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Abstract

When seismic waves travel through a fluid-saturated porous medium1

containing a fracture, fluid pressure gradients are induced between the2

compliant fracture and the stiffer embedding background. The result-3

ing equilibration through fluid pressure diffusion (FPD) produces a4

frequency dependence of the stiffening effect of the fluid saturating5

the fracture. As the reflectivity of a fracture is mainly controlled by6

the stiffness contrast with respect to the background, these frequency-7

dependent effects are expected to affect the fracture reflectivity. We8

explore the P- and S-wave reflectivity of a fracture modelled as a9

thin porous layer separating two half-spaces. Assuming planar wave10

propagation and P-wave incidence, we analyze the FPD effects on the11

reflection coefficients through comparisons with a low-frequency ap-12

proximation of the underlying poroelastic model and an elastic model13

based on Gassmann’s equations. The results indicate that, while the14

impact of global flow on fracture reflectivity is rather small, FPD ef-15

fects can be significant, especially for P-waves and low incidence angles.16

These effects get particularly strong for very thin and compliant, liquid-17

saturated fractures and embedded in a high-permeability background.18

In particular, this study suggests that in common environments and19

typical seismic experiments FPD effects can significantly increase the20

seismic visibility of fractures.21

PACS numbers: 43.20.Gp, 43.20.Bi
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I. INTRODUCTION

The presence of fractures is very common throughout the Earth’s upper crust. As22

fractures are highly permeable and compliant, especially with respect to the embedding23

material, they tend to dominate the mechanical and hydraulic properties of the correspond-24

ing medium. For this reason, there is great interest in improving non-invasive techniques25

for detecting and characterizing fractures for a wide range of applications throughout the26

Earth, environmental, and engineering sciences. Seismic waves are widely employed for this27

purpose due to the fact that they are significantly attenuated and delayed and show strong28

anisotropy in presence of fractures (e.g., Gurevich et al., 2009; Müller et al., 2010; Rubino29

et al., 2014)30

Despite the very large contrasts in scale typically observed between fracture apertures31

and prevailing seismic wavelengths, seismic imaging of extensive individual fractures is often32

possible and hence amenable to conventional interpretation approaches, such as, for example,33

amplitude-versus-offset analysis (e.g., Pirak-Nolte et al., 1990; Oelke et al., 2013; Minato and34

Ghose, 2014). Although this phenomenon is generally attributed to the high compliance of35

the fractures with respect to the background, the details of the underlying physics remain36

rather enigmatic. To date, this problem has been mostly addressed based on the so-called37

linear slip theory, where a fracture is modelled as an interface and its effect is represented by a38

discontinuity in displacement assuming continuous traction across the interface. The jump in39

the displacement vector is linearly related to the traction vector through a compliance matrix40

(Schoenberg, 1980; Pirak-Nolte et al., 1990). When the compliance matrix is real-valued,41

the model represents a long-wavelength approximation of an elastic thin-layer model (Li42

et al., 2014). Worthington and Lubbe (2007) provide a summary of real-valued normal and43

shear fracture compliances for fluid-filled fractures as functions of the fracture size, obtained44

from seismic and laboratory experiments. Oelke et al. (2013) model individual fractures as45

thin fluid layers embedded in an elastic background and derive the corresponding elastic46

compliances to be used in a framework based on the linear slip model.47

a)Electronic address: Nicolas.Barbosa@unil.ch
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However, when a seismic wave travels through a fluid-saturated porous rock containing48

an open fracture, the wave will perturb the fluid pressure equilibrium in the pore space49

because the fracture is much softer than the embedding background. Consequently, fluid50

pressure diffusion (FPD) is induced between the fracture and the background in order to51

return the state of equilibrium. This can affect significantly the stiffening effect of the52

saturating pore fluid in the fracture, thus changing the compressibility contrast with respect53

to the background and, therefore, the fracture reflectivity. Moreover, the acceleration of54

the rock matrix produced by a passing seismic wave field, together with the fluid pressure55

gradient established between its peaks and troughs, generates an additional perturbation of56

the fluid displacement field. This is commonly referred to as global flow and can also affect57

the seismic response of the fracture. These fluid-flow-related effects cannot be accounted58

for in a purely elastic framework, which inherently assumes that no flow occurs across the59

fracture interfaces. The linear slip model also struggles with considering these effects as it60

represents the fracture as an interface separating two non-porous media. A recent effort61

to alleviate this problem was made by Rubino et al. (2015), who developed a model for62

including FPD effects in the framework of the linear slip theory by considering frequency-63

dependent and complex-valued normal compliances. These authors considered a 1D system64

composed of a large number of regularly distributed planar fractures with a separation much65

smaller than the prevailing seismic wavelength.66

To date, the study of the effects of global flow and FPD between background and67

fracture on the seismic reflectivity of a single fracture remains rather unexplored. One68

of the few works related with this topic was carried out by Gurevich et al. (1994). Using the69

low-frequency approximation of Biot’s (1962) theory and considering normal-incidence and70

relatively mild contrasts between a thin layer and the embedding background, they found71

that FPD effects are significant only for very low frequencies, for which the reflectivity of72

the thin layer is rather negligible. However, the conclusions of Gurevich et al. (1994) cannot73

be extended to the case of fractured rocks, as in this case very large contrasts in the rock74

physical properties are expected. More recently and also in a poroelastic context, Nakagawa75
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and Schoenberg (2007) developed seismic boundary conditions across a single fracture and76

found that its scattering behavior is controlled by a set of characteristic parameters similar77

to those used in the classic linear slip theory. They focused their analysis on how the fluid78

pressure within a fracture affects its scattering behavior as a function of fracture permeability79

and pore fluid properties.80

Here, we generalize the analysis of Gurevich et al. (1994) for arbitrary incidence angles81

and pronounced contrasts in the material properties characteristic of fractures. We also82

investigate the influence of Biot’s global flow on the fracture reflections coefficients. We83

consider three thin-layer models to isolate and explore the fluid-flow-related effects, and84

perform an exhaustive sensitivity analysis to determine under which conditions these effects85

can affect significantly the reflectivity of a fracture.86

The paper is organized as follows: First, we outline the plane-wave theory for thin-layer87

models (II A, B, C plus Appendices A, B, C) and present the pertinent frequency regimes88

that the effective fracture compliance experiences when poroelastic effects are considered89

(II D). Next, we provide an analysis of the conditions under which the stiffening effect90

of the fluid saturating the fracture is dominated by fluid pressure diffusion between the91

fracture and background (III). Finally, we study the sensitivity of fluid pressure diffusion92

effects to different pore fluids saturating the fracture, background permeability, fracture and93

background dry-frame stiffness, and fracture aperture (IV).94

II. METHODOLOGY95

To study fluid-flow-related effects on the reflectivity of a single fracture, we utilize three96

thin-layer models: First, a poroelastic thin-layer model in the context of Biot’s (1962) theory;97

second, a low-frequency approximation of the poroelastic model; and, lastly, an elastic thin-98

layer model using Gassmann’s (1951) equations to define the parameters of the background99

and fracture. The comparison between the seismic responses obtained based on these models100

allows us to explore the physical processes related to wave-induced FPD as well as to global101
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flow, and to assess the conditions under which these effects have a significant impact on the102

reflectivity of an individual fracture.103

A. Full poroelastic model104

When a seismic wave strikes a fracture, fluid flow is induced across its interfaces in105

response to (i) the spatial gradient in fluid pressure created between the fracture and back-106

ground due to their differing compressibilities (mesoscopic flow), and (ii) to the combined107

effect of the fluid pressure gradients prevailing between peaks and troughs of the seismic108

wave and the accelerations induced by the passing wavefield (global flow). In order to take109

into account these effects on the reflectivity of a single fracture, we compute the reflection110

coefficients in the framework of the theory of poroelasticity (Biot, 1962).111

Following Nakagawa and Schoenberg (2007), we conceptualize the fracture as a highly112

compliant and highly porous thin layer embedded in a much stiffer and much less porous113

background. To this end, we consider two half-spaces Ω1 and Ω3 embedding a thin layer114

Ω2 of thickness h representing the fracture (Fig. 1). We assume each medium to consist of115

a solid, elastic, homogeneous and isotropic skeleton containing fully fluid-saturated pores.116

Therefore, the governing physical properties are the porosity φ, the dry frame bulk modulus117

Km, the dry frame shear modulus µm, the static permeability κ, the grain density ρs, the118

grain bulk modulus Ks, the fluid bulk modulus Kf , the fluid density ρf , and the fluid119

viscosity η. The shear modulus and bulk density of the saturated rock are120

µ = µm,

ρb = (1− φ)ρs + φρf .

(1)

It is important to emphasize that representing the fracture as a thin poroelastic layer is just121

one of many possible models used to study seismic response of fractures. Nevertheless, many122

authors have investigated and discussed the conditions under which a thin-layer model with123

appropriate material infill can be thought of as an equivalent representation of more realistic124

fracture models in porous rocks (e.g., Hudson and Liu, 1999; Rubino et al., 2014).125
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For this study, we consider an incident fast P-wave and thus, using the Cartesian coor-126

dinate system shown in Fig. 1, it is sufficient to study the wave propagation in the x-y plane127

as, in this case, there is no wave propagation in the z-direction. In space-frequency domain,128

let u = u(x, ω) be the average displacement of the solid phase, ũ = ũ(x, ω) the average129

displacement of the fluid phase and w = w(x, ω) = φ(ũ(x, ω)−u(x, ω)) the average relative130

displacement of the fluid phase with x = (x, y) being the position vector in IR2 and ω the131

angular frequency. With τij and pf denoting the total stress tensor and the fluid pressure,132

the isotropic constitutive relations for poroelastic media are (Biot, 1962)133

τij(u,w) = 2µεij + δij(λ∇ · u + αM∇ ·w),

pf (u,w) = −αM∇ · u−M∇ ·w, i, j = x, y,

(2)

where εij = 1
2
( ∂ui
∂xj

+
∂uj
∂xi

) is the strain tensor and λ = Km− 2
3
µ+α2M is the Lamé constant.134

The Biot-Willis effective stress coefficient α and the Biot’s fluid-storage modulus M are135

equal to (Dutta and Ode, 1983)136

α = 1−Km/Ks,

M =

(
α− φ
Ks

+
φ

Kf

)−1

.
(3)

Then, the dynamic equations for an isotropic, homogeneous medium stated in the space-137

frequency domain can be written as (Biot, 1962)138

−ω2ρbu− ω2ρfw = HU∇(∇ · u) + αM∇(∇ ·w)− µ∇× (∇× u),

−ω2ρfu− ω2g(ω)w + iωb(ω)w = αM∇(∇ · u) +M∇(∇ ·w),

(4)

where b(ω) and g(ω) are the viscous and mass coupling coefficients, respectively (Appendix139

A), whereas HU = λ + 2µ is the undrained P-wave modulus. By performing a plane-wave140

analysis, it can be shown that Biot’s theory supports the propagation of one S-wave and two141

P-waves. The fast P- and S-waves correspond to the classical longitudinal and transversal142

waves propagating in elastic or viscoelastic isotropic solids. The additional slow P-wave,143

which is due to the presence of a fluid phase in the pore space, is a fluid pressure diffusion at144

low frequencies and a propagating wave at high frequencies. Biot’s characteristic frequency145
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separates the low-frequency regime, where the relative fluid displacement is governed by the146

viscous forces, from the high-frequency regime, where the inertial forces dominate (Johnson147

et al., 1987). It is possible to express this frequency as148

ωB = 2πfB =
ηφ

ρfκS
, (5)

where S is the tortuosity of the rock.149

We consider an incident plane fast P-wave, denoted by the superscript I, of frequency150

ω propagating in the x-y plane and arriving from Ω1 at the interface Γ1 (y=0) between Ω1151

and Ω2 (Fig. 1). θI is the angle of incidence with respect to the normal to Γ1. The energy

FIG. 1. (Color Online) Schematic illustration of the seismic model considered. The arrows

indicate the positive directions of wave propagation. P1, P2 and S refer to the fast and

slow compressional and shear waves, respectively. The superscripts R, T , D and U denote

the reflected waves in Ω1, transmitted waves in Ω3 and downgoing and upgoing wave fields

inside the fracture, respectively.

152

of the incident wave is thus, split into two compressional waves and one shear wave in Ω1,153
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denoted by the superscript R, in Ω3, denoted by the superscript T , and six wave modes in154

the layer Ω2 (Fig. 1). In the latter case, there are two shear, two fast compressional and155

two slow compressional upgoing and downgoing waves denoted by superscripts U and D,156

respectively. Therefore, following the superposition principle, the displacement vectors in157

each domain Ωi are given by158

uΩ1 = uIP1
+
∑
j

uRj , wΩ1 = wI
P1

+
∑
j

wR
j ,

uΩ2 =
∑
j

(
uUj + uDj

)
, wΩ2 =

∑
j

(
wU
j + wD

j

)
,

uΩ3 =
∑
j

uTj , wΩ3 =
∑
j

wT
j , j = P1, P2, S.

(6)

As we consider plane waves, the compressional wave modes for the solid and relative fluid159

displacements can be computed from scalar potentials in the form (Dutta and Ode, 1983)160

uqj(x, ω) = ∇Φq
j ,

wq
j(x, ω) = ∇Φ̃q

j , j = P1, P2, and q = I, R, U,D, T.

(7)

The corresponding scalar potentials are161

Φq
j = Aqje

i(ωt−kqj ·x) , Φ̃q
j = Bq

j e
i(ωt−kqj ·x), (8)

where i is the imaginary unit, t is the time, and162

kqj = (nqj , l
q
j ), (9)

denotes the corresponding complex wave vector with horizontal and vertical components nqj163

and lqj , respectively. We assume homogeneous incident fast P-wave and thus,164

kIP1
= kIP1

(sin(θI), cos(θI)), (10)

where kIP1
is the complex fast P-wavenumber. The wave vectors derive from solving Eqs. 4165

in the corresponding medium (Appendix A). According to Eq. 8, the sign of the vertical166

component of the real part of kqj is positive for waves traveling in the direction of increasing167

y.168

9



For rotational waves, vector potentials are employed and thus, the shear components of169

the displacements are given by170

uqS(x, ω) = −∇×Ψq
s,

wq
S(x, ω) = −∇× Ψ̃q

s, q = R,U,D, T.

(11)

The vector potentials are171

Ψq
s = Aqse

i(ωt−kqs·x)ĕz , Ψ̃q
s = Bq

se
i(ωt−kqs·x)ĕz, (12)

where ĕz is the unit vector normal to the x-y plane and172

kqS = (nqs, l
q
s), (13)

is the complex S-wave vector with the convention of signs described before.173

Next, substituting Eqs. 7 and 11 in Eq. 6 we obtain the solid and relative fluid dis-174

placements in each medium Ωi and, using the constitutive relations given by Eq. 2, the fluid175

pressure and total stress tensor can also be written as functions of the potential amplitudes.176

In order to obtain the amplitudes Aqj and Bq
j for the different wave modes in the two half-177

spaces and the fracture, we impose the continuity of the solid particle displacement (ux and178

uy), the normal component of relative fluid displacement (wy), the normal and tangential179

components of total stress (τyy and τxy), and the fluid pressure (pf ) across the interfaces Γ1180

and Γ2 (Gurevich and Schoenberg, 1999). The considered open-pore conditions (continuity181

of pf ) at the interfaces allow for fluid exchange between the domains and are consistent182

with the validity of Biot’s equations of poroelasticity at the interfaces. This set of boundary183

conditions leads to a linear system of equations with 12 unknowns whose solution provides184

the wave amplitudes (Appendix B).185

Once we have obtained the amplitudes, the displacement reflection coefficients can be186

defined as the ratio of the solid displacement magnitude of the corresponding reflected wave187
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and that of the incidence wave on Γ1 (e.g., Rubino et al., 2006)188

RP1P1 =
|uRP1
|

|uIP1
|

=
ARP1

AIP1

,

RP1P2 =
|uRP2
|

|uIP1
|

=
ARP2

kRP2

AIP1
kIP1

,

RP1S =
|uRS |
|uIP1
|

=
ARSk

R
S

AIP1
kIP1

.

(14)

It is important to mention that these reflection coefficients are complex-valued. We limit the189

analysis to reflection coefficients as transmission coefficients do not provide any additional190

insight.191

B. Low-frequency poroelastic model192

Here, we present a low-frequency poroelastic approach that aims at modelling the reflec-193

tivity considering only the mesoscopic FPD effects between the fracture and the background.194

That is, we neglect global flow effects. To this end, we compute the reflection coefficients in195

a similar fashion as for the full poroelastic model but using the low-frequency approximation196

of Biot’s equations. As shown by Gurevich et al. (1994), this can be done by considering197

the following wavenumbers198

kP1 =
ω

VP
,

kS =
ω

VS
,

kP2 =

√
i

LD
,

(15)

where VP and VS are the low-frequency limits of the fast P- and S-waves velocities (Appendix199

A). The diffusion length in the equation of the slow P-wavenumber is200

LD =

√
D

ω
, (16)

being D = κN
η

the diffusivity of the medium and N =
(
M − α2M2

HU

)
. In this low-frequency201

poroelastic approach, regardless the frequencies considered, the slow P-wave behaves as a202

diffusive mode. Moreover, for frequencies lower than Biot’s characteristic frequency ωB, the203

full solution and the low-frequency approximation are expected to be similar.204
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C. Elastic model205

In order to assess fluid flow effects on the reflection coefficient of a fracture, the same206

procedure described for porous media was adopted in the framework of elastic media. For207

this model, the material properties of each medium are defined using Gassmann’s (1951)208

equation. By doing so, the fluid pressure is assumed to be in equilibrium in each domain209

and the boundaries between the fracture and background are sealed.210

For a purely elastic model, the seismic response is fully described by a single solid211

displacement field and the constitutive relation is given by Hooke’s law212

τij(u) = 2µεij + δijλ∇ · u for i, j = x, y. (17)

The natural boundary conditions for this model are the continuity of the solid displacement213

and of the normal and tangential components of the stress field at each interface. Proceeding214

in a similar fashion as for the previous models, we get an 8 × 8 linear system of equations215

whose solution provides the potential amplitudes for the compressional and shear waves. The216

definition of the reflection coefficients RPP and RPS is the same as for poroelastic media.217

This model is expected to provide the same seismic response as both poroelastic models218

at frequencies which are lower than Biot’s characteristic frequency ωB but high enough to219

cause the fracture to behave in an undrained manner with respect to mesoscopic FPD.220

That is, the interfaces Γ1 and Γ2 behave as being sealed with respect to fluid pressure221

communication.222

D. Frequency regimes223

Müller and Rothert (2006) showed that for ω < ωB, the frequency dependence of the224

effective stiffness of a periodically layered medium has three distinct frequency regimes due225

to mesoscopic FPD. These frequency regimes are separated by two characteristic frequencies.226

When one of the two types of layers has an infinite thickness, only one of these frequencies227

remains finite and thus, for ω < ωB, there are only two frequency regimes. Our model228
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corresponds to this limiting case. The characteristic frequency for the transition between229

the two regimes is (Müller and Rothert, 2006)230

ωm = 2πfm =

(
2

h

)2

Df
eff , (18)

where the effective fracture diffusivity Df
eff is defined as231

Df
eff =

(
e2
b

e2
f + efeb

)
Df , (19)

with the effusivity232

e =
κ

η
√
D
. (20)

In Eqs. 19 and 20, the subscripts b and f refer to background and fracture parameters,233

respectively. From Eqs. 16 and 18, it is clear that ωm corresponds to an effective diffusion234

length Leff equal to half the fracture aperture. When one of the layers is much more235

compliant and permeable than the other, Brajanovski et al. (2006) showed that236

ωm ≈
(

2Nf

Nbh

)2

Db. (21)

Hence, even though ωm depends on the permeability of both layers, for the fracture model237

considered here ωm ∝ κb and is insensitive to the value of κf . This implies that the seismic238

reflectivity of an open fracture is rather insensitive to its permeability value.239

For frequencies ω � ωm, there is enough time in one half-cycle of the seismic wave for240

the fluid pressure to equilibrate in the whole system and the fracture is relaxed. In this241

case, the stiffening effect of the fracture fluid is minimal and, consequently, fracture stiffness242

is minimal. Conversely, when ω � ωm there is no time for communication between the243

fluid of the fracture and that of the background and the fracture behaves as undrained. In244

this condition, the stiffening effect of the fracture fluid is maximal and, therefore, fracture245

stiffness is maximal. In this limit of sealed interfaces, the stiffness of the poroelastic model246

is the same as that of the elastic model.247

In the analysis of Müller and Rothert (2006) intertial effects were neglected. However,248

if we consider such effects, there is yet a third regime arising at very high frequencies249
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ω > ωB. Here, inertial forces play an important role and, correspondingly, the low-frequency250

approximation for wave propagation is no longer valid. The velocity dispersion due to global251

flow increases the apparent stiffness of the saturated fracture with respect to the undrained252

situation described before. These effects are present neither in the elastic model nor in253

the poroelastic low-frequency approximation and, consequently, the agreement between the254

models is expected to decrease.255

FIG. 2. (Color Online) Schematic representation of the stiffness variation of a saturated

fracture as a function of frequency.

Fig. 2 shows the different frequency-regimes that the considered fracture-background256

system experiences in a poroelastic context. For a given ratio between wavelength and257

fracture aperture, the reflectivity of a fracture is mainly controlled by the stiffness contrast258

with respect to the background. Hence, the frequency-dependent effects produced by the259

saturating pore fluid in the fracture are expected to affect the reflectivity. In the follow-260

ing, we analyse quantitatively to what extent these fluid effects manifest themselves in the261

reflectivity of an individual fracture.262
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(a) (b)

(c) (d)

FIG. 3. (Color Online) Elastic as well as full and low-frequency poroelastic models. a)

Regime with no mesoscopic and no global flow, b) regime with no global flow, c) regime with

no mesoscopic flow, and d) reference scenario. The dashed lines correspond to |RPP | =0.01,

which is considered as the threshold value for seismic detectability.

III. FREQUENCY-DEPENDENT FLUID-RELATED EFFECTS263

For the following analysis, we assume that the fracture is embedded in an homogeneous264

background, that is, Ω1 and Ω3 are identical. Unless indicated otherwise, the material265

properties are those given in Table 1. The background properties correspond to those of a266

sandstone and were chosen following Nakagawa and Schoenberg (2007). We characterize the267

fracture dry frame properties in terms of the dry normal compliance268

ηN =
h

K f
m + 4

3
µf

m

=
h

H f
D

, (22)
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and the shear compliance269

ηT =
h

µf
m

, (23)

where the superscript f refers to fracture parameters and HD is the dry P-wave modulus.270

According to Nakagawa and Schoenberg (2007), we choose for the fracture compliance ηT =271

3×10−11 m/Pa and ηN = 10−11 m/Pa and thus obtain µf
m = 0.033 GPa and K f

m = 0.056 GPa272

for the considered fracture aperture of 1 mm. Both the fracture and the background are273

saturated with brine (Table 1).274

We consider four scenarios with varying permeabilities of the fracture and background275

to distinguish the different frequency regimes of fluid flow effects and to quantify the corre-276

sponding impacts on seismic reflectivity. For comparison, we include the responses obtained277

using the full poroelastic model, its low-frequency approximation, as well as the elastic278

model. In order to separate the different fluid flow effects, we consider for some of the sce-279

narios unrealistically low values of the fracture permeability and the background tortuosity.280

It is important to mention that even though, for brevity, we show the comparisons only for281

normal incidence for the first three cases, the observations and conclusions obtained in this282

section also hold for oblique incidence angles.283

A. Undrained fracture in viscous forces dominated regime284

First, we consider the case in which the reflection coefficients from the three models are285

expected to agree. This scenario corresponds to the case of low frequencies in relation with286

Biot’s global flow and high frequencies in terms of mesoscopic FPD, that is, ωm < ω < ωB.287

To have such situation, we consider very low permeabilities for the background and the288

fracture (κb = 1 × 10−6D, κf = 0.01D), which in turn implies a very low value for the289

characteristic frequency related to mesoscopic FPD (fm = 6.71×10−4Hz). Correspondingly,290

the fracture behaves as being sealed for the considered frequencies. Moreover, the Biot’s291

characteristic frequencies are f fBiot = 1.29×107 Hz and f bBiot = 8.06×109 Hz for the fracture292

and background material, respectively. These characteristic frequencies are located well293
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above the considered frequency range and, thus, velocity dispersion effects due to global294

flow are negligible.295

Figure 3a shows that there is indeed excellent agreement between the reflection coef-296

ficients obtained from the three models. We observe that at a frequency of ∼ 7.7 × 105297

Hz, the first resonance of the fast P-wave within the fracture occurs, as at this frequency298

λP1 = 2h, with λP1 denoting the fast P-wavelength in the fracture. Due to the very low299

permeability values chosen for the analysis, we observe that even at this resonance frequency300

the reflection coefficients agree very well among the three models.301

B. FPD between the fracture and background302

In order to isolate the impact on seismic reflectivity due to FPD, we consider a scenario303

corresponding to the case of low frequencies with respect to Biot’s global flow for which304

FPD effects are expected to arise. To this end, we assume values of κb = κf = 0.01D for305

the background and fracture permeability, and a tortuosity S = 1 for both media. Biot’s306

characteristic frequencies, therefore, are f fBiot = 1.3 × 107 Hz and f bBiot = 2.4 × 106 Hz,307

whereas fm is 6.7 Hz. In this case, as fm is larger than in the previous case, changes of308

the stiffness of the saturated fracture due to FPD are expected to be more important. Fig.309

3b shows that, indeed, there are significant discrepancies between the elastic and the two310

poroelastic models for frequencies below about 3 × 104 Hz. For such frequencies, FPD311

between fracture and background is significant, thus reducing significantly the stiffness of312

the saturated fracture. The resulting increase of stiffness contrast between the fracture and313

the background explains the fact that for such frequencies the reflection coefficient is higher314

when FPD effects are taken into account. As the frequency increases, there is less time315

for fluid pressure exchange between fracture and background and, thus, the discrepancies316

between the elastic and poroelastic responses decrease. It is important to notice that,317

contrary to Case A, at frequencies close to the resonance frequency, the differences become318

important again. As Biot global flow effects are negligible for the considered frequency range,319
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which is suggested by the very good agreement between the poroelastic response and the320

corresponding low-frequency approximation, the observed discrepancies between the elastic321

and poroelastic models are still given by FPD.322

C. Global fluid flow inside the fracture323

To analyze the impact of global flow inside the fracture on the reflectivity, we consider324

the case of a fracture having its characteristic Biot’s frequency lying inside the considered325

frequency range, but for which the mesoscopic characteristic frequency and Biot’s charac-326

teristic frequency for the background lie outside this range. To this end, we consider again a327

very low permeability for the background (κb = 1×10−6D) but, in this case, we increase the328

fracture permeability (κf = 100D), which results in the following characteristic frequencies:329

f fBiot = 1290 Hz and f bBiot = 8.06× 109 Hz, and fm is 6.71×10−4 Hz.330

As FPD effects have been minimized, all models agree very well on the low-frequency331

side of the spectrum (Fig. 3c). At higher frequencies, in addition to the differing resonance332

frequencies, there are some small reverberations in the fast P-wave reflectivity, which are333

directly related to the resonance of the slow P-wave in the fracture. The latter behaves as a334

propagating wave inside the fracture, because these frequencies are much higher than f fBiot.335

This behavior can be reproduced neither by the poroelastic low-frequency approximation336

nor by the elastic model. The first resonance of the slow P-wave occurs for λP2 = 2h.337

Even though not shown for brevity, we also analyzed the case in which only Biot’s338

characteristic frequency of the background lies in the range of frequencies considered. The339

results indicate that the discrepancies among the models present the same overall behaviour.340

We can therefore conclude from this analysis that global flow effects on the reflectivity of341

a single fracture are rather negligible, especially for the frequencies typically considered in342

seismic experiments. We have verified that this result also holds for S-wave reflectivity.343
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D. Mesoscopic and global flow effects344

Lastly, Fig. 3d) shows a more realistic scenario corresponding to the properties in Table345

1. In this case, Biot’s characteristic frequencies are f fBiot = 1290 Hz and f bBiot = 8.06× 104346

Hz, whereas the mesoscopic characteristic frequency is fm = 67.1 Hz. In this case, both347

FPD and global flow effects described for the previous three scenarios are at play in the348

considered frequency range.349

For frequencies below about 3× 104 Hz, the elastic model systematically underestimate350

the reflection coefficient computed from the poroelastic models. This is due to significant351

FPD occurring between the fracture and the background, which reduces the apparent stiff-352

ness of the saturated fracture, thus increasing its mechanical contrast with respect to the353

background. These FPD effects can be quite strong and produce significant discrepancies354

between the elastic and poroelastic responses. For instance, at 6.7 kHz, the fast P-wave355

reflection coefficient predicted by the poroelastic model is 0.1 whereas for the elastic model356

it is approximately 0.05.357

For frequencies above 3×104 Hz, there is not enough time for FPD and, consequently,358

there is good agreement between the elastic and poroelastic responses. However, there are359

significant discrepancies for frequencies close to the resonance frequencies as, in addition to360

the remaining FPD effects, velocity dispersion effects due to global flow arise. We can also361

see that there is very good agreement between the poroelastic models, except for frequencies362

larger than the Biot’s characteristic frequencies, which is due to the fact that the low-363

frequency approximation is not valid anymore.364

In addition to the frequency dependence of the discrepancies between the elastic and365

poroelastic models, it is interesting to study, for this more realistic scenario, the corre-366

sponding dependence on incidence angle as well as the case of S-wave reflectivity. As the367

discrepancies between elastic and poroelastic models are mainly due to FPD effects, we re-368

strict the analysis to frequencies between 50 and 104 Hz, thus covering the seismic and sonic369

frequency ranges.370
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a)

b)

FIG. 4. (Color Online) Absolute value of fast P-wave reflection coefficient for a) a poroe-

lastic and b) an elastic fracture model as a function of incidence angle and frequency. The

considered material properties are given in Table 1.

Fig. 4 shows the magnitude of the elastic and poroelastic P-wave reflection coefficient371

as a function of frequency and incidence angle. The white zones in Fig. 4 correspond to372

the regions where the reflection coefficients are lower than 0.01, which is the threshold value373

of minimum reflectivity adopted for this work. A distinct feature in the P-wave reflectivity374
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is the presence of a “tongue” of this blind zone, which implies that for a given range of375

incidence angles the reflection coefficient of the fracture is minimal. A more detailed analysis376

shows that this phenomenon is due to a change of polarity of the reflection coefficients. By377

comparing Figs. 4a and b, we note that the range of angles of this minimum differs for378

the poroelastic and elastic models, thus indicating that the differences between the models379

are dependent on the incidence angle. While for incidence angles below ∼20◦, where the380

reflectivity for the poroelastic model is at its minimum, the elastic model underestimates381

the reflection coefficients, the opposite is the case for larger incidence angles. Similarly, we382

show in Figs. 5a and b the S-wave reflection coefficient for the elastic and poroelastic models383

as a function of frequency and incidence angle. As expected, S-wave reflectivity is zero for384

the normally incident fast P-wave. In addition, the patterns of reflectivity for S-waves are385

similar for both models. However, for any angle of incidence the coefficients are always386

slightly larger for the poroelastic model.387

To quantify FPD effects on the reflection coefficient, we compute the relative differences388

δRPP =
RPEP1P1

−REPP
RPEP1P1

and δRPS =
RPEP1S

−REPS
RPEP1S

, where the superscripts PE and E refer to the389

full poroelastic and elastic models, respectively. Figures 6a and 6b show the corresponding390

relative differences for the cases shown in Figs. 4 and 5. The blind zone in the map was391

chosen based on the poroelastic model. For the P-wave reflectivity, we observe significant392

discrepancies between the two models and, thus, FPD effects, particularly for relatively low393

frequencies and low incidence angles, where the elastic model substantially underestimates394

the reflectivity of the fracture (Fig. 3). The angle dependence of the discrepancies is395

expected, as for quasi-horizontal directions of wave propagation the incident P-wave does396

not manage to effectively compress the fracture and, thus, FPD effects on the stiffness of397

the saturated fracture and, thus, on reflectivity, get less significant.398

For the S-wave reflectivity, the discrepancies are considerably smaller compared to those399

for P-waves, which implies that this wave mode is less affected by changes in fluid pressure400

than the P-wave. This may in part be due to the fact that for close to normal direction of401

propagation of the incident fast P-wave, for which a significant fluid pressure change inside402
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a)

b)

FIG. 5. (Color Online) Absolute value of S-wave reflection coefficient for a) a poroelastic and

b) an elastic fracture model as a function of incidence angle and frequency. The considered

material properties are given in Table 1.

the fracture may arise, S-wave reflectivity is minimal.403

The FPD processes occurring between the fracture and the embedding background can404

also be interpreted as energy conversions from the incident fast P-wave into slow P waves at405

the fracture interfaces. To illustrate this, we show in Fig. 7 the energy conversion to reflected406
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a)

b)

FIG. 6. (Color Online) Magnitude of relative differences between the elastic and poroelastic

models for a) fast P-wave and b) S-wave reflection coefficients. The considered material

properties are given in Table 1.

and transmitted slow P-waves relative to that of the fast P-wave reflection (Appendix C).407

That is, the amount of incident energy flux that is converted at the fracture interfaces from408

the incident fast P-wave to reflected and transmitted diffusive waves in the background409

divided by the energy converted to the reflected fast P-waves. The clear correlation between410
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FIG. 7. (Color Online) Slow P-wave reflected and transmitted orthodox fluxes relative to

the reflected orthodox flux of the fast P-wave. The considered material properties are given

in Table 1.

Figs. 7 and 6a illustrates the fact that in the low-frequency regime, the relative differences411

between the reflectivity for pure elastic and poroelastic fracture models are governed by the412

FPD produced at the boundaries of the fracture and thus represent a measure of how this413

process affects the reflectivity.414

IV. SENSITIVITY ANALYSIS OF FPD EFFECTS415

The analysis performed in the previous section indicates that while global flow effects on416

the reflectivity of a fracture are rather negligible, especially in the frequency range usually417

considered for practical applications, FPD effects can be quite strong and produce significant418

discrepancies between the elastic and poroelastic responses. In this section, we perform a419

sensitivity analysis in order to determine which parameters control this physical process420

and to explore in which cases these effects are expected to have a significant impact on the421

fracture reflectivity.422
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The physical properties previously used for Case D (section III) are considered as a423

reference scenario. Based on this case, we explore how the discrepancies between the elastic424

and poroelastic models change as we modify different material and geometrical properties425

of the fracture-background system. In particular, we consider different permeabilities and426

stiffnesses of the background as well as different apertures, dry-frame properties, and pore427

fluids of the fracture. We do not include in this study the analysis of the sensitivity of428

the discrepancies to changes in fracture permeability. Since in the case of open fractures,429

as the ones studied in this work, the seismic reflectivity is rather insensitive to fracture430

permeability. In addition, only the results for the relative differences in P-wave reflectivity431

are discussed as the relative differences for the S-wave reflection coefficients turned out to432

be rather negligible.433

A. Saturating pore fluid in fracture434

Fig. 8 shows the poroelastic reflection coefficients and the relative difference δRPP for435

a fracture saturated with gas (Kf = 0.05543 GPa, ρf = 139.8 kg/m3, ηf = 0.00022 Poise).436

The saturating pore fluid of the background is water. The mechanical compliance of the437

fracture strongly depends on the saturating pore fluid. It increases for more compressible438

fluids, which increases the reflectivity of the fracture, as can be verified by comparing Figs.439

4a and 8a. This, in turn, implies that the blind zone gets smaller with increasing fluid440

compressibility for close to normal direction of propagation while its “tongue” shifts towards441

higher incidence angles. Even though the reflectivity increases with the compressibility of442

the pore fluid in the fracture, the discrepancies between the poroelastic and elastic responses443

are reduced (Figs. 6a and 8b). Because of the high compressibility of the gas, the excess444

pore pressure induced within the fracture is smaller compared to that for a less compressible445

fluid and, thus, the fluid pressure gradient between fracture and background is reduced.446

Consequently, FPD between these two regions and its effects on the reflectivity, become less447

significant.448
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a)

b)

FIG. 8. (Color Online) Absolute value of a) P-wave reflection coefficient of a gas-saturated

poroelastic fracture as a function of incidence angle and frequency and b) magnitude of the

relative differences between the elastic and poroelastic models.

B. Background permeability449

As shown in the previous section, FPD between the fracture and the background is450

strongly influenced by the permeability of the latter. To further explore the corresponding451

effects on the reflectivity of a fracture, we show in Fig. 9 the relative difference δRPP for452

26



a)

b)

FIG. 9. (Color Online) Absolute value of the relative difference of P-wave reflection coef-

ficients obtained from elastic and poroelastic models as a function of incidence angle and

frequency for background permeabilities of a) κ = 0.01D and b) κ = 1D.

a more and a less permeable background compared to the reference scenario. We observe453

increasing discrepancies between the models for all incidence angles as the permeability of454

the background increases. This is due to the fact that, for very low permeabilities, significant455

FPD takes place only for very low frequencies, for which the fluid has enough time during456
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an oscillatory half-cycle to flow into the background or out of it. This can also be seen by457

taking into account that, for a fracture that is much more permeable than the embedding458

background, we have, ωm ∝ κb, as discussed before. For such low frequencies, the reflection459

coefficient is negligible and, thus, the corresponding FPD effects on the reflectivity cannot460

be observed. Conversely, for higher background permeabilities, these FPD effects occur at461

higher frequencies, for which the reflection coefficients assume significant values, and hence462

the discrepancies between the two models become important.463

For larger permeabilities, the “tongue” of the blind zone also shifts towards larger inci-464

dence angles and becomes narrower. Moreover, the comparison of the blind regions indicates465

that for such permeabilities, the reflection coefficients are larger at low incidence angles.466

We show in Fig. 10 that the change of FPD effects due to the background permeability,467

can be illustrated by the amount of incident energy flux that is converted at the fracture468

interfaces into reflected and transmitted diffusive waves in the background, for fixed fre-469

quencies of 100 Hz and 10 Hz. We observe that the energy conversion to diffusive slow470

P-waves across a fracture follows an attenuation-type curve, as in the low-frequency regime471

(f < fBiot) this is a measure of attenuation (Müller et al., 2010). In both cases, the slow472

P-wave energy conversion has a peak for a background permeability for which f = fm (see473

vertical lines in Fig. 10). By comparing the plots for both frequencies, it is clear that the474

maximal FPD effects shift towards lower frequencies for less permeable backgrounds. Lastly,475

from the definition of the energy flux converted to slow P-waves (Appendix C), minimum476

energy conversion to diffusive waves, for a given frequency, occurs for (i) background perme-477

abilities such that the frequency considered is higher than fm, that is, in the high-frequency478

regime, where the fluid pressure in the fracture is maximum but the relative fluid displace-479

ment tends to be negligible; and (ii) in the cases for which the fixed frequency is low in480

relation to fm, producing maximum wave-induced fluid flow with approximately the same481

fluid pressure in the fracture and the background.482
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FIG. 10. (Color Online) Sum of slow P-waves energy reflection and transmission coefficients

for poroelastic model as a function of background permeability, for frequencies of 100 Hz

and 10 Hz. The red and blue vertical lines correspond to the background permeabilities for

which the mesoscopic characteristic frequencies of the model are equal to 10 Hz and 100 Hz,

respectively.

C. Fracture and background dry-frame stiffness483

In order to analyze the role played by the mechanical properties of the fracture dry-484

frame, we show in Fig. 11 the relative difference δRPP for a stiffer and for a softer fracture485

compared to the reference scenario. As expected, the seismic reflection is strongly affected486

by the stiffness of the fracture. The blind zone gets significantly larger in the case of a stiffer487

fracture. This is expected, as the compressibility contrast with respect to the background488

is reduced and, consequently, the reflection coefficients get smaller. The “tongue” of min-489

imum reflectivity appears at larger incidence angles for stiffer fractures. The mesoscopic490
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a)

b)

FIG. 11. (Color Online) Absolute value of the relative difference of P-wave reflection coeffi-

cients for elastic and poroelastic models as a function of incidence angle and frequency for

a) a fracture stiffer (Km=0.55 GPa and µm=0.33 GPa) and b) softer (Km=0.0056 GPa and

µm=0.0033 GPa) than the reference scenario.

characteristic frequencies are 4049 Hz and 0.7 Hz for the scenarios depicted in Figs. 11a491

and 11b, respectively. Despite the fact that for the stiffer fracture the considered frequency492

range includes the characteristic mesoscopic frequency, whereas this is not the case for the493
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softer fracture, the agreement between the two models improves for the stiffer fracture. This494

implies that, while the position of the maximal FPD effects is determined by the mesoscopic495

characteristic frequency, the magnitude of the FPD effects on the reflectivity is controlled496

by the compressibility contrast. This is due to the fact that stiffer fractures produce less497

FPD and, thus, cause smaller departures of the stiffness of the fracture with respect to the498

elastic undrained limit. This results in a better agreement with respect to the elastic model499

in comparison with softer fractures.500

The analysis of FPD effects on the seismic reflectivity for the case of varying background501

dry-frame stiffness is not shown as it exhibits the same behavior described above. That is,502

even though considering a softer, yet still stiffer than the fracture, background compared to503

that of the reference scenario, results in a shift of FPD effects towards the frequency range504

considered in the analysis, both the reflection coefficients and the intensity of the FPD effects505

get smaller. This again is due to a reduction of the stiffness contrast with respect to the506

fracture.507

D. Fracture aperture508

Fig. 12 shows the relative difference δRPP for two different fracture apertures. The509

physical properties of the fracture remain unchanged and are those given in Table 1. We510

observe that as the fracture aperture increases, the reflectivity increases for all incidence511

angles. The latter is evidenced by a reduction of the blind zone in the case of a thicker512

fracture and is due to the fact that the ratio between the aperture and the wavelength of513

the incident wave becomes larger. Moreover, the “tongue” of the blind zone shifts towards514

smaller incidence angles for thicker fractures.515

In Fig. 12a, that is for a 10-mm-thick fracture, we observe a local maximum in |δRPP | at516

approximately 8 kHz. This frequency coincides with the first resonance within the fracture517

for the elastic model at oblique incidence, whereas for the poroelastic model the lowest518

frequency resonance is ∼10 kHz.519
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In addition, Fig. 12 shows that the differences between the poroelastic and elastic models520

become smaller for thicker fractures. To further explore this observation, we first remove

a)

b)

FIG. 12. (Color Online) Absolute value of the relative difference of P-wave reflection coeffi-

cients for elastic and poroelastic models as a function of incidence angle and frequency for

fracture apertures of a) 10 mm and b) 0.1 mm.

521

the changes in reflectivity due to changes in the ratio wavelength to fracture aperture. That522

is, we consider a constant ratio between the two quantities for three cases. In Fig. 13a we523
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show P-wave reflectivity for the elastic model as a function of incidence angle. The fracture524

thickness considered in cases 1, 2, and 3 are 1, 10, and 0.1 mm respectively. The frequencies525

chosen for these three cases are f = 1, 0.1, and 10 kHz, respectively, which implies that the526

ratio between the incident wavelength and the fracture aperture remains constant at λ / h ∼527

3.2×103. As a consequence, the three curves are exactly the same, thus illustrating that for528

the elastic case the reflectivity of the fracture depends exclusively on this geometrical relation529

(Li et al., 2014). Fig. 13b shows the corresponding P-wave reflectivity of the poroelastic530

model. Even though the ratios between wavelength and fracture aperture are the same in531

the three cases, the reflectivities are quite different, which illustrates that the FPD effects532

differ for the three cases considered. Indeed, the mesoscopic characteristic frequencies fm533

for the three cases are 67.13, 0.6713, and 6713 Hz, respectively. Compared to the elastic534

reflectivity, case 3 shows the largest differences, which is due to more pronounced FPD535

effects as indicated by f3/fm=1.49. Conversely, case 2 shows a response quite close to that536

of the elastic limit, since in this case the considered frequency is significantly higher than537

the corresponding mesoscopic frequency (f2/fm=149). This analysis therefore indicates that,538

due to FPD effects, the same ratio between incident wavelength and the fracture thickness539

does not yield the same reflectivity.540

This can be shown by considering a case 4 with the same frequency and model parameters541

as in case 3 but with a less permeable background (κb = 0.01 D instead of κb = 0.1 D),542

which implies that the mesoscopic characteristic frequency fm is 671.3 Hz, and, thus we have543

f4/fm=14.9 as in case 1 (Fig. 13b). Hence, the reflectivity for cases 1 and 4 is the same544

because we are considering the same values for λ/h and f/fm. Thus, the thickness of the545

fracture has the same effect on the relative differences as varying background permeabilities.546

547
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a) b)

FIG. 13. (Color Online) P-wave reflection coefficient as a function of incidence angle for

equal ratios of wavelength to fracture thickness for three cases characterized by different

fracture apertures (case 1: 1mm, case 2: 10mm, case 3: 0.1 mm). a) Elastic models,

b) poroelastic models. Cases 3 and 4 have the same fracture thickness but a different

background permeability.

V. CONCLUSIONS548

In this work, we have performed a numerical analysis of FPD effects on the seismic549

reflectivity of a single fracture based on Biot’s theory of poroelasticity. The fracture is550

represented as a highly compliant and porous thin layer embedded in a much stiffer and551

much less porous background, impinged by a plane P-wave at an arbitrary angle of incidence.552

In order to separate different FPD effects, we compare the resulting reflectivity curves with553

those obtained using a low-frequency approximation of Biot’s theory as well as an elastic554

model with parameters defined using Gassmann’s equations. Our results indicate that for555

realistic rock physical properties the impact of global flow on the seismic reflectivity of a556

fracture is rather negligible, particularly for frequencies below the resonance frequency and557

Biot’s characteristic frequency. Conversely, FPD effects can be significant, especially for558

P-wave reflectivity and low incidence angles.559

An exhaustive sensitivity analysis comprising a broad range of rock physical properties560

and seismic frequencies allows us to verify that FPD effects get particularly strong in the561
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presence of very thin and soft fractures saturated with a liquid and embedded in a relatively562

high-permeability background. We also show that the dependence of FPD effects on the563

hydraulic, elastic, and geometrical parameters of the media implies that, in order to get the564

same reflectivity, it is not sufficient to consider the same ratio between seismic wavelength565

and fracture thickness as in a purely elastic context. Due to FPD effects, the same ratio566

between the frequency of the wave field and the mesoscopic characteristic frequency is also567

required.568

In all cases considered in this analysis, there is a “tongue-shaped” zone in the incidence569

angle-frequency plane of the P-wave reflectivity where the fracture is seismically not visible.570

This zone is systematically located at lower incidence angles for the elastic model compared571

with its poroelastic counterpart. For incidence angles lower than the threshold value defining572

this “tongue” in the poroelastic model, the reflection coefficients are substantially underes-573

timated by the elastic approach, as the latter does not include the reduction of the stiffening574

effect of the fluid saturating the fracture, caused by FPD. This is an important result as it575

implies that, for close-to-normal incidence angles, individual fractures are seismically more576

visible than expected based on classical elastic modelling.577
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APPENDIX A: BIOT’S COMPLEX WAVENUMBERS584

The frequency-dependent viscous and mass coupling coefficients involved in the dynamic585

equations of an isotropic, homogeneous fluid-saturated porous medium are given by586

b(ω) = <(
η

κd(ω)
),

g(ω) =
1

ω
=(

η

κd(ω)
).

(A1)

where κd(ω) is the dynamic permeability, which characterizes the transition between the587

frequency regime where the relative fluid displacement is governed by the viscous forces588

and that where the inertial forces predominate. For the Fourier transform sign convention589

adopted in this work, this dynamic permeability can be expressed as (Johnson et al., 1987)590

κd(ω) = κ

(√
1 +

4iω

njωB
+
iω

ωB

)−1

. (A2)

In Eq. A2, nj is a parameter related to the permeability, the formation resistivity factor, and591

the pore geometry of the rock. We use a value of 8 which is a common choice for sandstones592

(Nakagawa and Schoenberg, 2007).593

As we assume plane-wave propagation, regardless of the wave mode of propagation, the594

response in the material has the form595

u = Aei(ωt−k.x)ŭ,

w = Bei(ωt−k.x)w̆.

(A3)

Here, ŭ and w̆ are the unit vectors defining the polarization of the response, and x denotes596

the particle position vector, where, in this context, we define a particle as an elementary597

volume of the fluid-saturated porous medium. Moreover, k is the wave vector, which can be598

written as599

k = k(ω)k̆, (A4)

where k(ω) is the complex-valued wavenumber, and k̆ is a unit vector in the wave propaga-600

tion direction. The wavenumber contains information on the phase velocity dispersion and601

attenuation of the wave due to the Biot’s global fluid flow.602
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From Eqs. A3 and A4 it is possible to show that603

∇(∇ · u) =
(
− Aei(ωt−k.r)k · ŭ

)
k,

∇(∇ ·w) =
(
−Bei(ωt−k.r)k · w̆

)
k,

∇× (∇× u) = −Aei(ωt−k.r)k× (k× ŭ).

(A5)

Introducing Eqs. A5 in the equations of motion (Eqs. 4), we get the following system of604

equations605

0 =
(
− ρbŭ+HU(

k

ω
)2(k̆ · ŭ)k̆ − µ(

k

ω
)2k̆ × (k̆ × ŭ)

)
A

+
(
− ρf w̆ + αM(

k

ω
)2(k̆ · w̆)k̆

)
B,

0 =
(
− ρf ŭ+ αM(

k

ω
)2(k̆ · ŭ)k̆

)
A

+
(
− gw̆ +

ib

ω
w̆ +M(

k

ω
)2(k̆ · w̆)k̆

)
B.

(A6)

The solutions for this system of equation will depend on the relations between the vectors606

k̆, ŭ, and w̆. From the analysis performed by Pride et al. (1992), regardless the wave, there607

are no plane waves with ŭ 6= w̆, because we would obtain the trivial solution A = B = 0608

from Eqs. A6.609

In the case of S-waves, the vectors ŭ and w̆ are parallel but are orthogonal to k̆. Hence,610

(k̆ · ŭ) = (k̆ · w̆) = 0,

k̆ × (k̆ × ŭ) = −ŭ.
(A7)

And thus Eqs. A6 reduce to611

(
− ρb + µ(

k

ω
)2
)
A− ρfB = 0,

− ρfA+
(
− g +

ib

ω

)
B = 0.

(A8)

This homogeneous linear system of equations has non-trivial solutions only when the deter-612

minant is equal to zero. This condition yields the solution for the complex wavenumber for613

the S-wave in homogeneous media614

k(ω) = ±
(
ω2

µ

(
ρb −

ρ2
f

g(ω)− ib(ω)
ω

)) 1
2

. (A9)
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We have two possible solutions for k(ω). We chose the one with positive real component615

and negative imaginary component. To justify this, we consider a wave propagating in the616

direction of the x-axis617

u = Ae=(k)xei(ωt−<(k)x)ŭ,

w = Be=(k)xei(ωt−<(k)x)w̆.

(A10)

From this, it is straightforward to observe that the physically meaningful solution for the618

wavenumber satisfies <(k) > 0 and =(k) < 0 and that only one of the two solutions satisfies619

these conditions. Moreover, the phase velocity V (ω) of the medium can be defined as620

V (ω) =
ω

<(k(ω))
. (A11)

By using Eq. A4 and the physically meaningful solution of Eq. A9, we compute the621

wavenumber and, thus, VS(ω). We obtain the low-frequency limit velocity to be used in622

the elastic model from Eq. A11623

V elas
S = lim

ω→0
VS(ω) =

√
µ

ρb
. (A12)

For compressional waves, the wavenumber’s direction is parallel to the direction of the624

solid and fluid displacements, hence625

(k̆ · ŭ) = (k̆ · w̆) = 1, (A13a)

k̆ × (k̆ × ŭ) = 0. (A13b)

Using these conditions in Eqs. A6, we get626

(−ρb +HU(
k

ω
)2)A+ (−ρf + αM(

k

ω
)2)B = 0, (A14a)

(−ρf + αM(
k

ω
)2)A+ (−g +

ib

ω
+M(

k

ω
)2)B = 0. (A14b)

As for S-waves, the determinant of the system of equations must be zero to obtain nontrivial627

solutions. Imposing this condition leads to628

ak4 + bk2 + c = 0, (A15)
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where629

a = (HUM − α2M2)/ω4,

b = (
iHUb(ω)

ω
−HUg(ω)− ρbM + 2ρfMα)/ω2,

c = ρbg(ω)− iρbb(ω)

ω
− ρ2

f .

(A16)

This biquadratic equation has four solutions630

k1,2 = ±
√
k2

+, (A17a)

k3,4 = ±
√
k2
−, (A17b)

where k2
+ and k2

− are the solutions of the corresponding quadratic equation if we substitute631

q = k2 in Eq. A15. Even though the four solutions are mathematically valid, only two632

of them are physically acceptable. Using the same criteria as for S-waves leads to the two633

solutions for P-waves. The fast and slow P-wave solutions are defined such that VP1(ω) >634

VP2(ω).635

Finally, the low-frequency limit velocity for the elastic model is given by636

V elas
P = lim

ω→0
VP1(ω) =

√
λ+ 2µ

ρb
. (A18)

In IR2 and for the system of reference chosen, k is a complex wave vector such that kj =637

(nj, lj), with j = P1, P2, S. In this case, the solutions of the plane wave analysis give638

the complex magnitude k whose real and imaginary components will satisfy the criteria639

mentioned above. Therefore both n and l will also fulfil the criteria.640
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APPENDIX B: SYSTEM OF EQUATIONS FOR A POROELASTIC641

THIN-LAYER MODEL642

In the Methodology Section we showed that 6 boundary conditions must be set up for643

each fracture surface644

uΩ1
x (x, 0, ω) = uΩ2

x (x, 0, ω), (B1a)

uΩ1
y (x, 0, ω) = uΩ2

y (x, 0, ω), (B1b)

wΩ1
y (x, 0, ω) = wΩ2

y (x, 0, ω), (B1c)

pΩ1
f (x, 0, ω) = pΩ2

f (x, 0, ω), (B1d)

τΩ1
xy (x, 0, ω) = τΩ2

xy (x, 0, ω), (B1e)

τΩ1
yy (x, 0, ω) = τΩ2

yy (x, 0, ω), (B1f)

uΩ2
x (x, h, ω) = uΩ3

x (x, h, ω), (B1g)

uΩ2
y (x, h, ω) = uΩ3

y (x, h, ω), (B1h)

wΩ2
y (x, h, ω) = wΩ3

y (x, h, ω), (B1i)

pΩ2
f (x, h, ω) = pΩ3

f (x, h, ω), (B1j)

τΩ2
xy (x, h, ω) = τΩ3

xy (x, h, ω), (B1k)

τΩ2
yy (x, h, ω) = τΩ3

yy (x, h, ω). (B1l)

Using Eqs. B1a, B1g, Eq. 6 and the fact that the incident fast P-wave is assumed to be645

homogeneous, it can be verified that646

nIP1
= kIP1

sin(θIP1
) = nqj ,

for q = R,U,D, T and j = P1, P2, S.

(B2)

This is the generalized Snell’s law for a thin-layer model (Rubino et al., 2006) and allows us647

to determine the components of the wave vector for each type of wave as functions of the648

incidence angle.649

Using Snell’s law (Eq. B2), the boundary conditions (Eqs. B1) and the linear relation650

between the potential amplitudes corresponding to the relative fluid displacement and to651
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the solid displacement field652

γΩi = BΩi
j /A

Ωi
j , j = P1, P2, S, (B3)

which can be computed from Eqs. A6, yield the following 12 × 12 linear system of equations653

whose solution provides the set of wave amplitudes as a function of frequency and incidence654

angle655

nAIP1
=− nARP1

− nARP2
− lΩ1

S ARS + nAUP1
+ nAUP2

+ lΩ2
S AUS

+nADP1
+ nADP2

− lΩ2
S ADS ,

(uΩ1
x = uΩ2

x at Γ1)

(B4)

lΩ1
P1
AIP1

=lΩ1
P1
ARP1

+ lΩ1
P2
ARP2
− nARS − l

Ω2
P1
AUP1
− lΩ2

P2
AUP2

+nAUS + lΩ2
P1
ADP1

+ lΩ2
P2
ADP2

+ nADS ,

(uΩ1
y = uΩ2

y at Γ1)

(B5)

aΩ1
P1
AIP1

=aΩ1
P1
ARP1

+ aΩ1
P2
ARP2
− bΩ1

S A
R
S − a

Ω2
P1
AUP1
− aΩ2

P2
AUP2

+bΩ2
S A

U
S + aΩ2

P1
ADP1

+ aΩ2
P2
ADP2

+ bΩ2
S A

D
S ,

(wΩ1
y = wΩ2

y at Γ1)

(B6)

−fΩ1
P1
AIP1

=fΩ1
P1
ARP1

+ fΩ1
P2
ARP2
− fΩ2

P1
AUP1
− fΩ2

P2
AUP2

−fΩ2
P1
ADP1
− fΩ2

P2
ADP2

,

(pΩ1
f = pΩ2

f at Γ1)

(B7)

gΩ1
P1
AIP1

=gΩ1
P1
ARP1

+ gΩ1
P2
ARP2

+ cΩ1
S A

R
S − g

Ω2
P1
AUP1

−gΩ2
P2
AUP2
− cΩ2

S A
U
S + gΩ2

P1
ADP1

+gΩ2
P2
ADP2
− cΩ2

S A
D
S ,

(τΩ1
xy = τΩ2

xy at Γ1)

(B8)

hΩ1
P1
AIP1

=− hΩ1
P1
ARP1
− hΩ1

P2
ARP2

+ gΩ1
S ARS + hΩ2

P1
AUP1

+hΩ2
P2
AUP2
− gΩ2

S AUS + hΩ2
P1
ADP1

+ hΩ2
P2
ADP2

+gΩ2
S ADS ,

(τΩ1
yy = τΩ2

yy at Γ1)

(B9)
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0 =− neil
Ω2
P1
hAUP1

− neil
Ω2
P2
hAUP2

− lΩ2
S eil

Ω2
S hAUS

−ne−il
Ω2
P1
hADP1

− ne−il
Ω2
P2
hADP2

+ lΩ2
S e−il

Ω2
S hADS

+ne−il
Ω3
P1
hATP1

+ ne−il
Ω3
P2
hATP2

− lΩ3
S e−il

Ω3
S hATS ,

(uΩ2
x = uΩ3

x at Γ2)

(B10)

0 =lΩ2
P1
eil

Ω2
P1
hAUP1

+ lΩ2
P2
eil

Ω2
P2
hAUP2

− neil
Ω2
S hAUS

−lΩ2
P1
e−il

Ω2
P1
hADP1

− lΩ2
P2
e−il

Ω2
P2
hADP2

− ne−il
Ω2
S hADS

+lΩ3
P1
e−il

Ω3
P1
hATP1

+ lΩ3
P2
e−il

Ω3
P2
hATP2

+ ne−il
Ω3
S hATS ,

(uΩ2
y = uΩ3

y at Γ2)

(B11)

0 =aΩ2
P1
eil

Ω2
P1
hAUP1

+ aΩ2
P2
eil

Ω2
P2
hAUP2

− bΩ2
S e

il
Ω2
S hAUS

−aΩ2
P1
e−il

Ω2
P1
hADP1

− aΩ2
P2
e−il

Ω2
P2
hADP2

− bΩ2
S e
−ilΩ2

S hADS

+aΩ3
P1
e−il

Ω3
P1
hATP1

+ aΩ3
P2
e−il

Ω3
P2
hATP2

+ bΩ3
S e
−ilΩ3

S hATS ,

(wΩ2
y = wΩ3

y at Γ2)

(B12)

0 =fΩ2
P1
eil

Ω2
P1
hAUP1

+ fΩ2
P2
eil

Ω2
P2
hAUP2

+ fΩ2
P1
e−il

Ω2
P1
hADP1

+fΩ2
P2
e−il

Ω2
P2
hADP2

− fΩ3
P1
e−il

Ω3
P1
hATP1

− fΩ3
P2
e−il

Ω3
P2
hATP2

,

(pΩ2
f = pΩ3

f at Γ2)

(B13)

0 =gΩ2
P1
eil

Ω2
P1
hAUP1

+ gΩ2
P2
eil

Ω2
P2
hAUP2

+ cΩ2
S e

il
Ω2
S hAUS

−gΩ2
P1
e−il

Ω2
P1
hADP1

− gΩ2
P2
e−il

Ω2
P2
hADP2

+ cΩ2
S e
−ilΩ2

S hADS

+gΩ3
P1
e−il

Ω3
P1
hATP1

+ gΩ3
P2
e−il

Ω3
P2
hATP2

− cΩ3
S e
−ilΩ3

S hATS ,

(τΩ2
xy = τΩ3

xy at Γ2)

(B14)

0 =− hΩ2
P1
eil

Ω2
P1
hAUP1

− hΩ2
P2
eil

Ω2
P2
hAUP2

+ gΩ2
S eil

Ω2
S hAUS

−hΩ2
P1
e−il

Ω2
P1
hADP1

− hΩ2
P2
e−il

Ω2
P2
hADP2

− gΩ2
S e−il

Ω2
S hADS

+hΩ3
P1
e−il

Ω3
P1
hATP1

+ hΩ3
P2
e−il

Ω3
P2
hATP2

+ gΩ3
S e−il

Ω3
S hATS ,

(τΩ2
yy = τΩ3

yy at Γ2)

(B15)
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with656

a
Ωj
i = l

Ωj
i γ

Ωj
i ,

b
Ωj
S = nγ

Ωj
S ,

c
Ωj
S = µΩj [(l

Ωj
S )2 − n2],

f
Ωj
i = (k

Ωj
i )2MΩj(αΩj + γ

Ωj
i ),

g
Ωj
i = 2µΩjnl

Ωj
i ,

h
Ωj
i = 2µΩj(l

Ωj
i )2 + (k

Ωj
i )2[MΩjαΩjγ

Ωj
i + λΩj ],

for j = 1, 2, 3 and i = P1, P2.

(B16)

From the solution of the system of equations given by Eqs. B4-B15 we obtain the amplitudes657

of the potentials, which allow us to compute the reflection coefficients.658

APPENDIX C: ENERGY COEFFICIENTS659

The poroelastic variables derived in Appendix B can be used to evaluate the energy660

coefficients. Rubino et al. (2006) present a formal generalization to the expression of the661

energy flux Umov-Poynting vector for a porous composite medium. Here, we proceed anal-662

ogously, but we consider only one solid phase instead of the two solid phases involved in663

composite media. The general expression for the energy balance equation in the frequency664

domain remains the same665

iω

∫
V

2(W − T )dV −
∫
V

(D̂W + D̂T )dV =

∫
δV

P · νdS, (C1)

where T and W are the kinetic and strain energy densities and D̂T and D̂W are the666

rates of dissipation of the corresponding energy densities over a volume V . δV represents667

the surface of V with outer normal ν. In this case, the complex Umov-Pointing vector P in668

Eq. C1 has components Pk equal to669

Pk(u,w) = −iω
2

(τkj(uj)
∗ − pf (wk)∗), for k, j = x, y, (C2)

where the symbol ∗ denotes the complex conjugate and the sum convention is applied on670
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the index j. Moreover, the real Umov-Poynting vector PR =PRkĕk with components671

PRk = −(Re(τkj)Re(iωuj)−Re(pf )Re(iωwk)), (C3)

has continuous normal components at the interfaces Γ1 and Γ2 as a consequence of the672

boundary conditions (Eqs. B1). The time-average of the normal component of the energy673

flux is given by674

F =
ω

2π

∫ 2π
ω

0

PR · ĕydt =
ω

2π

∫ 2π
ω

0

PRydt, (C4)

and it represents the magnitude and direction of the time-averaged power flow. Applying675

the superposition principle, F can be split into different components associated with the676

different wave modes present in each part of the medium. Hence, the partial orthodox fluxes677

Fk,k (same Biot wave mode) are defined as678

Fk,k =
ω

2π

∫ 2π
ω

0

−[Re(τyj,k)Re(iωuj,k)

−Re(pf,k)Re(iωwy,k)]dt, for j = x, y.

(C5)

And the interference fluxes Fk,q (mixed Biot wave modes) are given by679

Fk,q =
ω

2π

∫ 2π
ω

0

−(Re(τyj,k)Re(iωuj,q)

+Re(τyj,q)Re(iωuj,k)

−Re(pf,k)Re(iωwy,q)

−Re(pf,q)Re(iωwy,k))dt, for j = x, y

(C6)

where k, q = IP1 , RP1 , RP2 , RS in Ω1, k, q = LP1 , LP2 , LS in Ω2, and k, q = TP1 , TP2 , TS in Ω3680

denote the wave associated with the variable and the sum convention is applied on the index681

j. The symbols Lj refer to the variables computed using the upgoing and downgoing waves682

within the fracture.683
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The energy balance written in terms of the interference and orthodox fluxes result684

FI,P1 =− FRP1
,RP1
− FRP2

,RP2
− FRS ,RS

−FRP1
,RP2
− FRP2

,RS − FRP1
,RS

+FLP1
,LP1

+ FLP2
,LP2

+ FLS ,LS

+FLP1
,LP2

+ FLP2
,LS + FLP1

,LS , at Γ1

(C7a)

FFP1
,FP1

+ FFP2
,FP2

+ FFS ,FS + FFP1
,FP2

+ FFP2
,FS

+FFP1
,FS = FTP1

,TP1
+ FTP2

,TP2
+ FTS ,TS

+FTP1
,TP2

+ FTP2
,TS + FTP1

,TS , at Γ2

(C7b)

where685

FI,P1 = FIP1
,IP1

+ FIP1
,RP1

+ FIP1
,RP2

+ FIP1
,Rs , (C8)

is the incident energy flux for P1 incidence. Finally, from these fluxes it is possible to define686

the energy reflection and transmission coefficients as687

ERP1,j =
FRj,Rj
FI,P1

,

ETP1,j =
FTj,T j
FI,P1

, j = P1, P2, S.

(C9)
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TABLE I. Material properties of the reference model considered in this study.

Property Background Fracture

Grain bulk modulus Ks [GPa] 36 36

Grain density ρs [g/cm3] 2.7 2.7

Porosity φ 0.15 0.8

Frame bulk modulus Km [GPa] 9 0.056

Frame shear modulus µm [GPa] 7 0.033

Permeability κ [D] 0.1 100

Tortuosity S 3 1

Thickness h [m] - 0.001

Fluid density ρf [g/cm3] 1

Fluid bulk modulus Kf [GPa] 2.25

Fluid viscosity η [Poise] 0.01
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poroelastic models for a) fast P-wave and b) S-wave reflection coefficients.764

The considered material properties are given in Table 1. . . . . . . . . . . . 23765

FIG. 7 (Color Online) Slow P-wave reflected and transmitted orthodox fluxes relative766

to the reflected orthodox flux of the fast P-wave. The considered material767
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and b) magnitude of the relative differences between the elastic and poroe-771
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FIG. 11 (Color Online) Absolute value of the relative difference of P-wave reflection782

coefficients for elastic and poroelastic models as a function of incidence angle783

and frequency for a) a fracture stiffer (Km=0.55 GPa and µm=0.33 GPa) and784

b) softer (Km=0.0056 GPa and µm=0.0033 GPa) than the reference scenario. 30785

FIG. 12 (Color Online) Absolute value of the relative difference of P-wave reflection786

coefficients for elastic and poroelastic models as a function of incidence angle787

and frequency for fracture apertures of a) 10 mm and b) 0.1 mm. . . . . . . 32788

FIG. 13 (Color Online) P-wave reflection coefficient as a function of incidence angle for789

equal ratios of wavelength to fracture thickness for three cases characterized790

by different fracture apertures (case 1: 1mm, case 2: 10mm, case 3: 0.1791
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