Extremes of homogeneous Gaussian random fields

Krzysztof Dȩbicki ${ }^{1}$, Enkelejd Hashorva ${ }^{2}$, Natalia Soja-Kukieła ${ }^{3}$
1. Mathematical Institute, University of Wroctaw, pl. Grunwaldzki 2/4, 50-384 Wroctaw, Poland,
2. Department of Actuarial Science, Faculty of Business and Economics,
University of Lausanne, UNIL-Dorigny 1015 Lausanne, Switzerland
3. Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland

December 11, 2013

Abstract

Let $\{X(s, t): s, t \geqslant 0\}$ be a centered homogeneous Gaussian field with a.s. continuous sample paths and correlation function $r(s, t)=\operatorname{Cov}(X(s, t), X(0,0))$ such that $$
r(s, t)=1-|s|^{\alpha_{1}}-|t|^{\alpha_{2}}+o\left(|s|^{\alpha_{1}}+|t|^{\alpha_{2}}\right), \quad s, t \rightarrow 0
$$ with $\alpha_{1}, \alpha_{2} \in(0,2]$, and $r(s, t)<1$ for $(s, t) \neq(0,0)$. In this contribution we derive an exact asymptotic expansion (as $u \rightarrow \infty$) of $$
\mathbb{P}\left(\sup _{\left(s n_{1}(u), t n_{2}(u)\right) \in[0, x] \times[0, y]} X(s, t) \leqslant u\right),
$$ where $n_{1}(u) n_{2}(u)=u^{2 / \alpha_{1}+2 / \alpha_{2}} \Psi(u)$, which holds uniformly for $(x, y) \in[A, B]^{2}$ with A, B two positive constants and Ψ the survival function of an $N(0,1)$ random variable. We apply our findings to the analysis of asymptotics of extremes of homogeneous Gaussian fields over more complex parameter sets and a ball of random radius. Additionally we determine the extremal index of the discretised random field determined by $X(s, t)$.

Key words: Gaussian random fields; supremum; tail asymptoticy; extremal index; Berman condition; strong dependence.

1 Introduction

One of the seminal results in extreme value theory of Gaussian processes is the asymptotic behaviour of the distribution of supremum of a centered stationary Gaussian process $\{X(t)$: $t \geqslant 0\}$ with correlation function satisfying

$$
\begin{equation*}
r(t)=\operatorname{Cov}(X(t), X(0))=1-|t|^{\alpha}+o\left(|t|^{\alpha}\right) \text { as } t \rightarrow 0 \text { with } \alpha \in(0,2], \tag{1}
\end{equation*}
$$

over intervals of length proportional to

$$
\mu(u)=P\left(\sup _{t \in[0,1]} X(t)>u\right)^{-1}(1+o(1)),
$$

see, e.g., Leadbetter et al. [8 Theorem 12.3.4], Arendarczyk and Dȩbicki 1 Lemma 4.3], Tan and Hashorva 15 Lemma 3.3]. The following theorem gives a preliminary result concerning the aforementioned asymptotics.

Theorem 1. Let $\{X(t): t \geqslant 0\}$ be a centered stationary Gaussian process that satisfies (1), and let $0<A_{0}<A_{\infty}<\infty$ and $x>0$ be arbitrary constants. If $r(t) \log t \rightarrow r \in[0, \infty)$ as $t \rightarrow \infty$, then

$$
P\left(\sup _{t \in[0, x \mu(u)]} X(t) \leqslant u\right) \rightarrow E(\exp (-x \exp (-r+\sqrt{2 r} \mathcal{W}))) \in(0, \infty)
$$

as $u \rightarrow \infty$, uniformly for $x \in\left[A_{0}, A_{\infty}\right]$, with \mathcal{W} an $N(0,1)$ random variable.
The main goal of this paper is to derive an analogue of the above result for Gaussian random fields; see part (i) of Theorem 2 which constitutes a 2-dimensional counterpart of Theorem [1

As an application of our findings, in Section 3 we investigate asymptotics of the tail of supremum of a homogeneous Gaussian field over a parameter sets that are approximable by simple sets (part (ii) of Theorem (2) and a ball of random radius. Additionally we analyze the existence of the extremal index for discrete-parameter fields associated with homogeneous Gaussian fields with covariance structure satisfying some regularity conditions; see Proposition 2

2 Preliminaries

Let $\{X(s, t): s, t \geqslant 0\}$ be a centered homogeneous Gaussian field with a.s. continuous sample paths and correlation function $r(s, t)=\operatorname{Cov}(X(s, t), X(0,0))$ such that
A1: $r(s, t)=1-|s|^{\alpha_{1}}-|t|^{\alpha_{2}}+o\left(|s|^{\alpha_{1}}+|t|^{\alpha_{2}}\right)$ as $s, t \rightarrow 0$ with $\alpha_{1}, \alpha_{2} \in(0,2]$;
A2: $r(s, t)<1$ for $(s, t) \neq(0,0)$;
A3: $\sup _{(s, t) \in \mathcal{S}(0, d)}|r(s, t) \log d-r| \rightarrow 0$ as $d \rightarrow \infty$, with $r \in[0, \infty)$,
where $\mathcal{S}(0, d)$ denotes the sphere of center $(0,0)$ and radius $d>0$ in \mathbb{R}^{2} with Euclidean metric.
We distinguish two separate families of Gaussian fields

- weakly dependent fields, satisfying A3 with $r=0$,
- strongly dependent fields, satisfying A3 with $r \in(0, \infty)$.

Let \mathcal{H}_{α} denote the Pickands constant (see [11), i.e.,

$$
\mathcal{H}_{\alpha}:=\lim _{T \rightarrow \infty} \frac{E \exp \left(\max _{0 \leqslant t \leqslant T} \chi(t)\right)}{T}
$$

where $\chi(t)=B_{\alpha / 2}(t)-|t|^{\alpha}$, with $\left\{B_{\alpha / 2}(t): t \geqslant 0\right\}$ being a fractional Brownian motion with Hurst parameter $\alpha / 2 \in(0,1]$. We note in passing that \mathcal{H}_{α} appears for the first time in Pickands theorem [11; a correct proof of that theorem is first given in Piterbarg [12].

For a standard normal random variable \mathcal{W} we write $\Phi(u)=P(\mathcal{W} \leqslant u), \Psi(u)=P(\mathcal{W}>u)$. Recall that

$$
\Psi(u)=\frac{1}{\sqrt{2 \pi} u} \exp \left(-u^{2} / 2\right)(1+o(1)), \quad \text { as } u \rightarrow \infty
$$

Following Piterbarg [13, Theorem 7.1] we recall that for a centered stationary Gaussian field $\{X(s, t)\}$ satisfying A1, A2, for arbitrary $g, h \in(0, \infty)$,

$$
\begin{equation*}
P\left(\max _{(s, t) \in[0, g] \times[0, h]} X(s, t)>u\right)=\mathcal{H}_{\alpha_{1}} \mathcal{H}_{\alpha_{2}} g h u^{2 / \alpha_{1}} u^{2 / \alpha_{2}} \Psi(u)(1+o(1)), \tag{2}
\end{equation*}
$$

as $u \rightarrow \infty$.
Let $m_{1}(u) \rightarrow \infty$ and $m_{2}(u) \rightarrow \infty$ be functions such that

$$
m_{1}(u)=a_{1}(u) / \sqrt{\Psi(u)} \quad \text { and } \quad m_{2}(u)=a_{2}(u) / \sqrt{\Psi(u)}
$$

for some positive functions $a_{1}(u), a_{2}(u)$ satisfying $a_{1}(u) a_{2}(u)=\left(\mathcal{H}_{\alpha_{1}} \mathcal{H}_{\alpha_{2}} u^{2 / \alpha_{1}} u^{2 / \alpha_{2}}\right)^{-1}, \log a_{1}(u)=$ $o\left(u^{2}\right)$ and $\log a_{2}(u)=o\left(u^{2}\right)$. We note that then

$$
m(u):=m_{1}(u) m_{2}(u)=P\left(\max _{(s, t) \in[0,1]^{2}} X(s, t)>u\right)^{-1}(1+o(1)),
$$

as $u \rightarrow \infty$.
By $\mathcal{B}(0, x)$ we denote a ball in \mathbb{R}^{2} of center at $(0,0)$ and radius x.

3 Main results

The aim of this section is to prove the following 2-dimensional counterpart of Theorem 1 Recall that \mathcal{W} denotes an $N(0,1)$ random variable. For a given Jordan-measurable set $\mathcal{E} \subset$ \mathbb{R}^{2} with Lebesgue measure $\operatorname{mes}(\mathcal{E})>0$ let $\mathcal{E}_{u}:=\left\{(x, y):\left(x / m_{1}(u), y / m_{2}(u)\right) \in \mathcal{E}\right\}$. One interesting example is $\mathcal{E}_{u}=\left[0, x m_{1}(u)\right] \times\left[0, y m_{2}(u)\right]$ for x, y positive, hence $\mathcal{E}=[0, x] \times[0, y]$ and $\operatorname{mes}(\mathcal{E})=x y$. For such \mathcal{E}_{u} we shall show below an approximation which holds uniformly on compact intervals of $(0, \infty)^{2}$. If the structure of the set is not specified, considering thus the supremum of a Gaussian field over some general measurable set $\mathcal{T}_{u} \subset \mathbb{R}^{2}$ an ϵ-net $\left(\mathcal{L}_{\varepsilon}, \mathcal{U}_{\varepsilon}\right)$ approximation of \mathcal{T}_{u} will be assumed. Specifically, the ϵ-net $\left(\mathcal{L}_{\varepsilon}, \mathcal{U}_{\varepsilon}\right)$ here means that for any $\varepsilon>0$ there exist two sets $\mathcal{L}_{\varepsilon}$ and $\mathcal{U}_{\varepsilon}$ which are simple sets (i.e., finite sums of disjoint rectangles of the form $\left.\left[a_{1}, b_{1}\right) \times\left[a_{2}, b_{2}\right)\right)$ such that

$$
\begin{equation*}
\lim _{\varepsilon \downarrow 0} \operatorname{mes}\left(\mathcal{L}_{\varepsilon}\right)=\lim _{\varepsilon \downarrow 0} \operatorname{mes}\left(\mathcal{U}_{\varepsilon}\right)=c \in(0, \infty) \tag{3}
\end{equation*}
$$

and
$\mathcal{L}_{\varepsilon, u}=\left\{(x, y):\left(x / m_{1}(u), y / m_{2}(u)\right) \in \mathcal{L}_{\varepsilon}\right\} \subset \mathcal{T}_{u} \subset \mathcal{U}_{\varepsilon, u}=\left\{(x, y):\left(x / m_{1}(u), y / m_{2}(u)\right) \in \mathcal{U}_{\varepsilon}\right\} \subset \mathbb{R}^{2}$.
Next we formulate our main results for these two cases.
Theorem 2. Let $\{X(s, t): s, t \geqslant 0\}$ be a centered homogeneous Gaussian field with covariance function that satisfies A1, A2 and $\boldsymbol{A} 3$ with $r \in[0, \infty)$. Then,
(i) for each $0<A<B<\infty$,

$$
\mathbb{P}\left(\sup _{(s, t) \in\left[0, x m_{1}(u)\right] \times\left[0, y m_{2}(u)\right]} X(s, t) \leqslant u\right) \rightarrow \mathbb{E}(\exp (-x y \exp (-2 r+2 \sqrt{r} \mathcal{W}))),
$$

as $u \rightarrow \infty$, uniformly for $(x, y) \in[A, B]^{2}$.
(ii) for $\mathcal{T}_{u} \subset \mathbb{R}^{2}, u>0$ such that there exists an ϵ-net $\left(\mathcal{L}_{\varepsilon}, \mathcal{U}_{\varepsilon}\right)$ satisfying (3)

$$
\mathbb{P}\left(\sup _{(s, t) \in \mathcal{T}_{u}} X(s, t) \leqslant u\right) \rightarrow \mathbb{E}(\exp (-c \exp (-2 r+2 \sqrt{r} \mathcal{W}))), \text { as } u \rightarrow \infty
$$

The complete proof of Theorem 2 is given in Section 5.1.
Remark 1. Following the same reasoning as given in the proof of Theorem 园, assuming that A1-A3 holds, for each $0<A<B<\infty$, we have

$$
\begin{equation*}
\mathbb{P}\left(\sup _{(s, t) \in \mathcal{B}(0, x \sqrt{m(u)})} X(s, t) \leqslant u\right) \rightarrow \mathbb{E}\left(\exp \left(-\pi x^{2} \exp (-2 r+2 \sqrt{r} \mathcal{W})\right)\right), \tag{4}
\end{equation*}
$$

as $u \rightarrow \infty$, uniformly for $x \in[A, B] ; \mathcal{B}(0, x)$ is a ball in \mathbb{R}^{2} of center at $(0,0)$ and radius x.

4 Applications

In this section we apply results of Section 3 to the analysis of the asymptotic properties of supremum of a Gaussian field over a random parameter set and to the analysis of dependance structure of homogeneous Gaussian fields.

4.1 Extremes of homogeneous Gaussian fields over a random parameter set

In this section we analyze asymptotic properties of the tail distribution of $\sup _{(s, t) \in \mathcal{B}(0, T)} X(s, t)>$ u), where T is a nonnegative, independent of X random variable. One-dimensional counterpart of this problem was recently analyzed in [1] and 15.
Proposition 1. Let $\{X(s, t): s, t \geqslant 0\}$ be a centered homogeneous Gaussian field with covariance function that satisfies $\boldsymbol{A 1} \mathbf{1 - A 3}$ with $r \in[0, \infty)$, and let T be an independent of X nonnegative random variable.
(i) If $E T^{2}<\infty$, then, as $u \rightarrow \infty$,

$$
P\left(\sup _{(s, t) \in \mathcal{B}(0, T)} X(s, t)>u\right)=\pi E T^{2} \mathcal{H}_{\alpha_{1}} \mathcal{H}_{\alpha_{2}} u^{2 / \alpha_{1}} u^{2 / \alpha_{2}} \Psi(u)(1+o(1)) .
$$

(ii) If T has a regularly varying survival function at infinity with index $\lambda<2$, then as $u \rightarrow \infty$,

$$
P\left(\sup _{(s, t) \in \mathcal{B}(0, T)} X(s, t)>u\right)=2 \pi \mathcal{C} P(T>\sqrt{m(u)})(1+o(1))
$$

where $\mathcal{C}=\int_{0}^{\infty} x^{1-\lambda} E\left(\exp \left(-\pi x^{2} \exp \left(\mathcal{V}_{r}\right)+\mathcal{V}_{r}\right)\right) d x$ and $\mathcal{V}_{r}=2 \sqrt{r} \mathcal{W}-2 r$.
(iii) If T is slowly varying at ∞, then, as $u \rightarrow \infty$,

$$
P\left(\sup _{(s, t) \in \mathcal{B}(0, T)} X(s, t)>u\right)=P(T>\sqrt{m(u)})(1+o(1))
$$

The proof of Proposition 1 is given in Section 5.2

4.2 Extremal indices for homogeneous Gaussian fields

Following [5], we say that $\theta \in(0,1]$ is the extremal index of a homogeneous discrete-parameter stationary random field $\left\{X_{j, k}: j, k=1,2, \ldots\right\}$, if

$$
\begin{equation*}
P\left(\max _{j \leqslant a_{n}, k \leqslant b_{n}} X_{j, k} \leqslant z_{n}\right)-P\left(X_{1,1} \leqslant z_{n}\right)^{a_{n} b_{n} \cdot \theta} \rightarrow 0 \tag{5}
\end{equation*}
$$

as $n \rightarrow \infty$, for each sequence $\left(z_{n}\right) \subset \mathbb{R}$ and all sequences $\left(a_{n}\right),\left(b_{n}\right) \subset \mathbb{N}$ such that $a_{n} \rightarrow \infty$ and $b_{n} \rightarrow \infty$, as $n \rightarrow \infty$, and $1 / C \leqslant a_{n} / b_{n} \leqslant C$ for some constant $C>0$. The notion of extremal index θ originated in investigations concerning relationship between the dependence structure of discrete-parameter stationary sequences of random variables and their extremal behaviour [7, 8, ; see also [10, 3, 4, 6, 9, 16].

For a given centered homogeneous Gaussian field $\{X(s, t): s, t \geq 0\}$ that satisfies A1-A3 introduce a discrete-parameter random field $\left\{\widetilde{X}_{j, k}: j, k=1,2, \ldots\right\}$, with

$$
\widetilde{X}_{j, k}:=\sup _{(s, t) \in[j-1, j] \times[k-1, k]} X(s, t)
$$

The following proposition points out how the difference in the dependance structure between weakly- and strongly-dependant Gaussian fields influences the existence of the extremal index of the associated field $\left\{\widetilde{X}_{j, k}\right\}$.

Proposition 2. Assume that A1-A3 holds for a centered homogeneous Gaussian field $\{X(s, t)$: $s, t \geqslant 0\}$.
(i) If $r=0$, then the extremal index of $\left\{\widetilde{X}_{j, k}: j, k=1,2, \ldots\right\}$ equals to 1 .
(ii) If $r>0$, then $\left\{\widetilde{X}_{j, k}: j, k=1,2, \ldots\right\}$ does not have an extremal index.

The proof of Proposition 2 is deferred to Section 5.3

5 Proofs

Before we prove Theorem 2 we need some auxiliary results. The first one is a 2 -dimensional version of Lemma 12.2.11 in 8].
Lemma 1. Assume that A1, A2 hold and $q_{1}=q_{1}(u)=a u^{-2 / \alpha_{1}}, q_{2}=q_{2}(u)=a u^{-2 / \alpha_{2}}$ for some $a>0$. Then for any $x, y \geqslant 0, g, h>0$ and rectangle $I=(x, y)+[0, g] \times[0, h]$, as $u \rightarrow \infty$,

$$
P\left(X\left(j q_{1}, k q_{2}\right) \leqslant u ;\left(j q_{1}, k q_{2}\right) \in I\right)-P(X(s, t) \leqslant u ; \quad(s, t) \in I) \leqslant \frac{g h \rho(a)}{m(u)}+o\left(\frac{1}{m(u)}\right)
$$

where $\rho(a) \rightarrow 0$ as $a \rightarrow 0$.
Proof. From the homogeneity of the field $\{X(s, t)\}$ we conclude that

$$
\begin{aligned}
0 \leqslant & P\left(X\left(j q_{1}, k q_{2}\right) \leqslant u ;\left(j q_{1}, k q_{2}\right) \in I\right)-P(X(s, t) \leqslant u ;(s, t) \in I) \\
& \leqslant\left(\left[g / q_{1}\right]+\left[h / q_{2}\right]+1\right) P(X(0,0)>u)+P\left(X\left(j q_{1}, k q_{2}\right) \leqslant u ;\left(j q_{1}, k q_{2}\right) \in[0, g] \times[0, h]\right) \\
& -P(X(s, t) \leqslant u ; \quad(s, t) \in[0, g] \times[0, h])
\end{aligned}
$$

Then there exists a constant K such that

$$
\left(\left[g / q_{1}\right]+\left[h / q_{2}\right]+1\right) P(X(0,0)>u) m(u) \leqslant \frac{K\left(u^{2 / \alpha_{1}}+u^{2 / \alpha_{2}}\right) \Psi(u)}{\mathcal{H}_{\alpha_{1}} \mathcal{H}_{\alpha_{2}} u^{2 / \alpha_{1}} u^{2 / \alpha_{2}} \Psi(u)}
$$

which implies that $\left(\left[g / q_{1}\right]+\left[h / q_{2}\right]+1\right) P(X(0,0)>u)=o\left(\frac{1}{m(u)}\right)$, as $u \rightarrow \infty$.
Let $T>0$ be given. We divide the set $[0, g] \times[0, h]$ into small rectangles with the side-lengths $q_{1} T$ and $q_{2} T$ in the following way

$$
\begin{aligned}
\Delta_{1,1} & :=\left[0, q_{1} T\right] \times\left[0, q_{2} T\right] \\
\Delta_{l, m} & :=\left((l-1) q_{1} T,(m-1) q_{2} T\right)+\Delta_{1,1}
\end{aligned}
$$

for $l=1, \ldots,\left\lfloor\frac{g}{q_{1} T}\right\rfloor$ and $m=1, \ldots,\left\lfloor\frac{h}{q_{2} T}\right\rfloor$. Then we have that

$$
\begin{align*}
& P\left(X\left(j q_{1}, k q_{2}\right) \leqslant u ;\left(j q_{1}, k q_{2}\right) \in[0, g] \times[0, h]\right)-P(X(s, t) \leqslant u ;(s, t) \in[0, g] \times[0, h]) \\
& \quad \leqslant P\left(\sup _{(s, t) \in[0, g] \times[0, h]} X(s, t)>u\right)-\sum_{l=1}^{\left\lfloor\frac{g}{q_{1} T}\right\rfloor\left\lfloor\frac{h}{q_{2} T}\right\rfloor} \sum_{m=1} P\left(\max _{\left(j q_{1}, k q_{2}\right) \in \Delta_{l, m}} X\left(j q_{1}, k q_{2}\right)>u\right) \\
& \quad+\sum_{(l, m) \neq\left(l^{\prime}, m^{\prime}\right)} P\left(\max _{\left(j q_{1}, k q_{2}\right) \in \Delta_{l, m}} X\left(j q_{1}, k q_{2}\right)>u, \max _{\left(j q_{1}, k q_{2}\right) \in \Delta_{l^{\prime}, m^{\prime}}} X\left(j q_{1}, k q_{2}\right)>u\right) . \tag{6}
\end{align*}
$$

From [13, Lemma 7.1], as $u \rightarrow \infty$,

$$
\begin{equation*}
P\left(\sup _{(s, t) \in[0, g] \times[0, h]} X(s, t)>u\right)=\mathcal{H}_{\alpha_{1}} \mathcal{H}_{\alpha_{2}} g h u^{2 / \alpha_{1}} u^{2 / \alpha_{2}} \Psi(u)(1+o(1)) . \tag{7}
\end{equation*}
$$

Moreover, by homogeneity of $X(\cdot, \cdot)$,

$$
\begin{equation*}
\sum_{l=1}^{\left\lfloor\frac{g}{q_{1} T}\right\rfloor\left\lfloor\frac{h}{q_{2} T}\right\rfloor} \sum_{m=1}^{\left.\max _{\left(j q_{1}, k q_{2}\right) \in \Delta_{l, m}} X\left(j q_{1}, k q_{2}\right)>u\right) \sim \frac{g h u^{2 / \alpha_{1}} u^{2 / \alpha_{2}}}{a^{2} T^{2}} P\left(\max _{\left(j q_{1}, k q_{2}\right) \in \Delta_{1,1}} X\left(j q_{1}, k q_{2}\right)>u\right) ~ . ~ . ~} \tag{8}
\end{equation*}
$$

We focus on the asymptotics of $P\left(\max _{\left(j q_{1}, k q_{2}\right) \in \Delta_{1,1}} X\left(j q_{1}, k q_{2}\right)>u\right)$. Following line-by-line the idea of the proof of Lemma D. 1 in [13] we have

$$
\begin{aligned}
& P\left(\max _{\left(j q_{1}, k q_{2}\right) \in \Delta_{1,1}} X\left(j q_{1}, k q_{2}\right)>u\right) \\
& \left.\quad \sim \Psi(u) \int_{-\infty}^{\infty} e^{w-w^{2} /\left(2 u^{2}\right)} P\left(\max _{(j a, k a) \in[0, a T]^{2}} \chi_{u}(j a, k a)>w\right) \left\lvert\, X(0,0)=u-\frac{w}{u}\right.\right) d w \\
& \quad \sim \Psi(u) H_{\alpha_{1}}(T, a) H_{\alpha_{2}}(T, a)
\end{aligned}
$$

where $H_{\alpha_{i}}(T, a):=E \exp \left(\max _{j \in[0, T]} B_{\alpha_{i} / 2}(j a)-|j a|^{\alpha_{i}}\right)$, with $B_{\alpha_{i} / 2}(\cdot)$ being a fractional Brownian motion with Hurst parameter $\alpha_{i} / 2$ for $i=1,2$ (see also (12.2.6) in proof of 8, Lemma 12.2.11]).

The above implies that, by (8),

$$
\begin{align*}
& \sum_{l=1}^{\left\lfloor\frac{g}{q_{1} T}\right\rfloor} \sum_{m=1}^{\left\lfloor\frac{h}{q_{2} T}\right\rfloor} P\left(\max _{\left(j q_{1}, k q_{2}\right) \in \Delta_{l, m}} X\left(j q_{1}, k q_{2}\right)>u\right) \\
& \quad=g h u^{2 / \alpha_{1}} u^{2 / \alpha_{2}} \Psi(u)\left(\frac{H_{\alpha_{1}}(T, a)}{a T}\right)\left(\frac{H_{\alpha_{2}}(T, a)}{a T}\right)(1+o(1)) \tag{9}
\end{align*}
$$

as $u \rightarrow \infty$.
In the next step we prove that the double sum that appears in (6) is negligible, i.e., it is $o\left(\frac{1}{m(u)}\right)$. Indeed, notice that

$$
\begin{align*}
& \sum_{(m, l) \neq\left(m^{\prime}, l^{\prime}\right)} P\left(\max _{\left(j q_{1}, k q_{2}\right) \in \Delta_{m, l}} X\left(j q_{1}, k q_{2}\right)>u, \max _{\left(j q_{1}, k q_{2}\right) \in \Delta_{m^{\prime}, l^{\prime}}} X\left(j q_{1}, k q_{2}\right)>u\right) \\
& \quad \leqslant \sum_{(m, l) \neq\left(m^{\prime}, l^{\prime}\right)} P\left(\sup _{(s, t) \in \Delta_{m, l}} X(s, t)>u, \sup _{(s, t) \in \Delta_{m^{\prime}, l^{\prime}}} X(s, t)>u\right)=o\left(\frac{1}{m(u)}\right), \tag{10}
\end{align*}
$$

where (10) follows from the proof of [13, Lemma 6.1].
Now, combining (7), (9) and (10), we conclude that for any $T>0$ and $a>0$ it holds that

$$
\begin{aligned}
& P\left(X\left(j q_{1}, k q_{2}\right) \leqslant u ;\left(j q_{1}, k q_{2}\right) \in[0, g] \times[0, h]\right)-P(X(s, t) \leqslant u ;(s, t) \in[0, g] \times[0, h]) \\
& \quad \leqslant g h u^{2 / \alpha_{1}} u^{2 / \alpha_{2}} \Psi(u)\left(\mathcal{H}_{\alpha_{1}} \mathcal{H}_{\alpha_{2}}-\left(\frac{H_{\alpha_{1}}(T, a)}{a T}\right) \cdot\left(\frac{H_{\alpha_{2}}(T, a)}{a T}\right)\right)(1+o(1)) \\
& \quad=g h \frac{1-\left(\frac{H_{\alpha_{1}(T, a)}}{a T} \cdot \frac{H_{\alpha_{2}}(T, a)}{a T}\right) \mathcal{H}_{\alpha_{1}}^{-1} \mathcal{H}_{\alpha_{2}}^{-1}}{m(u)}+o\left(\frac{1}{m(u)}\right) .
\end{aligned}
$$

Finally, using that

$$
\lim _{a \rightarrow 0} \lim _{T \rightarrow \infty} \frac{H_{\alpha}(T, a)}{a T}=\mathcal{H}_{\alpha},
$$

see e.g. [8, Lemmas 12.2.4(i),12.2.7(i)], the thesis of the lemma is satisfied with

$$
\rho(a):=1-\lim _{T \rightarrow \infty}\left(\frac{H_{\alpha_{1}}(T, a)}{a T} \cdot \frac{H_{\alpha_{1}}(T, a)}{a T}\right) \mathcal{H}_{\alpha_{1}}^{-1} \mathcal{H}_{\alpha_{2}}^{-1} .
$$

This completes the proof.
Let

$$
\begin{align*}
\rho_{T}(s, t) & := \begin{cases}1, & 0 \leqslant \max (|s|,|t|)<1 ; \\
\left|r(s, t)-\frac{r}{\log T}\right|, & 1 \leqslant \max (|s|,|t|) \leqslant T,\end{cases} \tag{11}\\
\varrho_{T}(s, t) & := \begin{cases}|r(s, t)|+(1-r(s, t)) \frac{r}{\log T}, & 0 \leqslant \max (|s|,|t|)<1 ; \\
\frac{r}{\log T}, & 1 \leqslant \max (|s|,|t|) \leqslant T .\end{cases} \tag{12}
\end{align*}
$$

The next lemma combines a 2-dimensional counterpart of Lemma 12.3.1 in [8, for weakly dependent fields, and Lemma 3.1 in [15] for strongly dependent fields.
Lemma 2. Let $\varepsilon>0$ be given. Let $q_{1}=q_{1}(u)=a u^{-2 / \alpha_{1}}$ and $q_{2}=q_{2}(u)=a u^{-2 / \alpha_{2}}$. Suppose that $T_{1}=T_{1}(u) \sim \tau m_{1}(u)$ and $T_{2}=T_{2}(u) \sim \tau m_{2}(u)$ for some $\tau>0$, as $u \rightarrow \infty$. Then, providing that conditions A1, A2 and A3 with $r \in[0, \infty)$ are fulfilled,
$\frac{T_{1} T_{2}}{q_{1} q_{2}} \sum_{\left(j q_{1}, k q_{2}\right) \in\left[-T_{1}, T_{1}\right] \times\left[-T_{2}, T_{2}\right]-(-\varepsilon, \varepsilon)^{2}} \rho_{T_{\max }}\left(j q_{1}, k q_{2}\right) \exp \left(-\frac{u^{2}}{1+\max \left(\left|r\left(j q_{1}, k q_{2}\right)\right|, \varrho_{T_{\max }}\left(j q_{1}, k q_{2}\right)\right)}\right) \rightarrow 0$,
as $u \rightarrow \infty$, where $T_{\text {max }}=\max \left(T_{1}, T_{2}\right)$.
Proof. Let $T_{1}(u) \sim \tau m_{1}(u)$ and $T_{2}(u) \sim \tau m_{2}(u)$ for some $\tau>0$, as $u \rightarrow \infty$. Then,

$$
\log \left(T_{1} T_{2}\right)+\log \left(\frac{\mathcal{H}_{\alpha_{1}} \mathcal{H}_{\alpha_{2}}}{\sqrt{2 \pi}}\right)+\left(\frac{2}{\alpha_{1}}+\frac{2}{\alpha_{2}}-1\right) \log u-\frac{u^{2}}{2} \rightarrow 2 \log \tau .
$$

Thus

$$
u^{2} \sim 2 \log \left(T_{1} T_{2}\right)
$$

and

$$
\log u=\frac{1}{2} \log 2+\frac{1}{2} \log \log \left(T_{1} T_{2}\right)+o(1) .
$$

Moreover
$u^{2}=2 \log \left(T_{1} T_{2}\right)+\left(\frac{2}{\alpha_{1}}+\frac{2}{\alpha_{2}}-1\right) \log \log \left(T_{1} T_{2}\right)-4 \log \tau+2 \log \left(\frac{\mathcal{H}_{\alpha_{1}} \mathcal{H}_{\alpha_{2}}}{2 \sqrt{\pi}} 2^{1 / \alpha_{1}+1 / \alpha_{2}}\right)+o(1)$.
For $T>0$ put $\delta_{T}=\sup _{\varepsilon \leqslant \max (|s|,|t|) \leqslant T} \max \left(|r(s, t)|, \varrho_{T}(s, t)\right)$. It is straightforward to see that there exists $\delta<1$ such that for sufficiently large T we get

$$
\delta_{T}=\sup _{\varepsilon \leqslant \max (|s|,|t|) \leqslant T} \max \left(|r(s, t)|, \varrho_{T}(s, t)\right)<\delta<1,
$$

since δ_{T} is decreasing in T for large T. Let β be such that $0<\beta<\frac{1-\delta}{1+\delta}$. Divide $Q:=\left[-T_{1}, T_{1}\right] \times\left[-T_{2}, T_{2}\right]-(-\varepsilon, \varepsilon)^{2}$ into two subsets:

$$
\begin{aligned}
S^{*} & :=\left\{(s, t) \in Q:|s| \leqslant T_{1}^{\beta},|t| \leqslant T_{2}^{\beta}\right\} \\
S & :=Q-S^{*}
\end{aligned}
$$

Firstly, we show that

$$
\begin{equation*}
\frac{T_{1} T_{2}}{q_{1} q_{2}} \sum_{\left(j q_{1}, k q_{2}\right) \in S^{*}} \rho_{T_{\max }}(j q, k q) \exp \left(-\frac{u^{2}}{1+\max \left(|r(j q, k q)|, \varrho_{T_{\max }}(j q, k q)\right)}\right) \rightarrow 0 \tag{14}
\end{equation*}
$$

as $u \rightarrow \infty$. By (13) there exists a constant K such that $\exp \left(-u^{2} / 2\right) \leqslant \frac{K}{T_{1} T_{2}}$. Applying the fact that $u^{2} \sim 2 \log \left(T_{1} T_{2}\right)$ and $u^{2 / \alpha_{1}} q_{1}=u^{2 / \alpha_{2}} q_{2}=a$, for u large enough, we obtain

$$
\begin{aligned}
& \frac{T_{1} T_{2}}{q_{1} q_{2}} \sum_{\left(j q_{1}, k q_{2}\right) \in S^{*}} \rho_{T_{\max }}(j q, k q) \exp \left(-\frac{u^{2}}{1+\max \left(|r(j q, k q)|, \varrho_{T_{\max }}(j q, k q)\right)}\right) \\
& \quad \leqslant \frac{T_{1} T_{2}}{q_{1} q_{2}}\left(\frac{2 T_{1}^{\beta}}{q_{1}}+1\right)\left(\frac{2 T_{2}^{\beta}}{q_{2}}+1\right) \exp \left(-\frac{u^{2}}{1+\delta}\right) \sim 4 \frac{\left(T_{1} T_{2}\right)^{\beta+1}}{q_{1}^{2} q_{2}^{2}}\left(\exp \left(-\frac{u^{2}}{2}\right)\right)^{\frac{2}{1+\delta}} \\
& \quad \leqslant 4 K^{\frac{2}{1+\delta}} \frac{\left(T_{1} T_{2}\right)^{\beta+1-\frac{2}{1+\delta}}}{q_{1}^{2} q_{2}^{2}} \sim \frac{2^{2 / \alpha_{1}+2 / \alpha_{2}+2} K^{\frac{2}{1+\delta}}}{a^{4}}\left(\log \left(T_{1} T_{2}\right)\right)^{2 / \alpha_{1}+2 / \alpha_{2}}\left(T_{1} T_{2}\right)^{\beta-\frac{1-\delta}{1+\delta}} .
\end{aligned}
$$

Since we choose $\beta<\frac{1-\delta}{1+\delta}$, then (14) holds.

To complete the proof it suffices to show that, as $u \rightarrow \infty$,

$$
\begin{equation*}
\frac{T_{1} T_{2}}{q_{1} q_{2}} \sum_{\left(j q_{1}, k q_{2}\right) \in S} \rho_{T_{\max }}\left(j q_{1}, k q_{2}\right) \exp \left(-\frac{u^{2}}{1+\max \left(\left|r\left(j q_{1}, k q_{2}\right)\right|, \varrho_{T_{\max }}\left(j q_{1}, k q_{2}\right)\right)}\right) \rightarrow 0 \tag{15}
\end{equation*}
$$

In order to do it observe that there exist constants $C>0$ and $K>0$ such that

$$
\max \left(|r(s, t)|, \varrho_{T_{\max }}(s, t)\right) \cdot \log \left(\sqrt{s^{2}+t^{2}}\right) \leqslant K
$$

for all u sufficiently large and (s, t) satisfying $C \leqslant \max (|s|,|t|) \leqslant T_{\text {max }}$. Put $T_{\min }:=\min \left(T_{1}, T_{2}\right)$. Since $T_{\min }^{\beta}>C$ for u large enough, then for $\left(j q_{1}, k q_{2}\right)$ such that $\max \left(\left|j q_{1}\right|,\left|k q_{2}\right|\right) \geqslant T_{\min }^{\beta}$ we have

$$
\max \left(\left|r\left(j q_{1}, k q_{2}\right)\right|, \varrho_{T_{\max }}\left(j q_{1}, k q_{2}\right)\right) \leqslant \frac{K}{\log T_{\min }^{\beta}} .
$$

Hence
$\exp \left(-\frac{u^{2}}{1+\max \left(\left|r\left(j q_{1}, k q_{2}\right)\right|, \varrho_{T_{\max }}\left(j q_{1}, k q_{2}\right)\right)}\right) \leqslant \exp \left(-\frac{u^{2}}{1+\frac{K}{\log T_{\min }^{\beta}}}\right) \leqslant \exp \left(-u^{2}\left(1-\frac{K}{\log T_{\min }^{\beta}}\right)\right)$,
which implies the following chain of inequalities

$$
\begin{aligned}
& \frac{T_{1} T_{2}}{q_{1} q_{2}} \sum_{\left(j q_{1}, k q_{2}\right) \in S} \rho_{T_{\max }}\left(j q_{1}, k q_{2}\right) \exp \left(-\frac{u^{2}}{1+\max \left(\left|r\left(j q_{1}, k q_{2}\right)\right|, \varrho_{T_{\max }}\left(j q_{1}, k q_{2}\right)\right)}\right) \\
& \quad \leqslant \frac{T_{1} T_{2}}{q_{1} q_{2}} \sum_{\left(j q_{1}, k q_{2}\right) \in S}\left|r\left(j q_{1}, k q_{2}\right)-\frac{r}{\log T_{\max }}\right| \exp \left(-u^{2}\left(1-\frac{K}{\log T_{\min }^{\beta}}\right)\right) \\
& \quad \leqslant 4 \frac{T_{1}^{2} T_{2}^{2}}{q_{1}^{2} q_{2}^{2}} \exp \left(-u^{2}\left(1-\frac{K}{\log T_{\min }^{\beta}}\right)\right) \frac{1}{\log T_{\min }^{\beta}} \times \frac{q_{1} q_{2} \log T_{\min }^{\beta}}{T_{1} T_{2}} \sum_{\left(j q_{1}, k q_{2}\right) \in S}\left|r\left(j q_{1}, k q_{2}\right)-\frac{r}{\log T_{\max }}\right| \\
& \quad=: I_{1} \times I_{2} .
\end{aligned}
$$

Firstly, we show that factor I_{1} is bounded. Indeed, using that

$$
u^{2}=2 \log \left(T_{1} T_{2}\right)+\left(\frac{2}{\alpha_{1}}+\frac{2}{\alpha_{2}}-1\right) \log \log \left(T_{1} T_{2}\right)+O(1)
$$

there exists a constant K^{\prime} such that for u large enough
$-u^{2}\left(1-\frac{K}{\log T_{\min }^{\beta}}\right)=-u^{2}+K \frac{2 \log \left(T_{1} T_{2}\right)+\left(\frac{2}{\alpha_{1}}+\frac{2}{\alpha_{2}}-1\right) \log \log \left(T_{1} T_{2}\right)+O(1)}{\log T_{\min }^{\beta}} \leqslant-u^{2}+K^{\prime}$.
The last inequality follows from the fact that $\frac{\log \left(T_{1} T_{2}\right)}{\log T_{\min }^{\beta}} \rightarrow 2 / \beta$. Moreover,

$$
\exp \left(-u^{2}\left(1-\frac{K}{\log T_{\min }^{\beta}}\right)\right) \leqslant K^{\prime \prime} \exp \left(-u^{2}\right) \leqslant K^{\prime \prime \prime}\left(T_{1} T_{2}\right)^{-2}\left(\log \left(T_{1} T_{2}\right)\right)^{1-2 / \alpha_{1}-2 / \alpha_{2}},
$$

for some constants $K^{\prime \prime}, K^{\prime \prime \prime}$. Using that $u^{2} \sim 2 \log \left(T_{1} T_{2}\right)$ and $u^{2 / \alpha_{1}} q_{1}=u^{2 / \alpha_{2}} q_{2}=a$, we conclude that

$$
\begin{aligned}
I_{1} & \leqslant 4 \frac{T_{1}^{2} T_{2}^{2}}{q_{1}^{2} q_{2}^{2}} \exp \left(-u^{2}\left(1-\frac{K}{\log T_{\min }^{\beta}}\right)\right) \frac{1}{\log T_{\min }^{\beta}} \\
& \leqslant 4 \frac{T_{1}^{2} T_{2}^{2}}{q_{1}^{2} q_{2}^{2}} K^{\prime \prime \prime}\left(T_{1} T_{2}\right)^{-2}\left(\log \left(T_{1} T_{2}\right)\right)^{1-2 / \alpha_{1}-2 / \alpha_{2}} \frac{1}{\log T_{\min }^{\beta}} \\
& =4 K^{\prime \prime \prime} 2^{2 / \alpha_{1}+2 / \alpha_{2}} \frac{1}{a^{4}}\left(\log \left(T_{1} T_{2}\right)\right)^{2 / \alpha_{1}+2 / \alpha_{2}}\left(\log \left(T_{1} T_{2}\right)\right)^{1-2 / \alpha_{1}-2 / \alpha_{2}} \frac{1}{\log T_{\min }^{\beta}} \sim \frac{K^{\prime \prime \prime} 2^{2 / \alpha_{1}+2 / \alpha_{2}+3}}{a^{4} \beta},
\end{aligned}
$$

which proves that I_{1} is bounded.
In the next step we show that I_{2} tends to 0 as $u \rightarrow \infty$. Observe that

$$
\begin{aligned}
I_{2} & =\frac{q_{1} q_{2} \log T_{\min }^{\beta}}{T_{1} T_{2}} \sum_{\left(j q_{1}, k q_{2}\right) \in S}\left|r\left(j q_{1}, k q_{2}\right)-\frac{r}{\log T_{\max }}\right| \\
& \left.\leqslant \frac{q_{1} q_{2}}{T_{1} T_{2}} \sum_{\left(j q_{1}, k q_{2}\right) \in S} \right\rvert\, r\left(j q_{1}, k q_{2}\right) \log \left(\sqrt{\left(j q_{1}\right)^{2}+\left(k q_{2}\right)^{2}}-r \mid\right. \\
& +\beta r \frac{q_{1} q_{2}}{T_{1} T_{2}} \sum_{\left(j q_{1}, k q_{2}\right) \in S}\left|1-\frac{\log T_{\max }}{\log \left(\sqrt{\left(j q_{1}\right)^{2}+\left(k q_{2}\right)^{2}}\right.}\right|=: J_{1}+J_{2} .
\end{aligned}
$$

Combining A3 with the fact that $a_{n} \rightarrow a$ implies the convergence $\left(a_{1}+a_{2}+\ldots+a_{n}\right) / n \rightarrow a$, as $n \rightarrow \infty$ (see [14]), we conclude that J_{1} tends to 0 , as $u \rightarrow \infty$. Additionally, see [8 p. 135],

$$
\begin{aligned}
J_{2} & \leqslant \frac{\beta r}{\log T_{\min }^{\beta}} \frac{q_{1} q_{2}}{T_{1} T_{2}} \sum_{\left(j q_{1}, k q_{2}\right) \in S}\left|\log \sqrt{\left(j q_{1}\right)^{2}+\left(k q_{2}\right)^{2}}-\log T_{\max }\right| \\
& =\frac{r}{\log T_{\min }} \frac{q_{1} q_{2}}{T_{1} T_{2}} \sum_{\left(j q_{1}, k q_{2}\right) \in S}\left|\log \left(\frac{\sqrt{\left(j q_{1}\right)^{2}+\left(k q_{2}\right)^{2}}}{T_{\max }}\right)\right|
\end{aligned}
$$

Suppose that $T_{\max }=T_{1}$. Then

$$
\begin{array}{r}
\frac{q_{1} q_{2}}{T_{1} T_{2}} \sum_{\left(j q_{1}, k q_{2}\right) \in S}\left|\log \left(\frac{\sqrt{\left(j q_{1}\right)^{2}+\left(k q_{2}\right)^{2}}}{T_{\max }}\right)\right|=\frac{q_{1} q_{2}}{T_{1} T_{2}} \sum_{\left(j q_{1}, k q_{2}\right) \in S}\left|\log \left(\sqrt{\left(\frac{j q_{1}}{T_{1}}\right)^{2}+\left(\frac{k q_{2}}{T_{2}}\right)^{2}\left(\frac{T_{2}}{T_{1}}\right)^{2}}\right)\right| \\
\leqslant \frac{q_{1} q_{2}}{T_{1} T_{2}} \sum_{\left(j q_{1}, k q_{2}\right) \in S}\left(\left|\log \left(\sqrt{\left(\frac{j q_{1}}{T_{1}}\right)^{2}+\left(\frac{k q_{2}}{T_{2}}\right)^{2}}\right)\right|+|\log | \frac{j q_{1}}{T_{1}}| |\right) .
\end{array}
$$

Hence

$$
J_{2} \leqslant \frac{r}{\log T_{\min }} O\left(\int_{-1}^{1} \int_{-1}^{1}\left|\log \left(\sqrt{x^{2}+y^{2}}\right)\right| d x d y+\int_{-1}^{1}|\log | x| | d x\right)
$$

and (15) holds. The combination of (14) with (15) completes the proof.

Lemma 3. Let $q_{1}=q_{1}(u)=a u^{-2 / \alpha_{1}}, q_{2}=q_{2}(u)=a u^{-2 / \alpha_{2}}$ and suppose that $T=T(u) \rightarrow \infty$, as $u \rightarrow \infty$. Then, providing that conditions $\boldsymbol{A 1}$ and $\boldsymbol{A} 2$ are fulfilled, there exists $\varepsilon>0$ such that

$$
\begin{aligned}
\frac{m(u)}{q_{1} q_{2}} \sum_{0<\max \left(\left|j q_{1}\right|,\left|k q_{2}\right|\right)<\varepsilon}\left[\left(1-r\left(j q_{1}, k q_{2}\right)\right)\right. & \frac{r}{\log T}\left(1-\left(r\left(j q_{1}, k q_{2}\right)+\left(1-r\left(j q_{1}, k q_{2}\right)\right) \frac{r}{\log T}\right)^{2}\right)^{-1 / 2} \\
& \left.\times \exp \left(-\frac{u^{2}}{1+r\left(j q_{1}, k q_{2}\right)+\left(1-r\left(j q_{1}, k q_{2}\right)\right) \frac{r}{\log T}}\right)\right] \rightarrow 0,
\end{aligned}
$$

as $u \rightarrow \infty$.
Proof. Firstly, note that for $\varepsilon>0$ small enough

$$
\begin{equation*}
\frac{1}{2}\left(|s|^{\alpha_{1}}+|t|^{\alpha_{2}}\right) \leqslant 1-r(s, t) \leqslant 2\left(|s|^{\alpha_{1}}+|t|^{\alpha_{2}}\right) \tag{16}
\end{equation*}
$$

for $0 \leqslant \max (|s|,|t|)<\varepsilon$, due to A1. Thus for u large, ε small enough and $0<\max \left(\left|j q_{1}\right|,\left|k q_{2}\right|\right)<$ ε we have

$$
\begin{aligned}
& \left(1-\left(r\left(j q_{1}, k q_{2}\right)+\left(1-r\left(j q_{1}, k q_{2}\right)\right) \frac{r}{\log T}\right)^{2}\right)^{-1 / 2} \\
& \quad \leqslant\left(1-\left(r\left(j q_{1}, k q_{2}\right)+\left(1-r\left(j q_{1}, k q_{2}\right)\right) \frac{r}{\log T}\right)\right)^{-1 / 2}=\left(\left(1-r\left(j q_{1}, k q_{2}\right)\right)\left(1-\frac{r}{\log T}\right)\right)^{-1 / 2} \\
& \quad \leqslant\left(\frac{\left|j q_{1}\right|^{\alpha_{1}}+\left|k q_{2}\right|^{\alpha_{2}}}{4}\right)^{-1 / 2} \leqslant\left(\frac{\max \left(\left|j q_{1}\right|^{\alpha_{1}},\left|k q_{2}\right|^{\alpha_{2}}\right)}{4}\right)^{-1 / 2} \leqslant\left(\frac{\min \left(q_{1}^{\alpha_{1}}, q_{2}^{\alpha_{2}}\right)}{4}\right)^{-1 / 2}=K u
\end{aligned}
$$

for some constant $K>0$. Combining the above inequality with (16) and definitions of $m(u)$, q_{1} and q_{2} we obtain

$$
\begin{aligned}
& \frac{m(u)}{q_{1} q_{2}} \sum_{0<\max \left(\left|j q_{1}\right|,\left|k q_{2}\right|\right)<\varepsilon}\left[\left(1-r\left(j q_{1}, k q_{2}\right)\right) \frac{r}{\log T}\left(1-\left(r\left(j q_{1}, k q_{2}\right)+\left(1-r\left(j q_{1}, k q_{2}\right)\right) \frac{r}{\log T}\right)^{2}\right)^{-1 / 2}\right. \\
& \left.\times \exp \left(-\frac{u^{2}}{1+r\left(j q_{1}, k q_{2}\right)+\left(1-r\left(j q_{1}, k q_{2}\right)\right) \frac{r}{\log T}}\right)\right] \\
& \leqslant K^{\prime} u e^{u^{2} / 2} \sum_{0<\max }\left[\left|j q_{1}\right|,\left|k q_{2}\right|\right)<\varepsilon\left[\left(\left|j q_{1}\right|^{\alpha_{1}}+\left|k q_{2}\right|^{\alpha_{2}}\right)(1+\delta) \frac{r u}{\log T}\right. \\
& \left.\times \exp \left(-\frac{u^{2}}{2-\left(\left|j q_{1}\right|^{\alpha_{1}}+\left|k q_{2}\right|^{\alpha_{2}}\right)\left(1-\delta-\frac{r(1+\delta)}{\log T}\right)}\right)\right] \\
& =K^{\prime} \frac{r u^{2}}{\log T} \sum_{0<\max \left(\left|j q_{1}\right|,\left|k q_{2}\right|\right)<\varepsilon}\left[\left(\left|j q_{1}\right|^{\alpha_{1}}+\left|k q_{2}\right|^{\alpha_{2}}\right)(1+\delta)\right. \\
& \left.\times \exp \left(-\frac{u^{2}\left(\left|j q_{1}\right|^{\alpha_{1}}+\left|k q_{2}\right|^{\alpha_{2}}\right)\left(1-\delta-\frac{r(1+\delta)}{\log T}\right)}{4-2\left(\left|j q_{1}\right|^{\alpha_{1}}+\left|k q_{2}\right|^{\alpha_{2}}\right)\left(1-\delta-\frac{r(1+\delta)}{\log T}\right)}\right)\right] \\
& \leqslant K^{\prime} \frac{r u^{2}}{\log T}(1+\delta) \frac{8}{u^{2}} \sum_{0<\max }\left(\left|j q_{1}\right|,\left|k q_{2}\right|\right)<\varepsilon<10 u^{2}\left(\left|j q_{1}\right|^{\alpha_{1}}+\left|k q_{2}\right|^{\alpha_{2}}\right) \exp \left(-\frac{u^{2}\left(\left|j q_{1}\right|^{\alpha_{1}}+\left|k q_{2}\right|^{\alpha_{2}}\right)}{8}\right) \\
& =\frac{8 r K^{\prime}(1+\delta)}{\log T} \sum_{0<\max }\left(\left|j q_{1}\right|,\left|k q_{2}\right|\right)<\varepsilon<1\left(\frac{|a j|^{\alpha_{1}}}{8}+\frac{|a k|^{\alpha_{2}}}{8}\right) \exp \left(-\left(\frac{|a j|^{\alpha_{1}}}{8}+\frac{|a k|^{\alpha_{2}}}{8}\right)\right) \\
& =O\left(\frac{K^{\prime \prime}}{\log T} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(|x|^{\alpha_{1}}+|y|^{\alpha_{2}}\right) e^{-\left(|x|^{\alpha_{1}}+|y|^{\alpha_{2}}\right)} d x d y\right),
\end{aligned}
$$

as $u \rightarrow \infty$. Since $\log T(u) \rightarrow \infty$, as $u \rightarrow \infty$, and an integral in the last statement is finite, the proof is completed.

5.1 Proof of Theorem 2

Proof of (i). Let $\left\{X^{(j, k)}(s, t)\right\}_{j, k}$ be independent copies of $X(s, t)$ and let $\eta(s, t)$ be such that $\eta(s, t)=X^{(j, k)}(s, t)$ for $(s, t) \in[j-1, j) \times[k-1, k)$. For a fixed T we define a Gaussian random field Y_{T} as follows

$$
\begin{equation*}
Y_{T}(s, t):=\left(1-\frac{r}{\log T}\right)^{1 / 2} \eta(s, t)+\left(\frac{r}{\log T}\right)^{1 / 2} \mathcal{W}, \quad \text { for }(s, t) \in[0, T]^{2} \tag{17}
\end{equation*}
$$

where \mathcal{W} is an $N(0,1)$ random variable independent of $\eta(s, t)$. Then the covariance of Y_{T} equals $\operatorname{Cov}\left(Y_{T}\left(s_{0}, t_{0}\right), Y_{T}\left(s_{0}+s, t_{0}+t\right)\right)= \begin{cases}r(s, t)+(1-r(s, t)) \frac{r}{\log T}, & \text { when }\left[s_{0}\right]=\left[s_{0}+s\right],\left[t_{0}\right]=\left[t_{0}+t\right] ; \\ \frac{r}{\log T}, & \text { otherwise },\end{cases}$ for all $s_{0}, t_{0}, s, t \geqslant 0$.

Let $n_{x}:=\left\lfloor x m_{1}(u)\right\rfloor$ and $n_{y}:=\left\lfloor y m_{2}(u)\right\rfloor$. Since

$$
\begin{aligned}
& P\left(\sup _{(s, t) \in\left[0, n_{x}+1\right] \times\left[0, n_{y}+1\right]} X(s, t) \leqslant u\right) \\
& \quad \leqslant P\left(\sup _{(s, t) \in\left[0, x m_{1}(u)\right] \times\left[0, y m_{2}(u)\right]} X(s, t) \leqslant u\right) \leqslant P\left(\sup _{(s, t) \in\left[0, n_{x}\right] \times\left[0, n_{y}\right]} X(s, t) \leqslant u\right),
\end{aligned}
$$

we focus on the asymptotics of $P\left(\sup _{(s, t) \in\left[0, n_{x}\right] \times\left[0, n_{y}\right]} X(s, t) \leqslant u\right)$, as $u \rightarrow \infty$. Let $\varepsilon>0$. Divide $\left[0, n_{x}\right] \times\left[0, n_{y}\right]$ into $n_{x} n_{y}$ unit squares and then split them into subsets $I_{l, m}^{*}$ and $I_{l, m}$ as follows

$$
\begin{aligned}
I_{l, m} & =[(l-1)+\varepsilon, l] \times[(m-1)+\varepsilon, m] \\
I_{l, m}^{*} & =[l-1, l] \times[m-1, m]-I_{l, m}
\end{aligned}
$$

where $l=1, \ldots, n_{x}, m=1, \ldots, n_{y}$.
Step 1. In the first step we prove that

$$
\begin{equation*}
\lim _{u \rightarrow \infty}\left|P\left(\sup _{(s, t) \in\left[0, n_{x}\right] \times\left[0, n_{y}\right]} X(s, t) \leqslant u\right)-P\left(\sup _{(s, t) \in \cup_{l=1}^{n_{x}} \cup_{m=1}^{n_{y}} I_{l, m}} X(s, t) \leqslant u\right)\right| \leqslant \rho_{1}(\varepsilon) \tag{18}
\end{equation*}
$$

uniformly for $(x, y) \in\left[A_{0}, A_{\infty}\right]^{2}$ with $\rho_{1}(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$. This is a consequence of the following sequence of inequalities

$$
\begin{aligned}
0 \leqslant & P\left(\sup _{(s, t) \in \cup_{l=1}^{n_{x}} \cup_{m=1}^{n_{y}} I_{l, m}} X(s, t) \leqslant u\right)-P\left(\sup _{(s, t) \in\left[0, n_{x}\right] \times\left[0, n_{y}\right]} X(s, t) \leqslant u\right) \\
& \leqslant n_{x} n_{y} P\left(\sup _{(s, t) \in I_{1,1}^{*}} X(s, t)>u\right) \leqslant A_{\infty}^{2} m(u) P\left(\sup _{(s, t) \in I_{1,1}^{*}} X(s, t)>u\right)=\left(2 \varepsilon-\varepsilon^{2}\right) A_{\infty}^{2}(1+o(1)),
\end{aligned}
$$

as $u \rightarrow \infty$, since

$$
P\left(\sup _{(s, t) \in I_{1,1}^{*}} X(s, t)>u\right)=\frac{2 \varepsilon-\varepsilon^{2}}{m(u)}(1+o(1))
$$

as $u \rightarrow \infty$, by [13, Theorem 7.1].
Step 2. Let $a>0$ and $q_{1}=q_{1}(u):=a u^{-\alpha_{1} / 2}, q_{2}=q_{2}(u):=a u^{-\alpha_{2} / 2}$. We show that

$$
\lim _{u \rightarrow \infty}\left|P\left(X(s, t) \leqslant u ;(s, t) \in \bigcup_{l=1}^{n_{x}} \bigcup_{m=1}^{n_{y}} I_{l, m}\right)-P\left(X\left(j q_{1}, k q_{2}\right) \leqslant u ;\left(j q_{1}, k q_{2}\right) \in \bigcup_{l=1}^{n_{x}} \bigcup_{m=1}^{n_{y}} I_{l, m}\right)\right|
$$

$$
\leqslant \rho_{2}(a),(19)
$$

uniformly for $(x, y) \in\left[A_{0}, A_{\infty}\right]^{2}$, with $\rho_{2}(a) \rightarrow 0$ as $a \rightarrow 0$. Indeed, (19) follows from the fact
that
$0 \leqslant P\left(X(s, t) \leqslant u ;(s, t) \in \bigcup_{l=1}^{n_{x}} \bigcup_{m=1}^{n_{y}} I_{l, m}\right)-P\left(X\left(j q_{1}, k q_{2}\right) \leqslant u ;\left(j q_{1}, k q_{2}\right) \in \bigcup_{l=1}^{n_{x}} \bigcup_{m=1}^{n_{y}} I_{l, m}\right)$

$$
\begin{align*}
& \left.\leqslant n_{x} n_{y} \max _{l, m}\left[P\left(X\left(j q_{1}, k q_{2}\right) \leqslant u ;\left(j q_{1}, k q_{2}\right) \in I_{l, m}\right)-P\left(\sup _{(s, t) \in I_{l, m}} X(s, t) \leqslant u\right)\right)\right] \\
& \leqslant n_{x} n_{y}(1-\varepsilon)^{2}\left(\frac{\rho(a)}{m(u)}+o\left(\frac{1}{m(u)}\right)\right) \tag{20}
\end{align*}
$$

$$
\leqslant A_{\infty}^{2} \rho(a)+A_{\infty}^{2} m(u) o\left(\frac{1}{m(u)}\right) \rightarrow A_{\infty}^{2} \rho(a),
$$

as $u \rightarrow \infty$ with $\rho(a) \rightarrow 0$ as $a \rightarrow 0$. Inequality (20) is due to Lemma 1
Step 3. In this step we show that for $T=T(u):=\max \left(A_{\infty} m_{1}(u), A_{\infty} m_{2}(u)\right)$ we have
$\left|P\left(X\left(j q_{1}, k q_{2}\right) \leqslant u ;\left(j q_{1}, k q_{2}\right) \in \bigcup_{l=1}^{n_{x}} \bigcup_{m=1}^{n_{y}} I_{l, m}\right)-P\left(Y_{T}\left(j q_{1}, k q_{2}\right) \leqslant u ;\left(j q_{1}, k q_{2}\right) \in \bigcup_{l=1}^{n_{x}} \bigcup_{m=1}^{n_{y}} I_{l, m}\right)\right| \rightarrow 0$,
as $u \rightarrow \infty$, uniformly for $(x, y) \in\left[A_{0}, A_{\infty}\right]^{2}$.
Indeed, note that for sufficiently large T we have

$$
\begin{aligned}
\left|\operatorname{Cov}\left(X\left(j q_{1}, k q_{2}\right), X\left(j^{\prime} q_{1}, k^{\prime} q_{2}\right)\right)-\operatorname{Cov}\left(Y_{T}\left(j q_{1}, k q_{2}\right), Y_{T}\left(j^{\prime} q_{1}, k^{\prime} q_{2}\right)\right)\right| & \leqslant \rho_{T}\left(\left(j-j^{\prime}\right) q_{1},\left(k-k^{\prime}\right) q_{2}\right), \\
\left|\operatorname{Cov}\left(Y_{T}\left(j q_{1}, k q_{2}\right), Y_{T}\left(j^{\prime} q_{1}, k^{\prime} q_{2}\right)\right)\right| & \leqslant \varrho_{T}\left(\left(j-j^{\prime}\right) q_{1},\left(k-k^{\prime}\right) q_{2}\right),
\end{aligned}
$$

for functions ρ_{T} and ϱ_{T} defined by (11).
Moreover, for small $\varepsilon>0$ and $\left(j q_{1}, k q_{2}\right),\left(j^{\prime} q_{1}, k^{\prime} q_{2}\right) \in \bigcup_{l=1}^{n_{x}} \bigcup_{m=1}^{n_{y}} I_{l, m}$ satisfying $\max (\mid j-$ $j^{\prime}\left|q_{1},\left|k-k^{\prime}\right| q_{2}\right)<\varepsilon$ we get
$\left|\operatorname{Cov}\left(X\left(j q_{1}, k q_{2}\right), X\left(j^{\prime} q_{1}, k^{\prime} q_{2}\right)\right)-\operatorname{Cov}\left(Y_{T}\left(j q_{1}, k q_{2}\right), Y_{T}\left(j^{\prime} q_{1}, k^{\prime} q_{2}\right)\right)\right|=\left(1-r\left(\left(j-j^{\prime}\right) q_{1},\left(k-k^{\prime}\right) q_{2}\right)\right) \frac{r}{\log T}$
and

$$
\begin{aligned}
& \max \left(\left|\operatorname{Cov}\left(X\left(j q_{1}, k q_{2}\right), X\left(j^{\prime} q_{1}, k^{\prime} q_{2}\right)\right)\right|, \mid \operatorname{Cov}\left(Y_{T}\left(j q_{1}, k q_{2}\right), Y_{T}\left(j^{\prime} q_{1}, k^{\prime} q_{2}\right) \mid\right)\right. \\
& \quad= \operatorname{Cov}\left(Y_{T}\left(j q_{1}, k q_{2}\right), Y_{T}\left(j^{\prime} q_{1}, k^{\prime} q_{2}\right)\right) \\
&=r\left(\left(j-j^{\prime}\right) q_{1},\left(k-k^{\prime}\right) q_{2}\right)+\left(1-r\left(\left(j-j^{\prime}\right) q_{1},\left(k-k^{\prime}\right) q_{2}\right)\right) \frac{r}{\log T} .
\end{aligned}
$$

Let $\delta_{T}=\sup \left\{\max \left(|r(s, t)|, \varrho_{T}(s, t)\right) ; \max (|s|,|t|) \geqslant \varepsilon\right\}$. Observe that $\delta_{T}<\delta<1$ for suffi-
ciently large T. Applying [8 Theorem 4.2.1] we get

$$
\begin{aligned}
& \left|P\left(X\left(j q_{1}, k q_{2}\right) \leqslant u ;\left(j q_{1}, k q_{2}\right) \in \bigcup_{l=1}^{n_{x}} \bigcup_{m=1}^{n_{y}} I_{l, m}\right)-P\left(Y_{T}\left(j q_{1}, k q_{2}\right) \leqslant u ;\left(j q_{1}, k q_{2}\right) \in \bigcup_{l, m} I_{l, m}\right)\right| \\
& \leqslant \frac{1}{4 \pi} \frac{n_{x} n_{y}}{q_{1} q_{2}} \sum_{0<\max \left(\left|j q_{1}\right|,\left|k q_{2}\right|\right)<\varepsilon}\left[\left(1-r\left(j q_{1}, k q_{2}\right)\right) \frac{r}{\log T}\right. \\
& \left.\times\left(1-\left(r\left(j q_{1}, k q_{2}\right)+\left(1-r\left(j q_{1}, k q_{2}\right)\right) \frac{r}{\log T}\right)^{2}\right)^{-1 / 2} \exp \left(-\frac{u^{2}}{1+r\left(j q_{1}, k q_{2}\right)+\left(1-r\left(j q_{1}, k q_{2}\right)\right) \frac{r}{\log T}}\right)\right] \\
& +\frac{1}{4 \pi}\left(1-\delta^{2}\right)^{-1 / 2} \frac{n_{x} n_{y}}{q_{1} q_{2}} \sum_{\left(j q_{1}, k q_{2}\right) \in\left[-n_{x}, n_{x}\right] \times\left[-n_{y}, n_{y}\right]-(-\varepsilon, \varepsilon)^{2}}\left[\rho_{T}\left(j q_{1}, k q_{2}\right)\right. \\
& \left.\times \exp \left(-\frac{u^{2}}{1+\max \left(\left|r\left(j q_{1}, k q_{2}\right)\right|, \varrho_{T}\left(j q_{1}, k q_{2}\right)\right)}\right)\right] \\
& \leqslant \frac{1}{4 \pi} \frac{A_{\infty}^{2} m(u)}{q_{1} q_{2}} \sum_{0<\max \left(\left|j q_{1}\right|,\left|k q_{2}\right| \mid\right)<\varepsilon}\left[\left(1-r\left(j q_{1}, k q_{2}\right)\right) \frac{r}{\log T}\right. \\
& \left.\times\left(1-\left(r\left(j q_{1}, k q_{2}\right)+\left(1-r\left(j q_{1}, k q_{2}\right)\right) \frac{r}{\log T}\right)^{2}\right)^{-1 / 2} \exp \left(-\frac{u^{2}}{1+r\left(j q_{1}, k q_{2}\right)+\left(1-r\left(j q_{1}, k q_{2}\right)\right) \frac{r}{\log T}}\right)\right] \\
& +\frac{1}{4 \pi}\left(1-\delta^{2}\right)^{-1 / 2} \frac{A_{\infty}^{2} m(u)}{q_{1} q_{2}} \times \sum_{\left(j q_{1}, k q_{2}\right) \in\left[-A_{\infty} m_{1}(u), A_{\infty} m_{1}(u)\right] \times\left[-A_{\infty} m_{2}(u), A_{\infty} m_{2}(u)\right]-(-\varepsilon, \varepsilon)^{2}}\left[\rho_{T}\left(j q_{1}, k q_{2}\right)\right. \\
& \left.\times \exp \left(-\frac{u^{2}}{1+\max \left(\left|r\left(j q_{1}, k q_{2}\right)\right|, \varrho_{T}\left(j q_{1}, k q_{2}\right)\right)}\right)\right] \\
& =: \quad I_{1}+I_{2} .
\end{aligned}
$$

Observe that, due to Lemma 3 I_{1} tends to 0 as $u \rightarrow \infty$. Analogously, by Lemma $2 I_{2}$ tends to 0 as $u \rightarrow \infty$. Hence we have shown (21).

Step 4. By definition of the random field Y_{T}, we have

$$
\begin{align*}
& P\left(Y_{T}\left(j q_{1}, k q_{2}\right) \leqslant u ;\left(j q_{1}, k q_{2}\right) \in \bigcup_{l, m} I_{l, m}\right) \\
& \quad=P\left(\left(1-\frac{r}{\log T}\right)^{1 / 2} \eta\left(j q_{1}, k q_{2}\right)+\left(\frac{r}{\log T}\right)^{1 / 2} \mathcal{W} \leqslant u ;\left(j q_{1}, k q_{2}\right) \in \bigcup_{l, m} I_{l, m}\right) \\
& \quad=P\left(\left(1-\frac{r}{\log T}\right)^{1 / 2} \sup _{\left(j q_{1}, k q_{2}\right) \in \cup_{l, m} I_{l, m}} \eta\left(j q_{1}, k q_{2}\right)+\left(\frac{r}{\log T}\right)^{1 / 2} \mathcal{W} \leqslant u\right) \\
& \quad=\int_{-\infty}^{\infty} P\left(\sup _{\left(j q_{1}, k q_{2}\right) \in \cup_{l, m} I_{l, m}} \eta\left(j q_{1}, k q_{2}\right) \leqslant \frac{u-(r / \log T)^{1 / 2} z}{(1-r / \log T)^{1 / 2}}\right) d \Phi(z) . \tag{22}
\end{align*}
$$

Then for any $z \in \mathbb{R}$

$$
\begin{aligned}
u_{z} & :=\frac{u-(r / \log T)^{1 / 2} z}{(1-r / \log T)^{1 / 2}} \\
& =\left(u-(r / \log T)^{1 / 2} z\right)\left(1+\frac{1}{2}(r / \log T)+o(r / \log T)\right) \\
& =u+\frac{-2 \sqrt{r} z+2 r}{u}+o(1 / u),
\end{aligned}
$$

as $u \rightarrow \infty$, and thus

$$
\frac{1}{m\left(u_{z}\right)}=\frac{\exp (-2 r+2 \sqrt{r} z)}{m(u)}(1+o(1))
$$

Hence, we get

$$
\begin{align*}
P\left(\sup _{\left(j q_{1}, k q_{2}\right) \in \cup_{l, m} I_{l, m}} \eta\left(j q_{1}, k q_{2}\right) \leqslant u_{z}\right) & =\prod_{l, m} P\left(\sup _{\left(j q_{1}, k q_{2}\right) \in I_{l, m}} X\left(j q_{1}, k q_{2}\right) \leqslant u_{z}\right) \\
& =P\left(\sup _{(s, t) \in[0,1]^{2}} X(s, t) \leqslant u_{z}\right)^{n_{x} n_{y}}(1+o(1)) \\
& =\left(1-\frac{1}{m\left(u_{z}\right)}\right)^{x y m(u)}(1+o(1)) \\
& =\exp (-x y \exp (-2 r+2 \sqrt{r} z))(1+o(1)) \tag{23}
\end{align*}
$$

as $u \rightarrow \infty$, uniformly for $(x, y) \in\left[A_{0}, A_{\infty}\right]^{2}$. Combining (18), (19), (21), (22) and (23) and passing with $\varepsilon \rightarrow 0$ and $a \rightarrow 0$, we conclude that the proof of (i) is completed.

Proof of (ii). Let $\mathcal{T} \subset \mathbb{R}^{2}$ be Jordan-measurable with Lebesgue measure $\operatorname{mes}(\mathcal{T})>0$. For given $\varepsilon>0$, let $\mathcal{L}_{\varepsilon}, \mathcal{U}_{\varepsilon} \subset \mathbb{R}^{2}$ be simple sets (i.e. finite sums of disjoint rectangles of the form $\left.\left[a_{1}, b_{1}\right) \times\left[a_{2}, b_{2}\right)\right)$ such that $\mathcal{L}_{\varepsilon} \subset \mathcal{T} \subset \mathcal{U}_{\varepsilon}$ and $\operatorname{mes}\left(\mathcal{L}_{\varepsilon}\right)>\operatorname{mes}(\mathcal{T})-\varepsilon, \operatorname{mes}\left(\mathcal{U}_{\varepsilon}\right)<\operatorname{mes}(\mathcal{T})+\varepsilon$. Then, following line-by-line the same argument as given in the proof of part (i) of Theorem 2, for $\mathcal{T}_{u}=\left\{(x, y):\left(x / m_{1}(u), y / m_{2}(u)\right) \in \mathcal{T}\right\}, \mathcal{L}_{\varepsilon, u}=\left\{(x, y):\left(x / m_{1}(u), y / m_{2}(u)\right) \in \mathcal{L}_{\varepsilon}\right\}, \mathcal{U}_{\varepsilon, u}=$ $\left\{(x, y):\left(x / m_{1}(u), y / m_{2}(u)\right) \in \mathcal{U}_{\varepsilon}\right\}$ we have

$$
P\left(\sup _{(s, t) \in \mathcal{L}_{\varepsilon, u}} X(s, t) \leqslant u\right) \rightarrow E\left(\exp \left(-\operatorname{mes}\left(\mathcal{L}_{\varepsilon}\right) \exp (-2 r+2 \sqrt{r} \mathcal{W})\right)\right)
$$

and

$$
P\left(\sup _{(s, t) \in \mathcal{U}_{\varepsilon, u}} X(s, t) \leqslant u\right) \rightarrow E\left(\exp \left(-\operatorname{mes}\left(\mathcal{U}_{\varepsilon}\right) \exp (-2 r+2 \sqrt{r} \mathcal{W})\right)\right)
$$

as $u \rightarrow \infty$. Thus,

$$
P\left(\sup _{(s, t) \in \mathcal{T}_{u}} X(s, t) \leqslant u\right) \rightarrow E(\exp (-\operatorname{mes}(\mathcal{T}) \exp (-2 r+2 \sqrt{r} \mathcal{W})))
$$

as $u \rightarrow \infty$.

5.2 Proof of Proposition 1

Since the proof of Proposition 1 is analogous to proofs of Theorems 3.1-3.3 in [1], see also Theorem A in [15], we focus only on arguments for (ii).

Let $0<A_{0}<A_{\infty}$. We have

$$
\begin{aligned}
& P\left(\sup _{(s, t) \in \mathcal{B}(0, T)} X(s, t)>u\right)= \\
& =\int_{0}^{A_{0} \sqrt{m(u)}} P\left(\sup _{(s, t) \in \mathcal{B}(0, x)} X(s, t)>u\right) d F_{T}(x)+\int_{A_{0} \sqrt{m(u)}}^{A_{\infty} \sqrt{m(u)}} P\left(\sup _{(s, t) \in \mathcal{B}(0, x)} X(s, t)>u\right) d F_{T}(x) \\
& \quad+\int_{A_{\infty} \sqrt{m(u)}}^{\infty} P\left(\sup _{(s, t) \in \mathcal{B}(0, x)} X(s, t)>u\right) d F_{T}(x)=I_{1}+I_{2}+I_{3}
\end{aligned}
$$

Then, for each $\varepsilon>0$, due to Remark $\mathbb{1}$ for sufficiently large u, we get

$$
\begin{aligned}
I_{2} \leq & (1+\varepsilon) \int_{A_{0}}^{A_{\infty}}\left(1-E\left(\exp \left(-\pi x^{2} \exp \left(\mathcal{V}_{r}\right)\right)\right) d F_{T}(x \sqrt{m(u)})\right. \\
= & (1+\varepsilon) \int_{A_{0}}^{A_{\infty}} 2 \pi x E\left(\exp \left(-\pi x^{2} \exp \left(\mathcal{V}_{r}\right)+\mathcal{V}_{r}\right)\right) P(T>x \sqrt{m(u)}) d x \\
& -(1+\varepsilon)\left(1-E\left(\exp \left(-\pi A_{\infty}^{2} \exp \left(\mathcal{V}_{r}\right)\right)\right)\right) P\left(T>A_{\infty} \sqrt{m(u)}\right) \\
& +(1+\varepsilon)\left(1-E\left(\exp \left(-\pi A_{0}^{2} \exp \left(\mathcal{V}_{r}\right)\right)\right)\right) P\left(T>A_{0} \sqrt{m(u)}\right)
\end{aligned}
$$

where $\mathcal{V}_{r}=2 \sqrt{r} \mathcal{W}-2 r$. Hence, using the fact that T is regularly varying,

$$
\begin{aligned}
\limsup _{u \rightarrow \infty} \frac{I_{2}}{P(T>\sqrt{m(u)})} \leq & (1+\varepsilon) 2 \pi \int_{A_{0}}^{A_{\infty}} x^{1-\lambda} E\left(\exp \left(-\pi x^{2} \exp \left(\mathcal{V}_{r}\right)+\mathcal{V}_{r}\right)\right) d x \\
& -(1+\varepsilon)\left(1-E\left(\exp \left(-\pi A_{\infty}^{2} \exp \left(\mathcal{V}_{r}\right)\right)\right)\right) A_{\infty}^{-\lambda} \\
& +(1+\varepsilon)\left(1-E\left(\exp \left(-\pi A_{0}^{2} \exp \left(\mathcal{V}_{r}\right)\right)\right)\right) A_{0}^{-\lambda} .
\end{aligned}
$$

In an analogous way we get that

$$
\begin{aligned}
\liminf _{u \rightarrow \infty} \frac{I_{2}}{P(T>\sqrt{m(u)}} \geqslant & (1-\varepsilon) 2 \pi \int_{A_{0}}^{A_{\infty}} x^{1-\lambda} E\left(\exp \left(-\pi x^{2} \exp \left(\mathcal{V}_{r}\right)+\mathcal{V}_{r}\right)\right) d x \\
& -(1-\varepsilon)\left(1-E\left(\exp \left(-\pi A_{\infty}^{2} \exp \left(\mathcal{V}_{r}\right)\right)\right)\right) A_{\infty}^{-\lambda} \\
& +(1-\varepsilon)\left(1-E\left(\exp \left(-\pi A_{0}^{2} \exp \left(\mathcal{V}_{r}\right)\right)\right)\right) A_{0}^{-\lambda} .
\end{aligned}
$$

Then, following the same argument as in the proof of Theorem 3.2 in [1], we conclude that $I_{1}+I_{3}=o(P(T>\sqrt{m(u)}))$ as $u \rightarrow \infty$.

Now, passing with $A_{0} \rightarrow 0, A_{\infty} \rightarrow \infty$ and $\varepsilon \rightarrow 0$, we conclude that

$$
I_{2}=2 \pi \int_{0}^{\infty} x^{1-\lambda} E\left(\exp \left(-\pi x^{2} \exp \left(\mathcal{V}_{r}\right)+\mathcal{V}_{r}\right)\right) d x P(T>\sqrt{m(u)})(1+o(1)),
$$

as $u \rightarrow \infty$.

5.3 Proof of Proposition 2

Proof of (i). Assume that A3 is satisfied with $r=0$. Then, by definition of $\left\{\widetilde{X}_{j, k}\right\}$, it suffices to show that for the original Gaussian field $\{X(s, t): s, t \geq 0\}$

$$
\begin{equation*}
P\left(\sup _{(s, t) \in[0, f(u)] \times[0, g(u)]} X(s, t) \leqslant z(u)\right)-P\left(\sup _{(s, t) \in[0,1]^{2}} X(s, t) \leqslant z(u)\right)^{f(u) g(u)} \rightarrow 0 \tag{24}
\end{equation*}
$$

as $u \rightarrow \infty$, for each function $z: \mathbb{R}_{+} \rightarrow \mathbb{R}$ and all pairs of functions $f, g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$such that $f(u) \rightarrow \infty$ and $g(u) \rightarrow \infty$, as $u \rightarrow \infty$, and $1 / C \leqslant f(u) / g(u) \leqslant C$ for some fixed $C>0$. Observe that it suffices to consider two cases: continuous $z(u) \nearrow \infty$, as $u \rightarrow \infty$, and $z(u)<$ Const. We focus on the first case and suppose that $z(u)$ increases to infinity. Then (24) is equivalent to

$$
\begin{equation*}
P\left(\sup _{(s, t) \in\left[0, f^{*}(u)\right] \times\left[0, g^{*}(u)\right]} X(s, t) \leqslant u\right)-P\left(\sup _{(s, t) \in[0,1]^{2}} X(s, t) \leqslant u\right)^{f^{*}(u) g^{*}(u)} \rightarrow 0 \tag{25}
\end{equation*}
$$

as $u \rightarrow \infty$, with z^{-1} being the inverse function for z and $f^{*}(u):=f\left(z^{-1}(u)\right), g^{*}(u):=g\left(z^{-1}(u)\right)$.
By (i) of Theorem 2

$$
\begin{equation*}
P\left(\sup _{(s, t) \in[0, x \sqrt{m(u)}] \times[0, y \sqrt{m(u)}]} X(s, t) \leqslant u\right) \rightarrow e^{-x y} \tag{26}
\end{equation*}
$$

as $u \rightarrow \infty$, uniformly for $(x, y) \in \mathcal{F}(C):=\left\{(s, t) \in \mathbb{R}_{+}^{2}: 1 / C \leqslant s / t \leqslant C\right\} \cup\{0,0\}$, for an arbitrary constant $C>0$. Moreover the uniform convergence

$$
\begin{equation*}
P\left(\sup _{(s, t) \in[0,1]^{2}} X(s, t) \leqslant u\right)^{x y \cdot m(u)} \rightarrow e^{-x y} \tag{27}
\end{equation*}
$$

occurs on the set $\mathcal{F}(C)$.
Let $\bar{f}(u):=f\left(z^{-1}(u)\right) / \sqrt{m(u)}$ and $\bar{g}(u):=g\left(z^{-1}(u)\right) / \sqrt{m(u)}$. The fundamental observation is that it is sufficient to prove (24) for $f(u)$ and $g(u)$ satisfying the additional assumption: $\bar{f}(u) \rightarrow a \in[0, \infty]$ and $\bar{g}(u) \rightarrow b \in[0, \infty]$, as $u \rightarrow \infty$.

Note that $1 / C \leqslant f(u) / g(u) \leqslant C$ implies $1 / C \leqslant \bar{f}(u) / \bar{g}(u) \leqslant C$. Since the convergence in (26) is uniform, we obtain

$$
P\left(\sup _{(s, t) \in\left[0, f^{*}(u)\right] \times\left[0, g^{*}(u)\right]} X(s, t) \leqslant u\right)=P\left(\sup _{(s, t) \in[0, \bar{f}(u) \sqrt{m(u)]} \times[0, \bar{g}(u) \sqrt{m(u)]}} X(s, t) \leqslant u\right) \rightarrow e^{-a b},
$$

as $u \rightarrow \infty$. On the other hand, by (27),

$$
P\left(\sup _{(s, t) \in[0,1]^{2}} X(s, t) \leqslant u\right)^{f^{*}(u) g^{*}(u)}=P\left(\sup _{(s, t) \in[0,1]^{2}} X(s, t) \leqslant u\right)^{\bar{f}(u) \bar{g}(u) \cdot m(u)} \rightarrow e^{-a b}
$$

as $u \rightarrow \infty$, which gives (24).
Proof of (ii). Let us consider the case $r>0$. Note that for $\mathcal{V}_{r}=2 \sqrt{r} \mathcal{W}-2 r$ it holds that

$$
\begin{aligned}
& \operatorname{Var}\left(\exp \left(-\exp \left(\mathcal{V}_{r}\right)\right)\right)=E\left(\exp \left(-2 \exp \left(\mathcal{V}_{r}\right)\right)\right)-E\left(\exp \left(-\exp \left(\mathcal{V}_{r}\right)\right)\right)^{2} \\
& \quad=P\left(\tilde{X a x}_{j \leqslant 2\lfloor\sqrt{m(u)}\rfloor, k \leqslant\lfloor\sqrt{m(u)}\rfloor} \tilde{X}_{j, k} \leqslant u\right)-P\left(\max _{j, k \leqslant\lfloor\sqrt{m(u)}\rfloor} \widetilde{X}_{j, k} \leqslant u\right)^{2}+o(1),
\end{aligned}
$$

due to Theorem 2 By contradiction, assume that the extremal index exists and equals $\theta \in(0,1]$. Then for any sequence $\left(z_{n}\right) \subset \mathbb{R}$ we have

$$
\begin{aligned}
P(& \left.\max _{j \leqslant\left\lfloor 2 \sqrt{m\left(z_{n}\right)}\right\rfloor, k \leqslant\left\lfloor\sqrt{m\left(z_{n}\right)}\right\rfloor} \widetilde{X}_{j, k} \leqslant z_{n}\right)-P\left(\max _{j, k \leqslant\left\lfloor\sqrt{m\left(z_{n}\right)}\right\rfloor} \widetilde{X}_{j, k} \leqslant z_{n}\right)^{2} \\
& =\left(P\left(\max _{j \leqslant 2\left\lfloor\sqrt{m\left(z_{n}\right)}\right\rfloor, k \leqslant\left\lfloor\sqrt{m\left(z_{n}\right)}\right\rfloor} \widetilde{X}_{j, k} \leqslant z_{n}\right)-P\left(\widetilde{X}_{1,1} \leqslant z_{n}\right)^{2 m\left(z_{n}\right) \cdot \theta}\right) \\
& -\left(P\left(\max _{j, k \leqslant\left\lfloor\sqrt{m\left(z_{n}\right)}\right\rfloor} \widetilde{X}_{j, k} \leqslant z_{n}\right)^{2}-\left(P\left(\widetilde{X}_{1,1} \leqslant z_{n}\right)^{m\left(z_{n}\right) \cdot \theta}\right)^{2}\right)=o(1),
\end{aligned}
$$

as $n \rightarrow \infty$, which implies that $\operatorname{Var}\left(\exp \left(-\exp \left(\mathcal{V}_{r}\right)\right)\right)=0$. Keeping in mind that $r>0$ and \mathcal{W} is an $N(0,1)$ random variable, we obtain a contradiction.

Acknowledgement: K. Dębicki was partially supported by NCN Grant No 2011/01/B/ST1/01521 (2011-2013). The first two authors kindly acknowledge partial support by the Swiss National Science Foundation Grant 200021-140633/1 and by the project RARE -318984 (an FP7 a Marie Curie IRSES Fellowship)

References

[1] Arendarczyk, M., Dębicki, K. (2012) Exact asymptotics of supremum of a stationary Gaussian process over a random interval. Statistics EJ Probability Letters 82, 645-652.
[2] Billingsley, P. (1995) Probability and Measure. Wiley-Interscience, New York.
[3] Hsing, T. (1993) Extremal index extimation for a weakly dependent stationary point sequence. Ann. Statist. 21 (4) 2043-2071.
[4] Hsing, T., Hüsler, J., Leadbetter, M.R. (1988) On the exceedance point process for stationary sequence. Probab. Theory Related Fields 78 97-112.
[5] Jakubowski, A., Soja-Kukieła, N.. (2013) Managing local dependencies in limit theorems for maxima of stationary random fields, in preparation.
[6] Jakubowski, A. (1991) Relative extremal index of two stationary processes. Stochastic Processes and their Applications 37 (2), 281-297.
[7] Leadbetter M.R. (1983) Extremes and local dependence in stationary sequences. Z. Wahr. Ver. Geb. 65 291-306.
[8] Leadbetter, M.R., Lindgren, G., Rootzén, H. (1983) Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag.
[9] Leadbetter, M.R., Weissman, I., de Haan, L., Rootzén H. (1989) On clustering of high levels in statistically stationary series. In: J. Samson (Ed.), Proc. 4th Int. Meet. Statistical Climatology New Zealand Meteorological Service, Willington.
[10] O'Brien, G. (1987) Extreme values for stationary and Markov sequences. Ann. Probab. 15 281-191.
[11] Pickands, J.III (1969) Asymptotic properties of maximum in a stationary Gaussian process. Trans. Amer. Soc. 145, 75-86.
[12] Piterbarg, V.I. (1972) On the paper by J. Pickands "Upcrosssing probabilities for stationary Gaussian processes". Vestnik Moscow. Univ. Ser. I Mat. Mekh. 27, 25-30. English translation in Moscow Univ. Math. Bull., 27.
[13] Piterbarg, V.I. (1996) Asymptotic Methods in the Theory of Gaussian Processes and Fields. In: Transl. Math. Monographs, vol. 148. AMS, Providence, RI.
[14] Rudin, W. (1976) Principles of Mathematical Analysis, 3rd ed., McGraw-Hill, New York.
[15] Tan Z., Hashorva E. (2013) Limit theorems for extremes of strongly dependent cyclostationary χ-processes. Lithuanian Math. J., 53, 91-102.
[16] Weissman, I., Novak, S.Yu. (1998) On blocks and runs estimators for the extremal index. J. Stat. Plan. Inference 66 281-288.

