
for PacBio continuous long reads data, we also used Canu (version 2.0)
with similar parameters, but specifying the -pacbio-raw parameter. All
run times were measured using linux time, and the wall and CPU time
were recorded. The RNA-seq data were assembled differently to the
whole genome. For Illlumina RNA-seq, we used Trinity®* (version 2.8.5)
with the following parameters: -seqType fq-max_memory 50 G-left
readsl.fq.gz-right reads2.fq.gz-CPU 6-trimmomatic-full_cleanup-
output prefix. These execute Trimmomatic automatically and follow
the recommendations from Trinity.

Orthology prediction of assembled genomes

For each assembly (species, technology and coverage level), we ran
OMA standalone (version 2.3.3) on the UNIL HPC clusters using a Slurm
scheduler. For this, we collected all the species as depicted in Fig. 2
using the OMA All versus All export function. Then we removed the
relevant species according toFig. 2,adding each time the assembly for
mouse, yeast or thale cressin the set and running the orthology predic-
tionwithstandard parameters (OMA version2.2.1). Thus, forinstance,
for the lllumina M. musculus10x assembly, we ran OMA seven times for
allreference datasets withincreasing distance toits closest relative. In
total, weran126 different OMA runs with seven variations of reference
proteomes and three variations of technologies, with three coverage
levels for A. thalianaand. cervisiea. Additionally, we ran OMA 21 times
for M. musculus 5x,10x and 20x Illumina assemblies. The all-versus-all
part was parallelized on 1,000 nodes, and the final part wasrunona
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single node with 40 G memory. To obtain OGs for tree inference, we
applied the 0.8 taxonomic occupancy threshold, as previously. OGs
were filtered according to the procedure in Shen et al. (see below).
0Gs were individually aligned using MAFFT?° version 7.310 (-maxiter
1000-local) and concatenated, and trees were inferred with IQTREE**
version1.6.9 (-mLG-nt4-mem 4G -seed 12345-bb 1000).

Tree-versus-tree comparison

Each Read2Tree tree was compared with a fitting reference using sev-
eral tree distance measures. For topological similarity, we used two
approaches, one that uses the Robinson-Foulds distance and counts
the number of different splits between two trees and one that collapses
eachnodewithabootstrap supportbelowacertain threshold and then
counts the number of overlapping splits. Then, we define as recall the
number of overlapping splits divided by the number of splits in the
reference and precision as the number of overlapping splits divided
by the number of splitsin the Read2Tree tree.

Large yeast tree

For the large yeast tree, we extracted all available yeast datasets from
the SRA in November 2018 (406 species, Supplementary File 1) and
applied Read2Tree (standard parameters) to 31 yeast species extracted
fromthe OMA database (November 2018) using the marker export func-
tion with minimum species coverage of 0.8 (3,082 OGs). The selected
species are available in Supplementary File 3. Reads from the SRA
database were mapped according to their sequencing methodology
using Read2Tree. To compare our analysis with Shen et al., we aimed
to have as many species in common as possible. For this purpose, we
complemented our tree with sequencing reads that we simulated from
assembled genomes for 15 species that were present in the tree of Shen
etal.but were missing from our dataset (Supplementary File 1). Simu-
lations were conducted with InSilicoSeq (version 1.3.0 https://github.
com/HadrienG/InSilicoSeq, -model hiseq -n 600000). To map the
speciesfromthetree of Shenetal.’’ to our tree, we obtained the taxon
identification of species/strains using NCBl interface of ete3 (ref. 65).
For species where automated mapping was not possible, we obtained
the taxon identification using the NCBI taxonomy interface (https://
www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi).

Filtering OGs yeast asin Shen et al.

Given the reconstructed sequences placed in their respective OGs and
added to their alignment, we decided to compute a tree following the
protocol of ref. 31. In brief, from the 3,082 alignments, we selected those
thatcontained more than171species, resultingin1,829 OGs. Then, we used
phyutils 2.2.6 (seqgs -aa-clean 0.01) to clean up the alignments. Since our
approach does not place multiple sequences from the same species into
one OG, we skipped the removal of putative paralogs. Within the align-
mentswe changed all ‘X’ withthe gap character . Then, we applied trimAl
version1.4.revl5 (-gappyout). Next, we removed protein sequences with
lengths shorter than 50% the length of the trimmed MSA length of each OG
they belonged to. We also removed OGs in which the total trimmed MSA
length was <167 amino acid sites. These resulted in 926 alignments. With
these alignments, we used IQTREE (version 1.6.9) with automatic model
selection to compute trees. Then, we identified species in the gene trees
that had a branch length longer than 20 times the median of all branch
lengths. We removed these speciesfromthe respective alignments, again
controlling that more than 171 species are included. We then computed
the tree using IQTREE (-seed 12345, -m LG + G4, -bb1000, -nt 20).

Large yeast tree comparison

Usingalltaxonidentifications, weretrieved the current NCBI reference
taxonomy and the classification of each species. We then compared
the three trees (NCBI, Read2Tree and Shen et al.”) using the Robinson-
Foulds distance on the overlapping leaf set. Additionally, we overlaid
the Shenetal. classification onour tree. Finally, we compared the trees

using the ancestral node that contains the highest number of mono-
phyletic species given a specific grouping (order, family and phylum)
extracted from the NCBItaxonomy information. Allcomparisons were
conducted using custom Python Jupyter notebooks. Additionally,
we collected data on GC content and the input coverage-to-mapping
ratio. Trees were visualized with ete3 (ref. 65). The tanglegram plot was
produced using the dendextend R library®®. A side-by-side topological
comparison was obtained using phylo.io®.

Coronaviridae tree reconstruction
Marker genes were exported from https://corona.omabrowser.org/
withatleast four species. DNA sequences for these genes were obtained
fromthe sameresource. Four extragroups withintergenic regions from
the SARS-CoV-2 reference genome were added using a custom script.
We extracted consecutive chunks of atleast 30 bp from the reference
genome MN908947 assembly that were not covered either by any
CDSregion or proteins not belonging to any OMA group inthe https://
corona.omabrowser.org resource (thatis, ORF8 and ORF10). Thisled to
fourregions(1..265;26473..26522;27760..27893;29675..29903) that we
treated asadditional groups. SARS-CoV-2 samples were obtained from
Nextstrain open (https://data.nextstrain.org/files/ncov/open/global/
metadata.tsv.xz)’. Different samples with SRA accessions that spanall
different clades were obtained with a custom Python script (included
in the linked repository below). SRA read accessions together with
the clade annotations from Nextstrain are available in Supplementary
File 1. Reads were downloaded from the SRA database and trimmed.
Read2Tree was applied to this dataset, and all obtained reads were
mapped tothe marker genes. Read2Tree was run with standard param-
eters. The resulting supermatrix alignment was filtered by removing
columns that had more than 70% gaps. This removed 30,969 columns
resulting in a supermatrix of size 295 x 42,669. Finally, the tree was
inferred using IQTree2 (ref. 24) (version 2.2.0-beta) with parameters
-m GTR-ninit2-me 0.05. As additional controls, we computed the trees
with FastTree* version 2.1.11instead of IQTREE2 and without the addi-
tional four extragroups. All trees are available in Supplementary File 1.
For the scaled-up experiment with 10,283 samples, we used the
same protocol, except for the source of the read annotations. Here we
used the clade annotations from https://harvestvariants.info/ (acces-
sions and annotations are available in Supplementary File1).

Simulated phylogeny analysis

The simulated phylogeny includes a fixed topology for species tree
with 15 species using the ALF package®® (version 0.99). We varied the
branch length leading to one of the species (species of interest) to
between 2 PAM and 150 PAM. For each run, we infer afterwards the
OMA groups (excluding the species of interest). Then, using art_
illumina®, we generated DNA sequencing reads (paired end) with
length of 100 and 150 bp and coverage of 0.1 to 10. Next, for each
case, we ran Read2Tree to infer the phylogeny. Finally, we calculated
the Robinson-Foulds metric between inferred species tree and the
true one on the basis of the output of ALF.

Comparison with Mash

Wetookestablished assemblies as areference that we downloaded from
NCBI. Subsequently, we used Mash (version 2.3) sketch®° with asize of
10 m (k =21 as default), followed by Mash distance to obtain distances
between the genomes, and analyzed the reads against that reference
set. Finally, we applied RapidN)”° (version 2.3.2) on the distance matrix
obtained from Mash to infer the species tree. We did that for different
distances across the references that were provided, always comparing
the reads from, for example, A. thaliana with the assemblies.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability

References used and all SRA numbers of reads used are available in
Supplementary File 1. Supplement, scripts and reference data are
available at https://github.com/dvdylus/read2tree_paper (ref. 59).

Code availability
Thesource code for Read2Tree is available under an MIT open-source
license at https://github.com/DessimozLab/read2tree (ref. 71).
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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Data collection  Data used for this study was obtained from the NCBI Short Read Archive database and from the OMA orthology browser.
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Data analysis Data analysis was performed using python jupyter notebooks and R markdowns and are available in a github repository (https://github.com/
dvdylus/read2tree_paper). Code for main method presented in this paper is available here: https://github.com/DessimozLab/read2tree.

MAFFT v7.310 (--maxiter 1000 --local)

IQTREE v1.6.9 ( -m LG -nt 4 -mem 4G -seed 12345 -bb 1000)

blastp (ncbi-blast; v2.8.1)

megahit (v1.2.9) with default parameters

SOAPdenovo (version 2.04-r241) for scaffolding: First, SOAPdenovo-fusion -D -K 41 -c megahit.contigs.fa -g scaffold_prefix -p 20 followed by
SOAPdenovo-mer map and scaff with recommended parameters over the config file. For ONT reads we assembled the reads using Canu (v2.0)
with a specified genome size (genomeSize)

PacBio CLR data we also used Canu (v2.0) with similar parameters, but specifying the -pacbio-raw parameter

For lllumina RNA seq, we used Trinity (v2.8.5) with the following parameters: --seqType fq --max_memory 50G --left reads1.fq.gz --right
reads2.fq.gz --CPU 6 --trimmomatic --full_cleanup --output prefix

OMA standalone (v2.3.3) with default parameters

iss (v1.3.0 https://github.com/HadrienG/InSilicoSeq, --model hiseq -n 600000)

phyutils 2.2.6 (segs -aa -clean 0.01)

trimAl v1.4.rev15 (-gappyout)

For the COVID tree: IQTree2 (version 2.2.0-beta) with parameters -m GTR -ninit 2 -me 0.05, as well as FastTree version 2.1.11 as control
MASH (version 2.3) sketch with a size of 10m (k=21 as default)

RapidNJ (version 2.3.2)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Reference species and their sequences are displayed in Figure 2 and are present in the supplement. The exact references used for all the results obtained are also
available in a GitHub repository (https://github.com/dvdylus/read2tree_paper). All SRA identifiers are present in Supplementary File 1.

All accession codes are available in the supplement of the paper. Supplement, reference datasets for initial benchmark are deposited here: https://github.com/
dvdylus/read2tree_paper. Reference datasets can also be obtained directly from the OMA browser as described in the methods.
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Sample size The budding yeast study size was based on data available in the Short Read Archive at the time we compiled the dataset. For the SARS-CoV-2
sequences, we identified the subset of samples from the open Nextstrain built that had available reads in the Short Read Archive or the
European Read Archive.

Data exclusions  For the budding yeast, species with coverage below 1X were excluded (this criterion was pre-established). No dataset was excluded from the
SARS-CoV-2 dataset.

Replication The key results of the work (namely the speed and accuracy of Read2Tree was replicated on several disjoint datasets, including plants, fungi,
vertebrate, coronaviruses) as well as simulation.

Randomization  As phylogenetic inference seeks to reconstruct events that happen deep in the past, no randomisation is typically possible. However, we used
a variety of data, including simulated data for which all sources of variation can be controlled. Furthermore, the risk of confounders was

minimised by adhering to commonly accepted standards for phylogenetic studies.

Blinding As this was not a randomised controlled study, blinding is not relevant.
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