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Abstract 

Acid-sensing ion channels (ASICs) are non-voltage-gated sodium channels activated by an extracellular acidification. They 

are widely expressed in neurons of the central and peripheral nervous system. ASICs have a role in learning, the expression 

of fear, in neuronal death after cerebral ischemia, and in pain sensation. Tissue damage leads to the release of inflammatory 

mediators. There is a subpopulation of sensory neurons which are able to release the neuropeptides calcitonin gene-related 

peptide (CGRP) and substance P (SP). Neurogenic inflammation refers to the process whereby peripheral release of the 

neuropeptides CGRP and SP induces vasodilation and extravasation of plasma proteins, respectively. Our laboratory has 

previously shown that calcium-permeable homomeric ASIC1a channels are present in a majority of CGRP- or SP-expressing 

small diameter sensory neurons.  

In the first part of my thesis, we tested the hypothesis that a local acidification can produce an ASIC-mediated calcium-

dependant neuropeptide secretion. We have first verified the co-expression of ASICs and CGRP/SP using immunochemistry 

and in-situ hybridization on dissociated rat dorsal root ganglion (DRG) neurons. We found that most CGRP/SP-positive 

neurons also expressed ASIC1a and ASIC3 subunits. Calcium imaging experiments with Fura-2 dye showed that an 

extracellular acidification can induce an increase of intracellular Ca2+ concentration, which is essential for secretion. This 

increase of intracellular Ca2+ concentration is, at least in some cells, ASIC-dependent, as it can be prevented by amiloride, an 

ASIC antagonist, and by Psalmotoxin (PcTx1), a specific ASIC1a antagonist. We identified a sub-population of neurons 

whose acid-induced Ca2+ entry was completely abolished by amiloride, an amiloride-resistant population which does not 

express ASICs, but rather another acid-sensing channel, possibly transient receptor potential vanilloïde 1 (TRPV1), and a 

population expressing both H+-gated channel types. Voltage-gated calcium channels (Cavs) may also mediate Ca2+ entry. Co-

application of the Cavs inhibitors (ω-conotoxin MVIIC, Mibefradil and Nifedipine) reduced the Ca2+ increase in neurons 

expressing ASICs during an acidification to pH 6. This indicates that ASICs can depolarise the neuron and activate Cavs. 

Homomeric ASIC1a are Ca2+-permeable and allow a direct entry of Ca2+ into the cell; other ASICs mediate an indirect entry 

of Ca2+ by inducing a membrane depolarisation that activates Cavs. We showed with a secretion assay that CGRP secretion 

can be induced by extracellular acidification in cultured rat DRG neurons. Amiloride and PcTx1 were not able to inhibit the 

secretion at acidic pH, but BCTC, a TRPV1 inhibitor was able to decrease the secretion induced by an extracellular 

acidification in our in vitro secretion assay. 

In conclusion, these results show that in DRG neurons a mild extracellular acidification can induce a calcium-dependent 

neuropeptide secretion. Even if our data show that ASICs can mediate an increase of intracellular Ca2+ concentration, this 

appears not to be sufficient to trigger neuropeptide secretion. TRPV1, a calcium channel whose activation induces a sustained 

current – in contrary of ASICs – played in our experimental conditions a predominant role in neurosecretion. 

In the second part of my thesis, we focused on the role of ASICs in neuropathic pain. We used the spared nerve injury (SNI) 

model which consists in a nerve injury that induces symptoms of neuropathic pain such as mechanical allodynia. We have 

previously shown that the SNI model modifies ASIC currents in dissociated rat DRG neurons. We hypothesized that ASICs 

could play a role in the development of mechanical allodynia. The SNI model was performed on ASIC1a, -2, and -3 knock-

out mice and wild type littermates. We measured mechanical allodynia on these mice with calibrated von Frey filaments. 

There were no differences between the wild-type and the ASIC1, or ASIC2 knockout mice. ASIC3 null mice were less 

sensitive than wild type mice at 21 day after SNI, indicating a role for ASIC3. Finally, to investigate other possible roles of 

ASICs in the perception of the environment, we measured the baseline heat responses. We used two different models; the tail 

flick model and the hot plate model. ASIC1a null mice showed increased thermal allodynia behaviour in the hot plate test at 

three different temperatures (49, 52, 55°C) compared to their wild type littermates. On the contrary, ASIC2 null mice showed 

reduced thermal allodynia behaviour in the hot plate test compared to their wild type littermates at the three same 

temperatures. 

We conclude that ASIC1a and ASIC2 in mice can play a role in temperature sensing. It is currently not understood  how 

ASICs are involved in temperature sensing and what the reason for the opposed effects in the two knockout models is. 
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Résumé 

Les canaux sensibles aux protons (ASICs) sont des canaux sodiques non voltages dépendants activés par une acidification 

extracellulaire. Ils sont largement exprimés dans les neurones du système nerveux central et périphérique. Les ASICs ont un 

rôle dans l’apprentissage, l’expression de la peur, dans la mort neuronale après une ischémie cérébrale, ainsi que dans la 

sensation de douleur. Un dommage tissulaire conduit au relâchement de médiateurs inflammatoires. Il y a une sous-

population de neurones sensoriels qui sont capables de relâcher les neuropeptides calcitonin gene-related peptide (CGRP) et 

substance P (SP). L’inflammation neurogénique réfère au processus lorsque le relâchement périphérique de neuropeptides 

CGRP et SP induit respectivement  la vasodilatation et l’extravasation de plasma. Notre laboratoire a montré précédemment 

que les canaux homomériques ASIC1a sont présents dans la majorité des neurones de petits diamètres exprimant le CGRP et 

la SP. 

Dans la première partie de ma thèse, nous avons testé l’hypothèse selon laquelle une acidification locale peut produire une 

sécrétion de peptide médiée par les ASICs. Nous avons tout d’abord vérifié la co-expression des ASICs et de CGRP/SP en 

utilisant l’immunocytochimie et l’hybridation in-situ sur des neurones dissociés de ganglions de racine dorsale (DRG). Nous 

avons trouvé que la plupart des neurones positifs pour CGRP/SP exprimaient aussi les sous-unités ASIC1a et ASIC3. Des 

expériences d’imagerie calcique avec le colorant Fura-2 ont montré qu’une acidification extracellulaire peut induire une 

augmentation de Ca2+ intracellulaire, qui est essentielle pour la sécrétion. Cette augmentation de concentration de Ca2+ 

intracellulaire est, au moins dans certaines cellules, dépendant d’ASIC, car elle peut être empêchée par l’amiloride, un 

antagoniste d’ASIC et par la Psalmotoxine (PcTx1), un antagoniste spécifique d’ASIC1a. Nous avons identifié une sous-

population de neurones dans laquelle l’entrée de Ca2+ a été complètement abolie par l’amiloride, une population résistante à 

l’amiloride qui n’exprime pas d’ASICs, mais plutôt un autre canal sensible aux protons, possiblement TRPV1, et une 

population exprimant les deux types de canaux sensibles aux protons. Les canaux calciques voltage dépendants (Cavs) 

peuvent aussi médier l’entrée de calcium. La co-application des inhibiteurs de Cavs (ω-conotoxin MVIIC, Mibefradil et 

Nifedipine) a réduit l’augmentation de Ca2+ dans des neurones exprimant des ASICs lors d’une acidification à pH 6. Cela 

indique que les ASICs peuvent dépolariser les neurones et activer les Cavs. Les ASIC1a homomériques sont perméables au 

calcium et permettent une entrée directe de calcium dans la cellule; les autres ASICs médient une entrée indirecte de Ca2+ en 

induisant une dépolarisation de la membrane qui active les Cavs.  Nous avons montré avec un essai de sécrétion que la 

sécrétion de CGRP peut être induite par une acidification extracellulaire des neurones de DRG de rats. L’Amiloride et la 

PcTx1n’ont pas pu inhiber la sécrétion à pH acide, mais le BCTC, un inhibiteur de TRPV1a été capable de diminuer, dans 

notre essai de sécrétion in vitro, la sécrétion lors d’une acidification extracellulaire. 

Pour conclure, ces résultats montrent que dans les neurones de DRG, une légère acidification peut induire une sécrétion de 

neuropeptides dépendante Ca2+. Même si nos données montrent que les canaux ASICs peuvent médier une augmentation de 

la concentration de Ca2+ intracellulaire, cela n’apparait pas comme suffisant pour activer la sécrétion de neuropeptides. 

TRPV1, un canal calcique dont l’activation induit un courant soutenu – au contraire des ASICs – a joué, avec nos conditions 

expérimentales, un rôle prédominant dans la sécrétion. 

Dans une deuxième partie de ma thèse, nous nous somme concentré sur le rôle des ASICs dans la douleur neuropathique. 

Nous avons utilisé le modèle SNI qui consiste en une blessure du nerf qui induit des symptômes de douleurs neuropathiques 

comme une allodynie mécanique. Nous avions précédemment montré que le modèle SNI modifie les courants ASICs  dans 

des neurones de DRG de rat dissociés. Nous avons émis l’hypothèse que les ASICs pourraient jouer un rôle dans le 

développement de l’allodynie mécanique. Le modèle SNI a été effectué sur  des souris knockout pour ASIC1a, -2, et -3 et des 

souris de type sauvage. Nous avons mesuré l’allodynie mécanique sur ces souris avec des filaments von Frey calibrés. Il n’y 

avait pas de différence entre les souris sauvages et les souris ASIC1a et ASIC2 knockout. Les souris ASIC3 knockout étaient 

moins sensibles que les souris sauvages 21 jours après le SNI, indiquant un rôle des ASIC3. Finalement, pour investiguer 

d’autres rôles possibles des ASICs dans la perception de l’environnement, nous avons mesuré les réponses de base à la 

chaleur. Nous avons utilisé deux différents modèles; le modèle de « tail flick » et de la « plaque chaude ». Les souris ASIC1a 

knockout ont montré une augmentation de l’allodynie thermique dans le modèle de la « plaque chaude » à trois différentes 

températures (49, 52, 55°C) comparé aux souris de type sauvage. Au contraire, Les souris ASIC2 knockout ont montré une 

diminution de l’allodynie thermique dans le modèle de la « plaque chaude » comparé aux souris de type sauvage aux trois 

mêmes températures. 

Nous concluons que les ASIC1a et les ASIC2 dans les souris peuvent jouer un rôle dans la sensation de la température. On ne 

comprend actuellement pas comment les ASICs sont impliqués dans la sensation de température et quelles sont les raisons 

des effets opposés dans les deux modèles knockout. 
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Résumé à un large public 

Rôle des canaux sensibles à l’acidification (ASICs) dans la sécrétion périphérique de neuropeptides et 

dans la douleur 

Les neurones sont les principales cellules du système nerveux. Leur fonction principale est la 

transmission de signaux. Cette signalisation se fait grâce au passage d’ions (particules chargées) à 

travers des canaux présents dans la membrane plasmique, qui délimite la cellule. Ces canaux sont 

généralement fermés et peuvent s’ouvrir après avoir été stimulés. Je me suis principalement intéressé à 

un canal nommé ASIC. Ce canal est normalement fermé et s’ouvre quand l’environnement devient 

acide. L’ouverture du canal ASIC permet d’activer les neurones. Les ASICs ont un rôle dans 

l’apprentissage, l’expression de la peur, dans la mort neuronale après une attaque cérébrale, et dans la 

sensation de douleur. Lors d’une blessure, une inflammation se produit. Elle est accompagnée d’une 

acidification qui va activer les ASICs et permettre la transmission d’un message de douleur au 

cerveau. 

Lors de ma thèse, j’ai étudié le rôle des ASICs dans les neurones sensoriels lors d’une acidification 

périphérique. Nous avons formulé l’hypothèse que ces neurones peuvent sécréter des médiateurs qui 

peuvent induire ou maintenir l’inflammation. Afin de vérifier cette hypothèse, j’ai vérifié, chez le rat, 

si les canaux ASICs étaient présents dans les mêmes neurones sensoriels que ces médiateurs. J’ai aussi 

vérifié si l’activation des ASICs par une acidification permet l’entrée de calcium dans la cellule. Nous 

savons que cette entrée de Ca
2+

 est nécessaire pour la sécrétion. Finalement, j’ai vérifié si l’activation 

des ASICs permet la sécrétion des médiateurs importants pour l’inflammation. Des expériences de 

marquage des ASICs et des médiateurs m’ont permis de montrer qu’ils étaient présents dans les 

mêmes neurones. Des expériences d’imagerie m’ont permis de montrer que l’activation des ASICs 

permet une entrée de calcium dans les neurones. Des expériences de sécrétion de médiateurs m’ont 

permis de montrer que les canaux ASICs ne sont pas impliqués dans la sécrétion ce ces médiateurs. 

J’ai pu mettre en évidence qu’un autre canal appelé TRPV1, lui aussi activé par une acidification, était 

responsable de cette sécrétion.  

Je me suis aussi intéressé au rôle possible des ASICs dans la douleur neuropathique. La douleur 

neuropathique est une douleur chronique qui apparait lors d’une lésion d’un nerf lors d’une maladie ou 

suite à un accident. Il avait été précédemment observé dans notre groupe de recherche que lors d’une 

lésion du nerf sciatique provoquant une douleur neuropathique chez le rat, des changements de ses 

canaux ASICs avaient lieu. C’est pourquoi j’ai étudié le rôle des ASICs dans la perception de la 

douleur neuropathique après une lésion du nerf sciatique chez la souris. Pour ce faire j’ai utilisé trois 

différents types de souris chez qui, à chaque fois, une différente forme d’ASIC avait été supprimé. J’ai 

comparé à chaque fois la douleur ressentie après la lésion du nerf par une souris ne possédant pas une 

certaine forme d’ASIC avec la douleur ressentie par une souris normale. J’ai pu montrer que deux 

formes d’ASICs n’avaient pas de rôle dans la douleur perçue par les souris, Les souris ne possédant 

pas une variante spécifique d’ASICs ressentaient un peu moins de douleur que les souris normales, ce 

qui nous indique, bien que les effets soient petits, que cette variante du canal est impliquée dans cette 

forme de douleur.  

Ces résultats confirment un rôle des ASICs dans l’activité des neurones sensoriels et dans la douleur, 

notamment un rôle, quoi que limité, dans la douleur neuropathique. 
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1. Introduction 

1.1 The peripheral nervous system 

1.1.1 General organization 

The somatic sensory system mediates a range of sensations: touch, pressure, vibration, limb position, 

heat, cold, and pain. These sensations are transduced by receptors at the membrane of the terminal 

endings of the axons, localized in the skin, organs, and muscles. The cell bodies of sensory neurons 

are localized in a series of ganglia that lie alongside the spinal cord and the brainstem and are 

considered part of the peripheral nervous system (PNS). Neurons in the dorsal root ganglia (DRG) and 

in the cranial nerve ganglia transmit information on peripheral events to the central nervous system 

(CNS) and ultimately the brain. Action potentials generated in afferent fibers by the activation of 

different receptors at the peripheral endings propagate along the axons to the central endings, passing 

the cell bodies located in ganglia. The central endings make synapses with central neurons in the 

spinal cord.  

The fundamental mechanism of sensory transduction, defined as the process of converting a stimulus 

into an electrical signal, can be described as a stimulus that alters the permeability of channels in the 

afferent nerve endings, generating a transmembrane potential difference called receptor potential. If 

the magnitude of the depolarization is sufficient and reaches a threshold, action potentials are 

generated along the axon toward the other ending of the axon. The rate of action potential firing is 

more or less proportional to the amplitude of the depolarization. Endings of afferent fibers can be 

encapsulated by specialized receptor cells (mechanoreceptors) that act as sensors of the somatic 

stimulations. Afferent fibers that do not have these specialized cells have free nerve endings. The free 

nerve endings have a role in the detection of painful stimuli.  

Distinct classes of afferents can be defined, each of which making unique contributions to somatic 

sensations. Sensory afferents can be classified according to their axon diameter. Sensory afferents with 

the largest diameter (called Ia) are those that are linked to the sensory receptors in the muscles. 

Sensory afferents with smaller diameter fibers (Aβ) mediate the touch sensation. Medium diameter 

myelinated (Aδ) afferents that mediate acute, well-localized “first” or fast pain differ considerably 

from the larger diameter and rapidly conducting Aβ fibers that respond to innocuous mechanical 

stimulation. Information about pain and temperature is mediated by even smaller diameter fibers (Aδ 

and C). Aδ and C fibers have a higher threshold than Aβ fibers. Small diameter unmyelinated “C” 

fibers convey poorly localized, “second” or slow pain (Figure 1). The diameter of the fibers 

determines the speed of conduction. The larger is the diameter of the fibre, the faster is the speed of 

conduction (Basbaum et al., 2009).  
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There are two major classes of nociceptors (Basbaum et al., 2009). The Aδ nociceptors can be 

subdivised into two main classes. Type I respond to both mechanical and chemical stimuli but have 

relatively high heat thresholds (>50°C). The type I fiber mediates the first pain provoked by intense 

mechanical stimuli. They will be sensitized in the case of tissue injury. Sensitization is defined as a 

lowering of the heat or mechanical threshold of response. Type II fibers have a much lower heat 

threshold, but a very high mechanical threshold. Activity of these afferents mediates the first acute 

pain to noxious heat. The unmyelinated C fibers are also heterogenous. Most C fibers are polymodal; 

they include a population that is both heat- and mechanically sensitive (Perl, 2007). 

 

Figure 1 : Description of small-diameter (Aδ), medium- to large-diameter (Aα,β) myelinated afferent fibres and small-

diameter unmyelinated afferent fibres (C) 

(Julius and Basbaum 2001)  

Another feature of sensory afferents is the size of the receptive field. The receptive field of a sensory 

neuron is defined as the area of the skin surface over which stimulation results in a significant change 

in the rate of action potentials of that neuron. The size of the receptive field is dependant of the 

innervation of the skin. The receptive fields in regions with dense innervation (lips, fingers) are 

relatively small compared to those in the forearm or back that are innervated by a smaller number of 

afferent fibers. Sensory afferents are also differentiated by the temporal dynamics of their response to 

sensory stimuli. Some afferents, which are called rapidly adapting, fire rapidly when a stimulus is first 

presented, and afterwards stop firing in the presence of continued stimulation. Other afferents generate 

a sustained discharge in the presence of continuous stimulus. Rapidly adapting afferents are 

particularly effective to provide information about stimulations that are changing, such as those 
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produced by stimulus caused by movements. In contrast, slowly adapting afferents provide 

information about the spatial attributes of the stimulus, such as size and shape (Purves, 2008). 

1.1.2 Distinct types of pain 

According to The International Association for the Study of Pain, pain is defined as "an unpleasant 

sensory and emotional experience associated with actual or potential tissue damage, or described in 

terms of such damage". Indeed, pain is a multidimensional sensory experience that is intrinsically 

unpleasant and associated with hurting and soreness. It may vary in intensity (mild, moderate, or 

severe), quality (sharp, burning, or dull), duration (transient, intermittent, or persistent), and referral 

(superficial or deep, localized or diffuse). Pain has also strong cognitive and emotional components 

which can be described as suffering. Several distinct types exist: nociceptive, inflammatory which are 

adaptive; neuropathic and functional which are maladaptive. Adaptive pain is very useful for an 

organism to be protected against injury or to promote healing when the injury has occurred. 

Maladaptive pain, in contrast, occurs under pathological state of the nervous system. This type pain is 

considered as a disease. The sensory experience of acute pain caused by a noxious stimulus is 

mediated by the nociceptive system. Functional pain is due to an abnormal responsiveness or function 

of the nervous system. Several diseases cause this type of pain such as for example, fibromyalgia or 

irritable bowel syndrome. To prevent damage to tissue, we have learned to associate noxious stimuli 

with danger that must be avoided. We have linked noxious stimuli with pain, an unpleasant sensation. 

If tissue damage occurs despite the nociceptive defensive system, the body needs to protect itself 

against noxious, potentially damaging stimuli to promote healing of the injured tissue. The goal of the 

inflammatory pain is to allow the body to recover from the injury by increasing the sensitivity of the 

injured part until repair is complete, minimizing further damage. Maladaptive pain is uncoupled from 

a noxious stimulus or healing tissue. Such pain may occur in response to damage to the nervous 

system (neuropathic pain) or result from abnormal operation of the nervous system (functional pain). 

Neuropathic pain may result from lesions to the peripheral nervous system, as for example in patients 

with diabetic polyneuropathy, or to the central nervous system, such as for example in patients with 

multiple sclerosis or spinal cord injury (Woolf, 2004). 

1.1.3 The nociceptors 

Intense thermal, mechanical, or chemical stimuli are detected by a subpopulation of peripheral nerve 

fibers, called nociceptors. The process of detection of these stimuli by the nociceptors is called 

nociception. The cell bodies of nociceptors innervating the body are located in the DRG. The cell 

bodies innervating the face are located in the trigeminal ganglion. These neurons are pseudo-unipolar 

and they have both peripheral and central axonal branches that innervate respectively their target organ 

and the spinal cord. Nociceptors are excited only when stimulus intensities reach the noxious range.  
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Neuroanatomical and molecular characterization of nociceptors has demonstrated their heterogeneity, 

especially for the C fibers (Snider & McMahon, 1998). For example, the peptidergic population of C 

nociceptors releases the neuropeptides substance P (SP) and calcitonin-gene related peptide (CGRP); 

this population also expresses the TrkA neurotrophin receptor, which responds to nerve growth factor 

(NGF). The nonpeptidergic population of C nociceptors expresses the cRet neurotrophin receptor 

which is activated by glial-derived neurotrophic factor (GDNF). Almost all the nociceptors of the 

nonpeptidergic population bind Griffonia simplicifolia isolectin B4 (IB4) and express specific 

purinergic receptor subtypes, one of the most important being P2X3 (Basbaum et al., 2009). 

Nociceptors can also be distinguished according to their differential expression of channels that confer 

sensitivity for example to heat (TRPV1), cold (TRPM8), extracellular acidification (ASICs, TRPV1), 

or chemical irritants (TRPA1) (Julius & Basbaum, 2001). The majority of proteins synthesized by the 

DRG or trigeminal ganglion cells are distributed to both central and peripheral terminals, due to the 

particular pseudo-unipolar morphology of these neurons. The biochemical equivalency of central and 

peripheral terminals means that the nociceptors can send and receive messages from either ends 

(Basbaum et al., 2009). 

1.1.4 Projections of afferent fibers in the spinal cord 

Primary afferent nerve fibers project to the dorsal horn of the spinal cord. The dorsal horn has a 

precise laminar organisation characterized by distinct anatomical localization (Figure 2). Aδ 

nociceptors project to lamina I as well as to the deeper dorsal horn (lamina V). The Aβ fibers, which 

respond to light touch, project to the deep laminae (III, IV, and V).  

 

Figure 2 : Connections between primary afferent fibers and the dorsal horn 

(Basbaum et al., 2009) 
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The nonpeptidergic C fibers terminate in the mid-region of lamina II. The most ventral part of lamina 

II, which is characterized by the presence of excitatory interneurons, is targeted predominantly by 

myelinated nonnociceptive afferents. Spinal cord neurons within lamina I are generally responsive to 

noxious stimulation (via Aδ and C fibers), neurons in laminae III and IV are primarily responsive to 

innocuous stimulation (via Aβ), and neurons in lamina V receive a convergent nonnoxious and 

noxious input via direct, monosynaptic, Aδ and Aβ inputs and indirect (polysynaptic) C fiber inputs. 

Projection neurons within laminae I and V constitute the major output from the dorsal horn to the 

brain. These neurons are at the origin of multiple ascending pathways. One of them is the 

spinothalamic tract, which carries pain messages to the thalamus and is particulary relevant to the 

sensory-discriminative aspects of the pain experience, that is, where is the stimulus and how intense is 

it. Another is the spinoreticulothalamic tract, which carries pain to the brainstem and may be more 

relevant to poorly localized pain. From these brainstem and thalamic loci, information reaches cortical 

structures. There is no single brain area essential for pain. Rather, pain results from activation of a 

distributed group of structures, some of which are more associated with the sensory-discriminative 

properties (such as the somatosensory cortex) and others with the emotional aspects (such as the 

anterior cingulated gyrus and insular cortex). Pain results from activation of a distributed group of 

structures, some of which are more associated with the sensory-discriminative properties and others 

with the emotional aspects. Imaging studies on healthy subjects with experimental pain models or on 

patients with clinical pain conditions have demonstrated activation of prefrontal cortical areas, as well 

as regions not generally associated with pain processing (such as the basal ganglia and cerebellum). 

(Basbaum et al., 2009) 

1.1.5 Effects of a peripheral injury on nociception 

1.1.5.1 Sensitization 

Nociceptors do not only signal acute pain, but also contribute to persistent and pathological pain 

conditions that occur in the case of injury. Allodynia is defined as a pain induced by a stimulus which 

normally does not provoke pain. Allodynia can result from two different conditions: increased 

excitability of postsynaptic neurons in the dorsal horn following high levels of activity in the 

nociceptive afferents (central sensitization), or lowering of nociceptor activation thresholds (peripheral 

sensitization) (Purves, 2008). With central sensitization, pain can be produced by activity in non-

nociceptive primary sensory fibres. Peripheral sensitization results from the exposure of nociceptor 

terminals to products of tissue damage and inflammation, referred to as the “inflammatory soup” 

(Basbaum et al., 2009) (Figure 3).  
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Figure 3 : The molecular complexity of the primary afferent nociceptor is illustrated by its response to inflammatory 

mediators released at the site of tissue injury.  

(Julius & Basbaum, 2001) 

These compounds include extracellular protons, arachidonic acid and other lipid metabolites, 

serotonin, bradykinin, nucleotides and NGF, all of which can interact with receptors or ion channels 

on sensory nerve endings, increasing their response.  

1.1.5.2 Neurogenic inflammation 

Nociceptors conduct information not only in an afferent way toward the spinal cord, but also in an 

efferent way. Electrical activity of nociceptors due to the activation of terminals by local 

depolarization, axonal reflexes or dorsal horn reflexes, can release peptides and neurotransmitters (for 

example, SP, CGRP and ATP) from their peripheral terminals. An axonal reflex results from a 

stimulus applied to one branch of a nerve, which creates an impulse that moves centrally to the point 

of division of the nerve, where it is reflected down other branches to the free termini innervating, for 

example, the skin. These released factors are able to facilitate production of the inflammatory soup by 

promoting the release of factors from neighbouring non-neuronal cells (release of histamine from mast 

cells) and vascular tissue (vasodilatation, plasma extravasation), a phenomenon known as neurogenic 

inflammation (Julius & Basbaum, 2001).  

1.1.5.3 Inflammatory mediators 

NGF is produced in the setting of tissue injury and constitutes an important component of the 

inflammatory soup. NGF acts directly on peptidergic C fiber nociceptors, which express the NGF 

receptor tyrosine kinase, TrkA (Chao, 2003). NGF produces hypersensitivity to heat and mechanical 

stimuli through two different mechanisms. Rapidely after its release, NGF binds to its receptor, TrkA 
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activating downstream signaling pathways, including phospholipase C (PLC), mitogen-activated 

protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K). It results in potentiation of target 

proteins at the peripheral nociceptor terminal, most notably TRPV1, leading to a rapid change in 

cellular and behavioral sensitivity (Chuang et al., 2001). Later, NGF is retrogradely transported to the 

nucleus of the nociceptor, where it promotes increased expression of substance P, TRPV1 and Nav1.8 

(Chao, 2003). These changes in gene expression enhance excitability of the nociceptor and amplify the 

neurogenic inflammatory response. Injury promotes the release of numerous cytokines as interleukin-

1β (IL-1β) and IL-6, and tumor necrosis factor α (TNF-α). Their main contribution to pain 

hypersensitivity is to potentiate the inflammatory response and increase the production of proalgesic 

agents (such as prostaglandins, NGF, bradykinin, and extracellular protons) (Basbaum et al., 2009). In 

inflammatory conditions proinflammatory mediators NGF, serotonin, interleukin-1, and bradykinin 

increase ASIC transcript levels in vivo. If applied together, these mediators are able to increase the 

amplitude of the ASIC-like currents on sensory neurons as well as the number of ASIC-expressing 

neurons. These proinflammatory mediators increase sensory neuron excitability (Mamet et al., 2002). 

α-eudesmol inhibits the presynaptic ω-agatoxin IVA-sensitive (P/Q-type) Ca
2+

 channels. Treatment 

with α-eudesmol dose-dependently attenuated neurogenic vasodilation in facial skin following 

electrical stimulation of rat trigeminal ganglion. α-eudesmol concentration-dependently inhibits the 

depolarization-evoked CGRP and SP release from sensory nerve terminals in spinal cord slices 

(Asakura et al., 2000). The activation of TRPV1 receptors on sensory fibers produces calcium and 

sodium influx and the release of neuropeptides (Richardson & Vasko, 2002). 

1.2 The Acid-Sensing Ion Channels (ASICs) 

1.2.1 The ENaC/degenerin family 

At the beginning of the 1990’s, a new class of ion channels was identified. This new class is now 

known as the epithelial sodium channel (ENaC)/degenerin family. The first members of this family 

were discovered in a genetic screen of the mechanosensory pathway of Caenorhabditis elegans. 

Mutations in the deg-1 gene induced a selective degeneration of the sensory neurons responsible for 

the light touch sensitivity (Chalfie et al., 1993). This phenotype has given the name “degenerin” to this 

family of channels. At about the same time, the α-subunit of ENaC was cloned (Canessa et al., 1993). 

ENaC plays a crucial role in Na
+
 reabsorption in the kidney. The amino acid sequence identity 

between the different ENaC/DEG subfamilies is about 15 to 20%. Based on their homology, a 

subfamily of neuronal channels was identified. It later appeared that these channels were activated by 

extracellular acidifications. They were consequently named Acid-Sensing Ion Channels (ASICs) 

(Waldmann et al., 1997; Waldmann & Lazdunski, 1998). Another subfamily within the ENaC/DEG 
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family of ion channels was also cloned at that time, the FMRF-amide-gated ion channel (FaNaC) 

(Lingueglia et al., 1995), which is present in the mollusc Helix aspersa (Kellenberger & Schild, 2002). 

1.2.2 Genes and splice variants 

Four different ASIC genes were identified; two of them exist in different splice variants. The ASIC1 

gene has two splice variants (-1a, -1b), as the ASIC2 gene (-2a, -2b) (Kellenberger & Schild, 2002). 

The expression of the members of this new subfamily was analysed by Northern blotting and in situ 

hybridisation (Waldmann & Lazdunski, 1998; Biagini et al., 2001) and shows a high expression in the 

central and peripheral nervous system. These channels were found to be non-voltage-activated sodium 

channels that are transiently activated by a rapid extracellular acidification (Figure 4) (Waldmann et 

al., 1997).  

 

Figure 4 : Macroscopic inward current of ASIC1a recorded at -70 mV after rapid pH change from 7.4 to 6 in Xenopus 

oocytes. 

(Waldmann et al., 1997) 

ASIC1a, -1b, -2a and -3 can form functional homomultimeric as well as heteromultimeric channels 

(Hesselager et al., 2004). ASIC2b needs to be coexpressed with ASIC1a, -1b, -2a or -3 to generate a 

proton-induced current (i.e. a current whose properties are different compared to the homomeric 

channel formed by the coexpressed subunit) (Lingueglia et al., 1997). ASIC4 is not activated by 

protons and does not form functional channels with other ASIC subunits (Grunder et al., 2000).  

1.2.3 Structure 

In 2007, the first crystal structure of ASIC was released by the group of Gouaux (Jasti et al., 2007). 

They managed to crystallize a truncated version of chicken ASIC1 (cASIC1), lacking the two N- and 

C- endings of the protein. The previously predicted secondary structure was confirmed. Each ASIC 

subunit is composed of two intracellular endings, two transmembrane domains and a large 

extracellular loop (Figure 5). Although numerous biochemical experiments done on ENaC have shown 

that it has four subunits (Firsov et al., 1998; Kosari et al., 1998), the crystal structure of cASIC1 

shows surprisingly a trimeric architecture. The transmembrane domain of ΔASIC1 is defined by two 
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long α-helices from each of the three subunits. Surrounding the “wrist”-like junction between the 

transmembrane and extracellular domains are well ordered 'loops' that probably have a key role in 

coupling conformational changes in the extracellular domain to the ion channel pore. Shaped like a 

funnel, the trimeric extracellular domain is composed of a core of three large β-sheets, one per subunit, 

and decorating this central core are three smaller β-sheet and α-helical domains (Jasti et al., 2007). 

More recently, the same group managed to crystallize a functional ASIC by keeping the N-termini of 

the protein intact. This structure is identical to the first structure in the extracellular parts, and shows a 

more realistic configuration of the transmembrane parts (Gonzales et al., 2009). 

 

Figure 5 : Structure of chicken ASIC1 

View of the homotrimeric ΔASIC1 structure. Each crystallographically independent subunit is in a different colour, a single 

chloride ion per subunit is shown as a green sphere and N-linked carbohydrate is shown in stick representation. The ΔASIC1 

structure has a chalice-like shape with a large extracellular domain protruding as much as 80 Å from the membrane plane, a 

slender transmembrane domain, and a broadened 'base' defined by the cytoplasmic N and C termini. The transmembrane 

domain of ΔASIC1 is defined by two long α-helices from each of the three subunits. On the cytoplasmic side of the 

membrane, the termini are frayed and we do not see well-ordered protein structure (Jasti et al., 2007). 

1.2.4 Biophysicals properties 

ASIC channels are activated by a drop of the extracellular pH. The selectivity ratio for Na
+
 over K

+
 is 

around 10 (Kellenberger & Schild, 2002). Homomeric ASIC1a is also slightly permeant to Ca
2+ 

(PNa
+
/PCa

2+
 = 18:1), contrary to other ASIC assemblies that are not Ca

2+
 permeant (Bassler et al., 

2001). To determine the pH dependence of activation, step pH changes from pH 7.4 to acidic solutions 

of different pH are performed. The mesured current can be plotted as a function of the activating pH 

and fitted with a Hill equation. The Hill equation allows calculating the pH50 which is the pH that 

induces half of the maximal current. The pH50 measured at 25°C in CHO cells expressing homomeric 

ASICs is 6.6 for ASIC1a, 6.2 for ASIC1b, 4.0 for ASIC2a and 6.7 for ASIC3 (Blanchard & 

Kellenberger, 2011). All functional ASICs respond to extracellular acidification with a transient 
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current. ASIC3-containing homo- and heteromultimers produce currents with a sustained phase in 

addition to the transient phase. Due to inactivation, prolonged exposure to a slightly acidic pH can 

render ASICs non-responsive to a subsequent acidic stimulus. In voltage-gated Na
+
 channels (Nav), 

this analogous property is called steady-state inactivation (SSI). The SSI represents the direct 

transition from the closed to the inactivated state during prolonged exposure to moderately acidic pH. 

For ASIC1a, the pH of half-maximal inactivation is about 7.2. Therefore, at pH more acidic than pH 

7.4, an increasing fraction of ASIC1a channels is in the inactivated conformation from which they 

cannot be opened by acidification. SSI determines the fraction of channels that are available for 

opening. ASIC activation can be important for the neuronal signalling. For example, it has also been 

shown that ASICs can induce action potentials (AP) in hippocampal neurons. The probability of 

inducing APs correlates with current entry via ASICs. The type of electrical response of a neuron to 

acidification depends on the variation of the pH, on the expression level of ASICs in the neuron, and 

on the activity of the neuron at that moment (Vukicevic & Kellenberger, 2004). 

1.2.5 ASIC modulators and activators 

Until recently, no activators of ASICs other than protons were known. Recently, it has been shown 

that 2-guanidine-4-methylquinazoline (GMQ) causes persistent ASIC3 channel activation at a 

physiological pH (Yu et al., 2010) with an EC50 of about 1 mM. A snake toxin activating ASICs with 

an EC50 ≥ 10 nM has also been recently identified (Bohlen et al., 2011). All the other substances 

described in this section can only modulate the activation of ASICs by protons, but are unable to 

activate ASICs by themselves. 

1.2.5.1 Redox reagents 

ASICs are modulated by redox reagents. It has been shown that the reducing agent dithiothreitol 

(DTT) at 1-2 mM reversibly potentiates proton-activated currents in the sensory ganglia and 

hippocampal neurons of rat, while the oxidizing reagent 5,5′-dithio-bis-(2-nitrobenzoic acid) (DTNB) 

at 5 mM causes their inhibition. The antioxidant tripeptide glutathione (its reduced form, g-l-glutamyl-

l-cysteinyl-glycine, GSH) at 2 mM also potentiates proton-activated currents (Andrey et al., 2005). 

Mouse cortical application of the reducing agents potentiated, whereas the oxidizing agents inhibited 

the ASIC currents, but no effect was seen on ASIC1 knock-out mice. Experiments done on CHO cells 

expressing homomeric ASICs have shown that ASIC1a, but not ASIC1b, -2a, -3 respond to redox 

agents (Chu et al., 2006). The effect of DTT on hASIC1a was mimicked by the metal chelator TPEN, 

indicating that the effect of DTT could be due to relief of tonic inhibition by transition metal ions, in 

addition of the redox modulation (Cho & Askwith, 2007). 
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1.2.5.2 Divalent cations: Ca
2+

, Zn
2+

 and Mg
2+

 

ASICs are modulated by Ca
2+

, Zn
2+

 and Mg
2+

. Extracellular, divalent cations like Ca
2+

 and Mg
2+

 shift 

the steady-state inactivation of ASIC1a and ASIC1b to more acidic values, leading in some cases to a 

potentiation of the channel response which extends the dynamic range of ASIC H
+
 sensors. (Babini et 

al., 2002). At higher concentrations, Ca
2+

 inhibits ASIC1a partially by a pore block with an IC50 of 

about 3.9 mM at pH 5.5, whereas ASIC1b is blocked with reduced affinity with an IC50 > 10 mM at 

pH 4.7 (Paukert et al., 2004). The ASIC2a homomeric current is partially inhibited by high Ca
2+

 

concentration (de Weille & Bassilana, 2001). On ASIC3, decreasing [Ca
2+

] opens the channel because 

it is thought that protons open ASIC3 releasing Ca
2+

 from a high-affinity binding site on the 

extracellular side of the pore. The bound Ca
2+

 could block permeation and the channel could only 

conduct current when multiple protons relieve this block. (Immke & McCleskey, 2003). Zn
2+

 at 100–

300 μM concentration potentiates the acid activation of homomeric and heteromeric ASIC2a-

containing channels (i.e. ASIC2a, ASIC1a+2a, ASIC2a+3), but not of homomeric ASIC1a and ASIC3 

(Baron et al., 2001). On hippocampal neurons in primary culture, either low extracellular [Ca
2+

] or 

high extracellular [Zn
2+

] increased the amplitude of the ASIC-like currents (Gao et al., 2004). Zn
2+

 

inhibits ASIC currents in cultured mouse cortical neurons at nanomolar concentrations. At nanomolar 

concentrations, Zn2+ inhibits currents mediated by homomeric ASIC1a and heteromeric ASIC1a-

ASIC2a channels expressed in CHO cells, without effect on homomeric ASIC2a and ASIC3 (Chu et 

al., 2004). 

1.2.5.3 FMRFamide and FMRFamide-related peptides 

FMRFamide (Phe-Met-Arg-Phe amide) and related peptides are abundant in invertebrate nervous 

systems and can act as neurotransmitters and neuromodulators (Cottrell, 1989). FRMFamide is not 

expressed in mammals, but related peptides are expressed in the mammalian nervous system. It has 

been shown in various snail species that FMRFamide directly gates sodium channels called FaNaC 

(FMRFamide-activated Na+ channel) (Green et al., 1994). The structural similarity between ASICs 

and FaNaC led to test the effect of FMRFamide peptides on ASICs. Inflammation induces expression 

of FMRFamide-related neuropeptides, which modulate pain. Neuropeptide FF at 50 μM (NPFF, Phe-

Leu-Phe-Gln-Pro-Gln-Arg-Phe amide) and FMRFamide at 50–100 μM generated no current on their 

own but potentiated H+-gated currents from cultured sensory neurons and heterologously expressed 

ASIC1 and ASIC3, but not ASIC2a (Askwith et al., 2000). The heteromeric channel ASIC3 + 2a is 

even more sensitive to NPFF than to FMRFamide (Catarsi et al., 2001). Knockout mice have 

demonstrated that ASIC3 plays a major role in mediating the sensory response to FMRFamide and 

FRRFamide. Deletion of ASIC3 attenuated the response to FMRFamide-related peptides, whereas the 

loss of ASIC1 increased the response. The loss of ASIC2 had no effect on FMRFamide-dependent 

enhancement of H-gated currents. (Xie et al., 2002; Xie et al., 2003). ASIC2a is able to increase the 
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response to peptides in heteromeric channels containing ASIC1a or ASIC3 subunits (Catarsi et al., 

2001; Askwith et al., 2004; Lingueglia et al., 2006). Exogenous and endogenous FMRFamide-related 

peptides at 50 μm decreased the pH sensitivity of ASIC1a steady-state desensitization. During 

conditions that normally induced steady-state desensitization, these peptides enhanced ASIC1a 

activity (Sherwood & Askwith, 2008). Endogenous mammalian RFamide peptides such as NPFF, 

NPAF and NPSF are mainly expressed in the CNS, with high level in the spinal cord, where they can 

be released. NPFF is present in small and medium DRG neurons. NPFF has been implicated in a 

variety of physiological functions such as pain modulation and is increased in the spinal cord during 

chronic inflammation. FMRFamide-related peptides could have neuromodulatory effects, like the 

modulation of nociceptive responses on central and peripheral neurons, through their interaction with 

ASICs. This could have an important role in conditions such as chronic inflammation where the 

expression levels of both NPFF and ASICs are increased (Lingueglia et al., 2006).  

Dynorphin A at 50 μM and big dynorphin at 50 μM inhibit steady-state desensitization of ASIC1a and 

acid-activated currents in cortical neurons. Dynorphin potentiation of ASIC1a current is abolished in 

the presence of PcTx1, a specific inhibitor of homomeric ASIC1a. This suggests that dynorphins 

interact with ASIC1a to enhance channel activity. The neuroprotection induced by steady-state 

desensitization of ASIC1a is abolished in the presence of dynorphins. In other words, dynorphins 

enhance neuronal damage following ischemia by preventing steady-state desensitization of ASIC1a 

(Sherwood & Askwith, 2009). 

1.2.5.4 Serine proteases 

Ischemia or inflammation can induce an acidification of the extracellular milieu. This acidification is 

often accompanied with an increase in the activity of proteases. Serine proteases modulate the function 

of ASIC1a and ASIC1b but not of ASIC2a and ASIC3. Protease exposure shifts the pH dependence of 

ASIC1a activation and steady-state inactivation to more acidic pH. Exposing ASIC1a to serine 

proteases at physiological pH decreased the response to an acidic pH, compared to naive ASIC1a. 

Interestingly, the same experiment with a conditioning pH of 7.0 instead of 7.4 showed that the 

exposed ASIC1a is more activated than the unexposed (Poirot et al., 2004). This regulation of ASIC 

function by serine proteases is linked to channel cleavage. Trypsin, a serine protease, cleaves ASIC1a 

with a similar time course as it changes ASIC1a function, whereas ASIC1b, whose function is not 

modified by trypsin, is not cleaved. Trypsin cleaves ASIC1a at Arg-145, in the N-terminal part of the 

extracellular loop (Vukicevic et al., 2006). The closely related channel ENaC is responsible for Na
+
 

transport in many epithelia, including kidney and lung. Many factors have a role in regulating ENaC 

activity. The first evidence of a role of proteases in the regulation of ENaC was shown in a Xenopus 

kidney epithelial cell line (A6). Exposure of the apical membrane to the protease inhibitor aprotinin 

reduced transepithelial sodium transport. CAP1, a serine protease expressed in kidney, gut, lung, skin 
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and ovary, increased the activity of the sodium channel by two- to threefold (Vallet et al., 1997). 

Proteolysis of ENaC subunits has a key role in this process (Hughey et al., 2007). ENaC is composed 

of three subunits (α, β, and γ). The α and γ subunits of ENaC are processed by proteases (Hughey et 

al., 2003). Specific proteases have been shown to activate epithelial Na
+
 channels by cleaving channel 

subunits (Kleyman et al., 2009). 

1.2.6 Pharmacology 

1.2.6.1 Amiloride and benzamil 

ASICs are reversibly inhibited by amiloride and its derivative benzamil. The concentration at which 

only half of the maximal current remains (IC50) is about 10 to 100 µM depending on ASIC subunits 

(Kellenberger & Schild, 2002). It is supposed, based on experiments done on ENaC, that amiloride 

blocks ion permeation through the channel pore (Schild et al., 1997). 

1.2.6.2 Nonsteroid anti-inflammatory drugs (NSAIDs) 

Nonsteroid anti-inflammatory drugs (NSAIDs) are drugs acting against inflammation and pain. Their 

principal mode of action is to inhibit cyclooxygenases (COXs). NSAIDs prevent the large increase of 

ASIC expression in sensory neurons induced by inflammation. NSAIDs such as aspirin (500 μM), 

diclofenac (200 μM), and flurbiprofen (500 μM) directly inhibit ASIC currents in sensory neurons and 

heterologous cell expression systems (Voilley et al., 2001). It was also shown that diclofenac (IC50 of 

about 600 μM) and ibuprofen (IC50 of about 3.5 mM) inhibited proton-induced currents in 

hippocampal interneurons and that aspirin (500 μM) and salicylic acid (500 μM) were ineffective 

(Dorofeeva et al., 2008). The possible differences of expression of ASICs subunits in DRG neurons 

and in hippocampal interneurons might explain the opposite effects of aspirin and salicylic acid on 

ASIC currents found by these two groups. 

1.2.6.3 A-317567 

A-317567 produced concentration-dependent inhibition of all pH 4.5-evoked ASIC currents in acutely 

dissociated adult rat DRG neurons with an IC50 ranging between 2 and 30 μM. A-317567 blocked 

also the sustained phase of ASIC3-like current. With injection of Complete Freud's Adjuvant (CFA) in 

rat, inducing inflammatory thermal hyperalgesia, A-317567 completely inhibited the pain response at 

a 10-fold lower dose than amiloride (Dube et al., 2005). 

1.2.6.4 Psalmotoxin 1 (PcTx1) 

Psalmotoxin 1 (PcTx1) is a 40-amino acid toxin from tarantula Psalmopoeus cambridgei venom. It 

blocks with an IC50 of 0.9 nM ASIC1a homomeric channels (Escoubas et al., 2000). PcTx1 inhibits 

ASIC1a by a unique mechanism: the toxin increases the apparent affinity for H
+
 of ASIC1a. The toxin 



 

 

14 

 

shifts the inactivation curve to more alkaline pH, inactivating almost completely ASIC1a at 

physiological pH (Chen et al., 2005). 

1.2.6.5 APETx2 

APETx2 is a toxin from the sea anemone Anthopleura elegantissima, which inhibits ASIC3 

homomeric channels both in heterologous expression systems and in primary cultures of rat sensory 

neurons. APETx2 reversibly inhibits rat ASIC3 (IC50 = 63 nM), without any effect on ASIC1a, 

ASIC1b, and ASIC2a. APETx2 also inhibits heteromeric channels containing ASIC3 subunits, 

however with a lower potency. The ASIC3-like current in primary cultured sensory neurons is partly 

and reversibly inhibited by APETx2 (Diochot et al., 2004). Recently our group showed that APETx2 

inhibited the tetrodotoxin (TTX)-resistant Nav 1.8 currents of DRG neurons with an IC50 of 2.6 μM, 

meaning that this toxin is not completely specific for ASIC3. This lack of specificity should be taken 

into account when using APETx2 as a pharmacological tool (Blanchard et al., 2011). 

1.2.6.6 MitTx 

Recently, it has been shown that venom from the Texas coral snake Micrurus tener tener, whose bite 

produces intense and unremitting pain, excites a large proportion of sensory neurons. The purified 

toxins (MitTx) act as selective agonists for ASICs, showing equal or greater efficacy compared with 

acidic pH. MitTx is highly selective for the ASIC1 subtype at neutral pH; under more acidic 

conditions (pH < 6.5), MitTx potentiates (>100-fold) proton-evoked activation of ASIC2a channels 

(Bohlen et al., 2011). 

 

1.3 ASICs in the central nervous system 

1.3.1 Expression pattern 

All ASICs except ASIC1b and ASIC3 are expressed in the CNS. ASICs are distributed widely 

throughout the brain. ASIC1a, ASIC2a, and ASIC2b have a similar widespread distribution pattern in 

the brain. They are expressed in areas such as cortex, olfactory bulb, hippocampus, amygdala, and 

cerebellum (Waldmann & Lazdunski, 1998). Within cells, ASIC1 was found in almost all parts, 

including the soma and along the branches of axons and dendrites. In one study, ASIC1 was found not 

to be enriched in the microdomains where pH may reach low values, such as in synaptic vesicles or 

synaptic membranes (Alvarez de la Rosa et al., 2003). In another study, ASIC1a was found to be 

enriched in areas with strong excitatory synaptic input such as the glomerulus of the olfactory bulb, 

whisker barrel cortex, cingulate cortex, striatum, nucleus accumbens, amygdala, and cerebellar cortex 

(Wemmie et al., 2003). ASIC1 null mice had impaired hippocampal long-term potentiation and had 

reduced excitatory postsynaptic potentials during high-frequency stimulation, suggesting a 
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postsynaptic localisation of ASIC1a (Wemmie et al., 2002). This post-synaptic localisation is in 

contradiction with the previous findings done by de la Rosa et al. ASIC2a is enriched in synaptic 

fractions from cerebellum (Jovov et al., 2003).  

ASIC4 shows strongest expression in pituitary gland. Moreover, ASIC4 expression is detected 

throughout the brain, in spinal cord, and inner ear (Grunder et al., 2000). Reverse transcriptase-nested 

PCR and Western blotting showed that three ASIC isoforms, ASIC1a, ASIC2a, and ASIC2b, are 

expressed at a high level in dorsal horn neurons (Wu et al., 2004). ASIC1a and ASIC2a are the most 

abundant ASICs in mouse adult spinal cord and are coexpressed by most neurons in all the laminas 

(Baron et al., 2008). Photoreceptors and neurons of the mouse retina express ASIC2a and ASIC2b 

(Ettaiche et al., 2004).  

1.3.2 Role of ASIC1a in memory and fear 

ASIC1a null mice have impaired hippocampal long-term potentiation. ASIC1a null mice had reduced 

excitatory postsynaptic potentials and NMDA receptor activation during high-frequency stimulation. 

Null mice displayed defective spatial learning and eyeblink conditioning.  Therefore ASIC1a has a 

small role in processes underlying synaptic plasticity, learning, and memory (Wemmie et al., 2002). 

However, another study did not observe any differences in short-term plasticity upon blockade of 

ASIC1 with amiloride or inactivation of ASIC1 by lowering the conditioning pH to 6.7 in cultured 

hippocampal neurons. Protons released during intense synaptic activity did not activate postsynaptic 

ASIC1 currents in excitatory synapses and any activation of presynaptic ASIC currents did not alter 

synaptic transmission (Alvarez de la Rosa et al., 2003).  

ASIC1a modulates the activity of the circuits underlying innate fear (Wemmie et al., 2003). 

Furthermore, removing the ASIC1a gene or acutely inhibiting ASIC1a suppresses fear and anxiety 

independent of conditioning (Coryell et al., 2007). Rescue experiments, expressing ASIC1a in the 

basolateral amygdala of ASIC1a null mice using viral vector-mediated gene transfer pinpoint the 

basolateral amygdala as the site where ASIC1a contributes to fear memory (Coryell et al., 2008). 

Inhaled CO2 reduces brain pH and evokes fear behavior in mice. Using ASIC1a knock-out mice or 

inhibiting ASIC1a significantly reduced the effect of CO2. Rescuing ASIC1a specifically in the 

amygdala of ASIC1a null animals re-established the CO2-induced fear deficit. The amygdala is 

through ASIC1a an important chemosensor that detects hypercarbia and acidosis and initiates fear 

responses (Ziemann et al., 2009). 

1.3.3 Role of ASIC1a in cerebral ischemia 

ASICs in central neurons might contribute to the neuronal death associated with brain ischemia. In cell 

culture, cells lacking endogenous ASICs are resistant to acid injury, while transfection of Ca
2+

-
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permeable ASIC1a establishes sensitivity to acid. In focal ischemia, intracerebroventricular injection 

of ASIC1a blockers (amiloride, venom containing PcTx1) or knockout of the ASIC1a gene protects 

the brain from ischemic injury and does so more potently than glutamate antagonism (Xiong et al., 

2004). 

1.4 ASICs in the peripheral nervous system 

All ASIC subunits are found in the PNS. ASIC expression has also been found outside the nervous 

system in eye, ear, taste buds and bone (Wemmie et al., 2006). ASICs are expressed in all DRG 

neuron subtypes, with the subunit composition varying among DRG neurons, producing different 

types of ASIC currents in different DRG neuron populations. An electrophysiological characterization 

performed in our group proposes the following classification (Poirot et al., 2006). Small-diameter 

DRG neurones expressed three different ASIC current types which were all preferentially expressed in 

putative nociceptors. Type 1 currents are mediated by ASIC1a homomultimers and are characterized 

by steep pH dependence of current activation in the pH range 6.8–6.0. Type 3 currents are activated in 

a similar pH range as type 1, while type 2 currents are activated at pH<6. Type 1 current slowly 

inactivates at pH6, whereas type 2 and 3 inactivate rapidly. Within small-diameter neurones, two main 

subpopulations can be distinguished based on the binding of IB4. IB4-negative neurons are known to 

express neuropeptides and therefore IB4 is a marker for non-peptidergic neurons. There is evidence for 

different functions of IB4-positive and negative neurones in pain sensation (Snider & McMahon, 

1998).  

 

Figure 6 : Proportion of small IB4-negative (left) and IB4-positive neurones (right) without ASIC current (white), and 

type 1 (hatched), type 2 (black) and type 3 (cross-hatched) 

 (Poirot et al., 2006) 
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The correlation with ASIC currents showed first that 91% of IB4-negative, but only 36% of IB4-

positive, neurones express an ASIC current. In IB4-positive neurones expressing an ASIC current, the 

majority of the ASIC currents (70%) are of the fast inactivating types 2 and 3. About half of IB4-

negative neurones express type 1 current (Figure 6) (Poirot et al., 2006). 

1.4.1 Mechanosensation 

The similarity of ASICs to nematode proteins involved in mechanotransduction suggested that they 

might be involved in mechanosensation. In one study, disrupting the mouse ASIC2 gene markedly 

reduced the sensitivity of a specific component of mechanosensation: low-threshold rapidly adapting 

mechanoreceptors. In rodent hairy skin these mechanoreceptors are excited by hair movement. 

Consistent with this function, ASIC2 was found in the lanceolate nerve endings that lie adjacent to and 

surround the hair follicle. Thus, it was concluded that ASIC2 is essential for the normal detection of 

light touch and may be a central component of a mechanosensory complex (Price et al., 2000). 

Interestingly, another study investigated the effect of an ASIC2 gene knockout in mice on hearing and 

on cutaneous mechanosensation and visceral mechanonociception. They did not find a role of ASIC2 

in these aspects of mechanoperception. They performed the same experiments low-threshold rapidly 

adapting mechanoreceptors, but on the contrary of the previously cited study, they did not find any 

difference between ASIC2 null mice and wild type mice (Roza et al., 2004). Using ASIC2 null mice, 

it has been shown that normal ASIC2 expression is required for normal pressure-induced constriction 

in the middle cerebral arteries (Gannon et al., 2008a). ASIC2 was found to be expressed in aortic 

baroreceptor neurons in the nodose ganglia and their terminals. ASIC2 null mice developed 

hypertension, had exaggerated sympathetic and depressed parasympathetic control of the circulation, 

and a decreased gain of the baroreflex, all being a sign of an impaired baroreceptor reflex (Lu et al., 

2009).  

ASIC3 was identified in several different specialized sensory nerve endings of skin, suggesting it 

might participate in mechanosensation. Disrupting the mouse ASIC3 gene altered sensory 

transduction. Loss of ASIC3 increased the sensitivity of mechanoreceptors detecting light touch (Price 

et al., 2001).  

Because functional redundancy of ASIC subunits might explain limited phenotypic alterations, it was 

hypothesized that disrupting multiple ASIC genes would markedly impair cutaneous 

mechanosensation. In a recent study, it was found the opposite. In behavioral studies, mice with 

simultaneous disruptions of ASIC1a, -2 and -3 genes (triple-knockouts) showed increased paw 

withdrawal frequencies when mechanically stimulated with von Frey filaments. In single-fiber nerve 

recordings of cutaneous afferents, mechanical stimulation generated enhanced activity in A-

mechanonociceptors of ASIC triple-knockouts compared to wild-type mice (Kang et al., 2012). 
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1.4.2 Nociception 

As mentioned before, ASICs are localized in nociceptors and are activated by protons, one of the first 

compounds released by damaged cells during inflammation. Acidification also occurs in painful 

diseases like ischemia, hematoma, fracture, tumor development and incisions after a surgery. ASIC1a, 

-2 and -3 knockout mice have been used to elucidate the role of ASICs in different models of 

nociception.  

ASIC3 knockout mice have been reported to have a small but significant increase of sensitivity 

compared to wild-type animals in a model of mechanical hyperalgesia induced with carrageenan. After 

injection of acidic (pH 4) saline into the gastrocnemicus muscle, ASIC3 null mice had significantly 

less hyperalgesia compared to wild-type mice (Price et al., 2001). In an animal model of long lasting 

mechanical hypersensitivity produced by repeated acidic saline injection in the muscle ASIC3 null 

mice did not develop mechanical hyperalgesia, while wild-type mice did. ASIC1 null mice were also 

tested and did not show any difference compared to wild type mice (Sluka et al., 2003). In a rescue 

experiment, it has been shown that the injection into muscle, but not skin of ASIC3 null mice of 

ASIC3-encoding virus, which induce the expression of ASIC3 in primary afferent fibers innervating 

the site of injection, resulted in the development of mechanical hyperalgesia similar to that observed in 

wild-type mice. Heat hyperalgesia develops similarly in ASIC3 null and wild-types animals (Sluka et 

al., 2007). The secondary mechanical hyperalgesia that develops after knee joint inflammation, 

induced by carrageenan injection in the knee joint cavity, was not induced in ASIC3 null mice. 

However, the primary mechanical hyperalgesia was still present in ASIC3 null mice (Ikeuchi et al., 

2008). Another study showed similar results with carrageenan-induced muscle inflammation. ASIC3 

null mice develop primary muscle hyperalgesia but not secondary paw mechanical hyperalgesia after 

injection of carrageenan in the gastrocnemius muscle. In contrast, ASIC1 null mice did not develop 

primary muscle hyperalgesia but developed secondary paw hyperalgesia after carrageenan injection. 

The ASIC inhibitor A-317567, given locally, reverses both the primary and the secondary 

hyperalgesia induced by carrageenan muscle inflammation (Walder et al., 2010). Recently, it has also 

been shown that reducing in-vivo ASIC3 using artificial miRNAs inhibits both primary and secondary 

hyperalgesia after muscle inflammation in wild-type mice (Walder et al., 2011).  

In contradiction with studies cited above, a group showed that ASIC3 null mice displayed a reduced 

latency to the onset of pain response, or more pain-related behaviour, when stimuli of moderate to 

high intensity were used. This effect seemed independent of the modality of the stimulus and was 

observed in the acetic-induced writhing test, in the hot plate test, and in tail-pressure test for 

mechanically induced pain (Chen et al., 2002). Chen later found with his own group that ASIC3 null 

mice showed normal thermal and mechanical hyperalgesia with acute (4 hours) intraplantar CFA- or 
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carrageenan-induced inflammation. The hyperalgesic effects in the sub-acute phase (1-2 days) induced 

by carrageenan were milder in ASIC3 null mice for the mechanical hyperalgesia and normal for the 

thermal hyperalgesia. It was also confirmed that mechanical hyperalgesia was abolished in ASIC3 null 

mice in a model of carrageenan-induced inflammation in muscles (Yen et al., 2009). These results of 

the carrageenan injection model are in contradiction with Price et al. (Price et al., 2001) who describe 

opposite effects. Following hind paw inflammation with formalin injection, ASIC1 and ASIC2, but 

not ASIC3 null mice showed enhanced pain behaviour compared to wild type littermates, 

predominantly in the second phase of the test (Staniland & McMahon, 2008).  

An interesting approach has been used to circumvent the heteromultimerisation of ASIC subunits 

which renders difficult the understanding of single ASIC subunit knock-out mice experiments. 

Transgenic mice expressing a dominant negative form of the ASIC3 subunit have been generated. All 

native neuronal ASIC-like currents were inactivated in these mice. Both wild-type and transgenic mice 

were equally sensitive to thermal pain and to thermal hypersensitivity after inflammation. 

Surprisingly, transgenic mice were more sensitive to mechanical pain, inflammatory pain after 

formalin injection, intraperitoneal injections of acetic acid, mechanical hypersensitivity after zymosan 

inflammation, and mechanical hypersensitivity after intramuscular injection of hypotonic saline 

(Mogil et al., 2005).  

Systemic administration of amiloride produces a robust, dose-dependent blockade of late phase 

nociceptive behaviour on the mouse formalin test in female but not male mice (Chanda & Mogil, 

2006). This discrepancy between male and female has also been shown in muscle fatigue, which is 

associated with a number of clinical diseases, including chronic pain conditions. Enhanced muscle 

fatigue occurred in male but no female ASIC3 null mice (Burnes et al., 2008).  

Using rats, it has been shown that moderately acidic pH increased the excitability of nociceptors and 

that subcutaneous injections of moderately acid solutions in one of the hind paws produced pain. Both 

effects were suppressed by the toxin APETx2, a blocker of ASIC3. Both APETx2 and the in vivo 

knockdown of ASIC3 with a specific siRNA had potent analgesic effects against primary 

inflammation-induced hyperalgesia (Deval et al., 2008). From studies with rats, PcTx1 has been 

shown to possess opioid-type analgesic properties via ASIC1a channels. This means that central 

inhibition of ASIC1a, acting upstream of the opiate system, might be exploited to treat any type of 

pain (Mazzuca et al., 2007). ASIC1a was found to be the predominant ASICs in rat spinal dorsal horn 

neurons. Downregulation of ASIC1a by local spinal infusion with specific inhibitors or antisense 

oligonucleotides attenuated complete Freund's adjuvant-induced thermal and mechanical 

hypersensitivity. An increased ASIC activity in spinal dorsal horn neurons was shown to promote pain 

by central sensitization (Duan et al., 2007). In a rat model of postoperative pain involving plantar 
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incision, ASIC3 mRNA and protein levels in lumbar DRG neurons are increased 24 h after surgery. 

Pharmacological inhibition of ASIC3 with APETx2 or in vivo knockdown of ASIC3 by siRNA led to 

a significant reduction of postoperative spontaneous, thermal, and postural pain behaviours, showing a 

significant role for peripheral ASIC3-containing channels in postoperative pain (Deval et al., 2011).  

Finally, direct injection of acidic solutions (pH ≥ 6.0) into human skin caused localized pain, which 

was blocked by amiloride. Under more severe acidification (pH 5.0) amiloride was less effective in 

reducing acid-evoked pain (Ugawa et al., 2002). In another study, iontophoresis of protons was used 

to investigate acid-induced pain in human volunteers. It was found that transdermal iontophoresis of 

protons consistently caused moderate pain that was dose-dependent. Subcutaneous injection of 

amiloride significantly inhibited the pain induced by iontophoresis of acid, suggesting an involvement 

of ASICs (Jones et al., 2004). 

1.4.3 Taste and hearing 

In situ hybridisation and RT-PCR experiments revealed that ASIC2a and ASIC2b transcripts were 

localized in taste bud cells (Shimada et al., 2006). However, Ca
2+

 imaging experiments on taste bud 

cells of ASIC2 knock-out mice showed that the cells had normal physiological responses to acid taste 

stimuli (Richter et al., 2004). In human, it has been shown that ASIC1a, -1b, -2a, -2b and -3 were 

expressed in lingual fungiform papillae which contain taste cells. These transcripts were undetectable 

in two patients with an acquired sour ageusia, suggesting a role for ASICs in human sour perception 

(Huque et al., 2009). 

ASIC2 is present in the spiral ganglion neurons in the mouse adult cochlea. ASIC2 null mice showed 

no significant hearing deficit but were considerably more resistant to noise-induced temporary, but not 

permanent, threshold shifts. It suggests that ASIC2 is not directly involved in the mechanotransduction 

of the cochlea but could contribute to suprathreshold functions of the cochlea (Peng et al., 2004). 

ASIC3 has been also found in the cochlea of mice by quantitative real-time polymerase chain reaction. 

In-situ hybridisation and immunofluorescence showed that ASIC3 was expressed in the cells and in 

the neural fibre region of the spiral ganglion. ASIC3 protein was also detected in cells of the organ of 

Corti. An ASIC3 knockout mouse model was tested for a hearing loss phenotype and was found to 

have normal hearing at 2 months of age but appeared to develop hearing loss early in life (Hildebrand 

et al., 2004). It has also been shown that female ASIC3 null mice showed elevated hearing thresholds 

for low to ultrasonic frequency on auditory brain stem response. The response to pups' wriggling calls 

and ultrasonic vocalization, as well as the retrieval of pups was deficient in these mice (Wu et al., 

2009). 
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1.4.4 Molecular basis of signal detection and propagation 

The primary afferent nerve fiber detects thermal, mechanical or chemical environmental stimuli and 

transduces the information into electrical current. In the following, I describe an important class of 

channels which detect stimuli in sensory neurons and two classes of channels involved in the 

transmission of the electrical signal in the same neurons. 

1.4.4.1 ThermoTRP channels (TRVPV1, TRPV2, TRPA1 and TRPM8) 

Transient receptor potential (TRP) channels were first identified in a phototransduction mutant in 

Drosophila that showed a transient instead of a sustained response to light (Montell & Rubin, 1989). 

In this chapter, I will only focus on four members of this family which play an important role in 

stimulus detection in sensory neurons.  

Four identical TRPV1 subunits, each containing six transmembrane segments with a pore loop 

between transmembrane segments 5 and 6, assemble to form the channel (Lee & Caterina, 2005). In 

heterologous systems this channel is weakly Ca
2+

-selective, and when stimulated by capsaicin, 

resiniferatoxin, acid, endocannabinoids, or heat (>43°C), it produces outwardly rectifying cation 

currents (Caterina et al., 1997; Tominaga et al., 1998; Caterina et al., 1999). TRPV1 is expressed 

primarily in small- to medium-diameter peptidergic and nonpeptidergic sensory neurons (from Aδ and 

C fibers) within the dorsal root, trigeminal, and nodose sensory ganglia (Caterina et al., 1997; 

Tominaga et al., 1998). TRPV1-knockout mice have been generated and electrophysiological 

responses to capsaicin, acid, and heat (>43°C) were reduced or absent in these mutants. Inflammation-

induced heat hyperalgesia was virtually abolished in TRPV1 knockout animals (Caterina et al., 2000; 

Davis et al., 2000).  

TRPV2 has been found to mediate high-threshold heat sensations (>52°C) in vitro. Since it is 

expressed in medium- to large-diameter sensory neurons, it is thought to be associated with Aδ fibers 

(Caterina et al., 1999). Evidence that the TRPV2 channels mediate sensation to heat in vivo is lacking.  

TRPM8 channels are activated by menthol, icilin and by reductions in temperature from cool (<28°C) 

to noxious cold (<15°C) (McKemy et al., 2002; Peier et al., 2002; Voets et al., 2004). TRPM8 

expression is restricted to approximately 5%–10% of adult DRG neurons. TRPM8 is expressed in 

small-sized neurons (from Aδ and C fibers). TRPM8-positive neurons appear to belong to a subset of 

nociceptive or thermoceptive neurons that express tyrosine kinase receptor A (trkA), an NGF receptor, 

during development. TRPM8 is expressed in a small subpopulation of neurons distinct from the well-

characterized heat- and pain-sensing neurons expressing the markers TRPV1, CGRP, or IB4 (Peier et 

al., 2002). TRPM8 knock-out mice showed a reduced sensitivity to menthol in one study (Colburn et 

al., 2007), and were in a second study completely insensitive to menthol and icilin (Bautista et al., 
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2007). Cold analgesia after formalin injections was also evaluated on TRPM8 ko mice. On a 17°C 

cold plate, formalin-treated wild type mice displayed reduced responses compared to mice at room 

temperature during the acute and inflammatory phases of the test, demonstrating that cold is analgesic 

to formalin administration. This behaviour is completely ablated in TRPM8-deficient mice, suggesting 

that TRPM8 activation can elicit an analgesic response (Dhaka et al., 2007). TRPM8 is important for 

thermal sensitivity and contributes to responses in the cold range; however detection of noxious cold 

appears to involve additional mechanisms.  

TRPA1 is activated by cold temperature (<18°C), icilin, cannabinoids, mustard oil, as well as 

mechanical stimuli (hair cells in inner ear) (Corey et al., 2004; Wang & Woolf, 2005). Submicromolar 

to low micromolar concentrations of menthol cause TRPA1 activation, whereas higher concentrations 

lead to a reversible channel block (Karashima et al., 2007). TRPA1 is involved in nicotine-induced 

irritation. Micromolar concentrations of nicotine activated heterologously expressed mouse and human 

TRPA1. TRPA1 mediated the mouse airway constriction reflex to nasal instillation of nicotine 

(Talavera et al., 2009). TRPA1 is expressed in a small population of sensory neurons expressing 

TRPV1, CGRP, SP, but not TRPM8 (Jordt et al., 2004; Wang & Woolf, 2005). TRPA1 is not 

expressed with TRPM8, indicating that these channels do not coordinate at the level of individual 

sensory cells to integrate thermal information. Since TRPA1 is not expressed in heavily myelinated 

neurons, it has been suggested that it is localized to non-myelinated C- or lightly myelinated Aδ-fibers. 

Experiments in heterologous cells have shown that TRPA1 is stimulated by formalin (McNamara et 

al., 2007). Neurons from wild type trigeminal and dorsal root ganglia were activated also by formalin 

and the responses were blocked by a TRPA1 inhibitor (HC-030031), whereas neurons from TRPA1 

knock-out mice were unresponsive to formalin. TRPA1 appears to mediate nociceptive responses to 

formalin (Wetsel, 2011). A single point mutation in TRPA1 (N855S) has been linked with an 

autosomal-dominant familial episodic pain syndrome characterized by episodes of debilitating upper 

body pain, triggered by fasting and physical stress. The mutant channel showed altered biophysical 

properties, with a 5-fold increase in inward current on activation at normal resting potentials. Patients 

carrying this gain-of-function mutation in TRPA1 displayed an enhanced secondary hyperalgesia to 

punctate stimuli on treatment with mustard oil compared to non-affected siblings (Kremeyer et al., 

2010). Cold plate and tail-flick experiments on TRPA1 null mice revealed a TRPA1-dependent, cold-

induced nociceptive behaviour, showing that TRPA1 acts as a major sensor for noxious cold 

(Karashima et al., 2009). 

1.4.4.2 Nav channels 

Nine pore-forming sodium channel α-subunits (Nav1.1–Nav1.9) have been identified in mammals, and 

their expression is spatially and temporally regulated (Catterall et al., 2005a). These channels are large 

polypeptides that fold into four domains (DI–DIV), each domain including six transmembrane 
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segments, linked by three loops (Catterall, 2000). Recently, a Nav channel from Arcobacter butzleri 

has been crystallised. One of the new findings was that the arginine gating charges make multiple 

hydrophilic interactions within the voltage sensor, including unexpected hydrogen bonds to the protein 

backbone (Payandeh et al., 2011).  

Different channels gate with different kinetics and voltage-dependent properties, with six channels 

sensitive to block by nanomolar concentrations of tetrodotoxin (TTX), which are called TTX-sensitive 

(TTX-S), and three channels resistant to this blocker and which are called TTX-resistant (TTX-R) 

(Catterall et al., 2005a). DRG neurons can express up to five types of sodium channels, more than in 

any other neuronal cell type (Black et al., 1996; Dib-Hajj et al., 1998). Adult DRG neurons can 

express the TTX-S channels Nav1.1, Nav1.6, and Nav1.7, and the TTX-R channels Nav1.8 and Nav1.9 

(as well as Nav1.5 at low levels). Nav1.3 channels are present in embryonic, but not in adult DRG 

neurons and are re-expressed under pathological condition (Waxman et al., 1994). Nav1.1 and Nav1.6 

expression is common to central nervous system (CNS) and peripheral nervous system (PNS) neurons, 

whereas Nav1.7, Nav1.8, and Nav1.9 are specific to PNS neurons. Nav1.7 is expressed in sensory and 

sympathetic (Toledo-Aral et al., 1997), and myenteric (Sage et al., 2007) neurons, whereas Nav1.9 is 

expressed in sensory and myenteric neurons (Dib-Hajj et al., 1998; Rugiero et al., 2003), and Nav1.8 

only in sensory neurons (Akopian et al., 1996; Rugiero et al., 2003). Nav1.7, Nav1.8, and Nav1.9 may 

have evolved in a specialized sensory role in mammals, including pain (Dib-Hajj et al., 2010).  

Inherited erythromelalgia (IEM) is characterized by intense episodic burning pain associated with 

redness and warmth of the affected extremities. Several groups identified point mutations in Nav1.7 of 

patients affected with IEM (Yang et al., 2004; Dib-Hajj et al., 2005). IEM mutations of Nav1.7 have 

been shown to cause a hyperpolarizing shift in activation and slow deactivation, decreasing the 

threshold for action potential generation in sensory neurons and increasing neuronal excitability 

(Cummins et al., 2004; Fischer & Waxman, 2010).  

Some members of three consanguineous families from northern Pakistan have a complete inability to 

sense pain. These individuals carry homozygous nonsense mutations on the Nav1.7 gene causing a loss 

of function of the channel, suggesting that Nav1.7 is an essential and non-redundant requirement for 

nociception in humans (Cox et al., 2006).  

Finally, from a more pharmacological point of view, residues in the inner cavity of the channel pore 

involving the S6 segment of domains I, III, and IV form the binding site for local anesthetic drugs 

such as lidocaine, meaning that lidocaine can be used as a sodium channel blocker (Liu & Wood, 

2011). 
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1.4.4.3 Voltage-gated calcium channels (Cav) 

Certain types of voltage-gated calcium channels (Cav) can trigger the release of neuropeptide-

containing vesicules via an entry of calcium in DRG sensory neurons and dorsal horn neurons. Cav can 

be classified based on their voltage activation characteristics as high- or low-voltage activated 

channels. The Cavs can also be classified based on their structural similarities of the channel-forming 

α1-subunit (Cav1, Cav2, Cav3) or their sensitivity to blockade by pharmacological agents (L, N, P/Q, R 

and T-type). The high-Cavs include L-type (Cav1.1, Cav1.2, Cav1.3, Cav1.4), P/Q-type (Cav2.1), N-type 

(Cav2.2) and R-type (Cav2.3) channels, while the low-Cavs include T-type (Cav3.1, Cav3.2, Cav3.3) 

channels. The high-Cavs typically form heteromultimers that consist of the channel-forming α1-subunit 

along with auxiliary β-, α2δ and γ-subunits. (Catterall et al., 2005b). The α1-subunits have the same 

topology as the main Nav subunits (Yu et al., 2005). 

L-type channels are widely distributed in the central nervous system. Four different isoforms exist for 

L-type channels (CaV1.1–CaV1.4), with CaV1.2 and CaV1.3 being strongly expressed in neurons (Ertel 

et al., 2000). The 1,4-dihydropyridines are able to activate or block specifically Cav1 (L-type 

channels). Nifedipine is a Dihydropyridine which inhibits L-type channels (Triggle, 2003).  

N-type channels are expressed at high density on the presynaptic terminals of primary afferent neurons 

that terminate in the dorsal horn of the spinal cord. The modulation of both central and peripheral T-

type channels results in significant alteration of the pain threshold in some animal pain models 

(Todorovic & Jevtovic-Todorovic, 2006). The highly N-type selective ω-conotoxins MVIIA and 

CVID reduced pain behaviours in rats (Smith et al., 2002). Ziconotide, a synthetic form of ω-

conotoxin MVIIA, is used for intrathecal treatment of severe chronic pain in patients (Schmidtko et 

al., 2010). 

CaV2.1 P/Q-type channels are expressed at the presynaptic terminals in the spinal dorsal horn 

(Catterall & Few, 2008). The involvement of P/Q-type channels in pain processing is not well 

understood. P/Q-type channels show little colocalization with substance P, and treatment with ω-

agatoxin IVA, a specific inhibitor of P/Q-type channels, has no effect on the release of either 

substance P or CGRP from peptidergic sensory neurons (Evans et al., 1996; Westenbroek et al., 1998). 

ω-conotoxin MVIIC is also a specific inhibitor for the P/Q-type channels (Nielsen et al., 2000).  

In sensory pathways, T-type channels are located on primary afferent terminals and dorsal root 

ganglia, with CaV3.2 being the most abundant isoform in the DRG (Bourinet et al., 2005). The T-type 

channel subtype has one of the most prominent roles in nociception (Park & Luo, 2010). Mibefradil is 

a compound that blocks both T-type and L-type calcium channels. It blocks T-type calcium channel 

currents at a lower concentration than that needed to inhibit L-type channels (Mocanu et al., 1999). 
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1.4.5 Neuropeptides and their peripheral targets 

1.4.5.1 Calcitonin gene-related peptide (CGRP) 

CGRP is a 37–amino acid peptide that is a member of the calcitonin family, which also includes 

calcitonin, amylin, and adrenomedullin. CGRP exists in two distinct isoforms: CGRPα (CGRP1), 

which is the product of alternative splicing of the calcitonin gene in neurons, and CGRPβ (CGRP2), 

which is encoded by a separate gene (Poyner, 1992). These two CGRP peptides differ from each other 

by three amino acids and are not distinguishable in their biological activities. CGRP is widely 

expressed in the central and peripheral nervous systems. CGRP is expressed in a subset of small 

neurons in the DRG, trigeminal, and vagal ganglia. These CGRP-containing neurons are polymodal 

nociceptors that are activated by chemical, thermal and high-threshold mechanical stimuli (Tsukagoshi 

et al., 2006). These peptidergic neurons have small myelinated (Aδ) and unmyelinated (C) axons that 

innervate essentially all peripheral tissues and send primary afferent input to nociceptive and 

viscerosensitive neurons in the dorsal horn (Gu & Yu, 2007).  

CGRP and substance P are released from large dense-core vesicles. In rat trigeminal ganglia CGRP 

was found to be co-expressed with the three exocytotic SNAREs (SNAP25, syntaxin 1 and the 

synaptobrevin isoforms) and synaptotagmin. Ca
2+

-dependent CGRP release was evoked with K
+
-

depolarisation and, to lower levels, by capsaicin or bradykinin from neurons that contain TRPV1, 

respectively bradykinin receptor 2 (Meng et al., 2007). 

1.4.5.2 The CGRP Receptor 

The functional CGRP receptor consists of the assembly of a 7-transmembrane domain G protein–

coupled receptor known as calcitonin receptor-like receptor (CLR) and an associated single 

transmembrane domain protein called receptor activity-modifying protein 1 (RAMP1) (Walker et al., 

2010) (Figure 7) (Benarroch, 2011). RAMP1 is required to transport CLR to the plasma membrane, to 

present the receptor at the cell surface as a mature glycoprotein, and is essential for CGRP receptor 

signalling (McLatchie et al., 1998). The primary signal transduction pathway for the CGRP receptor is 

mediated by Gαs, which activates adenylyl cyclase, leading to the production of cyclic adenosine 

monophosphate (cAMP) and activation of protein kinase A (PKA). The CGRP-triggered cAMP-PKA 

pathway regulates the activity of various downstream signaling components, including K
+
 channels, L-

type Ca
2+

 channels, and cAMP response element binding protein. These effector mechanisms mediate 

numerous actions of CGRP, including vasodilation, neurotransmitter release, increased neuronal 

excitability, and synaptic plasticity (Walker et al., 2010). In general, the distribution of CGRP 

receptors overlaps with that of CGRP in peripheral tissues (particularly blood vessels), dorsal horn, 

trigeminal nucleus, parabrachial nuclear complex, thalamus, amygdala, striatum, and cerebellum 

(Tschopp et al., 1985; Henke et al., 1987).  
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Figure 7 : Calcitonin gene-related peptide (CGRP) receptor and transduction pathways.  

The upper panel shows the topology of RAMP1 and CLR which form the CGRP receptor. The lower panel shows the  

transduction pathway of the CGRP receptor at a neuronal plasma membrane (Benarroch, 2011). 

 

1.4.5.3 Substance  P (SP) 

SP is a neuropeptide that has, among others, a crucial role in nociceptive signal transmission. The 

history of this neuropeptide began in 1931, when Von Euler and Gaddum isolated a substance from 

the brain and gut of horses, which caused hypotension (V. Euler & Gaddum, 1931). In the spinal cord, 

SP is found in abundance in terminals of primary afferent nerves in the dorsal horn, and in the dorsal 

roots of the spinal nerves. In the dorsal horn, high concentrations of substance P are present in the 

synaptic vesicles of primary afferent nerve fibres (Cuello et al., 1977). Due to the size and hydrophilic 

nature of SP, it crosses the biological membranes poorly, and its release requires the process of 

exocytosis (Persson et al., 1995). SP and CGRP are co-expressed in the peptidergic neurons. 

The release of SP has already been described in chapter 1.4.5.1.  

1.4.5.4 NK1 Receptor 

The tachykinin peptide family certainly represents one of the largest peptide families described in the 

animal organism. SP may be considered as a prototype of the tachykinins. The tachykinins differ in 

their receptor affinity. Substance P binds preferentially to the neurokinin 1 (NK1) receptor. NK1 

receptors are found both in central nervous tissue (mainly in the striatum and in the spinal cord) and in 

peripheral organs. The NK1 receptor is the major mediator of plasma protein extravasation produced 
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by both exogenous and endogenous tachykinins (Abelli et al., 1991; Xu et al., 1992). SP induces 

clathrin-dependent internalization of the NK1 receptor. The complex formed by SP and it receptor 

dissociates in acidified endosomes. SP is degraded and the NK1 receptor is recycled to the cell surface 

(Grady et al., 1995). After binding to its NK1 receptor, substance P modifies Ca
2+

 and K
+
 currents at 

the cellular level (Snijdelaar et al., 2000). 

1.4.5.5 Role of CGRP and SP in the CNS 

CGRP participates in mechanisms of central sensitization that contribute to the development and 

maintenance of chronic pain. In the spinal cord, CGRP increases responses of dorsal horn neurons by 

increasing synaptic transmission and neuronal excitability (Seybold, 2009). In the brain, 

periaqueductal grey (PAG) is an important relay in the descending pathway of analgesia from brain to 

dorsal horn of the spinal cord. CGRP, as well as it receptor, is present in the nerve fibers in PAG. The 

CGRP receptor is involved in the CGRP-induced antinociception in PAG. Other regions of the brain, 

which are known to play important roles in pain modulation, like the nucleus raphe magnus, the 

nucleus accumbens and the central nucleus of amygdala also demonstrate an antinociceptive effect of 

CGRP. CGRP and its receptor are also involved in learning, memory, opioid tolerance and addiction 

(Yu et al., 2009). As CGRP is released from activated trigeminal sensory nerves, dilates intracranial 

and extracranial blood vessels and centrally modulates vascular nociception, CGRP plays an important 

role in the pathophysiology of migraine (Villalon & Olesen, 2009). 

SP and the NK1 receptor have been found within brain areas known to be involved in the regulation of 

stress and anxiety responses. Emotional stressors increase SP efflux in specific limbic structures such 

as amygdala. Depending on the brain area, an increase in intracerebral SP concentration produces 

mainly anxiogenic-like responses in various behavioural tasks (Ebner & Singewald, 2006). 

1.4.5.6 Role of CGRP and SP in the PNS 

Neurogenic inflammation increases vasodilatation, capillary permeability, and activation of 

inflammatory cells. It results from the antidromic (toward the periphery) release of CGRP, substance 

P, and neurokinin A (NKA) from C-afferent terminals of primary sensory neurons distributed to 

almost all the tissues and organs, particularly around the blood vessels. Pharmacological evidence 

shows that CGRP is the primary neuropeptide responsible for neurogenic vasodilation (Benemei et al., 

2009). CGRP causes endothelium and nitric oxide (NO) independent vasodilation through a direct 

action on the smooth muscle cells mediated both by cAMP and activation of ATP-dependent K
+
 

channels. PKA can also directly activate endothelial production of NO, which contributes to CGRP-

triggered vasodilation (Brain & Grant, 2004; Benarroch, 2011). The vascular reaction most clearly 

related to SP release via stimulation of NK1 receptors is an increase in postcapillary venular 

permeability leading to extravasation of plasma proteins. It has been observed that exogenous SP 
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increases vascular permeability in the same regions of the body where plasma protein extravasation is 

elicited by capsaicin (Lembeck & Holzer, 1979). 

 

1.5 Aims of the Thesis 

During my thesis, I have mainly worked on the two following projects:  

1.5.1 Role of ASICs in neuropeptide secretion 

We hypothesized that some neurons expressing ASIC current types 1 and 3 may mediate neuropeptide 

secretion in DRG neurons. This hypothesis was formulated from the discovery that most of the 

neurons expressing ASIC current type 1 were also IB4 negative, in other words, were expressing 

neuropeptides (Poirot et al., 2006). The aim of the study was to determine whether the activation by 

extracellular acidification of ASICs in DRG neurons induces the release of neuropeptides CGRP and 

SP, and to determine the implication of other relevant ion channels in this process. To test this 

hypothesis, we have measured the co-expression of ASICs with CGRP and SP with 

immunocytochemistry and in-situ hybridization. We have also measured with calcium imaging the 

Ca
2+

 entry in DRG neurons due to ASIC activation. We have finally measured the CGRP secretion 

from DRG neurons after an extracellular acidification. 

1.5.2 Role of ASICs in neuropathic pain 

We hypothesized that ASICs could have a role in neuropathic pain. This hypothesis was formulated 

from the observation that in a model of neuropathic pain performed on rat, the relative expressions of 

the different ASICs subunits in DRG neurons were modified by the nerve injury (Poirot et al., 2006). 

To test this hypothesis, we decided to perform the same model on three different mouse strains 

deficient of ASIC1a, -2 or -3. The mechanical hyperalgesia induced by the nerve injury in the left 

hindpaw of the mice was assessed with Von Frey filaments.  



 

 

29 

 

2. Materials and methods 

2.1 DRG neuron isolation and culture 

Rats were killed using CO2. Lumbar DRGs (L1–L8) were removed bilaterally and collected in PBS 

(137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4, pH 7.4) containing 50 U ml
−1

 

penicillin and 50 μg ml
−1 

streptomycin (Invitrogen, Basel, Switzerland). DRGs were then incubated for 

120 min at 37°C in 2 ml Neurobasal A medium (Invitrogen) completed with 10% heat-inactivated 

fetal calf serum (FCS) (Invitrogen), and 22 mM glucose (named here NeuroA medium) to which 

collagenase type P (Roche, Basel, Switzerland) was added to a final concentration of 0.125%. 

Osmolarity was adjusted to 320 mosmol l
−1

 with sucrose. Then, DRGs were washed two times with 

PBS, treated with trypsin 0.25% (Invitrogen) for 30 min at 37°C, washed with NeuroA and taken up in 

2 ml NeuroA, complemented with 50 μg ml
−1

 DNase and soybean trypsin inhibitor (Sigma, Buchs, 

Switzerland). The ganglia were triturated 4–6 times with a fire-polished Pasteur pipette or a blue tip to 

obtain the cell suspension. DRG neurones were plated either on glass coverslips (12 mm diameter for 

labelling, 22 mm x 40 mm for the calcium imaging), or in 24-wells plate (for the secretion assay), 

previously coated with a high molecular weight (>300’000 Da) poly-l-lysine (Sigma) solution (0.2 mg 

ml
−1

). The neurones were maintained in NeuroA at 37°C, 5% CO2 and 90% humidity for 3 h. Next, 

neurones were maintained at 4°C in Leibovitz's L15 medium supplemented with 10% FCS and 5 mM 

Hepes. Osmolarity and pH were adjusted, respectively, to 320 mosmol l
−1

 using sucrose and pH 7.4 

using NaOH. 

2.2 Immunocytochemistry 

Cells on coverslips were washed three times for five minutes with PBS. Then they were fixed with 

freshly prepared 4% paraformaldehyde in PBS for 20 minutes. Cells were then washed three times in 

PBS containing 0.5% BSA (protease free, Acros Organics). The cells were permeabilized with 0.4% 

Triton X-100 (Sigma) in PBS for 10 minutes. Subsequently, cells were incubated with the first 

antibody or antibodies (if they are raised in different species) in PBS containing 2% BSA, 0.1% Triton 

X-100, for two hours at RT. Cells were washed three times in PBS containing 0.5% BSA. The cells 

were then incubated with secondary antibodies, directed against the primary antibody used before, in 

PBS with 2% BSA, 0.1% Triton X-100, one hour at RT. Cells were washed three times in PBS with 

0.5% BSA. The coverslips were finally mounted on a glass microscope slide with a drop of 

Vectashield medium (Reactolab, Servion, Switzerland). 

When two primary antibodies were used that had been raised in the same species (here rabbit), the 

protocol was modified in the following way. During the first antibody incubation step, only one rabbit 

antibody was used. A Fab fragment secondary antibody against the first primary antibody was then 
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used. A second step of primary and secondary antibody incubation was then performed, using the 

second primary and secondary antibodies, as shown in Figure 8.  

Cross reactions between the second secondary antibody and the first primary antibody were blocked 

with the Fab fragment secondary antibody. The role of this fragment was to block the epitopes of the 

primary antibody to avoid any interference with the secondary antibody of the second step. The 

monovalent nature of Fab fragments furthermore avoided an interaction with the primary antibody of 

the second step (Negoescu et al., 1994).  

In order to block all the epitopes of the first antibody of the first step, a saturating concentration of Fab 

fragments was reached by adding unconjugated Fab fragments (twice the concentration of the 

conjugated fragment) to the Fab fragments conjugated with a fluorescence probe after the incubation 

with the conjugated Fab fragments (Dou et al., 2004).  

 

A B C  

Figure 8: Use of Fab fragments for labelling and blocking 

A: Incubation with the first primary antibody, in this example rabbit anti-antigen X ( ). B: Incubation with excess Fab 

fragments antibody against the host species of the primary antibody, in this example Cy3( )-Fab fragment goat anti-rabbit 

IgG (H+L)( ). C: Incubation with the second primary antibody, rabbit anti-antigen Y ( ), followed by conjugated 

divalent secondary antibody, in this example FITC( )-goat anti-rabbit IgG (H+L)( ). To simplify the scheme, only the 

conjugated Fab fragments were depicted, avoiding the unconjugated Fab fragments. Adapted from: 

http://www.jireurope.com/technical/examplea.asp 

2.2.1 Test of ASIC2 antibody 

The ASIC2 antibody was a generous gift from Heather A. Drummond (Gannon et al., 2008b). It was 

tested here for its specificity on mouse DRG neurons. Figure 9 shows that the antibody is specific, as it 

stained the DRG from wild type mice, but not from ASIC2 knock-out mice. 

http://www.jireurope.com/technical/examplea.asp
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Figure 9: Test of ASIC2 antibody on ASIC2 knock-out DRG 

The antibody dilution was 1/200. Scale bar: 200 µm 

2.3 In-situ hybridization 

For the in-situ hybridization the general protocol described by Zaal Kokaia was followed (Kokaia, 

2001). 

2.3.1 Preparation of cells 

The cells were rinsed twice in PBS, two min each, at RT. Then the cells were fixed in 4% 

paraformaldehyde solution for 10 min at RT. The cells were again rinsed twice in PBS, for two min 

each, at RT. They were permabilized in PBS, 0.1% Triton X-100, 5% vanadyl ribonucleoside complex 

(VRC; New England Biolabs, Ipswich, USA) for five minutes at RT (Bobrow & Moen, 2001). 

2.3.2 Labelling of oligonucleotides 

The oligonucleotides were labelled with digoxigenin-ddUTP with the DIG Oligonucleotide 3’-End 

Labelling Kit (Roche), following the manufacturer’s protocol. Briefly, 100 pmol oligonucleotide were 

added to a reaction vial, along with sterile double distilled water to make a final volume of 10 µl. Then 

4 µl reaction buffer 5x, 4 µl CoCl2 solution, 1 µl DIG-ddUTP solution and 1µl terminal transferase 

were added to the vial. The content of the vial was then mixed, centrifuged briefly and incubated at 37 

°C for 15 min, then put on ice. The reaction was stopped by adding 2 µl 0.2 M EDTA (pH 8.0). The 

final concentration of the oligonucleotides was 2.5 pmol/μl. The labelling efficiency was then 

estimated via a direct detection method. A series of dilutions of DIG-labeled oligonucleotide was 
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bound to a small strip of positively charged membrane (Amersham Hybond-ECL nitrocellulose 

membrane, GE Healthcare, Glattbrugg, Switzerland). A part of the membrane was preloaded with 

known concentrations of provided DIG-labelled control oligonucleotide. The oligonucleotides were 

cross-linked on the membrane with UV light. The labelled nucleotides on the membrane were detected 

with an anti-DIG-alkaline phosphatase (AP)-labelled antibody (1:500, Roche) and an AP substrate 

(BCIP/NBT Liquid Substrate System, Sigma). The intensity of the dots was compared between the 

labelled nucleotides and the controls to evaluate the efficiency of the labelling. The dots were still 

visible at 1-3 fmol/μl dilutions. As there were no significant differences between the different labelled 

oligonucleotides and the labelled control oligonucleotide, all the nucleotides were considered as 

labelled. 

2.3.3 Hybridization and detection of the oligonucleotides 

2 µl (5 pmol) of DIG-labeled probe was added to 1 ml of hybridization buffer (see section 2.3.4) to 

form the hybridization mix. Hybridization mix was applied on the cells on coated coverslips (high 

molecular weight poly-l-lysine (Sigma)). The cells were incubated in a humidified chamber sealed 

with tape and placed in a 37°C incubator for 16 to 18 hours. The coverslips were then rinsed quickly in 

dishes with 1x SSC (see section 2.3.4), at 48°C to remove the hybridization mix. The dishes were 

filled with 1X SSC, preheated to 48°C, on top of a water bath at 48°C.  The 1X SSC solution was 

changed three times, once every 30 minutes. For the last wash, 1X SCC at 48°C was added, then the 

dishes were removed from the water bath and allowed to cool to room temperature. The coverslips 

were washed twice, each time for five minutes in binding buffer (see section 2.3.4) at RT. The 

coverslips were incubated in binding buffer containing either the anti-DIG-alkaline phosphatase-

conjugated antibody (1:500, Roche), or the anti-DIG-fluorescein-conjugated antibody (1:10, Roche), 

1% normal sheep serum (Invitrogen) and 0.3% Triton X-100 (Sigma) for three hours in a humidified 

chamber at RT. When the incubation was completed, the coverslips were briefly rinsed in binding 

buffer. Then, the slides were washed three times, each time for 10 min, in binding buffer at room 

temperature. The coverlips were rinced briefly in wash buffer (see section 2.3.4) and washed for five 

minutes in wash buffer. For the alkaline phosphatase conjugated antibody, an AP substrate 

(BCIP/NBT Liquid Substrate System, Sigma) producing a blue-purple precipitate was applied for 12 

to 24 hours in the dark at RT. The reaction was stopped by washing the slides twice, each time for five 

minutes in stop buffer (see section 2.3.4). Finally, with both alkaline phosphatase- or fluorescein-

conjugated antibodies, coverslips were washed twice for five min with water at room temperature and 

were mounted with a drop of Vectashield medium (Reactolab). 
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2.3.4 Solutions 

All the solutions of this section were prepared with DEPC-treated water (250 μl/l (v/v) DEPC), 

autoclaved. 

Hybridization buffer (50% (v/v) deionized formamide (Sigma), 4× SSC, 1× Denhardt solution, 1% 

sarkosyl, 10 ml 30 mM phosphate buffer, pH 7.0,  0.55 mg/ml (v/v) salmon testes DNA (Sigma), 100 

g/l (w/v) dextran sulphate (Sigma)) 

SSC, 20×, pH 7.0 (3 M NaCl, 300 mM sodium citrate dihydrate (C6H5Na3O7×2H2O)) The pH was 

adjusted to pH7.0 with NaOH or concentrated HCl.  

Denhardt solution, 50× (10 g/l polyvinylpyrrolidone (Sigma), 10 g/l BSA (proteases free, Acros 

Organics), 10 g/l Ficoll (Sigma)) 

Sarkosyl, 20% (w/v) (200 g/l (w/v) N-laurylsarcosine (Sigma)) 

Phosphate buffer, 0.2 M (50 mM NaH2 PO4 × H2O, 150 mM Na2 HPO4) 

Binding buffer (150 mM NaCl, 100 mM Tris) The pH was adjusted pH 7.5 with HCl. 

Wash buffer (100 mM NaCl, 100 mM Tris, 50 mM MgCl2×6H2O) The pH was adjust to pH 9.5 with 

HCl. 

Stop buffer (150 mM NaCl, 10 mM Tris, 1 mM EDTA) The pH was adjust to pH 7.5 with HCl. 

2.3.5  Oligonucleotides sequences 

The oligonucleotides were selected to match the sequence (sense probe) or the complementary 

sequence (antisense probe) of the cDNA of the different ASIC subunits. The following parameters 

were used to select the oligonucleotides. The desired GC content had to be between 48 and 62%.  The 

oligonucleotide length had to be between 42 and 54 nucleotides. The calculated melting point of the 

oligonucleotide had to be between 100°C and 106°C. The oligonucleotide had not to contain hairpins 

with free energy more negative than -4.7 kcal. Finally, the sequence of the oligonucleotide had to 

avoid runs of more than five identical nucleotides in series (Erdtmann-Vourliotis et al., 1999).  

The designed oligonucleotides were tested as described in section 2.3.6. When the negative control 

experiments were not negative, the oligonucleotide was redone. 
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 sense probes 

ASIC1a 5'-GATGAAAAGCAGCTAGAGATATTGCAGGACAAGGCCAACTTCCGGAGCTTC-3' 

ASIC1b 5'-AGAGGAAGAGAAGGAAATGGAGGCAGGGTCGGAGTTGGATGAGGGTGATGA-3' 

ASIC2a 5'-CATCAGCGCTGCCTTCATGGACCGTTTGGGCCACCAGCTGGAGGATATGCT-3' 

ASIC2b 5'-CAGCCTGCAACCTTCCAGTATCCAGATCTTCGCCAATACCTCCACTCTCCA-3' 

ASIC3 5'-GCTGTGCTCCTGTCGCTGGCGGCCTTCCTCTACCAGGTGGCTGAGCGG-3' 

Table 1 : List of ASIC subunits sense oligonucleotides 

 

 antisense probes 

ASIC1a 5'-GAAGCTCCGGAAGTTGGCCTTGTCCTGCAATATCTCTAGCTGCTTTTCATC-3' 

ASIC1b 5'-TCATCACCCTCATCCAACTCCGACCCTGCCTCCATTTCCTTCTCTTCCTCT-3' 

ASIC2a 5'-AGCATATCCTCCAGCTGGTGGCCCAAACGGTCCATGAAGGCAGCGCTGATG-3' 

ASIC2b 5'-TGGAGAGTGGAGGTATTGGCGAAGATCTGGATACTGGAAGGTTGCAGGCTG-3' 

ASIC3 5'-CCGCTCAGCCACCTGGTAGAGGAAGGCCGCCAGCGACAGGAGCACAGC-3' 

Table 2 : List of ASIC subunits anti-sense oligonucleotides 

 

2.3.6 Test of  in-situ hybridization probes against ASIC subunits 

The probes against ASIC1a, -1b, -2a, -2b, and 3 mRNA were tested on CHO cells expressing stably or 

transiently one of the five ASIC subunits. ASIC1a, -1b and -2a were stably expressed in CHO cells, 

ASIC2b and -3 were transiently co-expressed with eGFP (the eGFP staining is shown in the images 

showing green fluorescence) (Figure 10).  

For each subunit, a specific antisense probe was designed, as well as the complementary sense probe 

as a negative control. As a supplementary negative control, each antisense probe was also tested on 

CHO cells either expressing no ASICs or another ASIC. Figure 10 shows that the antisense probes are 

specific. On the left panels, representing the specific staining of each probe for the corresponding 

ASIC subunit, cells were dark stained with BCIP/NBT precipitate. This dark precipitate indicated that 

the probes recognised the mRNA of the corresponding subunits. In the middle panels, the sense probes 

were used as negative controls. On most cells, there was no, or background staining, showing that the 

sense probes did not recognise ASIC mRNAs. On the right panels, the antisense probes were used on 

CHO cells that were not expressing the corresponding ASIC subunit. These negative controls had no 

or basal staining, meaning that the probes seemed to be specific to their corresponding ASIC subunit. 
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Figure 10 : Test of in-situ hybridization probes (antisense and sense) for ASIC1a, -1b, -2a, -2b and -3 in CHO cells. 

Scale bar: 100 µm. 
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2.4 Microscopy and cell counting 

Both immunocytochemistry and/or in-situ hybridization experiments slides were imaged using a 

confocal microscope (LSM 710, Zeiss, Feldbach, Switzerland), with an EC Plan-Neofluar 40x/1.30 

Oil DIC M27 objective. The confocal microscope was operated with the LSM Software ZEN 2009 

(Zeiss). The “smart setup” tool was used to select the appropriate dyes and the “Fastest” acquisition 

mode was selected. For counting purposes, large images were taken by using “tile scan”. The large 

image was done by imaging seven x seven 512 x 512 pixels images at a resolution of 0.45 µm / pixel, 

resulting in a 3584 by 3584 pixels image. The confocal “.lsm” images files were converted to “.jpg” 

files with Axiovision LE (Zeiss). To count the positive cells for a given fluorescent dye, the ImageJ 

software was used. Briefly, the grey scale images for each fluorescent dye were opened in the 

software. For each experiment, a mouse primary monoclonal antibody against NeuN, a neuronal 

marker, followed by an anti-mouse cy5 secondary antibody was used to stain all neurons. The cy5 

image was used to create regions of interest (ROI). Each region delimited a neuron. The average grey 

scale value was then measured for each region of interest for each fluorophore (except for the cy5). 

For each set of experiment and each type of antibody or oligonucleotide, a threshold value was then 

chosen, above which a neuron was counted as positive. 

2.5 Calcium imaging 

The cells were plated on large 22 mm x 40 mm coverslips coated with high molecular weight poly-l-

lysine (Sigma) solution (0.2 mg ml
−1

). Cells were washed with 1x PBS. Coverslips were mounted in 

the perfusion chamber (Warner Instruments, Hamden, USA), using grease to seal the coverslip to the 

bottom of the chamber. For CHO cells, cells were incubated with 5 µM Fura2-AM in 1ml of pH 7.4 

Tyrode solution directly in the perfusion chamber for 30 min in the dark in a 37°C water bath. For 

neurons, the time of incubation was reduced to 20 minutes. After incubations, cells were perfused for a 

few minutes with pH 7.4 Tyrode to rinse the Fura2-AM. Up to eight different solutions were perfused 

on the cells with the Solution Changer Manifold MSC-200 (Bio-Logic, Claix, France). The solutions 

were exchanged with a CFlow flux controller (Cell MicroControls, Norfolk, USA). The imaging 

solution was the VisiFluor system (Visitron Systems, Puchhein, Germany) with a CoolSnap HQ 

camera, VisiChrome polychromator and Metafluor software (Molecular Devices, Sunnyvale, USA). 

Briefly, for each time point, two images were taken at excitation wavelengths of 340 and 380 nm. The 

emitted fluorescence at 520 nm was recorded trough an emission filter. A ROI was drawn on images 

to select regions which correspond to cells. The average grey scale level for each ROI was calculated 

for each 340 and 380 nm image at each time point. A region empty of cells was also selected to have a 

measure of the background fluorescence. The background values for each time point at 340 and 380 

nm wavelengths were subtracted for each value. The ratio between the fluorescence at 340 nm and 380 

nm (340/380) was then plotted as a function of the time. 
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2.6 In vitro CGRP secretion assay with DRG neurons 

Freshly dissociated neurons were plated into 24 well dishes, coated with a high molecular weight poly-

l-lysine (Sigma) solution (0.2 mg ml
−1

). Neurones were maintained during ~18 hours in NeuroA at 

37°C and 5% CO2. The cells were then first washed one time with PBS, then a second time with PBS 

containing protease inhibitors (Leupeptin (1μg/ml), Pepstatin (1μg/ml), Aprotinin(1μg/ml), PMSF (1 

mM) (Roche, Rotkreuz, Switzerland)) and 0.3 % bovine serum albumin (BSA) (proteases free, Acros 

Organics part of Fisher Scientific, Wohlen, Switzerland). Protease inhibitors and 0.3 % BSA were 

added to all the solutions used in this this assay. In this assay, secretion was measured during a 20 min 

period. For some pharmacological compounds a preincubation was necessary. In these cases, the 

compounds were incubated for 5 min at room temperature (RT) in 200 µl Tyrode (140 mM NaCl, 4 

mM KCl, 2 mM CaCl2, 1 mM MgCl2, 10 mM MES, 10 mM Hepes, 10 mM glucose) at pH 7.4. The 

corresponding negative controls were preincubated with 200 µl Tyrode at pH 7.4. The preincubation 

solutions were then removed. Subsequently, 200 µl Tyrode solution adjusted to the desired pH with or 

without pharmacological compounds were added to each well. The wells were incubated for 20 min on 

top of a water bath at 37°C. After the incubation, the supernatant of each well was transferred into a 

polyethylene tube (Nunc-Immuno™ Tubes MiniSorp, Fisher Scientific, Wohlen, Switzerland) and 

kept on ice. Tubes were centrifuged for 10 min at 500 rpm at 4°C. The supernatants were transferred 

into new polyethylene tubes and then frozen at -80 °C. In each well, the cells were incubated for 5 min 

with 100 μl lysis buffer (50 mM Tris pH7.5, 5 mM EDTA, 1% Triton X-100), then harvested. The 

lysates were then transferred to polyethylene tubes, sonicated a few seconds at 4°C and then frozen at -

80 °C. They were used to determine the cellular content in CGRP in order to normalize the secretion 

of each well. The CGRP content of the supernatants and the lysates were subsequently measured using 

an enzyme immunoassay kit, as described in the next section. 

2.7 CGRP enzyme immunoassay 

CGRP content of the supernatants and the lysates samples were measured using a rat CGRP enzyme 

immunoassay (EIA) kit (SPI-bio, Montigny le Bretonneux, France). This kit was used according to the 

manufacturer’s recommendations. Briefly, the lyophilised CGRP of the standard vial was reconstituted 

with 1 ml of experimental solution (Tyrode solution adjusted to pH 7.4, supplemented with 0.3% 

BSA, protease inhibitors). A serial dilution of the standard was performed to obtain the following 

concentrations: 500 (S1), 250 (S2), 125 (S3), 62.5 (S4), 31.25 (S5), 15.6 (S6), 7.81 (S7), 3.91 pg ml
-1

. 

The lyophilised CGRP of the quality control vial was reconstituted with 1 ml of the experimental 

solution. The lysates were diluted fifty times with experimental solution, to ensure that the measured 

CGRP concentration was in the detection range of the kit. Wells of the 96 well plate, precoated with a 

CGRP mouse monoclonal antibody, were washed five times with the provided wash buffer. 100 µl of 

sample (supernatant or diluted lysate), quality control or standard solution were pipetted into each 
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well. Each measurement was performed in duplicate. The blank (B) wells were kept empty and 100 µl 

of experimental solution were pipetted into the non-specific binding (NSB) wells. The plate was then 

covered with a plastic film and incubated 16 to 20 hours at 4°C without shaking. The anti-CGRP-

AChE tracer was then reconstituted with 10 ml of the provided EIA buffer. 100 µl of the tracer was 

pipetted into each well, except the blank wells and briefly mixed. The plate was again covered with a 

plastic film and incubated 16 to 20 hours at 4°C. The plate was then emptied by turning over and 

shaking. Each well was washed three times with the wash buffer (300 µl per well), slightly shaken for 

2 minutes with an orbital shaker and then rewashed three times with the wash buffer. A few minutes 

before use, the Ellman’s reagent was reconstituted with 49 ml of deionized water and 1 ml of 

concentrated wash buffer. 200 µl of Ellman’s reagent was added to each well. The plate was incubated 

in the dark, covered with an aluminium sheet at room temperature. The plate was read with a 

spectrophotometer plate reader at 405 nm between 30 to 60 minutes after adding the Ellman’s reagent. 

To analyse the data, first of all, the average of the blank wells was substracted from the absorbance 

reading of the rest of the plate. The average absorbance for each NSB, standard and sample well was 

calculated. The absorbance for each standard versus the concentration was plotted. The concentration 

for each sample was determined using the equation of the fit of the standard curve. 

2.8 Animal surgery 

All experiments were approved by the Committee on Animal Experimentation of the Canton de Vaud, 

Switzerland, in accordance with Swiss Federal law on animal care and the guidelines of the 

International Association for the Study of Pain (IASP) (Zimmermann, 1983). 8-10 week-old C57BL/6 

male mice were housed in the same room, one per cage, at constant temperature (21 ± 2 °C) and a 

12/12 dark/light cycle. No other animals were housed in that room. Mice had ad libitum access to 

water and food. 

The spared nerve injury (SNI) model consists of sparing the sural nerve, while two other terminal 

branches of the sciatic nerve are injured (common peroneal and tibial nerves). Intense, reproducible 

and long-lasting mechanical allodynia-like behaviour is measurable in the non-injured sural nerve skin 

territory (Decosterd et al., 2004). The surgery was performed as previously described (Bourquin et al., 

2006). SNI surgery was performed under general anaesthesia by 1.5–2.5% isoflurane. The left 

hindlimb was immobilized in a lateral position and slightly elevated. Incision was made at mid-thigh 

level using the femur as a landmark and a section was made through the biceps femoris in the direction 

of point of origin of the vascular structure. At that stage, the surgery continued with the help of a 

stereomicroscope. The three peripheral branches (sural, common peroneal, and tibial nerves) of the 

sciatic nerve were exposed without stretching nerve structures. Both tibial and common peroneal 

nerves were ligated and transected together. A micro-surgical forceps with curved tips was delicately 

placed below the tibial and common peroneal nerves to slide the thread (6.0 silk) around the nerves. A 
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tight ligation of both nerves was performed and a 1–2 mm section of the two nerves was removed. The 

sural nerve was carefully preserved by avoiding any nerve stretch or nerve contact with surgical tools. 

Muscle and skin were closed in two distinct layers with silk 6.0 sutures.  

2.9 Behaviour 

The following behavioural experiments, as well as the previously described SNI model surgery, were 

performed in collaboration with the group of Isabelle Decosterd. The surgery was performed by 

technicians of Isabelle Decosterd’s group (Marie Pertin, Guylène Magnin). I learned the behavioural 

experiments procedures with Marie Pertin for the Von Frey experiments and with Guylène Magnin for 

the hot plate and tail-flick experiments. 

2.9.1 Von Frey monofilaments 

Testing procedures started with one week of acclimatization of the animals to the testing room 

environment, with handling reduced to a minimum. For another week, mice were habituated to the 

testing material. The experimenter placed each mouse on an elevated platform with a 20 mm soft wire 

mesh floor, in a transparent Plexiglas box (10 × 10 × 13 cm) for a 15-min session every two days. 

During the last session, mice were familiarized with the application of von Frey monofilaments under 

the paw. Recordings of mechanical sensitivity were then performed before and after surgery. Two sets 

of baseline measurements were taken, baseline 1 at 4 days before surgery and baseline 2 at 2 days 

before surgery. Measurements were also taken 3, 9, 15 and 21 days after SNI. The investigator was 

blinded to the genotype of the mice. The plantar side of the hindpaw ipsilateral or contralateral to the 

surgery was stimulated with calibrated von Frey monofilaments (Stoelting Co, Wood Dale, USA). 

Monofilaments were applied perpendicularly to the glabrous skin with sufficient force to cause 

filament bending. Ten stimuli were made with each of a series of Von Frey hairs comprised of the first 

11 monofilaments supplied by the manufacturer (0.008, 0.02, 0.04, 0.070, 0.16, 0.40, 0.60, 1.0, 1.4, 

2.0, and 4.0 g). We measured the number of positive withdrawal responses in ten applications for each 

monofilament of the series. The 11 monofilaments were tested in ascending order to determine the 

relative frequency of paw withdrawal. The number of hindpaw withdrawal after 10 stimulations is a 

measure of the sensitivity of the animal to the stimulations. Classically, with wild type mice, the 

number of withdrawal of the ipsilateral hindpaw increases after the SNI surgery, for a given filament. 

On the contrary, the number of withdrawal of the contralateral hindpaw does not change after SNI 

surgery.  

2.9.2 Hot plate 

Mice were habituated to the testing material for four days before the measurements. Mice were placed 

in a transparent acrylic box without bottom which was placed on a cold and hot plate analgesia meter 
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(Bioseb, Paris, France) maintained at 49, 52, or 55°C. The reaction time was scored when the animal 

licked its paws or jumped. The maximal time of exposure was set to 40 s to avoid any paw damage. 

Three measurements for each mouse were taken and averaged for a single temperature each day, 

leaving a couple minutes between each measurement. The three different temperatures were assessed 

on three different days, first 49, then 52 and finally 55°C.  

2.9.3 Tail flick 

Mice were habituated to the testing material the day before the experiment. The tail flick procedure 

was carried out as previously described (Dewey et al., 1970). Mice were immobilized in a cone shape 

tissue, leaving the tail out of the tissue. The tail was then placed on the light beam path of the Tail-

Flick Analgesia Meter (Columbus Instruments, Columbus, USA). In order to avoid tissue damage, a 

maximum latency of 10 s was imposed. The intensity of the light falling on the tail of the mouse was 

adjusted such that each reaction time fell within the 10 s range. This intensity was then maintained for 

the entire experiment. Three measurements, taken 30 minutes apart, were averaged and constituted the 

time of reaction.  
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3. Results 

3.1 Distribution of ASICs, TRPV1 and neuropeptides in rat DRG neurons 

We have analysed the distribution of ASICs, TRPV1 and neuropeptides (CGRP and SP) in the rat 

DRG neurons in culture, more specifically the coexpression of the different ASIC subunits with the 

neuropeptides, and also the coexpression of different ASIC subunits. In order to test for these 

coexpressions, two different approaches were used. First, immunocytochemistry was performed on the 

cells for ASIC1 (antibody recognising both ASIC1a and ASIC1b subunits), ASIC2 (antibody 

recognising both ASIC2a and ASIC2b subunits), TRPV1, CGRP and SP. To distinguish between the 

different isoforms of ASIC1 and ASIC2, and to show the distribution of ASIC3, in-situ hybridization 

was used. 

3.1.1 ASIC1, -2 and TRPV1 are preferentially localised in peptidergic neurons   

Immunocytochemistry was performed on dissociated rat DRG neurons. In each immunostaining 

experiment, the neurons were also stained for NeuN, a neuronal marker, to mark each neuron and 

distinguish them from non-neuronal cells in the preparation. Double staining experiments were carried 

out (see Methods). Each neuron was then assigned as positive or negative for the expression of 

neuropeptides (CGRP or SP, red, in Figure 11), or ASICs/TRPV1 (green). The different 

subpopulations were then counted and represented in concentric pie charts. Figure 11 shows in panels 

A and B the immunostaining and the proportion of subpopulations of neurons expressing respectively 

CGRP or SP and ASIC1. Panel C shows the proportion of subpopulations of neurons expressing 

respectively CGRP or SP and ASIC2; panel D the proportion of subpopulations of neurons expressing 

respectively CGRP or SP and TRPV1. All DRG neurons, not only small diameter neurons, were 

included in the experiments shown in this figure.  

On average CGRP and SP were found to be present in about half of the neurons. ASIC1 and CGRP are 

co-expressed in 45% of the neurons, whereas ASIC1 and SP are co-expressed in 39% of the neurons. 

The staining thus showed that ASIC1a and/or ASIC1b (the antibody labels both isoforms) are 

preferentially co-expressed with neuropeptides. ASIC2 and CGRP are co-expressed in 57% of the 

neurons and ASIC2 and SP are co-expressed in 41% of the neurons. Therefore ASIC2a and/or ASIC2b 

(the antibody labels both isoforms) are preferentially co-expressed with neuropeptides. TRPV1 and 

CGRP are co-expressed in 46% of the neurons and TRPV1 and SP are co-expressed in 39% of the 

neurons. It showed that TRPV1 are preferentially co-expressed with neuropeptides. 

No subtype specific antibodies for ASIC1a/b or ASIC2a/b are available and all ASIC3 antibodies 

tested are not good enough for immunocytochemistry in neurons. In order to have a better view on the 

expression of the five different ASIC subunits, we decided to carry out in-situ hybridization 
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experiments to have a better understanding of the expression of ASIC subunits in the peptidergic and 

non-peptidergic population of nociceptors. 

 

Figure 11 : Co-expression of ASIC1, -2, and TRPV1 with neuropeptides in DRG neurons  

Panels A and B show immunostaining for ASIC1, CGRP and SP respectively. The bar is 100 μm. The proportions of 

subpopulations expressing ASIC1 and CGRP or SP are shown in a concentric pie chart on the right. Panel C shows the 

proportions of subpopulations expressing ASIC2 and CGRP or SP. Panel D shows the proportions of subpopulations 

expressing TRPV1 and CGRP or SP. The total number of cells are respectively 661 for ASIC1/CGRP staining, 471 for 

ASIC1/SP staining, 124 for ASIC2/CGRP staining, 311 for ASIC2/SP staining, 58 for TRPV1/CGRP and 75 for TRPV1/SP.  

3.1.2 In situ hybridization experiment confirm that ASIC subunits are preferentially 

expressed in the peptidergic population of small neurons 

As in the previous experiments, anti-NeuN antibodies were used to label the neurons and anti-CGRP 

and anti-SP antibodies were used to detect the neuropeptides CGRP and SP. Prior to this standard 

immunostaining, in-situ hybridization was performed on DRG neurons with the probes previously 

tested, as described in section 2.3.6.  

In Figure 12, only the conditions with antisense probes are shown, as the sense probes showed no or 

very faint staining compared to antisense probes. Confocal images of staining with ASIC1a antisense 

probes are shown (green), along with immunostaining by anti-NeuN (pink) and anti-CGRP (red). 

Figures for the analogous analyses for ASIC1b, -2a, -2b and -3 are shown in Annexes (pp.78-80). 
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Figure 12 : Example of staining of ASIC1a with in-situ hybridization on DRG neurons  

ASIC1a antisense probe, shown in green, and anti CGRP antibody, shown in red are used. Scale bar: 100 µm. In the merged 

image, cells which are positive for NeuN, CGRP and ASIC1a appear yellow. 

In Figure 13, the proportion of subpopulations of neurons expressing for each ASIC mRNA probe and 

neuropeptides CGRP or SP are shown in pie charts. Only the neurons whose apparent diameters were 

smaller or equal to 30 μm were used for this analysis. The diameters of the neurons were estimated 

using the area of the NeuN staining for each cell. The area of the neuron was converted as a diameter, 

by approximating the area of the neuron as a disc.  

ASIC1a mRNA was expressed in about 60% of small diameter DRG neurons. ASIC1a mRNA was co-

expressed with CGRP peptide in 43% of the small diameter neurons and with SP peptide in 49% of the 

small neurons, as seen in the first two charts of the first row in Figure 13. A large part of the neurons 

that expressed ASIC1a also expressed CGRP and SP. The last two charts of the first row show that 

ASIC1b mRNA was less expressed (36-37% of small diameter neurons) than ASIC1a mRNA. Most of 

neurons expressing ASIC1b also expressed CGRP (74%) and SP (91%). Almost all neurons 

expressing ASIC1b were also expressing neuropeptides, but about 44% of CGRP-positive neurons and 

44% of the SP-positive neurons did not express ASIC1b. The first two charts of the second row show 

that about 26-27% of the small diameter neurons expressed ASIC2a. Almost all small neurons 

expressing ASIC2a also expressed CGRP (87%) and SP (100%). About half of the neuropeptide-

positive neurons expressed ASIC2a.  
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Figure 13 : ASIC subunits are preferentially expressed in the peptidergic population of small DRG neurons  

Each pie chart shows the proportion of subpopulation of neurons expressing ASIC1a, 1b, 2a, 2b, 3 and CGRP or SP, 

respectively, on small (< 30 um diameter) DRG neurons. ASIC staining (green) was determined by in situ hybridization and 

neuropeptides staining (CGRP/SP, red) by immunostaining. The total number of cells are respectively 214 for ASIC1a/CGRP 

staining, 133 for ASIC1a/SP staining, 177 for ASIC1b/CGRP staining, 213 for ASIC1b/SP staining, 226 for ASIC2a/CGRP 

staining, 278 for ASIC2a/SP staining, 357 for ASIC2b/CGRP staining, 267 for ASIC2b/SP staining, 334 for ASIC3/CGRP 

staining, 281 for ASIC3/SP staining. 

The last two charts of the second row show that the results for ASIC2b were similar to ASIC2a. About 

32% of the small diameter neurons expressed ASIC2b. Almost all small neurons expressing ASIC2b 

also expressed CGRP (84 %) and SP (97%). About half of the neuropeptide-positive neurons did not 

express ASIC2b. The last row shows results for ASIC3 which are similar to the ASIC1a results. About 

52% of the neurons expressed ASIC3 mRNA. ASIC3 and CGRP were co-expressed in 35% of the 

small diameter neurons, and ASIC3 and SP were co-expressed in 44% of the small diameter neurons.  

To summarize, these results clearly show that all ASICs subunits are preferentially expressed in the 

peptidergic population of small diameter neurons. The most widely distributed ASIC subunits are 

ASIC1a and -3. ASIC1b, -2a, and -2b are expressed in a smaller population of small diameter DRG 

neurons. 

In order to investigate the co-expression of ASICs subunits, immunocytochemistry with either anti- 

ASIC1 or anti-ASIC2 antibodies was performed after the in-situ hybridization. In Figure 14, the top-

left chart shows the co-expression between ASIC1 (ASIC1a and -1b) proteins and the ASIC1a mRNA 
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in small DRG neurons. 39 % of the small neurons were both positive to ASIC1 protein and ASIC1a 

mRNA. Interestingly 16% of ASIC1a mRNA positive neurons were negative to ASIC1 antibody, 

either showing a differential expression between the protein and the mRNA, or a difference of 

sensitivity between the immunostaining and the in-situ hybridization techniques. The left-bottom chart 

shows that 49% of the small neurons expressing ASIC1 proteins also expressed ASIC3 mRNA. Even 

if, as mentioned before, the immuno- and the in-situ hybridization-staining cannot be directly 

compared, it showed that a rather large population of neurons expressed both ASIC1a or -1b together 

with ASIC 3. The right charts showed that ASIC1a and ASIC3 mRNA have only a slight co-

expression with ASIC2 proteins (10% and 18 % respectively). The quantification of ASIC2 

immunostaining was different in this figure compared to Figure 11. This difference was certainly due 

to the fact that in this figure, only the small diameter DRG neurons were taken into account, whereas 

all DRG neurons were taken into account in Figure 11. It means that there was less staining of ASIC2 

in small neurons. This hypothesis is confirmed by evidences that most ASIC2-positive neurons were 

medium-to-large neurons (Kawamata et al., 2006). 

 

Figure 14 : A large population of neurons express both ASIC1a/1b and ASIC 3 

The pie charts show the expression of ASIC1 and 2 proteins (red) with ASIC1a and 3 mRNA (green). The total number of 

cells are respectively 119 for ASIC1a/ASIC1 staining, 149 for ASIC1a/ASIC2 staining, 95 for ASIC3/ASIC1 staining, 85 for 

ASIC3/ASIC2 staining. 

ASIC1a, which can form a Ca
2+

-conducting homomeric channel and ASIC3 were expressed in a large 

proportion of the small peptidergic neurons. Considering their pH50 (see section 1.2.4), activation of 

these ASICs occurs at mildly acidic pH and would mediate an entry of Na
+
 and Ca

2+
 into the 

peptidergic neurons. To investigate the increase of calcium in the DRG neurons, calcium imaging 

experiments were performed. 
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3.2 Functional experiments with calcium imaging on cells in culture 

3.2.1 Heterologous expressed ASIC1a and TRPV1 are activated by extracellular acidification 

In a first series of experiments we tested whether the activation of ASIC1a or TRPV1 increases the 

ratio of intracellular fluorescence, which would indicate an increase of the intracellular calcium 

concentration. Human ASIC1a (hASIC1a) and rat TRPV1 (rTRPV1) were separately stably expressed 

in CHO cells. In Figure 15, panel A, a typical fluorescence trace from a cell expressing ASIC1a is 

shown. A brief (30 s) extracellular acidification to pH 6 increased the intracellular fluorescence.  

N-(4-Tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl)tetrahydropryazine-1(2H)-carbox-amide (BCTC) 

is an inhibitor of capsaicin- and acid-mediated currents in rat TRPV1 (Pomonis et al., 2003). 

Co-perfusion of an extracellular solution at pH 6 with increasing concentrations of amiloride (100, 200 

and 500 µM) showed a concentration-dependent reduction of the induced fluorescence. The 

fluorescence amplitude obtained in the presence of amiloride was normalized to the fluorescence 

amplitude of the pH6 condition and plotted in panel B (n = 8). A paired t-test showed that the decrease 

of fluorescence was significative for the condition with 200 and 500 µM amiloride (p-value = 0.020 

and 0.0004, respectively). Amiloride at a concentration of 500 µM reduced the increase in intracellular 

calcium by 87%. This concentration of amiloride was chosen for all the following experiments. The 

estimated IC50 for amiloride in these experiments was 272 ± 40 μM. 

Panels C and D show that an acidification to pH 5 produced an increase of fluorescence in TRPV1-

expressing cells. 500 µM amiloride increased non-significantly the pH 5-induced fluorescence change 

(paired t-test, p-value = 0.103, n= 3). Panels E and F show that 1 µM and 5 µM BCTC decreased the 

fluorescence induced by an extracellular acidification to pH 5 by respectively 72 and 88 % (paired t-

test, p-value = 0.002, n = 4, p-value = 0.009, n = 8, respectively). BCTC showed no significant effect 

on ASIC1a (data not shown).  

We conclude that activation of both ASIC1a and TRPV1 can increase the intracellular calcium 

concentration in cells, that amiloride inhibits ASIC1a, but not TRPV1, and that BCTC inhibits 

TRPV1, but not ASIC1a. The effect of amiloride on TRPV1 was not significant, but as the number of 

n is very low (n = 3), it is possible that increasing the number of experiment could give significant 

differences. It means that amiloride could affect TRPV1 by increasing the conductivity of the channel.  
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Figure 15 : Effect of amiloride and BCTC on ASIC1a and TRPV1 stably expressed in CHO cells 

Panels A and B show the effect of increasing concentrations of amiloride on the amplitude of the pH6-induced fluoresecence 

change in CHO cells expressing ASIC1a, n = 8. Panels C and D show that amiloride had no significant effect on TRPV1, n = 

3. Panels E and F show the inhibition by BCTC of H+-induced intracellular Ca2+ concentration increase in TRPV1 

expressing CHO cells, n = 4 for 1μM BCTC, n = 8 for 5 μM BCTC.*: p-value < 0.05 compared with “pH 6” value, **: p-

value < 0.01 compared with “pH 6” value, ##: p-value < 0.01 compared with “pH 5” value 
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3.2.2 Amiloride prevents the ASIC-induced Ca
2+

 entry in a population of DRG neurons 

Calcium imaging experiments were performed on dissociated rat DRG neurons. First of all, amiloride 

was used to identify among the neurons responding to extracellular acidification at two pH values (pH 

6 and pH 5), those in which ASICs mediated the Ca
2+

 entry. 

 

Figure 16 : Amiloride inhibits the acid-induced Ca2+ entry in a sub-population of DRG neurons  

Panel A shows a representative trace from an experiment in which amiloride inhibited the increase of fluorescence at pH 5 

and pH 6. Panel B shows a representative trace from an experiment in which amiloride had no effect on fluorescence at pH 5 

and pH 6. These effects are summarized in panel C. n = 4-5 for each group. *: p-value < 0.05 compared with “pH 6” value, 

**: p-value < 0.01 compared with “pH 6” value, #: p-value < 0.05 compared with “pH 5” value, ##: p-value < 0.01 compared 

with “pH 5” value 

In Figure 16, panel A, a representative trace shows that amiloride inhibited the increase in 

fluorescence at pH 5 and pH 6 in a population of cells. As amiloride acts on ASICs, this population of 

DRG neurons expressed mainly ASICs, and did almost not express TRPV1. The kinetics of the 

fluorescence were also compatible with ASICs, as the signal started to decrease still in presence of 
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acidification, reflecting the inactivation of ASICs. This population of neurons in which 500 μM 

amiloride inhibited  ≥ 70% of the pH 5 induced Ca2+ increase was named “Fully amiloride-sensitive”.  

On panel B, a typical trace of a amiloride-insensitive neuron is shown. In contrast to panel A, the 

fluorescence remained high during the extracellular acidification and decreased only when the pH was 

changed back to pH 7.4. In this population of neurons, the increase in intracellular calcium 

concentration was mediated by another channel than ASIC, probably TRPV1. In neurons of this 

population, the pH5-induced increase of intracellular Ca
2+

 concentration was not inhibited (< 0%) by 

500 μM amiloride. These neurons were named “Amiloride-insensitive”. In some cells, amiloride was 

partially effective. This partial effectiveness showed that in these cells, ASICs are only partially 

responsible for the increase of intracellular calcium concentration. In neurons of this population, the 

pH5-induced increase of intracellular Ca
2+

 concentration was inhibited between 50% and 70% by 500 

μM amiloride. These neurons were named “Partially amiloride-sensitive”. We did not find any neuron 

in which the pH5-induced increase of intracellular Ca
2+

 concentration was inhibited by 0% - 50% by 

500 μM amiloride. 

On panel C, the quantification for the three populations is shown. Statistical analysis showed that 

concerning the “fully amiloride-sensitive” population of neurons, amiloride reduced significantly 

fluorescence at pH 5 and 6, compared to their control (paired t-test, p-value = 0.019 and 0.004, 

respectively). For the “Amiloride-insensitive” population of neurons, there was no significant 

differences between the groups (paired t-test, p-value = 0.461 and 0.078 respectively). The “Partially 

amiloride-sensitive” population of neurons, showed a significantly reduced fluorescence with 

amiloride at pH 5 and 6, compared to their control (paired t-test, p-value = 0.042 and 0.013, 

respectively). 

In this experiment, we counted that 31% of the neurons were fully amiloride-sensitive, 38% were 

amiloride-insensitive and 31% were partially amiloride-sensitive (n=13). It means that 62% of the 

neurons were expressing ASICs and that 69 % of the neurons were expressing TRPV1, as we believe 

that the partially amiloride-sensitive neurons express both ASICs and TRPV1. These proportions are 

comparable with the proportions we observed with immunostaining and in-situ hybridization. 

When looking at the traces of the amiloride-sensitive neurons (Figure 16A) and of the amiloride-

insensitive neurons (Figure 16B), it is clearly visible that the acid-induced fluorescence of the 

amiloride-insensitive neurons desensitizes less than the fluorescence of the full amiloride-sensitive 

neurons. To quantify this desensitization, the ratio of fluorescence after 20 sec of stimulation and peak 

fluorescence at pH5 was measured for the full amiloride-sensitive and the amiloride insensitive 

population. The desensitization is measured as the ratio between the fluorescence 20 s after the 

beginning of the pH5 stimultion and the maximum fluorescence during the stimulation. The Figure 17 
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shows that the full amiloride-sensitive neurons mainly expressing desensitize significantly faster than 

and the amiloride insensitive population (unpaired t-test, p-value = 0.003). 

 

Figure 17 : Acid-induced fluorescence of the amiloride-insensitive neurons desensitizes less than the fluorescence of 

the full amiloride-sensitive neurons.  

The ratio of fluorescence after 20 sec of stimulation and peak fluorescence at pH5 was measured for the full amiloride-

sensitive and the amiloride insensitive population. The desensitization is measured as the ratio between the fluorescence 20 s 

after the beginning of the pH5 stimultion and the maximum fluorescence during the stimulation. n = 7 for each group. **: p-

value < 0.01, unpaired t-test 

3.2.3 Psalmotoxin inhibits the activation of ASICs in a population of DRG neurons 

In order to analyse the contribution of homomeric ASIC1a channels to the Ca
2+

 entry, PcTx1 was 

used. As mentioned in section 1.2.6.4, PcTx1 blocks homomeric ASIC1a at nanomolar concentrations. 

In Figure 18, panel A, a representative trace of the PcTx1-sensitive neuron population is shown. 

Amiloride abolished almost completely the response at pH 6, indicating that ASICs were responsible 

for the increase of the intracellular calcium concentration. In the same experiment, 10 nM PcTx1 also 

abolished the response at pH 6. This shows that in this population of neurons, homomeric ASIC1a 

channels were responsible for the increase of the intracellular calcium concentration.  

Panel B shows a representative trace of a neuron whose response to pH6 was also completely 

abolished by amiloride. In this experiment, however, PcTx1 was ineffective inhibiting the response to 

pH 6.  This shows that in this population of neurons, different homomeric or heteromeric ASICs were 

likely responsible for the increase of intracellular calcium concentration. 

Panel C shows a typical trace of a neuronal population in which neither amiloride, nor PcTx1 affected 

the response at pH6, indicating that in these neurons ASICs were not involved in the extracellular 

acid-induced increase of intracellular calcium concentration, as seen in Figure 16, panel C.  
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Figure 18 : PcTx1 inhibits ASIC1a in a population of DRG neurons 

Panel A shows an experiment in which both amiloride and PcTx1 inhibited the increase of fluorescence at pH 6 in a 

representative neuron. Panel B shows an experiment in which PcTx1 had no effect on fluorescence at pH 6 in a representative 

neuron which was sensitive to amiloride. Panel C shows an experiment in which both PcTx1 and amiloride had no effect on 

fluorescence at pH 6 in a representative neuron. These effects are summarized in panel D. n = 5-9 for each group. *: p-value 

< 0.05 compared with “pH 6” value, **: p-value < 0.01 compared with “pH 6” value 

In panel D, the quantification for the three populations is shown. A paired t-test showed that in the 

PcTx1-resistant population, amiloride (p-value = 0.006), and PcTx1 (p-value = 0.016) produced a 

significant decrease of the fluorescence, compared to the values at pH 6. The small (< 30%) decrease 

of fluorescence in the PcTx1 condition was statistically significant. It reflected a mixed population 

with homomeric ASIC1a and other ASICs. In the PcTx1-sensitive population (i.e. >70% of the pH6-

response inhibited by 10 mM PcTx1), both amiloride (p-value = 4.19*10
-5

) and PcTx1 (p-value = 

1.90*10
-4

) produced a significant decrease of the fluorescence, compared to the values at pH 6. In the 

amiloride-resistant population, there were no significant difference between the groups (paired t-test, 

p-value = 0.059 and 0.389). 
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In this experiment, we counted that 64% of the amiloride-sensitive neurons were also PcTx1-sensitive 

(n = 14). This result is comparable with the previous experiments done in our lab showing that the 

type 1 current was present in about half of the total neurons (Poirot et al., 2006). 

3.2.4 Cav inhibitors reduce the amplitude of ASIC-mediated Ca
2+

 increase in DRG neurons 

Calcium can enter the cell via the homomeric ASIC1a in the population of neurons which are sensitive 

to PcTx1. In the amiloride-sensitive, but PcTx1-insensitive DRG neuron population, calcium 

impermeant ASICs are likely involved in the increase of the intracellular calcium concentration 

showing that ASICs mediated indirectly the entry of calcium. We hypothesized that the entry of 

sodium through ASICs could depolarize the plasma membrane and that this depolarization could 

activate Cav. Nifedipine (10 µM), Mibefradil (10 µM) and ω-conotoxin MVIIC (300 nM) were used 

together as pharmacological tools to inhibit a wide range of Cav (see section 1.4.4.2). The three 

inhibitors had been tested in patch-clamp experiments on dissociated DRG neurons. It had been shown 

that these inhibitors at the concentrations mentioned above inhibited the endogenous Cav currents 

(experiments performed by Maxime Blanchard, n=2, data not shown). The combination of these three 

inhibitors is thereafter named as “the Cav inhibitors”.  

In Figure 19, panel A, a typical trace of a neuron sensitive to amiloride is shown. In most of the 

amiloride-sensitive cells, the Cav inhibitors also inhibited a large part of the acid-induced increase of 

intracellular calcium concentration. At the end of the experiment, the effectiveness of the Cav 

inhibitors was assessed with KCl-induced (70 mM) depolarisation. Experiments in which the Cav 

inhibitors were ineffective to block the response to KCl (i.e. inhibition < 60 %) were not taken into 

account for the analysis.  

Panel B shows that the Cav inhibitors were uneffective in blocking the response to an extracellular 

acidification in a population of cells which was insensitive to amiloride.  

In Panels C and D, the quantification of these responses is shown. A paired t-test performed on the 

results of the amiloride-sensitive population showed that both amiloride and Cav inhibitors were able 

to significantly reduce the response to an extracellular acidification at pH 6 (p-value = 0.006 and 0.014 

respectively). For the amiloride-resistant population a paired t-test showed that the Cav inhibitors did 

not significantly prevent Ca
2+

 entry (p-value = 0.322 and 0.384). For both populations, the Cav 

inhibitors prevented the increase of intracellular Ca
2+

 concentration after KCl-induced depolarisation 

(paired t-test, p-value = 0.004 and 0.008 for the amiloride-sensitive and resistant population, 

respectively). 
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Figure 19 : Cav inhibitors reduced the pH6-induced increase of Ca2+ concentration in an amiloride-sensitive 

population of neurons 

Panel A shows an experiment in which the Cav inhibitors reduced the pH6-induced increase of Ca2+ concentration in an 

amiloride-sensitive neuron. Panel B shows an experiment in which the Cav inhibitors had no effect on the pH6-induced 

increase of Ca2+ concentration in an amiloride-resistant neuron. These effects are summarised in Panel C. Panel D shows 

that the Cav inhibitors were able to inhibit the increase of Ca2+ concentration in neurons after a KCl-mediated depolarization 

of the plasma membrane. **: p-value < 0.01 compared with “pH 6” value, ++: p-value < 0.01 compared with “KCl” value 

 

These experiments confirmed our hypothesis. They indicate that in the amiloride-sensitive population, 

ASIC channels mediate Ca
2+

 entry via the activation of the Cav channels and thus do not mediate 

themselves a sufficiently high Ca
2+

 entry. In the amiloride-insensitive population, the Cav inhibitors 

were uneffective. In these cells TRPV1 presumably allowed the entry of calcium.  
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3.2.5 Cav inhibitors do not affect PcTx1-sensitive Ca
2+

 entry 

In the experiments described in Figure 20, PcTx1 was used to identify neurons in wich the pH6-

induced Ca
2+

 entry was mainly due to the activity of homomeric ASIC1a. In the typical trace shown in 

panel A, the Cav inhibitors were uneffective to inhibit the pH6-induced increase of intracellular 

calcium concentration. The Cav inhibitors prevented partially the increase of intracellular Ca
2+

 

concentration after KCl-induced depolarisation. 

 

Figure 20 : Cav inhibitors had no effect on the pH6-induced increase of Ca2+ concentration in an PcTx1-sensitive 

population of neurons  

Panel A shows that Cav inhibitors did not affect the pH6-induced increase in PcTx1 sensitive neurons. The data are 

summarized in panel B. n = 3 for each group. *: p-value < 0.05 compared with “pH 6” value, ++: p-value < 0.01 compared 

with “KCl” value 

In these experiments, only the PcTx1-sensitive neurons (i.e. >60% of the pH6-response inhibited by 

10 mM PcTx1) were used. PcTx1 concentration was 10 nM. The Cav inhibitor concentrations were as 
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before 10 µM for Nifedipine and Mibefradil and 300 nM for ω-conotoxin MVIIC. KCl was used at a 

concentration of 70 mM. Experiments in which the Cav inhibitors were ineffective to block the 

response to KCl (i.e. inhibition < 40 %) were not taken into account for the analysis. Unfortunately, in 

this set of experiments, the Cav were less effective to inhibit the KCl-induced increase of Ca
2+

 

concentration, that why we had to choose a lower threshold (40% instead of 60%). That’s why the 

results shown in this figure must be taken with caution. Panel B shows the quantification of the 

responses. As a population of PcTx1-sensitive neurons was selected, it is obvious that PcTx1 

significantly decreased the pH6-induced Ca
2+

 entry (paired t-test, p-value = 0.020). The Cav inhibitors 

were effective on the KCl responses (paired t-test p-value = 0.005), showing that even if the inhibition 

of the KCl-mediated depolarisation by Cav inhibitors was only partially effective, the inhibition was 

still statistically significant. The Cav inhibitors did not inhibit the pH6-induced increase of intracellular 

Ca
2+

 concentration (paired t-test, p-value = 0.324). We can conclude that in the population of neurons 

expressing only ASIC1a homomeric channels and no TRPV1 (i.e. PcTx1-sensitive neurons) activation 

of homomeric ASIC1a allowed the entry of calcium directly into the cells, as Cav inhibitors were 

unable to inhibit the pH6-activated increase of intracellular Ca
2+

 concentration.  

In Figure 19, we showed that in most of the amiloride-sensitive cells, the Cav inhibitors also inhibited 

a large part of the acid-induced increase of intracellular calcium concentration. On the contrary, we 

showed here that in a population of PcTx1-sensitive neurons, the Cav inhibitors did not inhibit the 

pH6-induced increase of intracellular Ca
2+

 concentration. As the PcTx1-sensitive neurons population 

is a subpopulation of the amiloride-sensitive neurons population, it is possible that none or 1 of the 5 

amiloride-sensitive cells averadged in Figure 19C were PcTx1-sensitive. A combined experiment with 

both amiloride and PcTx1 should be made to further understand the role of Cav in ASIC-mediated 

increase of intracellular Ca
2+

 concentration.   

To summarize, in this section we have shown that amiloride prevent Ca
2+

 entry through ASICs in a 

population of DRG neurons; that PcTx1 inhibits the activation of ASICs in another population of DRG 

neurons; that Cav inhibitors reduced the amplitude of ASIC-mediated Ca
2+

 increase in DRG neurons; 

and finally that Cav inhibitors did not affect pH6-mediated Ca
2+

 entry into PcTx1-sensitive population 

of DRG neurons. 

3.3 CGRP secretion assay on dissociated DRG neurons 

3.3.1 BCTC reduces CGRP secretion induced by an extracellular acidification in DRG 

neurons 

In order to measure directly the secretion of CGRP from DRG neurons, an in vitro assay was used to 

compare the secretion from neurons in a medium at physiological pH of 7.4 and from neurons exposed 
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to a more acidic pH. The duration of the secretion experiment was 15 min at 37°C. The amount of 

secreted CGRP is expressed as a percentage of the total CGRP content of the cells, named “relative 

CGRP secretion”. 

 

Figure 21 : Effect of extracellular acidification on CGRP secretion 

The duration of the secretion experiment was 15 min at 37°C. The relative secreted CGRP is expressed as a % of the secreted 

CGRP to the total CGRP content of the cells. Panel A shows the increase of CGRP secretion at pH6 and pH5. Panel B shows 

no significant effect of amiloride on acid-induced CGRP secretion. Pannel C shows r no significant effect of PcTx1 on CGRP 

secretion. Panel D shows that BCTC reduced the secretion at acidic pH back to pH7.4 secretion. n = 6-12 for panel A, n = 2-5 

for panel B, n = 3-5 for panel C, n = 5-9 for panel D. *: p-value < 0.05, **: p-value < 0.01 

Figure 21A shows that extracellular acidification to pH 6 or 5 both significantly increased the neuronal 

secretion of CGRP compared to the basal level at pH 7.4 (one-way ANOVA, followed by a Tukey 

post-hoc test, p-values = 0.012 and 0.045, respectively). An acidification to pH 6.5 did not increase the 

secretion, compared to the basal level at pH 7.4 (Tukey post-hoc test, p-value = 0.991).  
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In experiments presented on panels B and C, amiloride (500 µM) and PcTx1 (10 nm) were used as 

ASICs inhibitors to test for an involvement of ASICs in CGRP secretion. There were no significant 

differences between conditions with or without inhibitors (one-way ANOVA, followed by a Tukey 

post-hoc test). There was even a tendency for amiloride to increase the CGRP release, perhaps caused 

by non-specific effects of amiloride. In this context, amiloride is probably not an ideal inhibitor (see 

Discussion). 

In the experiments presented in panel D, the TRPV1 inhibitor BCTC (1 µM) was able to significantly 

reduce the CGRP secretion at pH 6 and 5 (one-way ANOVA, followed by a Tukey post-hoc test, p-

value = 0.007 and 0.03 respectively). These experiments show that TRPV1 is involved in the CGRP 

secretion triggered by an extracellular acidification. Even if these experiments were not able to 

demonstrate a role for ASICs in this secretion, we cannot totally exclude such a role (see Discussion). 

In Figure 22 effects of Cav and Nav inhibitors on CGRP secretion are shown. On panel A, Cav 

inhibitors (Nifedipine (10 µM), Mibefradil (10 µM) and ω-conotoxin MVIIC (300 nM)) had no 

significant effects on the secretion induced by an acidic extracellular solution (one-way ANOVA, 

followed by Tukey post-hoc tests). The inhibitors reduced however the secretion induced by 70 mM 

extracellular KCl (one-way ANOVA, followed by a Tukey post-hoc test, p-value = 0.009).At the same 

time this experiment indicates that the Cav are not involved in the extracellular acid-induced CGRP 

secretion.  

In experiments presented on panel B, the Nav inhibitors TTX (1 μM) and lidocaine (10 mM) were 

used. TTX or lidocaine separately had no signicative effect on the CGRP secretion (one-way ANOVA, 

followed by a Tukey post-hoc test, p-value = 0.41 and 0.83). If applied together, lidocaïne and TTX 

induced a small inhibition of secretion (Tukey post-hoc test, p-value = 0.007). These experiments do 

therefore indicate that Nav-mediated depolarization play a role in the secretion of CGRP. 

To conclude, the only effective and strong inhibitor in these experiments was BCTC. This indicates 

that TRPV1 is a major component of the detection of acidification that leads to CGRP secretion in 

these DRG neurons. Nav channel also play a role in these secretion. The exact mechanism which 

mediate the Nav-dependant CGRP secretion would necessitate more investigation to be elucidated. 

Likely, the Nav-induced depolarization potentiates the Cav activation. 

The Na/Ca exchanger (NCX) could also play a role in the secretion of CGRP. Na/Ca exchange is a 

mechanism that allows Ca
2+

 extrusion from the cell against its gradient without energy consumption. It 

is the entry of Na
+
 along its electrochemical gradient that provides the energy for Ca

2+
 extrusion. As 

NCX is electrogenic and voltage sensitive, it can reverse during cellular activation and contribute to 

Ca
2+

 entry into the cell (Blaustein & Lederer, 1999). As NCX are expressed in rat DRG neurons 
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(Verdru et al., 1997), we cannot exclude that NCX could play a role in Ca
2+

 entry after an acid-

induced depolarization, and therefore been implicated in an acid-induced CGRP secretion. Further 

experiments involving NCX inhibitors would be needed to assess the exact role of NCX in 

neuropeptides secretion. 

 

 

Figure 22 : Co-application of TTX and lidocaïne reduce acid-mediated CGRP secretion  

Panel A shows that Cav inhibitors had no significant effects on acid-induced CGRP secretion. Panel B shows that co-

application of Nav inhibitors TTX and lidocaïne reduced acid-mediated CGRP secretion. n = 2-7 for panel A, n= 2-8 for 

panel B *: p-value < 0.05, **: p-value < 0.01 

3.4 Behavioural experiments on ASIC1, ASIC2 and ASIC3 null mice. 

3.4.1 Mechanical allodynia-like behaviour induced by spared nerve injury (SNI) is not 

different from wild type in ASIC1a, -2 and 3 null mice 

We hypothesized that ASICs could have a role in neuropathic pain. This hypothesis was formulated 

based on the observation that in the SNI model of neuropathic pain performed on rats, the expression 

and function of different ASIC subunits in DRG neurons was changed (Poirot et al., 2006). To test this 

hypothesis, we applied the SNI model to three different mouse strains deficient of ASIC1a, -2 or -3. 

The mechanical allodynia induced by the nerve injury in the ipsilateral hindpaw was assessed with von 

Frey filaments. The ipsi- and the contralateral paw were stimulated 10 times each with filaments of 

increasing forces (see Methods for details). The number of response (i.e. the mouse withdraws it paw) 

out of 10 was recorded for each mouse, at different time points before and after the surgery. The 

selected time points in the following experiments are two baselines values and measurements taken at 

3, 9, 15 and 21 days after SNI surgery. As illustrated in Figure 23 for ASIC3 null mice and wild type 
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littermates, it has been previously shown that for wild type mice, the SNI model increases the 

allodynia over time until a plateau phase is reached (Bourquin et al., 2006). ASIC1a, -2 and -3 null 

mice were compared to wild type littermates. The experimenter did not know the genotype of the mice 

during the experiment. 

 

Figure 23 : Mechanical withdrawal threshold decreases significantly in ipsilateral paws after SNI for both ASIC3 

knockout mice and wild type mice 

The relative frequency of paw withdrawal at two different time points, one before and one after the 

surgery, is shown in Figure 24. For all mice, there was a significant difference between the ipsi- and 

contralateral paw starting from the third to the ninth post-operative day and persisting for the duration 

of the experiment (two-way analysis of variance (ANOVA), with time treated as a repeated measure), 

indicating that the mechanical allodynia was induced by the SNI model (data not shown).  

On panel A, results for ASIC1a null mice (n=10) and wild type littermates (n=10) are shown. There 

were no differences between the wild-type and the ASIC1a null mice at baseline 2 and at 21 days after 

SNI.  

On panel B, results for ASIC2 null mice (n = 19 for baseline 2, n = 9 for 21 day SNI) and wild type 

littermates (n = 18 for baseline 2, n = 8 for 21 day SNI) are shown. There were no differences between 

the wild-type and the ASIC2 null mice at baseline 2 and at 21 days after SNI.  

On panel C, results for ASIC3 null mice (n = 8) and wild type littermates (n = 7) are shown. There 

were no differences between the wild-type and the ASIC3 null mice at baseline 2. There was however 

a significant difference between the wild-type and the ASIC3 null mice at 21 day after SNI (p-value < 

0.0001). ASIC3 null mice were less sensitive than wild type littermates.  
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Panel D shows that mechanical withdrawal threshold decreases significantly in ipsilateral paws after 

SNI. 

 

 

Figure 24 : Relative frequencies of paw withdrawal are not significantly different in both wild type and null mice 

following SNI 

 Mechanical allodynia-like behaviour induced by spared nerve injury (SNI) is not different in ASIC1a (panel A), -2 (panel B) 

and 3 (panel C) null mice, compared to their respective wild type littermates. n = 10 mice per group for panel A, n = 8-19 

mice per group for panel B, n = 7-8 mice per group for panel C and D. 

To summarize, our study shows that there were no differences between the wild-type and the ASIC1, 

or ASIC2, null mice at baseline 2 and at 21 days after SNI. There was a significant difference between 

the wild-type and the ASIC3 null mice at 21 day SNI. ASIC3 null mice were less sensitive than wild 

type littermates. This shows that ASIC3 must be important in the development of allodynia after a 

nerve injury. 

3.4.2 ASIC2 null mice exhibit a reduced thermal allodynia-like behavior in the hot plate test 

We then decided to investigate the role of ASICs in thermal sensitivity, as it is almost unknown for 

ASIC1 and ASIC2. Figure 25 shows thermal allodynia assessed with tail flick and hot plate apparatus. 
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The tail flick test measures spinal nociception and it is based on the sensitivity of the mouse to 

temperature. Panels A, C and E show the results for the Tail Flick experiments. There were no 

significant differences between ASIC1a null mice (n = 10) and wild type littermates (n = 10), between 

ASIC2 null mice (n = 20) and wild type littermates (n = 20), nor between ASIC3 null mice (n = 10) 

and wild type littermates (n = 10) (t-test, p-value = 0.34, 0.16 and 0.37 respectively).  

The hot plate test is widely used to determine supraspinal nociception. Panels B, D and F show the 

results for the hot plate experiments at 49, 52, and 55°C for respectively ASIC1a, ASIC2 and ASIC3 

null mice. There was a significant difference at each temperature between ASIC1a and wild-type 

littermates (t-test, p-value = 0.041, 0.001, 0.003, respectively), and between ASIC2 null mice and 

wild-type littermates (t-test, p-value = 0.0002, 0.005, 0.0006, respectively). ASIC1a null mice had 

increased thermal allodynia behaviours with the hot plate compared to wild type littermates. On the 

contrary, ASIC2 null mice had reduced thermal allodynia behaviours with the hot plate compared to 

wild type littermates. There was no significant differences at each temperature between ASIC3 null 

mice and wild-type littermates (t-test, p-value = 0.26, 0.35, 0.72, respectively).  

To summarize, there was no difference between the different null mice and their littermates in the tail-

flick test. ASIC1a null mice were more sensitive and ASIC2 null mice were less sensitive to hot 

temperature in the hot plate test, compared to wild type littermates. ASIC3 null mice were no different 

from their wild type littermates in the Hot Plate test. These results indicate that ASIC1a and ASIC2 

must play a role in thermal sensation. As the effects were opposite in ASIC1a and in ASIC2 null mice, 

ASIC1a  and ASIC2 should be involved in different mechanisms. 
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Figure 25 : ASIC1a and ASIC2 null mice showed a significant difference in thermal with the hot plate test  

Panels A, C and E show no difference between ASIC1a, ASIC2 and respectively ASCI3 null mice and their wild type 

littermates with the tail flick test. Panel B shows increased thermal allodynia behaviour with the hot plate test between 

ASIC1a null mice and wild type littermates. Panel D shows reduced thermal allodynia behaviour with the hot plate test 

between ASIC2 null mice and wild type littermates. Panel F shows no difference for thermal allodynia behaviour with the hot 

plate test between ASIC3 null mice and wild type littermates. *: p-value < 0.05, **: p-value < 0.01 
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4. Discussion 

4.1 Expression of the different ASIC subunits and of neuropeptides 

4.1.1 Advantages and limitations of immunocytochemistry and in-situ hybridization    

Immunocytochemistry and in-situ hybridization were used to determine the distribution of the 

different ASIC subunits in two populations of DRG neurons, the petidergic and the non-peptidergic 

neurons. The main aim was to identify populations of DRG neurons which expressed different ASICs 

subunits, and to test for a possible correlation or co-expression between ASICs subunits and 

neuropeptides, and also between two different ASICs subunits. The main limitation of this technique is 

that it is only possible to measure the distribution of one ASIC subunit with one neuropeptide or one 

other ASIC subunit.  

The advantage of immunocytochemistry is that it detects the proteins. There are some limitations of 

this technique. The first limitation is that the available antibodies are not able to distinguish the splice 

variants (ASIC1a vs -1b, ASIC2a vs -2b). The second limitation is the quality of the antibodies. Most 

antibodies against ASICs are more or less efficient in recognising the proteins in a heterologous 

expression system, but most of them fail to specifically recognise ASICs in DRG neurons, except the 

two antibodies against ASIC1 and ASIC2, respectively, that were used in this study. Among all the 

antibodies we tested, we were only able to use one anti-ASIC1 and one anti-ASIC2 which were 

previously correctly tested, i.e. tested on tissues or neurons from knock-out mice.  

In order to detect the different splice variants ASIC1a, -1b, -2a, -2b and the ASIC3 isoform, we 

decided to switch to another method; the in-situ hybridization. The main advantage is, as previously 

mentioned, that all ASICs subunits can be distinguished. The main limitation of the technique is that it 

measures mRNA levels, thus it allows to detect cells expressing the mRNA of the different isoforms 

of ASICs, and not the proteins. Generally, the presence of a specific mRNA in a cell is a good 

indication that the corresponding protein is expressed, but regulation of the translation cannot be 

excluded.  

As already mentioned in the introduction, C-fiber nociceptors can be divided into two groups in which 

one class depends on NGF during postnatal development and contains neuropeptides, and the second 

class depends on GDNF during postnatal development and contains few neuropeptides but binds IB4 

(Basbaum et al., 2009). In our study, all ASICs were expressed in a higher fraction of the peptidergic 

population than the non-peptidergic population. 
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4.1.2 Comparison between the labelling of ASICs and the different types of ASIC currents 

Previously, an electrophysiological characterization of the different ASICs currents in dissociated rat 

DRG neurons was done by our group. The results showed that small-diameter DRG neurones 

expressed three different ASIC current types. Type 1 currents were mediated by ASIC1a 

homomultimers and characterized by steep pH dependence of current activation in the pH range 6.8–

6.0. Type 3 currents were activated in a similar pH range as type 1, while type 2 currents were 

activated at pH<6. PcTx1-sensitive ASIC1a current was predominantly found in IB4 negative, thus 

peptidergic neurons (Poirot et al., 2006). Staining done on dissociated DRG neurons confirmed that 

the ASIC1a subunit was predominantly expressed in peptidergic neurons.  

For ASIC1a, the electrophysiological experiments had identified a large population of DRG neurons 

which expressed only ASIC1a homomeric channels (type 1 current). In a different sub-population, 

ASIC1a likely participated in forming heteromeric channels with ASIC3 and probably other subunits 

giving rise to type 3 currents (Poirot et al., 2006). It should be noted that electrophysiological and 

biochemical experiments are not directly comparable. Our immunocytochemistry and in-situ 

hybridization showed that there are few neurons that express only ASIC1a. These results are in 

contradiction with the large population of expressing a type 1 current. Electrophysiological 

experiments give information on functional ASIC complexes present at the surface of the cell. 

Biochemical experiments give information on the whole cellular expression of ASICs protein or 

mRNA. Immunocytochemical and in situ hybridization experiments provide information about the 

expression of ASIC1a in a neuron, but not on the multimerization of the channel. Nevertheless, as we 

have shown that most ASIC subunits are expressed in the peptidergic neurons, it seems difficult to be 

compatible with the presence of pure homomeric ASIC1a current, as these neurons likely only express 

ASIC1a subunits at the cell surface. 

4.1.3 Comparison of the results of expression of ASICs, TRPV1, CGRP and SP with the 

literature 

In the following I compare our results with previous studies. One study involved an 

electrophysiological characterization of dissociated DRG neurons from adult rats. The DRG neurons 

were classified in nine different types according to their immunoreactivity to CGRP or SP and their 

patterns of capsaicin-, proton-, and ATP-activated currents. Out of these nine types, five were 

analysed. They formed distinct populations of capsaicin sensitive, ATP sensitive and proton sensitive 

cells with uniform current kinetics, pharmacology and histochemistry. Interestingly, a type of neuron 

expressed CGRP and TRPV1 and another one expressed fast desensitizing ASICs with a non-

desensitizing component. Two other populations did not express neuropeptides, but either ASICs or 

TRPV1 (Petruska et al., 2000). In a follow-up study, they discovered that the four other populations of 
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neurons formed distinct populations of medium sized capsaicin-sensitive and -insensitive cells that all 

expressed amiloride-sensitive, ASIC currents. The presence of ASIC currents was associated with the 

expression of neuropeptides SP and/or CGRP (Petruska et al., 2002). These results are consistent with 

our immunocytochemical and in-situ hybridization results that showed that ASIC1a, -1b, -3 and 

TRPV1 are preferentially expressed in neuropeptides neurons. It is difficult to compare our proportion 

of expression of the different ASICs and TRPV1 with neuropeptides with the proportion of the 

different cluster described in these studies, as it is not possible to calculate the proportions of neurons 

in their second study. The first study shows that ASICs and CGRP/SP are co-expressed in the cluster 7 

which represent 7 % of all neurons described in the study neurons of cluster 3 express ASICs but does 

not express neuropeptides in a proportion of 20 %. In the second study, the 4 remaining clusters 

express all neuropeptides and ASICs. As the neurons of these 4 clusters were the only ones to be 

measured in this study, it is impossible to calculate the proportion of each cluster. Nevertheless, the 

co-expression of ASICs and neuropeptides in 5 of the cluster likely shows a relatively high level of 

coexpression of ASICs with neuropeptides. These results were also confirmed in mice. It was found 

that IB4-negative neurons are the major class of unmyelinated neurons that responds to protons and 

capsaicin. IB4-negative unmyelinated neurons selectively expressed transient proton currents and 

these transient currents were reversibly blocked by amiloride, i.e. were mediated by ASICs. 

Furthermore, the authors think that a likely candidate for the sustained-only proton current was the 

capsaicin receptor TRPV1 (Dirajlal et al., 2003). A study demonstrated with a double 

immunofluorescence method that many ASIC3-immunoreactive neurons co-expressed CGRP in the 

jugular (about 80%) and petrosal ganglia (about 60%), confirming our results. It must be noted here 

that this result should be taken with caution, as the anti-ASIC3 antibody they were using was not 

working in our hands, and they did not carry out the necessary controls (Fukuda et al., 2006). In-situ 

hybridization on ASIC1a, -1b, -3 and TRPV1 has also been performed by a research group. They 

found that ASIC1a transcripts were expressed in 20-25% of the small diameter rat DRG neurons. 

ASIC1b was expressed in about 10% of neurons and ASIC3 in 30-35% of the neurons (Ugawa et al., 

2005). We also found that ASIC1b was less expressed than ASIC1a and ASIC3. The striking 

difference is that our results show more neurons expressing ASICs than in this paper (about 60 % for 

ASIC1a, 35-40% for ASIC1b and about 50 % for ASIC3). The most likely explanation is that they 

used radioactive probes which were less sensitive than our DIG-labelled probes detected with an anti-

DIG antibody coupled to a fluorophore which amplified the signal. They found that TRPV1 was 

expressed in 35-40% of neurons, which was not so different from what we found with 

immunocytochemistry (45-55%). 

For this part, we conclude that our results showing that ASIC1a, -1b, -3 and TRPV1 are preferentially 

expressed in the peptidergic population are confirmed in the literature by similar or completely 
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different methods (electrophysiology). We show here an interesting complete characterization of the 

expression of all ASIC subunits (except the non-conducting ASIC4) and TRPV1 and of their 

expression with neuropeptides CGRP and SP.  

4.2 Increase of intracellular calcium concentration via ASICs and TRPV1 

4.2.1 Effect of amiloride on the intracellular Ca
2+

 concentration of CHO cells expressing 

ASIC1a 

Amiloride induced a concentration dependent reduction of the increase of intracellular calcium 

concentration during an acidification. This demonstrates that ASIC1a homomeric channels are able to 

allow a significant increase of intracellular calcium concentration. This experiment was not able to 

show us the exact mechanism of increase of intracellular concentration. Obviously, calcium entered 

the cell via ASIC1a. It is not known if the totality of the calcium enters via ASIC1a, or if a small 

amount of calcium entering the cell via ASIC1a could trigger intracellular mechanisms that could 

release Ca
2+

 from intracellular stores.  

4.2.2 Effect of amiloride on the intracellular Ca
2+

 concentration of DRG neurons 

 Calcium imaging experiments were then performed on dissociated rat DRG neurons to understand 

how the intracellular calcium concentration of the neurons changes during an extracellular 

acidification. We showed that 500 μM amiloride prevented the increase of fluorescence at acidic pH 

by ≥ 70% in a population of cells that we named “Fully amiloride-sensitive”. As amiloride acts on 

ASICs and not TRPV1, this population of DRG neurons likely expressed mainly ASICs, and almost 

did not express TRPV1. The kinetics of the fluorescence were also compatible with ASICs, as the 

signal started to decrease still in presence of the acidification, reflecting the inactivation of ASICs. The 

kinetics would certainly be different if TRPV1 was involved, as TRPV1 does not inactivate. The 

calcium concentration remained high during the extracellular acidification and decreased only when 

the pH came back to pH 7.4. Likely this increase of calcium was mediated by a channel which does 

not inactivate, probably TRPV1 (see Figure 17). In the last population of cells which we named 

“Partially amiloride-sensitive” the amiloride was partially effective. This partial effectiveness showed 

that in these cells, as amiloride was only able to inhibit partially the increase of intracellular calcium 

concentration, ASICs were only partially responsible for this increase. 

4.2.3 Effect of PcTx1 on the intracellular Ca
2+

 concentration of DRG neurons 

In order to further analyse the “Amiloride-sensitive” population, in other words the population 

expressing ASIC channels responsible for the increase of intracellular calcium concentration, PcTx1, a 

toxin that inhibits homomeric ASIC1a channels, was used. It is useful here to remind that it has been 

extensively described in the literature that all ASIC channels are permeable for sodium but not for 
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divalent cations, except for ASIC1a homomeric channels which are permeable to sodium and calcium. 

The contribution of homomeric ASIC1a channels to the increase of intracellular Ca
2+

 concentration in 

neurons expressing ASICs but no TRPV1 was tested. PcTx1 abolished in a subpopulation the response 

to extracellular acidification. This indicates that in this subpopulation of neurons, ASIC1a homomeric 

channels were responsible for the increase of intracellular calcium concentration. There was also a 

neuronal population in which neither amiloride, nor PcTx1 affected the Ca
2+

 concentration at pH6, 

indicate that in these cells that ASICs were not involved in the extracellular acid-induced increase of 

intracellular calcium concentration. Considering that the “Partially amiloride-sensitive” population of 

neurons express both ASICs and TRPV1, 62% of the measured neurons expressed ASICs, 69% 

expressed TRPV1 and 20% only ASIC1a homomeric channels (31% of fully amiloride-sensitive 

neurons * 64% of the amiloride-sensitive neurons which were also PcTx1-sensitive).  The proportions 

for ASICs and TRPV1 are compatible with our results of the immunocytochemistry and in situ 

hybridization experiments. As previously mentioned, the immunocytochemistry and in situ 

hybridization experiments do not allow to know the oligomerization state of a channel, it is therefore 

difficult to discuss the ratio of ASIC1a homomeric channels. As PcTx1 is highly specific for 

homomeric ASIC1a, there is no doubt that the inhibition of increase of intracellular calcium 

concentration by this toxin reflects the inhibition of homomeric ASIC1a channels in our experiments. 

Nevertheless, we cannot exclude here that the entry of Na
+
 via ASIC1a could indirectly trigger the 

increase of intracellular calcium concentration by activating voltage-gated Ca
2+

 channels. 

4.2.4 Effect of Cavs on the intracellular Ca
2+

 concentration of DRG neurons 

As previously mentioned, calcium can enter the cell via the homomeric ASIC1a in the population of 

neurons which are sensitive to PcTx1. In the amiloride-sensitive, but PcTx1-insensitive DRG neuron 

population, calcium impermeant ASICs were involved in the increase of intracellular calcium 

concentration, thus the ASICs mediated indirectly the entry of calcium. Since we know that the entry 

of Na
+
 through ASICs can depolarize the plasma membrane, our hypothesis is that this depolarization 

can activate Cavs.  

In order to evaluate the role of Cav channels, three inhibitors (“the Cav inhibitors”) Nifedipine, 

Mibefradil and ω-conotoxin MVIIC were used together as pharmacological tools to inhibit a wide 

range of Cav. In most of the amiloride sensitive cells, the Cav inhibitors also blocked a large part of the 

acid-induced increase of intracellular calcium concentration. This result is consistent with the pathway 

depicted at the right of the Figure 26. The Cav inhibitors were uneffective to block the response to an 

extracellular acidification in a population of cells which were insensitive to amiloride. As previously 

mentionned, this population expresses TRPV1 as the main sensor of extracellular acidification. 

TRPV1 being highly permanent to calcium (Caterina et al., 1997; Mohapatra et al., 2003; Samways et 
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al., 2008), Cav are not necessary to allow an increase on the intracellular calcium concentration. It 

cannot be excluded that the Cav played a role in the increase of intracellular calcium concentration in 

those cells. 

 

 

Figure 26: Schematic drawing of a neuron expressing ion channels 

The drawing shows on the left homomeric ASIC1a channels which can be inhibited with PcTx1 and TRPV1 which can be 

inhibited by BCTC. On the right, it shows that an entry of Na+ trough amiloride-sensible ASICs can depolarize the cell. In 

our hypothesis, this depolarization could active Cavs and allow an entry of calcium, even in absence of homomeric ASIC1a 

or TRPV1. This depolarization is inhibited by Cavs antagonists Nifedipine, Mibefradil and ω-conotoxin MVIIC. 

PcTx1 was used to isolate the population of cells which expressed homomeric ASIC1a. In this 

population, the Cav inhibitors were ineffective in blocking the increase of the intracellular calcium 

concentration. The KCl-induced depolarization was partially blocked by Cav inhibitors in these 

experiments. In the PcTx1-sensitive neurons, Cav inhibitors failed to decrease the response at pH6. 

This set of experiment suggests that Ca
2+

 is able to enter the cells via homomeric ASIC1a, but it 

cannot be excluded that the Cav also played a role in this population of neurons, as the inhibition of 

Cav by their inhibitors was not completely effective.  

4.2.5 Comparison of our results on ASICs and TRPV1 function in DRG neurons with the 

literature 

Previously, calcium imaging has been performed on cultured DRG neurons from mice. A study has 

found that experiments performed with antagonists for P2X, ASIC, and TRPV1 receptors suggested 

that these three receptors act together to detect protons, ATP, and lactate when presented together in 

physiologically relevant concentrations (Light et al., 2008). Even if many groups show that the 



 

 

69 

 

homomeric ASIC1a are calcium permeant (Waldmann et al., 1997; Chu et al., 2002; Yermolaieva et 

al., 2004), a paper claims that ASIC1a channels conduct only negligible Ca
2+

 (Samways et al., 2009). 

There were unable to record any difference of fluorescence after activation of native and recombinant 

homomeric ASIC1a channels in calcium imaging experiments. As it is the only study that showed that 

homomeric ASIC1a were impermeant to Ca
2+

 and as I and others showed the contrary, I believe they 

are wrong. A study on rat DRG neurons demonstrated the expression of Ca
2+

-permeable ASICs, with 

simultaneous whole-cell recording and ratiometric imaging techniques, in peptidergic nociceptive 

neurons. The simultaneous recording of ASICs currents and increases of intracellular Ca
2+

 

concentration, which was prevented by the absence of extracellular Ca
2+

, show strong evidences for 

the presence of a Ca
2+

 permeable ASIC. Sensitivity to PcTx1 indicated the presence of Ca
2+

-permeable 

ASIC1a (Jiang et al., 2006). Another study also performing calcium imaging on mouse neurons 

showed that extracellular acidosis opened ASIC1a channels, which provided a pathway for Ca
2+

 entry 

and elevated intracellular Ca
2+

 concentration in wild type, but not ASIC1a knockout mouse 

hippocampal neurons. It shows that ASIC1a subunits are necessary for Ca
2+

 permeability of the 

ASICs, but it does not show that only homomeric ASIC1a are Ca
2+

 permeant. Acid application also 

raised Ca
2+

 concentration and evoked Ca
2+

 currents in heterologous cells expressing ASIC1a. They 

demonstrated that although ASIC2a is also expressed in central neurons, neither ASIC2a 

homomultimeric channels nor ASIC1a/2a heteromultimers showed H+-activated Ca
2+

 concentration 

elevation or Ca
2+

 currents, confirming the Ca
2+

 permeability of homomeric ASIC1a channels 

(Yermolaieva et al., 2004). A study on the mechanism by which toxic Ca
2+

 loading of cells occurs in 

the ischemic brain also shows an implication of ASIC1a homomeric channels in the increase of 

intracellular calcium concentration. They showed that acidosis activates Ca
2+

-permeable ASICs, 

inducing Ca
2+

-dependent, neuronal injury inhibited by ASIC blockers (Xiong et al., 2004).  

All these studies confirm what we observed with our own calcium imaging experiments. We showed 

that a population of neuron expressed ASICs which are important for the increase of intracellular 

calcium concentration. We also confirm, in a population of neurons, the importance of ASIC1a 

homomeric channels for the entry of calcium into the cell. The presence of a population of neurons 

insensitive to amiloride is compatible with the presence of the Ca
2+

 permeable TRPV1. 

4.3 Secretion of CGRP from DRG neurons 

4.3.1 Extracellular acidification induces CGRP secretion 

In order to measure directly the secretion of CGRP from DRG neurons, we have used an in vitro assay 

to compare the secretion from neurons in a medium at physiological pH of 7.4 and from neurons in a 

more acidic pH. Extracellular acidification to pH 6 and 5 both significantly increased the neuronal 

secretion of CGRP compared to the basal level at pH 7.4. An acidification at pH 6.5 did not increase 
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the secretion, compared to the basal level at pH 7.4. This shows that an extracellular acidification was 

able to trigger the secretion of CGRP. It is surprising that an acidification at pH6.5 had no effect on 

the secretion, as ASICs currents at pH6.5 are already almost maximal. A possible explanation could be 

that secretion of CGRP is not induced by ASICs, but rather by TRPV1, as TRPV1 is not activated at 

pH 6.5. 

4.3.2 Role of ASICs in acid-induced CGRP secretion 

Amiloride and PcTx1 were used as ASICs inhibitors to test if ASICs were involved in CGRP 

secretion. There were no significant differences in CGRP secretion between conditions with or without 

amiloride or PcTx1. PcTx1 has only an effect on the population of neurons which express mainly 

homomeric ASIC1a. All the other DRG neurons expressing other ASICs or TRPV1 are not affected by 

PcTx1. Therefore, it was not really a surprise that PcTx1 had no effect on the secretion of CGRP, as a 

large part of the small diameter neurons was not affected by the toxin (more than about 79%). More 

surprisingly, amiloride had no inhibitory effect on the secretion of CGRP by DRG neurons. Amiloride 

even had the tendency to increase the secretion of CGRP. The main difference between the secretion 

assay and the calcium imaging experiments was the duration of the exposition to amiloride, or to other 

inhibitory compounds. For the calcium imaging experiments, the cells were exposed to amiloride only 

a few seconds, while for the secretion assay experiments, the cells were exposed to amiloride for 15 

min. Although there is no doubt that amiloride act on ASICs during a brief exposition, as shown with 

calcium imaging experiments, it certainly also act on transporters. During a brief stimulation, the 

effect on the transporters has certainly no consequences. On the contrary, during a prolonged 

exposition, amiloride could inhibit transporters for several minutes and therefore the inhibition of 

these transporters could have effects on the neurons and their viability. It is known that amiloride act 

on many sodium channels/transporters, as for example the Na
+
/H

+
 exchanger (Masereel et al., 2003). It 

is possible that inhibiting such channels/transporters for min can stress the cells and allows unspecific 

release of CGRP. 

4.3.3 Role of Cavs in acid-induced CGRP secretion 

We also wanted to know if Cavs were necessary for the release of CGRP. Cav inhibitors had no 

significant effects on the secretion induced by an acidic extracellular solution. The inhibitors 

efficiently inhibited Cavs in control experiments, as they reduced the secretion induced by KCl-

induced depolarization. We can conclude that Cav were not involved in the extracellular acid-induced 

CGRP secretion. As our hypothesis was that Cav were activated by the entry of Na
+
 by ASICs, and that 

as mentioned before, we were not able to show an effect of ASICs on the secretion of CGRP, this 

result show that ASICs seems to play no or only a small role in the secretion of CGRP in this assay. 

Cav inhibitors were able to inhibit the increase of intracellular Ca
2+

 concentration in calcium imaging 
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experiments in a population of neurons sensitive to amiloride. On the contrary the Cav inhibitors were 

unable to inhibit this increase in a population which was resistant to amiloride. As the secretion is 

dependant of an increase of intracellular calcium concentration and as the secretion of CGRP was not 

inhibited by Cav inhibitors, we can conclude that the neurons secreting CGRP probably belong to the 

amiloride-resistant population.  

4.3.4 Role of TRPV1 in acid-induced CGRP secretion 

The TRPV1 blocker BCTC was able to significantly reduce the CGRP secretion at pH 6 and 5. This 

showed that TRPV1 activity was regulated for the CGRP secretion triggered by an extracellular 

acidification. Even if these experiments were not able to demonstrate a role for ASICs in this 

secretion, we cannot totally exclude such a role. As the sensibility of the EIA assay used to measure 

the amount of secreted CGRP was limited, neurons were incubated for 15 min. In physiological 

conditions, the nerve endings could be in presence of extracellular acidification for a shorter period. 

This could influence the mechanisms of CGRP secretion even if experiments in which the period of 

incubation was shorter (2 min) showed no difference of CGRP secretion compared to the situation 

after 15 min of incubation (data not shown), as 2 min might already be too long. One of the main 

differences between ASICs and TRPV1 are kinetics of inactivation. ASICs inactivate fast; most of the 

subunits, except those containing ASIC3 subunits, are completely inactivated after few seconds of 

exposition to an extracellular acidification. On the contrary, TRPV1 does not inactivate. It results, as 

we have shown in our group (Blanchard & Kellenberger, 2011), that even if during the first seconds of 

activation, ASICs transfer more charges than TRPV1, the situation is inverted in the case of a 

prolonged stimulation, as in our secretion experiments.  

4.3.5 Role of Navs in acid-induced CGRP secretion 

Navs inhibitors TTX and lidocaïne were applied with an acidic pH to investigate the potential roles of 

Navs in CGRP secretion. TTX or lidocaïne separately had no visible effect on the CGRP secretion. 

Together, lidocaïne and TTX had a significant effect. The role of Navs is not very clear here, as in this 

cellular system, as mentioned earlier, TRPV1 seems to be able to trigger the secretion of CGRP. It is 

possible that inhibiting Navs prevent a depolarization of the neuron which could be required for the 

CGRP secretion. It has already been shown that Nav1.8 channels play a role in SP secretion. The SP 

released from cultured DRG neurons of Nav1.8 knock-out mice exposed to either capsaicin or KCl was 

significantly lower than that from wild-type mice based on a radioimmunoassay. The SP level of L6 

DRG in Nav1.8 knock-out mice was also lower than that in wild-type mice. These results suggest that 

Nav1.8 is involved in the regulation of the release and synthesis of SP in the DRG neurons of wild-

type mice (Tang et al., 2008). Even if Nav1.8 is TTX-resistant, other Navs could also mediate 

neuropeptide secretion. A study investigated mechanisms that mediate CGRP release from the rat 



 

 

72 

 

colon in vitro. It is even surprising that lidocaine had either no significant or an inhibitory effect, when 

applied with TTX, on the CGRP secretion, as it has been reported that lidocaine can activate TRPV1 

and can induce a TRPV1-dependant CGRP secretion (Leffler et al., 2008). 

4.3.6 Comparison of our results on CGRP secretion from DRG neurons with the literature 

Capsaicin and low pH induced significant increases in CGRP release which was shown to be mediated 

by TRPV1 activation. The TRPV1 antagonists (2R)-4-(3-chloro-2pyridinyl)-2-methyl-N-[4-(tri-

fluoromethyl)phenyl]-1 piperazonecarboxamide (CTPC) and capsazepine inhibit this increase (Kaur et 

al., 2009). It has already been shown that TRPV1 is important for the release of CGRP. TRPV1 

knockout mice were employed to assess the TRPV1 contribution to tracheal responsiveness. Heat-

induced CGRP release depended entirely on extracellular calcium and partly on TRPV1 as knockout 

mice showed 60% less CGRP release at 45°C than wild types. Proton stimulation resulted in a 

maximum secretion at pH 5.7. Acid-induced secretions of CGRP were greatly reduced but not 

abolished in TRPV1 knockout mice. It was also found that amiloride at 30 μm, was ineffective in 

TRPV1 knockout mice and wild type mice (Kichko & Reeh, 2009). This is not a surprise as we neither 

found an inhibitory effect of amiloride at much higher concentrations (500 μm). Another study using a 

model of colonic inflammation showed that desensitization of colonic TRPV1 receptors prior to 

inflammation abolished SP increase in the urinary bladder but did not affect CGRP concentration in 

the urinary bladder. However desensitization caused a reduction in CGRP release from lumbosacral 

DRG neurons during acute phase of inflammation. This demonstrates that colonic inflammation 

triggers the release of pro-inflammatory neuropeptides SP and CGRP in the urinary bladder via 

activation of TRPV1 signaling mechanisms (Pan et al., 2010). The aim of a study was to investigate 

some receptors possibly involved in the proton-mediated CGRP release from the heart. Acidification 

at pH 5.7 and 5.2 caused significant increases in CGRP release in wild type mice but not in mice 

lacking the TRPV1 receptor. The same acid stimuli caused no significant differences in CGRP release 

between wild type and ASIC3 knockout. Capsaicin caused massive CGRP release in all mouse 

genotypes with the exception of TRPV1 knockout (Strecker et al., 2005). An acid-induced 

neuropeptide secretion can also in some situations not depend on TRPV1, or ASIC3 activation. In the 

stomach, Proton concentrations in the range of pH 2.5-0.5 stimulated the release of CGRP and 

substance P. Both TRPV1 and ASIC3 are expressed in the sensory neurons innervating the stomach 

walls. However, the proton-induced gastric CGRP release in mice lacking the TRPV1 or the ASIC3 

channels was the same as in corresponding wild-type mice (Auer et al., 2010). 

To conclude, the only effective inhibitors in the CGRP secretion experiments were BCTC and a 

combination of TTX and lidocaine. It seems that TRPV1 is a major component of the detection of 

acidification that leads to CGRP secretion in these DRG neurons. As described above, it has been 
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shown in many studies that TRPV1 plays a role in neuropeptide secretion. Some Navs (as Nav 1.8) 

could also play a role in the secretion of CGRP. We cannot exclude that ASICs play a role in the 

CGRP secretion, has we did not find an inhibitor of all ASICs which was more specific than 

amiloride. To our knowledge, no study showed a role for ASICs in neuropeptide secretion. 

4.4 Behavioural experiments with mice 

4.4.1 Mechanical allodynia-like behaviour induced by SNI 

Mechanical allodynia behaviour was induced by SNI in mice. For all mice, there was a significant 

difference of paw responses between the ipsilateral and the contralateral paw starting from third to the 

ninth post-operative day and persisting for the duration of the experiment, showing that the 

mechanical allodynia was induced by the SNI model. There were no differences between the wild-type 

and the ASIC1, or ASIC2, null mice at baseline 2 and at 21 days after SNI. There was a significant 

difference between the wild-type and the ASIC3 null mice at 21 day SNI. ASIC3 null mice were less 

sensitive than wild type littermates.  

Our hypothesis was that ASICs could have a role in neuropathic pain, as it has been previously 

observed in our group that in a model of neuropathic pain performed on rat, the relative expressions of 

the different ASIC subunits in rat DRG neurons were modified by the SNI model. In rat, type 1 and 

type 3 current densities were reduced in injured neurons after SNI (Poirot et al., 2006). As type 3 

current is formed of ASIC1a- and ASIC3- containing hetereromers, this current must be absent in 

ASIC3 knockout animals, which could reduce the development of allodynia, as a possible role for this 

modulation of ASICs expression after the SNI injury could be to develop allodynia.  

ASIC3 knockout mice were reported to have a small but significant increase of sensitivity compared to 

wild-type animals in a model of mechanical hyperalgesia induced with carrageenan. (Price et al., 

2001). The secondary mechanical hyperalgesia that develops after knee joint inflammation was 

abolished in ASIC3 null mice. (Ikeuchi et al., 2008). Similar results were obtained with carrageenan-

induced muscle inflammation. ASIC3 null mice develop primary muscle hyperalgesia but not 

secondary paw hyperalgesia (Walder et al., 2010). Recently, it has also been shown that reducing in-

vivo ASIC3 using artificial miRNAs inhibits both primary and secondary hyperalgesia after muscle 

inflammation in wild-type mice (Walder et al., 2011). Following hind paw inflammation with formalin 

injection, ASIC1 and ASIC2, but not ASIC3 null mice showed enhanced pain behaviour compared to 

wild type littermate, predominantly in the second phase of the test (Staniland & McMahon, 2008).  

It is necessary to remind here that our hypothesis was based on observations made on rat DRG 

neurons. In rat DRG neurons, ASIC1a/b and -3 are the predominant isoforms as ASIC2a/b are less 

expressed (Poirot et al., 2006). On the contrary, in mouse DRG neurons, ASIC2 are predominantly 
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expressed (Hughes et al., 2007). This could be an explanation why we did only see a small difference 

between ASIC3 knockout and wild type mice at 21 days after SNI. 

 

4.4.2 Thermal allodynia-like behaviour in the tail flick and the hot plate test 

Thermal sensitivity was assessed with tail flick and hot plate apparatus. For the tail flick experiments, 

there were no significant differences between either of the ASIC ko mice and their wild type 

littermates. For the hot plate experiments, at 49, 52, and 55°C, there were significant differences at 

each temperature between ASIC1a and ASIC2 null mice and their wild-type littermates. ASIC1a null 

mice had increased thermal allodynia behaviors with the hot plate compared to wild type littermates. 

On the contrary, ASIC2 null mice had reduced thermal allodynia behaviors with the hot plate 

compared to wild type littermates. There were no significant differences at each temperature between 

ASIC3 null mice and wild-type littermates.  

In a study, ASIC3 null mutant mice displayed more thermal allodynia-like behaviors, when stimuli of 

moderate to high intensity were used. This effect was observed in the hot-plate test (Chen et al., 2002). 

It has also been shown that ASIC3 null mice had a reduced latency to withdrawal to tail stimulation at 

52°C compared to wild type mice in the tail withdrawal test. ASIC1 and ASIC3 null mice show no 

difference of behaviour in Hargreaves’ and tail withdrawal tests. It was also shown that in tail 

immersion and hot plate tests, a large antinoceptive effect was observed following both intrathecal and 

intracerebroventricular injections of PcTx1 (Mazzuca et al., 2007), which is in in contradiction with 

our findings that ASIC1a null mice had increased thermal allodynia behaviors with the hot plate. A 

recent study has shown that the mean withdrawal latency to a slow radiant heat ramp was not different 

between ASIC1a, -2 and -3 triple knockout mice and wild type mice (Kang et al., 2012). Most of the 

studies using ASIC null mice animals were done on ASIC3 null mice. Even if all the thermal tests 

done in these studies were not directly comparable, increased, decreased or unchanged thermal 

allodynia were described. In our hot plate study, there was no difference of response between ASIC3 

null mice and wild type mice. This discrepancy in the results does not allow us to have a definitive 

conclusion on the role of ASICs in thermal sensation. 

The opposite reaction of ASIC1a and ASIC2 knockout mice is very surprising and would need further 

investigations to elucidate the mechanisms. A study on the effect of the temperature on the function of 

ASICs showed that the temperature has small effects on the acid-induced currents in rat DRG neurons.   

(Blanchard & Kellenberger, 2011). As ASICs are activated by an extracellular acidification, even if 

this activation is modulated by temperature, it is difficult to imagine a mechanism in which ASICs 

would be the temperature sensor. 
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4.5 Conclusion 

During my thesis, I have mainly worked on two projects. The aim of the project first project was to 

determine the role of ASICs in neuropeptide secretion. We hypothesized that some neurons expressing 

ASIC current types 1 may mediate neuropeptide secretion in DRG neurons. This hypothesis was 

formulated from the discovery that most of the neurons expressing ASIC current type 1 were 

expressing neuropeptides. The aim of the study was to determine whether the activation by 

extracellular acidification of ASICs in DRG neurons induces the release of neuropeptides, and to 

determine the implication of other relevant ion channels in this process. 

The second project was to determine the role of ASICs in neuropathic pain. We hypothesized that 

ASICs could have a role in neuropathic pain. This hypothesis was formulated based on the observation 

that in a model of neuropathic pain performed on rat, the relative expressions of the different ASICs 

subunits in DRG neurons were modified by the nerve injury. 

The experiments done during my thesis concerning my first project showed the distribution of the 

different ASIC subunits and of TRPV1 in the rat DRG neurons. We showed that different ASIC 

subunits and TRPV1 are co-expressed with neuropeptides CGRP and SP. Different populations of 

DRG neurons were described according their response to extracellular acidification and to various 

inhibitors. We have described a population of small diameter neurons which express ASICs. Some of 

the ASIC-expressing neurons form a sub-population of neurons expressing only ASIC1a homomeric 

channels. Another population insensitive to amiloride was found. This population likely expresses 

another acid-sensing channel, TRPV1. We showed that Cavs were involved in the ASIC-dependent 

increase of intracellular calcium concentration. We proposed a mechanism in which the activation of 

ASICs depolarizes the cell membrane and activates Cav channels to let enter Ca
2+

 in the neuron. 

Experiments on PcTx1-sensititive neurons expressing ASIC1a homomeric channels showed that Cav 

were not involved in this population of neurons and that Ca
2+

 likely enters the neurons via ASIC1a 

homomeric channels. We have shown, despite our first hypothesis that ASICs are able to trigger 

neuropeptides secretion that it was not the case in our conditions. ASICs don’t seem to play a role in 

CGRP secretion. We found that TRPV1 was able to trigger the secretion of neuropeptides. ASICs and 

especially ASIC1a are preferentially expressed in peptidergic small diameter neurons and play a role 

in the increase of intracellular calcium concentration.  

The second project was based on behavioral experiments performed with ASIC1a, -2 and -3 knockout 

mice. Mechanical allodynia behaviour was induced by SNI in mice. There were no differences 

between the wild-type and the ASIC1, or ASIC2, null mice at baseline 2 and at 21 days after SNI. 

There was a significant difference between the wild-type and the ASIC3 null mice at 21 day SNI. 

ASIC3 null mice were less sensitive than wild type littermates. Hot plate experiments showed that 
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ASIC1a null mice had increased thermal allodynia behaviours compared to wild type littermates and 

that on the contrary, ASIC2 null mice had reduced thermal allodynia behaviours compared to wild 

type littermates. 

4.6 Perspectives 

Concerning the neuropeptide secretion project, all the experiments were done in vitro. It would be 

interesting to perform in vivo experiments to further investigate the role of extracellular acidification 

and neuronal ASICs in neuropeptides secretion. We have already tried to performed experiments in 

which we measure the plasma extravasation in the skin as an indirect measure of the neuropeptides 

secretion. Briefly, anesthetized rat was intravenously injected with Evans blue dye which binds to the 

albumin of the blood. Acidic solutions were subcutaneously injected. A biopsy was taken at the site of 

injection and the blue dye that leaked into the skin was dissolved and measured. As this kind of 

experiment was difficult to make, an alternative would be to measure the increase of the blood flow 

with an Ultrasonic Doppler blood flow measuring apparatus.  

Knock-out animal would be very useful to be sure that ASICs play no role in CGRP secretion. But as 

mentioned before, mice are not the best model concerning ASIC channels as their distribution is 

completely different of the distribution in rat. We could use the dominant negative form of the ASIC3 

subunit generated by Mogil et al. (Mogil et al., 2005) and pack it into a virus. The virus would be 

intrathecally injected in DRG. Neurons of these DRG would be dissociated and used to make a 

secretion assay. 

For the behaviour experiments, it would be more useful to use rats instead of mice for the reason 

already described above. We could use the same virus as described above to test if a complete ASIC 

knockout rat would have different mechanical responses after the SNI model. If a difference was 

found, we could make knockdown rat for individual ASIC subunits to characterize which ASIC 

subunits would be implicated in mechanical allodynia after the SNI model. 
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5. Annexes 

5.1 Supplementary images of in-situ hybridization on DRG neurons 

   

 

Figure S1: Example of staining of ASIC1b with in-situ hybridization on DRG neurons  

ASIC1b antisense probe, shown in green, and anti CGRP antibody, shown in red are used. Scale bar: 100 µm. In the merged 

image, cells which are positive for NeuN, CGRP and ASIC1b appear yellow. 
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Figure S2: Example of staining of ASIC2a with in-situ hybridization on DRG neurons  

ASIC2a antisense probe, shown in green, and anti CGRP antibody, shown in red are used. Scale bar: 100 µm. In the merged 

image, cells which are positive for NeuN, CGRP and ASIC2a appear yellow. 

 

Figure S3: Example of staining of ASIC2b with in-situ hybridization on DRG neurons  

ASIC2b antisense probe, shown in green, and anti CGRP antibody, shown in red are used. Scale bar: 100 µm. In the merged 

image, cells which are positive for NeuN, CGRP and ASIC2b appear yellow. 
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Figure S4: Example of staining of ASIC3 with in-situ hybridization on DRG neurons  

ASIC3 antisense probe, shown in green, and anti CGRP antibody, shown in red are used. Scale bar: 100 µm. In the merged 

image, cells which are positive for NeuN, CGRP and ASIC3 appear yellow. 

 



 

 

80 

 

6. References 

Abelli, L., Maggi, C.A., Rovero, P., Del Bianco, E., Regoli, D., Drapeau, G. & Giachetti, A. (1991) 

Effect of synthetic tachykinin analogues on airway microvascular leakage in rats and guinea-

pigs: evidence for the involvement of NK-1 receptors. J Auton Pharmacol, 11, 267-275. 

 

Akopian, A.N., Sivilotti, L. & Wood, J.N. (1996) A tetrodotoxin-resistant voltage-gated sodium 

channel expressed by sensory neurons. Nature, 379, 257-262. 

 

Alvarez de la Rosa, D., Krueger, S.R., Kolar, A., Shao, D., Fitzsimonds, R.M. & Canessa, C.M. 

(2003) Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central 

nervous system. The Journal of physiology, 546, 77-87. 

 

Andrey, F., Tsintsadze, T., Volkova, T., Lozovaya, N. & Krishtal, O. (2005) Acid sensing ionic 

channels: modulation by redox reagents. Biochim Biophys Acta, 1745, 1-6. 

 

Asakura, K., Kanemasa, T., Minagawa, K., Kagawa, K., Yagami, T., Nakajima, M. & Ninomiya, M. 

(2000) alpha-eudesmol, a P/Q-type Ca(2+) channel blocker, inhibits neurogenic vasodilation 

and extravasation following electrical stimulation of trigeminal ganglion. Brain research, 873, 

94-101. 

 

Askwith, C.C., Cheng, C., Ikuma, M., Benson, C., Price, M.P. & Welsh, M.J. (2000) Neuropeptide FF 

and FMRFamide potentiate acid-evoked currents from sensory neurons and proton-gated 

DEG/ENaC channels. Neuron, 26, 133-141. 

 

Askwith, C.C., Wemmie, J.A., Price, M.P., Rokhlina, T. & Welsh, M.J. (2004) Acid-sensing ion 

channel 2 (ASIC2) modulates ASIC1 H+-activated currents in hippocampal neurons. J Biol 

Chem, 279, 18296-18305. 

 

Auer, J., Reeh, P.W. & Fischer, M.J. (2010) Acid-induced CGRP release from the stomach does not 

depend on TRPV1 or ASIC3. Neurogastroenterol Motil, 22, 680-687. 

 

Babini, E., Paukert, M., Geisler, H.S. & Grunder, S. (2002) Alternative splicing and interaction with 

di- and polyvalent cations control the dynamic range of acid-sensing ion channel 1 (ASIC1). J 

Biol Chem, 277, 41597-41603. 

 

Baron, A., Schaefer, L., Lingueglia, E., Champigny, G. & Lazdunski, M. (2001) Zn2+ and H+ are 

coactivators of acid-sensing ion channels. The Journal of biological chemistry, 276, 35361-

35367. 

 

Baron, A., Voilley, N., Lazdunski, M. & Lingueglia, E. (2008) Acid sensing ion channels in dorsal 

spinal cord neurons. J Neurosci, 28, 1498-1508. 



 

 

81 

 

 

Basbaum, A.I., Bautista, D.M., Scherrer, G. & Julius, D. (2009) Cellular and molecular mechanisms of 

pain. Cell, 139, 267-284. 

 

Bassler, E.L., Ngo-Anh, T.J., Geisler, H.S., Ruppersberg, J.P. & Grunder, S. (2001) Molecular and 

functional characterization of acid-sensing ion channel (ASIC) 1b. J Biol Chem, 276, 33782-

33787. 

 

Bautista, D.M., Siemens, J., Glazer, J.M., Tsuruda, P.R., Basbaum, A.I., Stucky, C.L., Jordt, S.E. & 

Julius, D. (2007) The menthol receptor TRPM8 is the principal detector of environmental 

cold. Nature, 448, 204-208. 

 

Benarroch, E.E. (2011) CGRP: sensory neuropeptide with multiple neurologic implications. 

Neurology, 77, 281-287. 

 

Benemei, S., Nicoletti, P., Capone, J.G. & Geppetti, P. (2009) CGRP receptors in the control of pain 

and inflammation. Current opinion in pharmacology, 9, 9-14. 

 

Biagini, G., Babinski, K., Avoli, M., Marcinkiewicz, M. & Seguela, P. (2001) Regional and subunit-

specific downregulation of acid-sensing ion channels in the pilocarpine model of epilepsy. 

Neurobiol Dis, 8, 45-58. 

 

Black, J.A., Dib-Hajj, S., McNabola, K., Jeste, S., Rizzo, M.A., Kocsis, J.D. & Waxman, S.G. (1996) 

Spinal sensory neurons express multiple sodium channel alpha-subunit mRNAs. Brain 

research. Molecular brain research, 43, 117-131. 

 

Blanchard, M.G. & Kellenberger, S. (2011) Effect of a temperature increase in the non-noxious range 

on proton-evoked ASIC and TRPV1 activity. Pflugers Archiv : European journal of 

physiology, 461, 123-139. 

 

Blanchard, M.G., Rash, L.D. & Kellenberger, S. (2011) Inhibition of voltage-gated Na(+) currents in 

sensory neurons by the sea anemone toxin APETx2. Br J Pharmacol. 

 

Blaustein, M.P. & Lederer, W.J. (1999) Sodium/calcium exchange: its physiological implications. 

Physiological reviews, 79, 763-854. 

 

Bobrow, M.N. & Moen, P.T. (2001) Tyramide Signal Amplification (TSA) Systems for the 

Enhancement of ISH Signals in Cytogenetics Current Protocols in Cytometry. John Wiley & 

Sons, Inc. 

 

Bohlen, C.J., Chesler, A.T., Sharif-Naeini, R., Medzihradszky, K.F., Zhou, S., King, D., Sanchez, 

E.E., Burlingame, A.L., Basbaum, A.I. & Julius, D. (2011) A heteromeric Texas coral snake 

toxin targets acid-sensing ion channels to produce pain. Nature, 479, 410-414. 



 

 

82 

 

 

Bourinet, E., Alloui, A., Monteil, A., Barrere, C., Couette, B., Poirot, O., Pages, A., McRory, J., 

Snutch, T.P., Eschalier, A. & Nargeot, J. (2005) Silencing of the Cav3.2 T-type calcium 

channel gene in sensory neurons demonstrates its major role in nociception. The EMBO 

journal, 24, 315-324. 

 

Bourquin, A.F., Suveges, M., Pertin, M., Gilliard, N., Sardy, S., Davison, A.C., Spahn, D.R. & 

Decosterd, I. (2006) Assessment and analysis of mechanical allodynia-like behavior induced 

by spared nerve injury (SNI) in the mouse. Pain, 122, 14 e11-14. 

 

Brain, S.D. & Grant, A.D. (2004) Vascular actions of calcitonin gene-related peptide and 

adrenomedullin. Physiological reviews, 84, 903-934. 

 

Burnes, L.A., Kolker, S.J., Danielson, J.F., Walder, R.Y. & Sluka, K.A. (2008) Enhanced muscle 

fatigue occurs in male but not female ASIC3-/- mice. Am J Physiol Regul Integr Comp 

Physiol, 294, R1347-1355. 

 

Canessa, C.M., Horisberger, J.D. & Rossier, B.C. (1993) Epithelial sodium channel related to proteins 

involved in neurodegeneration. Nature, 361, 467-470. 

 

Catarsi, S., Babinski, K. & Seguela, P. (2001) Selective modulation of heteromeric ASIC proton-gated 

channels by neuropeptide FF. Neuropharmacology, 41, 592-600. 

 

Caterina, M.J., Leffler, A., Malmberg, A.B., Martin, W.J., Trafton, J., Petersen-Zeitz, K.R., 

Koltzenburg, M., Basbaum, A.I. & Julius, D. (2000) Impaired nociception and pain sensation 

in mice lacking the capsaicin receptor. Science, 288, 306-313. 

 

Caterina, M.J., Rosen, T.A., Tominaga, M., Brake, A.J. & Julius, D. (1999) A capsaicin-receptor 

homologue with a high threshold for noxious heat. Nature, 398, 436-441. 

 

Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D. & Julius, D. (1997) The 

capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature, 389, 816-824. 

 

Catterall, W.A. (2000) From ionic currents to molecular mechanisms: the structure and function of 

voltage-gated sodium channels. Neuron, 26, 13-25. 

 

Catterall, W.A. & Few, A.P. (2008) Calcium channel regulation and presynaptic plasticity. Neuron, 

59, 882-901. 

 

Catterall, W.A., Goldin, A.L. & Waxman, S.G. (2005a) International Union of Pharmacology. XLVII. 

Nomenclature and structure-function relationships of voltage-gated sodium channels. 

Pharmacol Rev, 57, 397-409. 



 

 

83 

 

 

Catterall, W.A., Perez-Reyes, E., Snutch, T.P. & Striessnig, J. (2005b) International Union of 

Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated 

calcium channels. Pharmacol Rev, 57, 411-425. 

 

Chalfie, M., Driscoll, M. & Huang, M. (1993) Degenerin similarities. Nature, 361, 504. 

 

Chanda, M.L. & Mogil, J.S. (2006) Sex differences in the effects of amiloride on formalin test 

nociception in mice. Am J Physiol Regul Integr Comp Physiol, 291, R335-342. 

 

Chao, M.V. (2003) Neurotrophins and their receptors: a convergence point for many signalling 

pathways. Nature reviews. Neuroscience, 4, 299-309. 

 

Chen, C.C., Zimmer, A., Sun, W.H., Hall, J. & Brownstein, M.J. (2002) A role for ASIC3 in the 

modulation of high-intensity pain stimuli. Proc Natl Acad Sci U S A, 99, 8992-8997. 

 

Chen, X., Kalbacher, H. & Grunder, S. (2005) The tarantula toxin psalmotoxin 1 inhibits acid-sensing 

ion channel (ASIC) 1a by increasing its apparent H+ affinity. J Gen Physiol, 126, 71-79. 

 

Cho, J.H. & Askwith, C.C. (2007) Potentiation of acid-sensing ion channels by sulfhydryl compounds. 

Am J Physiol Cell Physiol, 292, C2161-2174. 

 

Chu, X.P., Close, N., Saugstad, J.A. & Xiong, Z.G. (2006) ASIC1a-specific modulation of acid-

sensing ion channels in mouse cortical neurons by redox reagents. J Neurosci, 26, 5329-5339. 

 

Chu, X.P., Miesch, J., Johnson, M., Root, L., Zhu, X.M., Chen, D., Simon, R.P. & Xiong, Z.G. (2002) 

Proton-gated channels in PC12 cells. J Neurophysiol, 87, 2555-2561. 

 

Chu, X.P., Wemmie, J.A., Wang, W.Z., Zhu, X.M., Saugstad, J.A., Price, M.P., Simon, R.P. & Xiong, 

Z.G. (2004) Subunit-dependent high-affinity zinc inhibition of acid-sensing ion channels. J 

Neurosci, 24, 8678-8689. 

 

Chuang, H.H., Prescott, E.D., Kong, H., Shields, S., Jordt, S.E., Basbaum, A.I., Chao, M.V. & Julius, 

D. (2001) Bradykinin and nerve growth factor release the capsaicin receptor from 

PtdIns(4,5)P2-mediated inhibition. Nature, 411, 957-962. 

 

Colburn, R.W., Lubin, M.L., Stone, D.J., Jr., Wang, Y., Lawrence, D., D'Andrea, M.R., Brandt, M.R., 

Liu, Y., Flores, C.M. & Qin, N. (2007) Attenuated cold sensitivity in TRPM8 null mice. 

Neuron, 54, 379-386. 

 

Corey, D.P., Garcia-Anoveros, J., Holt, J.R., Kwan, K.Y., Lin, S.Y., Vollrath, M.A., Amalfitano, A., 

Cheung, E.L., Derfler, B.H., Duggan, A., Geleoc, G.S., Gray, P.A., Hoffman, M.P., Rehm, 



 

 

84 

 

H.L., Tamasauskas, D. & Zhang, D.S. (2004) TRPA1 is a candidate for the mechanosensitive 

transduction channel of vertebrate hair cells. Nature, 432, 723-730. 

 

Coryell, M.W., Wunsch, A.M., Haenfler, J.M., Allen, J.E., McBride, J.L., Davidson, B.L. & Wemmie, 

J.A. (2008) Restoring Acid-sensing ion channel-1a in the amygdala of knock-out mice rescues 

fear memory but not unconditioned fear responses. The Journal of neuroscience : the official 

journal of the Society for Neuroscience, 28, 13738-13741. 

 

Coryell, M.W., Ziemann, A.E., Westmoreland, P.J., Haenfler, J.M., Kurjakovic, Z., Zha, X.M., Price, 

M., Schnizler, M.K. & Wemmie, J.A. (2007) Targeting ASIC1a reduces innate fear and alters 

neuronal activity in the fear circuit. Biol Psychiatry, 62, 1140-1148. 

 

Cottrell, G.A. (1989) The biology of the FMRFamide-series of peptides in molluscs with special 

reference to Helix. Comp Biochem Physiol A Comp Physiol, 93, 41-45. 

 

Cox, J.J., Reimann, F., Nicholas, A.K., Thornton, G., Roberts, E., Springell, K., Karbani, G., Jafri, H., 

Mannan, J., Raashid, Y., Al-Gazali, L., Hamamy, H., Valente, E.M., Gorman, S., Williams, 

R., McHale, D.P., Wood, J.N., Gribble, F.M. & Woods, C.G. (2006) An SCN9A 

channelopathy causes congenital inability to experience pain. Nature, 444, 894-898. 

 

Cuello, A.C., Jessell, T.M., Kanazawa, I. & Iversen, L.L. (1977) Substance P: localization in synaptic 

vesicles in rat central nervous system. Journal of neurochemistry, 29, 747-751. 

 

Cummins, T.R., Dib-Hajj, S.D. & Waxman, S.G. (2004) Electrophysiological properties of mutant 

Nav1.7 sodium channels in a painful inherited neuropathy. The Journal of neuroscience : the 

official journal of the Society for Neuroscience, 24, 8232-8236. 

 

Davis, J.B., Gray, J., Gunthorpe, M.J., Hatcher, J.P., Davey, P.T., Overend, P., Harries, M.H., 

Latcham, J., Clapham, C., Atkinson, K., Hughes, S.A., Rance, K., Grau, E., Harper, A.J., 

Pugh, P.L., Rogers, D.C., Bingham, S., Randall, A. & Sheardown, S.A. (2000) Vanilloid 

receptor-1 is essential for inflammatory thermal hyperalgesia. Nature, 405, 183-187. 

 

de Weille, J. & Bassilana, F. (2001) Dependence of the acid-sensitive ion channel, ASIC1a, on 

extracellular Ca(2+) ions. Brain Res, 900, 277-281. 

 

Decosterd, I., Allchorne, A. & Woolf, C.J. (2004) Differential analgesic sensitivity of two distinct 

neuropathic pain models. Anesthesia and analgesia, 99, 457-463, table of contents. 

 

Deval, E., Noel, J., Gasull, X., Delaunay, A., Alloui, A., Friend, V., Eschalier, A., Lazdunski, M. & 

Lingueglia, E. (2011) Acid-sensing ion channels in postoperative pain. The Journal of 

neuroscience : the official journal of the Society for Neuroscience, 31, 6059-6066. 

 



 

 

85 

 

Deval, E., Noel, J., Lay, N., Alloui, A., Diochot, S., Friend, V., Jodar, M., Lazdunski, M. & 

Lingueglia, E. (2008) ASIC3, a sensor of acidic and primary inflammatory pain. The EMBO 

journal, 27, 3047-3055. 

 

Dewey, W.L., Harris, L.S., Howes, J.F. & Nuite, J.A. (1970) The effect of various neurohumoral 

modulators on the activity of morphine and the narcotic antagonists in the tail-flick and 

phenylquinone tests. The Journal of pharmacology and experimental therapeutics, 175, 435-

442. 

 

Dhaka, A., Murray, A.N., Mathur, J., Earley, T.J., Petrus, M.J. & Patapoutian, A. (2007) TRPM8 is 

required for cold sensation in mice. Neuron, 54, 371-378. 

 

Dib-Hajj, S.D., Cummins, T.R., Black, J.A. & Waxman, S.G. (2010) Sodium channels in normal and 

pathological pain. Annu Rev Neurosci, 33, 325-347. 

 

Dib-Hajj, S.D., Rush, A.M., Cummins, T.R., Hisama, F.M., Novella, S., Tyrrell, L., Marshall, L. & 

Waxman, S.G. (2005) Gain-of-function mutation in Nav1.7 in familial erythromelalgia 

induces bursting of sensory neurons. Brain : a journal of neurology, 128, 1847-1854. 

 

Dib-Hajj, S.D., Tyrrell, L., Black, J.A. & Waxman, S.G. (1998) NaN, a novel voltage-gated Na 

channel, is expressed preferentially in peripheral sensory neurons and down-regulated after 

axotomy. Proceedings of the National Academy of Sciences of the United States of America, 

95, 8963-8968. 

 

Diochot, S., Baron, A., Rash, L.D., Deval, E., Escoubas, P., Scarzello, S., Salinas, M. & Lazdunski, 

M. (2004) A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive 

channel in sensory neurons. The EMBO journal, 23, 1516-1525. 

 

Dirajlal, S., Pauers, L.E. & Stucky, C.L. (2003) Differential response properties of IB(4)-positive and -

negative unmyelinated sensory neurons to protons and capsaicin. Journal of neurophysiology, 

89, 513-524. 

 

Dorofeeva, N.A., Barygin, O.I., Staruschenko, A., Bolshakov, K.V. & Magazanik, L.G. (2008) 

Mechanisms of non-steroid anti-inflammatory drugs action on ASICs expressed in 

hippocampal interneurons. J Neurochem, 106, 429-441. 

 

Dou, H., Xu, J., Wang, Z., Smith, A.N., Soleimani, M., Karet, F.E., Greinwald, J.H., Jr. & Choo, D. 

(2004) Co-expression of pendrin, vacuolar H+-ATPase alpha4-subunit and carbonic anhydrase 

II in epithelial cells of the murine endolymphatic sac. J Histochem Cytochem, 52, 1377-1384. 

 

Duan, B., Wu, L.J., Yu, Y.Q., Ding, Y., Jing, L., Xu, L., Chen, J. & Xu, T.L. (2007) Upregulation of 

acid-sensing ion channel ASIC1a in spinal dorsal horn neurons contributes to inflammatory 

pain hypersensitivity. J Neurosci, 27, 11139-11148. 



 

 

86 

 

 

Dube, G.R., Lehto, S.G., Breese, N.M., Baker, S.J., Wang, X., Matulenko, M.A., Honore, P., Stewart, 

A.O., Moreland, R.B. & Brioni, J.D. (2005) Electrophysiological and in vivo characterization 

of A-317567, a novel blocker of acid sensing ion channels. Pain, 117, 88-96. 

 

Ebner, K. & Singewald, N. (2006) The role of substance P in stress and anxiety responses. Amino 

Acids, 31, 251-272. 

 

Erdtmann-Vourliotis, M., Mayer, P., Riechert, U., Handel, M., Kriebitzsch, J. & Hollt, V. (1999) 

Rational design of oligonucleotide probes to avoid optimization steps in in situ hybridization. 

Brain Res Brain Res Protoc, 4, 82-91. 

 

Ertel, E.A., Campbell, K.P., Harpold, M.M., Hofmann, F., Mori, Y., Perez-Reyes, E., Schwartz, A., 

Snutch, T.P., Tanabe, T., Birnbaumer, L., Tsien, R.W. & Catterall, W.A. (2000) Nomenclature 

of voltage-gated calcium channels. Neuron, 25, 533-535. 

 

Escoubas, P., De Weille, J.R., Lecoq, A., Diochot, S., Waldmann, R., Champigny, G., Moinier, D., 

Menez, A. & Lazdunski, M. (2000) Isolation of a tarantula toxin specific for a class of proton-

gated Na+ channels. J Biol Chem, 275, 25116-25121. 

 

Ettaiche, M., Guy, N., Hofman, P., Lazdunski, M. & Waldmann, R. (2004) Acid-sensing ion channel 2 

is important for retinal function and protects against light-induced retinal degeneration. J 

Neurosci, 24, 1005-1012. 

 

Evans, A.R., Nicol, G.D. & Vasko, M.R. (1996) Differential regulation of evoked peptide release by 

voltage-sensitive calcium channels in rat sensory neurons. Brain research, 712, 265-273. 

 

Firsov, D., Gautschi, I., Merillat, A.M., Rossier, B.C. & Schild, L. (1998) The heterotetrameric 

architecture of the epithelial sodium channel (ENaC). The EMBO journal, 17, 344-352. 

 

Fischer, T.Z. & Waxman, S.G. (2010) Familial pain syndromes from mutations of the NaV1.7 sodium 

channel. Annals of the New York Academy of Sciences, 1184, 196-207. 

 

Fukuda, T., Ichikawa, H., Terayama, R., Yamaai, T., Kuboki, T. & Sugimoto, T. (2006) ASIC3-

immunoreactive neurons in the rat vagal and glossopharyngeal sensory ganglia. Brain 

research, 1081, 150-155. 

 

Gannon, K.P., Vanlandingham, L.G., Jernigan, N.L., Grifoni, S.C., Hamilton, G. & Drummond, H.A. 

(2008a) Impaired pressure-induced constriction in mouse middle cerebral arteries of ASIC2 

knockout mice. Am J Physiol Heart Circ Physiol, 294, H1793-1803. 

 

Gannon, K.P., Vanlandingham, L.G., Jernigan, N.L., Grifoni, S.C., Hamilton, G. & Drummond, H.A. 

(2008b) Impaired pressure-induced constriction in mouse middle cerebral arteries of ASIC2 



 

 

87 

 

knockout mice. American journal of physiology. Heart and circulatory physiology, 294, 

H1793-1803. 

 

Gao, J., Wu, L.J., Xu, L. & Xu, T.L. (2004) Properties of the proton-evoked currents and their 

modulation by Ca2+ and Zn2+ in the acutely dissociated hippocampus CA1 neurons. Brain 

research, 1017, 197-207. 

 

Gonzales, E.B., Kawate, T. & Gouaux, E. (2009) Pore architecture and ion sites in acid-sensing ion 

channels and P2X receptors. Nature, 460, 599-604. 

 

Grady, E.F., Garland, A.M., Gamp, P.D., Lovett, M., Payan, D.G. & Bunnett, N.W. (1995) 

Delineation of the endocytic pathway of substance P and its seven-transmembrane domain 

NK1 receptor. Molecular biology of the cell, 6, 509-524. 

 

Green, K.A., Falconer, S.W. & Cottrell, G.A. (1994) The neuropeptide Phe-Met-Arg-Phe-NH2 

(FMRFamide) directly gates two ion channels in an identified Helix neurone. Pflugers Archiv 

: European journal of physiology, 428, 232-240. 

 

Grunder, S., Geissler, H.S., Bassler, E.L. & Ruppersberg, J.P. (2000) A new member of acid-sensing 

ion channels from pituitary gland. Neuroreport, 11, 1607-1611. 

 

Gu, X.L. & Yu, L.C. (2007) The colocalization of CGRP receptor and AMPA receptor in the spinal 

dorsal horn neuron of rat: a morphological and electrophysiological study. Neuroscience 

letters, 414, 237-241. 

 

Henke, H., Sigrist, S., Lang, W., Schneider, J. & Fischer, J.A. (1987) Comparison of binding sites for 

the calcitonin gene-related peptides I and II in man. Brain research, 410, 404-408. 

 

Hesselager, M., Timmermann, D.B. & Ahring, P.K. (2004) pH Dependency and desensitization 

kinetics of heterologously expressed combinations of acid-sensing ion channel subunits. J Biol 

Chem, 279, 11006-11015. 

 

Hildebrand, M.S., de Silva, M.G., Klockars, T., Rose, E., Price, M., Smith, R.J., McGuirt, W.T., 

Christopoulos, H., Petit, C. & Dahl, H.H. (2004) Characterisation of DRASIC in the mouse 

inner ear. Hear Res, 190, 149-160. 

 

Hughes, P.A., Brierley, S.M., Young, R.L. & Blackshaw, L.A. (2007) Localization and comparative 

analysis of acid-sensing ion channel (ASIC1, 2, and 3) mRNA expression in mouse colonic 

sensory neurons within thoracolumbar dorsal root ganglia. J Comp Neurol, 500, 863-875. 

 

Hughey, R.P., Carattino, M.D. & Kleyman, T.R. (2007) Role of proteolysis in the activation of 

epithelial sodium channels. Curr Opin Nephrol Hypertens, 16, 444-450. 



 

 

88 

 

 

Hughey, R.P., Mueller, G.M., Bruns, J.B., Kinlough, C.L., Poland, P.A., Harkleroad, K.L., Carattino, 

M.D. & Kleyman, T.R. (2003) Maturation of the epithelial Na+ channel involves proteolytic 

processing of the alpha- and gamma-subunits. The Journal of biological chemistry, 278, 

37073-37082. 

 

Huque, T., Cowart, B.J., Dankulich-Nagrudny, L., Pribitkin, E.A., Bayley, D.L., Spielman, A.I., 

Feldman, R.S., Mackler, S.A. & Brand, J.G. (2009) Sour ageusia in two individuals implicates 

ion channels of the ASIC and PKD families in human sour taste perception at the anterior 

tongue. PloS one, 4, e7347. 

 

Ikeuchi, M., Kolker, S.J., Burnes, L.A., Walder, R.Y. & Sluka, K.A. (2008) Role of ASIC3 in the 

primary and secondary hyperalgesia produced by joint inflammation in mice. Pain, 137, 662-

669. 

 

Immke, D.C. & McCleskey, E.W. (2003) Protons open acid-sensing ion channels by catalyzing relief 

of Ca2+ blockade. Neuron, 37, 75-84. 

 

Jasti, J., Furukawa, H., Gonzales, E.B. & Gouaux, E. (2007) Structure of acid-sensing ion channel 1 at 

1.9 A resolution and low pH. Nature, 449, 316-323. 

 

Jiang, N., Rau, K.K., Johnson, R.D. & Cooper, B.Y. (2006) Proton sensitivity Ca2+ permeability and 

molecular basis of acid-sensing ion channels expressed in glabrous and hairy skin afferents. J 

Neurophysiol, 95, 2466-2478. 

 

Jones, N.G., Slater, R., Cadiou, H., McNaughton, P. & McMahon, S.B. (2004) Acid-induced pain and 

its modulation in humans. J Neurosci, 24, 10974-10979. 

 

Jordt, S.E., Bautista, D.M., Chuang, H.H., McKemy, D.D., Zygmunt, P.M., Hogestatt, E.D., Meng, 

I.D. & Julius, D. (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the 

TRP channel ANKTM1. Nature, 427, 260-265. 

 

Jovov, B., Tousson, A., McMahon, L.L. & Benos, D.J. (2003) Immunolocalization of the acid-sensing 

ion channel 2a in the rat cerebellum. Histochem Cell Biol, 119, 437-446. 

 

Julius, D. & Basbaum, A.I. (2001) Molecular mechanisms of nociception. Nature, 413, 203-210. 

 

Kang, S., Jang, J.H., Price, M.P., Gautam, M., Benson, C.J., Gong, H., Welsh, M.J. & Brennan, T.J. 

(2012) Simultaneous Disruption of Mouse ASIC1a, ASIC2 and ASIC3 Genes Enhances 

Cutaneous Mechanosensitivity. PloS one, 7, e35225. 

 



 

 

89 

 

Karashima, Y., Damann, N., Prenen, J., Talavera, K., Segal, A., Voets, T. & Nilius, B. (2007) Bimodal 

action of menthol on the transient receptor potential channel TRPA1. The Journal of 

neuroscience : the official journal of the Society for Neuroscience, 27, 9874-9884. 

 

Karashima, Y., Talavera, K., Everaerts, W., Janssens, A., Kwan, K.Y., Vennekens, R., Nilius, B. & 

Voets, T. (2009) TRPA1 acts as a cold sensor in vitro and in vivo. Proceedings of the National 

Academy of Sciences of the United States of America, 106, 1273-1278. 

 

Kaur, R., O'Shaughnessy, C.T., Jarvie, E.M., Winchester, W.J. & McLean, P.G. (2009) 

Characterization of a calcitonin gene-related peptide release assay in rat isolated distal colon. 

Arch Pharm Res, 32, 1775-1781. 

 

Kawamata, T., Ninomiya, T., Toriyabe, M., Yamamoto, J., Niiyama, Y., Omote, K. & Namiki, A. 

(2006) Immunohistochemical analysis of acid-sensing ion channel 2 expression in rat dorsal 

root ganglion and effects of axotomy. Neuroscience, 143, 175-187. 

 

Kellenberger, S. & Schild, L. (2002) Epithelial sodium channel/degenerin family of ion channels: a 

variety of functions for a shared structure. Physiol Rev, 82, 735-767. 

 

Kichko, T.I. & Reeh, P.W. (2009) TRPV1 controls acid- and heat-induced calcitonin gene-related 

peptide release and sensitization by bradykinin in the isolated mouse trachea. The European 

journal of neuroscience, 29, 1896-1904. 

 

Kleyman, T.R., Carattino, M.D. & Hughey, R.P. (2009) ENaC at the cutting edge: regulation of 

epithelial sodium channels by proteases. The Journal of biological chemistry, 284, 20447-

20451. 

 

Kokaia, Z. (2001) In Situ Hybridization Histochemistry Current Protocols in Toxicology. John Wiley 

& Sons, Inc. 

 

Kosari, F., Sheng, S., Li, J., Mak, D.O., Foskett, J.K. & Kleyman, T.R. (1998) Subunit stoichiometry 

of the epithelial sodium channel. The Journal of biological chemistry, 273, 13469-13474. 

 

Kremeyer, B., Lopera, F., Cox, J.J., Momin, A., Rugiero, F., Marsh, S., Woods, C.G., Jones, N.G., 

Paterson, K.J., Fricker, F.R., Villegas, A., Acosta, N., Pineda-Trujillo, N.G., Ramirez, J.D., 

Zea, J., Burley, M.W., Bedoya, G., Bennett, D.L., Wood, J.N. & Ruiz-Linares, A. (2010) A 

gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron, 66, 

671-680. 

 

Lee, H. & Caterina, M.J. (2005) TRPV channels as thermosensory receptors in epithelial cells. 

Pflugers Archiv : European journal of physiology, 451, 160-167. 

 



 

 

90 

 

Leffler, A., Fischer, M.J., Rehner, D., Kienel, S., Kistner, K., Sauer, S.K., Gavva, N.R., Reeh, P.W. & 

Nau, C. (2008) The vanilloid receptor TRPV1 is activated and sensitized by local anesthetics 

in rodent sensory neurons. The Journal of clinical investigation, 118, 763-776. 

 

Lembeck, F. & Holzer, P. (1979) Substance P as neurogenic mediator of antidromic vasodilation and 

neurogenic plasma extravasation. Naunyn Schmiedebergs Arch Pharmacol, 310, 175-183. 

 

Light, A.R., Hughen, R.W., Zhang, J., Rainier, J., Liu, Z. & Lee, J. (2008) Dorsal root ganglion 

neurons innervating skeletal muscle respond to physiological combinations of protons, ATP, 

and lactate mediated by ASIC, P2X, and TRPV1. Journal of neurophysiology, 100, 1184-

1201. 

 

Lingueglia, E., Champigny, G., Lazdunski, M. & Barbry, P. (1995) Cloning of the amiloride-sensitive 

FMRFamide peptide-gated sodium channel. Nature, 378, 730-733. 

 

Lingueglia, E., de Weille, J.R., Bassilana, F., Heurteaux, C., Sakai, H., Waldmann, R. & Lazdunski, 

M. (1997) A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion 

cells. J Biol Chem, 272, 29778-29783. 

 

Lingueglia, E., Deval, E. & Lazdunski, M. (2006) FMRFamide-gated sodium channel and ASIC 

channels: a new class of ionotropic receptors for FMRFamide and related peptides. Peptides, 

27, 1138-1152. 

 

Liu, M. & Wood, J.N. (2011) The roles of sodium channels in nociception: implications for 

mechanisms of neuropathic pain. Pain Med, 12 Suppl 3, S93-99. 

 

Lu, Y., Ma, X., Sabharwal, R., Snitsarev, V., Morgan, D., Rahmouni, K., Drummond, H.A., Whiteis, 

C.A., Costa, V., Price, M., Benson, C., Welsh, M.J., Chapleau, M.W. & Abboud, F.M. (2009) 

The ion channel ASIC2 is required for baroreceptor and autonomic control of the circulation. 

Neuron, 64, 885-897. 

 

Mamet, J., Baron, A., Lazdunski, M. & Voilley, N. (2002) Proinflammatory mediators, stimulators of 

sensory neuron excitability via the expression of acid-sensing ion channels. J Neurosci, 22, 

10662-10670. 

 

Masereel, B., Pochet, L. & Laeckmann, D. (2003) An overview of inhibitors of Na(+)/H(+) exchanger. 

Eur J Med Chem, 38, 547-554. 

 

Mazzuca, M., Heurteaux, C., Alloui, A., Diochot, S., Baron, A., Voilley, N., Blondeau, N., Escoubas, 

P., Gelot, A., Cupo, A., Zimmer, A., Zimmer, A.M., Eschalier, A. & Lazdunski, M. (2007) A 

tarantula peptide against pain via ASIC1a channels and opioid mechanisms. Nat Neurosci, 10, 

943-945. 

 



 

 

91 

 

McKemy, D.D., Neuhausser, W.M. & Julius, D. (2002) Identification of a cold receptor reveals a 

general role for TRP channels in thermosensation. Nature, 416, 52-58. 

 

McLatchie, L.M., Fraser, N.J., Main, M.J., Wise, A., Brown, J., Thompson, N., Solari, R., Lee, M.G. 

& Foord, S.M. (1998) RAMPs regulate the transport and ligand specificity of the calcitonin-

receptor-like receptor. Nature, 393, 333-339. 

 

McNamara, C.R., Mandel-Brehm, J., Bautista, D.M., Siemens, J., Deranian, K.L., Zhao, M., Hayward, 

N.J., Chong, J.A., Julius, D., Moran, M.M. & Fanger, C.M. (2007) TRPA1 mediates formalin-

induced pain. Proceedings of the National Academy of Sciences of the United States of 

America, 104, 13525-13530. 

 

Meng, J., Wang, J., Lawrence, G. & Dolly, J.O. (2007) Synaptobrevin I mediates exocytosis of CGRP 

from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive 

potential. J Cell Sci, 120, 2864-2874. 

 

Mocanu, M.M., Gadgil, S., Yellon, D.M. & Baxter, G.F. (1999) Mibefradil, a T-type and L-type 

calcium channel blocker, limits infarct size through a glibenclamide-sensitive mechanism. 

Cardiovasc Drugs Ther, 13, 115-122. 

 

Mogil, J.S., Breese, N.M., Witty, M.F., Ritchie, J., Rainville, M.L., Ase, A., Abbadi, N., Stucky, C.L. 

& Seguela, P. (2005) Transgenic expression of a dominant-negative ASIC3 subunit leads to 

increased sensitivity to mechanical and inflammatory stimuli. J Neurosci, 25, 9893-9901. 

 

Mohapatra, D.P., Wang, S.Y., Wang, G.K. & Nau, C. (2003) A tyrosine residue in TM6 of the 

Vanilloid Receptor TRPV1 involved in desensitization and calcium permeability of capsaicin-

activated currents. Molecular and cellular neurosciences, 23, 314-324. 

 

Montell, C. & Rubin, G.M. (1989) Molecular characterization of the Drosophila trp locus: a putative 

integral membrane protein required for phototransduction. Neuron, 2, 1313-1323. 

 

Negoescu, A., Labat-Moleur, F., Lorimier, P., Lamarcq, L., Guillermet, C., Chambaz, E. & Brambilla, 

E. (1994) F(ab) secondary antibodies: a general method for double immunolabeling with 

primary antisera from the same species. Efficiency control by chemiluminescence. J 

Histochem Cytochem, 42, 433-437. 

 

Nielsen, K.J., Schroeder, T. & Lewis, R. (2000) Structure-activity relationships of omega-conotoxins 

at N-type voltage-sensitive calcium channels. J Mol Recognit, 13, 55-70. 

 

Pan, X.Q., Gonzalez, J.A., Chang, S., Chacko, S., Wein, A.J. & Malykhina, A.P. (2010) Experimental 

colitis triggers the release of substance P and calcitonin gene-related peptide in the urinary 

bladder via TRPV1 signaling pathways. Exp Neurol, 225, 262-273. 

 



 

 

92 

 

Park, J. & Luo, Z.D. (2010) Calcium channel functions in pain processing. Channels (Austin), 4, 510-

517. 

 

Paukert, M., Babini, E., Pusch, M. & Grunder, S. (2004) Identification of the Ca2+ blocking site of 

acid-sensing ion channel (ASIC) 1: implications for channel gating. J Gen Physiol, 124, 383-

394. 

 

Payandeh, J., Scheuer, T., Zheng, N. & Catterall, W.A. (2011) The crystal structure of a voltage-gated 

sodium channel. Nature, 475, 353-358. 

 

Peier, A.M., Moqrich, A., Hergarden, A.C., Reeve, A.J., Andersson, D.A., Story, G.M., Earley, T.J., 

Dragoni, I., McIntyre, P., Bevan, S. & Patapoutian, A. (2002) A TRP channel that senses cold 

stimuli and menthol. Cell, 108, 705-715. 

 

Peng, B.G., Ahmad, S., Chen, S., Chen, P., Price, M.P. & Lin, X. (2004) Acid-sensing ion channel 2 

contributes a major component to acid-evoked excitatory responses in spiral ganglion neurons 

and plays a role in noise susceptibility of mice. J Neurosci, 24, 10167-10175. 

 

Perl, E.R. (2007) Ideas about pain, a historical view. Nature reviews. Neuroscience, 8, 71-80. 

 

Persson, S., Le Greves, P., Thornwall, M., Eriksson, U., Silberring, J. & Nyberg, F. (1995) 

Neuropeptide converting and processing enzymes in the spinal cord and cerebrospinal fluid. 

Prog Brain Res, 104, 111-130. 

 

Petruska, J.C., Napaporn, J., Johnson, R.D. & Cooper, B.Y. (2002) Chemical responsiveness and 

histochemical phenotype of electrophysiologically classified cells of the adult rat dorsal root 

ganglion. Neuroscience, 115, 15-30. 

 

Petruska, J.C., Napaporn, J., Johnson, R.D., Gu, J.G. & Cooper, B.Y. (2000) Subclassified acutely 

dissociated cells of rat DRG: histochemistry and patterns of capsaicin-, proton-, and ATP-

activated currents. Journal of neurophysiology, 84, 2365-2379. 

 

Poirot, O., Berta, T., Decosterd, I. & Kellenberger, S. (2006) Distinct ASIC currents are expressed in 

rat putative nociceptors and are modulated by nerve injury. J Physiol, 576, 215-234. 

 

Poirot, O., Vukicevic, M., Boesch, A. & Kellenberger, S. (2004) Selective regulation of acid-sensing 

ion channel 1 by serine proteases. J Biol Chem, 279, 38448-38457. 

 

Pomonis, J.D., Harrison, J.E., Mark, L., Bristol, D.R., Valenzano, K.J. & Walker, K. (2003) N-(4-

Tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl)tetrahydropyrazine -1(2H)-carbox-amide 

(BCTC), a novel, orally effective vanilloid receptor 1 antagonist with analgesic properties: II. 

in vivo characterization in rat models of inflammatory and neuropathic pain. The Journal of 

pharmacology and experimental therapeutics, 306, 387-393. 



 

 

93 

 

 

Poyner, D.R. (1992) Calcitonin gene-related peptide: multiple actions, multiple receptors. Pharmacol 

Ther, 56, 23-51. 

 

Price, M.P., Lewin, G.R., McIlwrath, S.L., Cheng, C., Xie, J., Heppenstall, P.A., Stucky, C.L., 

Mannsfeldt, A.G., Brennan, T.J., Drummond, H.A., Qiao, J., Benson, C.J., Tarr, D.E., Hrstka, 

R.F., Yang, B., Williamson, R.A. & Welsh, M.J. (2000) The mammalian sodium channel 

BNC1 is required for normal touch sensation. Nature, 407, 1007-1011. 

 

Price, M.P., McIlwrath, S.L., Xie, J., Cheng, C., Qiao, J., Tarr, D.E., Sluka, K.A., Brennan, T.J., 

Lewin, G.R. & Welsh, M.J. (2001) The DRASIC cation channel contributes to the detection of 

cutaneous touch and acid stimuli in mice. Neuron, 32, 1071-1083. 

 

Purves, D. (2008) Neuroscience. Sinauer, Sunderland Mass. 

 

Richardson, J.D. & Vasko, M.R. (2002) Cellular mechanisms of neurogenic inflammation. The 

Journal of pharmacology and experimental therapeutics, 302, 839-845. 

 

Richter, T.A., Dvoryanchikov, G.A., Roper, S.D. & Chaudhari, N. (2004) Acid-sensing ion channel-2 

is not necessary for sour taste in mice. J Neurosci, 24, 4088-4091. 

 

Roza, C., Puel, J.L., Kress, M., Baron, A., Diochot, S., Lazdunski, M. & Waldmann, R. (2004) 

Knockout of the ASIC2 channel in mice does not impair cutaneous mechanosensation, 

visceral mechanonociception and hearing. The Journal of physiology, 558, 659-669. 

 

Rugiero, F., Mistry, M., Sage, D., Black, J.A., Waxman, S.G., Crest, M., Clerc, N., Delmas, P. & 

Gola, M. (2003) Selective expression of a persistent tetrodotoxin-resistant Na+ current and 

NaV1.9 subunit in myenteric sensory neurons. The Journal of neuroscience : the official 

journal of the Society for Neuroscience, 23, 2715-2725. 

 

Sage, D., Salin, P., Alcaraz, G., Castets, F., Giraud, P., Crest, M., Mazet, B. & Clerc, N. (2007) 

Na(v)1.7 and Na(v)1.3 are the only tetrodotoxin-sensitive sodium channels expressed by the 

adult guinea pig enteric nervous system. The Journal of comparative neurology, 504, 363-378. 

 

Samways, D.S., Harkins, A.B. & Egan, T.M. (2009) Native and recombinant ASIC1a receptors 

conduct negligible Ca2+ entry. Cell calcium, 45, 319-325. 

 

Samways, D.S., Khakh, B.S. & Egan, T.M. (2008) Tunable calcium current through TRPV1 receptor 

channels. The Journal of biological chemistry, 283, 31274-31278. 

 

Schild, L., Schneeberger, E., Gautschi, I. & Firsov, D. (1997) Identification of amino acid residues in 

the alpha, beta, and gamma subunits of the epithelial sodium channel (ENaC) involved in 

amiloride block and ion permeation. The Journal of general physiology, 109, 15-26. 



 

 

94 

 

 

Schmidtko, A., Lotsch, J., Freynhagen, R. & Geisslinger, G. (2010) Ziconotide for treatment of severe 

chronic pain. Lancet, 375, 1569-1577. 

 

Seybold, V.S. (2009) The role of peptides in central sensitization. Handbook of experimental 

pharmacology, 451-491. 

 

Sherwood, T.W. & Askwith, C.C. (2008) Endogenous arginine-phenylalanine-amide-related peptides 

alter steady-state desensitization of ASIC1a. J Biol Chem, 283, 1818-1830. 

 

Sherwood, T.W. & Askwith, C.C. (2009) Dynorphin opioid peptides enhance acid-sensing ion channel 

1a activity and acidosis-induced neuronal death. The Journal of neuroscience : the official 

journal of the Society for Neuroscience, 29, 14371-14380. 

 

Shimada, S., Ueda, T., Ishida, Y., Yamamoto, T. & Ugawa, S. (2006) Acid-sensing ion channels in 

taste buds. Arch Histol Cytol, 69, 227-231. 

 

Sluka, K.A., Price, M.P., Breese, N.M., Stucky, C.L., Wemmie, J.A. & Welsh, M.J. (2003) Chronic 

hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, 

but not ASIC1. Pain, 106, 229-239. 

 

Sluka, K.A., Radhakrishnan, R., Benson, C.J., Eshcol, J.O., Price, M.P., Babinski, K., Audette, K.M., 

Yeomans, D.C. & Wilson, S.P. (2007) ASIC3 in muscle mediates mechanical, but not heat, 

hyperalgesia associated with muscle inflammation. Pain, 129, 102-112. 

 

Smith, M.T., Cabot, P.J., Ross, F.B., Robertson, A.D. & Lewis, R.J. (2002) The novel N-type calcium 

channel blocker, AM336, produces potent dose-dependent antinociception after intrathecal 

dosing in rats and inhibits substance P release in rat spinal cord slices. Pain, 96, 119-127. 

 

Snider, W.D. & McMahon, S.B. (1998) Tackling pain at the source: new ideas about nociceptors. 

Neuron, 20, 629-632. 

 

Snijdelaar, D.G., Dirksen, R., Slappendel, R. & Crul, B.J. (2000) Substance P. European journal of 

pain, 4, 121-135. 

 

Staniland, A.A. & McMahon, S.B. (2008) Mice lacking acid-sensing ion channels (ASIC) 1 or 2, but 

not ASIC3, show increased pain behaviour in the formalin test. Eur J Pain. 

 

Strecker, T., Messlinger, K., Weyand, M. & Reeh, P.W. (2005) Role of different proton-sensitive 

channels in releasing calcitonin gene-related peptide from isolated hearts of mutant mice. 

Cardiovasc Res, 65, 405-410. 

 



 

 

95 

 

Talavera, K., Gees, M., Karashima, Y., Meseguer, V.M., Vanoirbeek, J.A., Damann, N., Everaerts, 

W., Benoit, M., Janssens, A., Vennekens, R., Viana, F., Nemery, B., Nilius, B. & Voets, T. 

(2009) Nicotine activates the chemosensory cation channel TRPA1. Nature neuroscience, 12, 

1293-1299. 

 

Tang, H.B., Shiba, E., Li, Y.S., Morioka, N., Zheng, T.X., Ogata, N. & Nakata, Y. (2008) Involvement 

of voltage-gated sodium channel Na(v)1.8 in the regulation of the release and synthesis of 

substance P in adult mouse dorsal root ganglion neurons. J Pharmacol Sci, 108, 190-197. 

 

Todorovic, S.M. & Jevtovic-Todorovic, V. (2006) The role of T-type calcium channels in peripheral 

and central pain processing. CNS Neurol Disord Drug Targets, 5, 639-653. 

 

Toledo-Aral, J.J., Moss, B.L., He, Z.J., Koszowski, A.G., Whisenand, T., Levinson, S.R., Wolf, J.J., 

Silos-Santiago, I., Halegoua, S. & Mandel, G. (1997) Identification of PN1, a predominant 

voltage-dependent sodium channel expressed principally in peripheral neurons. Proceedings 

of the National Academy of Sciences of the United States of America, 94, 1527-1532. 

 

Tominaga, M., Caterina, M.J., Malmberg, A.B., Rosen, T.A., Gilbert, H., Skinner, K., Raumann, B.E., 

Basbaum, A.I. & Julius, D. (1998) The cloned capsaicin receptor integrates multiple pain-

producing stimuli. Neuron, 21, 531-543. 

 

Triggle, D.J. (2003) 1,4-Dihydropyridines as calcium channel ligands and privileged structures. Cell 

Mol Neurobiol, 23, 293-303. 

 

Tschopp, F.A., Henke, H., Petermann, J.B., Tobler, P.H., Janzer, R., Hokfelt, T., Lundberg, J.M., 

Cuello, C. & Fischer, J.A. (1985) Calcitonin gene-related peptide and its binding sites in the 

human central nervous system and pituitary. Proceedings of the National Academy of Sciences 

of the United States of America, 82, 248-252. 

 

Tsukagoshi, M., Goris, R.C. & Funakoshi, K. (2006) Differential distribution of vanilloid receptors in 

the primary sensory neurons projecting to the dorsal skin and muscles. Histochemistry and cell 

biology, 126, 343-352. 

 

Ugawa, S., Ueda, T., Ishida, Y., Nishigaki, M., Shibata, Y. & Shimada, S. (2002) Amiloride-blockable 

acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J Clin 

Invest, 110, 1185-1190. 

 

Ugawa, S., Ueda, T., Yamamura, H. & Shimada, S. (2005) In situ hybridization evidence for the 

coexistence of ASIC and TRPV1 within rat single sensory neurons. Brain Res Mol Brain Res, 

136, 125-133. 

 

V. Euler, U. & Gaddum, J.H. (1931) An unidentified depressor substance in certain tissue extracts. 

The Journal of physiology, 72, 74-87. 



 

 

96 

 

 

Vallet, V., Chraibi, A., Gaeggeler, H.P., Horisberger, J.D. & Rossier, B.C. (1997) An epithelial serine 

protease activates the amiloride-sensitive sodium channel. Nature, 389, 607-610. 

 

Verdru, P., De Greef, C., Mertens, L., Carmeliet, E. & Callewaert, G. (1997) Na(+)-Ca2+ exchange in 

rat dorsal root ganglion neurons. Journal of neurophysiology, 77, 484-490. 

 

Villalon, C.M. & Olesen, J. (2009) The role of CGRP in the pathophysiology of migraine and efficacy 

of CGRP receptor antagonists as acute antimigraine drugs. Pharmacol Ther, 124, 309-323. 

 

Voets, T., Droogmans, G., Wissenbach, U., Janssens, A., Flockerzi, V. & Nilius, B. (2004) The 

principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature, 

430, 748-754. 

 

Voilley, N., de Weille, J., Mamet, J. & Lazdunski, M. (2001) Nonsteroid anti-inflammatory drugs 

inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels 

in nociceptors. J Neurosci, 21, 8026-8033. 

 

Vukicevic, M. & Kellenberger, S. (2004) Modulatory effects of acid-sensing ion channels on action 

potential generation in hippocampal neurons. Am J Physiol Cell Physiol, 287, C682-690. 

 

Vukicevic, M., Weder, G., Boillat, A., Boesch, A. & Kellenberger, S. (2006) Trypsin cleaves acid-

sensing ion channel 1a in a domain that is critical for channel gating. J Biol Chem, 281, 714-

722. 

 

Walder, R.Y., Gautam, M., Wilson, S.P., Benson, C.J. & Sluka, K.A. (2011) Selective targeting of 

ASIC3 using artificial miRNAs inhibits primary and secondary hyperalgesia after muscle 

inflammation. Pain, 152, 2348-2356. 

 

Walder, R.Y., Rasmussen, L.A., Rainier, J.D., Light, A.R., Wemmie, J.A. & Sluka, K.A. (2010) 

ASIC1 and ASIC3 play different roles in the development of Hyperalgesia after inflammatory 

muscle injury. J Pain, 11, 210-218. 

 

Waldmann, R., Champigny, G., Bassilana, F., Heurteaux, C. & Lazdunski, M. (1997) A proton-gated 

cation channel involved in acid-sensing. Nature, 386, 173-177. 

 

Waldmann, R. & Lazdunski, M. (1998) H(+)-gated cation channels: neuronal acid sensors in the 

NaC/DEG family of ion channels. Current opinion in neurobiology, 8, 418-424. 

 

Walker, C.S., Conner, A.C., Poyner, D.R. & Hay, D.L. (2010) Regulation of signal transduction by 

calcitonin gene-related peptide receptors. Trends Pharmacol Sci, 31, 476-483. 

 



 

 

97 

 

Wang, H. & Woolf, C.J. (2005) Pain TRPs. Neuron, 46, 9-12. 

 

Waxman, S.G., Kocsis, J.D. & Black, J.A. (1994) Type III sodium channel mRNA is expressed in 

embryonic but not adult spinal sensory neurons, and is reexpressed following axotomy. 

Journal of neurophysiology, 72, 466-470. 

 

Wemmie, J.A., Askwith, C.C., Lamani, E., Cassell, M.D., Freeman, J.H., Jr. & Welsh, M.J. (2003) 

Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and 

contributes to fear conditioning. J Neurosci, 23, 5496-5502. 

 

Wemmie, J.A., Chen, J., Askwith, C.C., Hruska-Hageman, A.M., Price, M.P., Nolan, B.C., Yoder, 

P.G., Lamani, E., Hoshi, T., Freeman, J.H., Jr. & Welsh, M.J. (2002) The acid-activated ion 

channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron, 34, 463-477. 

 

Wemmie, J.A., Price, M.P. & Welsh, M.J. (2006) Acid-sensing ion channels: advances, questions and 

therapeutic opportunities. Trends Neurosci, 29, 578-586. 

 

Westenbroek, R.E., Hoskins, L. & Catterall, W.A. (1998) Localization of Ca2+ channel subtypes on 

rat spinal motor neurons, interneurons, and nerve terminals. The Journal of neuroscience : the 

official journal of the Society for Neuroscience, 18, 6319-6330. 

 

Wetsel, W.C. (2011) Sensing hot and cold with TRP channels. Int J Hyperthermia, 27, 388-398. 

 

Woolf, C.J. (2004) Pain: moving from symptom control toward mechanism-specific pharmacologic 

management. Ann Intern Med, 140, 441-451. 

 

Wu, L.J., Duan, B., Mei, Y.D., Gao, J., Chen, J.G., Zhuo, M., Xu, L., Wu, M. & Xu, T.L. (2004) 

Characterization of acid-sensing ion channels in dorsal horn neurons of rat spinal cord. J Biol 

Chem, 279, 43716-43724. 

 

Wu, W.L., Wang, C.H., Huang, E.Y. & Chen, C.C. (2009) Asic3(-/-) female mice with hearing deficit 

affects social development of pups. PloS one, 4, e6508. 

 

Xie, J., Price, M.P., Berger, A.L. & Welsh, M.J. (2002) DRASIC contributes to pH-gated currents in 

large dorsal root ganglion sensory neurons by forming heteromultimeric channels. J 

Neurophysiol, 87, 2835-2843. 

 

Xie, J., Price, M.P., Wemmie, J.A., Askwith, C.C. & Welsh, M.J. (2003) ASIC3 and ASIC1 mediate 

FMRFamide-related peptide enhancement of H+-gated currents in cultured dorsal root 

ganglion neurons. J Neurophysiol, 89, 2459-2465. 

 



 

 

98 

 

Xiong, Z.G., Zhu, X.M., Chu, X.P., Minami, M., Hey, J., Wei, W.L., MacDonald, J.F., Wemmie, J.A., 

Price, M.P., Welsh, M.J. & Simon, R.P. (2004) Neuroprotection in ischemia: blocking 

calcium-permeable acid-sensing ion channels. Cell, 118, 687-698. 

 

Xu, X.J., Dalsgaard, C.J., Maggi, C.A. & Wiesenfeld-Hallin, Z. (1992) NK-1, but not NK-2, 

tachykinin receptors mediate plasma extravasation induced by antidromic C-fiber stimulation 

in rat hindpaw: demonstrated with the NK-1 antagonist CP-96,345 and the NK-2 antagonist 

Men 10207. Neuroscience letters, 139, 249-252. 

 

Yang, Y., Wang, Y., Li, S., Xu, Z., Li, H., Ma, L., Fan, J., Bu, D., Liu, B., Fan, Z., Wu, G., Jin, J., 

Ding, B., Zhu, X. & Shen, Y. (2004) Mutations in SCN9A, encoding a sodium channel alpha 

subunit, in patients with primary erythermalgia. J Med Genet, 41, 171-174. 

 

Yen, Y.T., Tu, P.H., Chen, C.J., Lin, Y.W., Hsieh, S.T. & Chen, C.C. (2009) Role of acid-sensing ion 

channel 3 in sub-acute-phase inflammation. Molecular pain, 5, 1. 

 

Yermolaieva, O., Leonard, A.S., Schnizler, M.K., Abboud, F.M. & Welsh, M.J. (2004) Extracellular 

acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc Natl 

Acad Sci U S A, 101, 6752-6757. 

 

Yu, F.H., Yarov-Yarovoy, V., Gutman, G.A. & Catterall, W.A. (2005) Overview of molecular 

relationships in the voltage-gated ion channel superfamily. Pharmacol Rev, 57, 387-395. 

 

Yu, L.C., Hou, J.F., Fu, F.H. & Zhang, Y.X. (2009) Roles of calcitonin gene-related peptide and its 

receptors in pain-related behavioral responses in the central nervous system. Neurosci 

Biobehav Rev, 33, 1185-1191. 

 

Yu, Y., Chen, Z., Li, W.G., Cao, H., Feng, E.G., Yu, F., Liu, H., Jiang, H. & Xu, T.L. (2010) A 

nonproton ligand sensor in the acid-sensing ion channel. Neuron, 68, 61-72. 

 

Ziemann, A.E., Allen, J.E., Dahdaleh, N.S., Drebot, II, Coryell, M.W., Wunsch, A.M., Lynch, C.M., 

Faraci, F.M., Howard, M.A., 3rd, Welsh, M.J. & Wemmie, J.A. (2009) The amygdala is a 

chemosensor that detects carbon dioxide and acidosis to elicit fear behavior. Cell, 139, 1012-

1021. 

 

Zimmermann, M. (1983) Ethical guidelines for investigations of experimental pain in conscious 

animals. Pain, 16, 109-110. 

 

 

 


	thèse.pdf
	Acknowledgments
	Abstract
	Résumé
	Résumé à un large public
	List of Abbreviations
	Table of content
	List of Figures
	List of Tables
	1. Introduction
	1.1 The peripheral nervous system
	1.1.1 General organization
	1.1.2 Distinct types of pain
	1.1.3 The nociceptors
	1.1.4 Projections of afferent fibers in the spinal cord
	1.1.5 Effects of a peripheral injury on nociception
	1.1.5.1 Sensitization
	1.1.5.2 Neurogenic inflammation
	1.1.5.3 Inflammatory mediators


	1.2 The Acid-Sensing Ion Channels (ASICs)
	1.2.1 The ENaC/degenerin family
	1.2.2 Genes and splice variants
	1.2.3 Structure
	1.2.4 Biophysicals properties
	1.2.5 ASIC modulators and activators
	1.2.5.1 Redox reagents
	1.2.5.2 Divalent cations: Ca2+, Zn2+ and Mg2+
	1.2.5.3 FMRFamide and FMRFamide-related peptides
	1.2.5.4 Serine proteases

	1.2.6 Pharmacology
	1.2.6.1 Amiloride and benzamil
	1.2.6.2 Nonsteroid anti-inflammatory drugs (NSAIDs)
	1.2.6.3 A-317567
	1.2.6.4 Psalmotoxin 1 (PcTx1)
	1.2.6.5 APETx2
	1.2.6.6 MitTx


	1.3 ASICs in the central nervous system
	1.3.1 Expression pattern
	1.3.2 Role of ASIC1a in memory and fear
	1.3.3 Role of ASIC1a in cerebral ischemia

	1.4 ASICs in the peripheral nervous system
	1.4.1 Mechanosensation
	1.4.2 Nociception
	1.4.3 Taste and hearing
	1.4.4 Molecular basis of signal detection and propagation
	1.4.4.1 ThermoTRP channels (TRVPV1, TRPV2, TRPA1 and TRPM8)
	1.4.4.2 Nav channels
	1.4.4.3 Voltage-gated calcium channels (Cav)

	1.4.5 Neuropeptides and their peripheral targets
	1.4.5.1 Calcitonin gene-related peptide (CGRP)
	1.4.5.2 The CGRP Receptor
	1.4.5.3 Substance  P (SP)
	1.4.5.4 NK1 Receptor
	1.4.5.5 Role of CGRP and SP in the CNS
	1.4.5.6 Role of CGRP and SP in the PNS


	1.5 Aims of the Thesis
	1.5.1 Role of ASICs in neuropeptide secretion
	1.5.2 Role of ASICs in neuropathic pain


	2. Materials and methods
	2.1 DRG neuron isolation and culture
	2.2 Immunocytochemistry
	2.2.1 Test of ASIC2 antibody

	2.3 In-situ hybridization
	2.3.1 Preparation of cells
	2.3.2 Labelling of oligonucleotides
	2.3.3 Hybridization and detection of the oligonucleotides
	2.3.4 Solutions
	2.3.5  Oligonucleotides sequences
	2.3.6 Test of  in-situ hybridization probes against ASIC subunits

	2.4 Microscopy and cell counting
	2.5 Calcium imaging
	2.6 In vitro CGRP secretion assay with DRG neurons
	2.7 CGRP enzyme immunoassay
	2.8 Animal surgery
	2.9 Behaviour
	2.9.1 Von Frey monofilaments
	2.9.2 Hot plate
	2.9.3 Tail flick


	3. Results
	3.1 Distribution of ASICs, TRPV1 and neuropeptides in rat DRG neurons
	3.1.1 ASIC1, -2 and TRPV1 are preferentially localised in peptidergic neurons
	3.1.2 In situ hybridization experiment confirm that ASIC subunits are preferentially expressed in the peptidergic population of small neurons

	3.2 Functional experiments with calcium imaging on cells in culture
	3.2.1 Heterologous expressed ASIC1a and TRPV1 are activated by extracellular acidification
	3.2.2 Amiloride prevents the ASIC-induced Ca2+ entry in a population of DRG neurons
	3.2.3 Psalmotoxin inhibits the activation of ASICs in a population of DRG neurons
	3.2.4 Cav inhibitors reduce the amplitude of ASIC-mediated Ca2+ increase in DRG neurons
	3.2.5 Cav inhibitors do not affect PcTx1-sensitive Ca2+ entry

	3.3 CGRP secretion assay on dissociated DRG neurons
	3.3.1 BCTC reduces CGRP secretion induced by an extracellular acidification in DRG neurons

	3.4 Behavioural experiments on ASIC1, ASIC2 and ASIC3 null mice.
	3.4.1 Mechanical allodynia-like behaviour induced by spared nerve injury (SNI) is not different from wild type in ASIC1a, -2 and 3 null mice
	3.4.2 ASIC2 null mice exhibit a reduced thermal allodynia-like behavior in the hot plate test


	4. Discussion
	4.1 Expression of the different ASIC subunits and of neuropeptides
	4.1.1 Advantages and limitations of immunocytochemistry and in-situ hybridization
	4.1.2 Comparison between the labelling of ASICs and the different types of ASIC currents
	4.1.3 Comparison of the results of expression of ASICs, TRPV1, CGRP and SP with the literature

	4.2 Increase of intracellular calcium concentration via ASICs and TRPV1
	4.2.1 Effect of amiloride on the intracellular Ca2+ concentration of CHO cells expressing ASIC1a
	4.2.2 Effect of amiloride on the intracellular Ca2+ concentration of DRG neurons
	4.2.3 Effect of PcTx1 on the intracellular Ca2+ concentration of DRG neurons
	4.2.4 Effect of Cavs on the intracellular Ca2+ concentration of DRG neurons
	4.2.5 Comparison of our results on ASICs and TRPV1 function in DRG neurons with the literature

	4.3 Secretion of CGRP from DRG neurons
	4.3.1 Extracellular acidification induces CGRP secretion
	4.3.2 Role of ASICs in acid-induced CGRP secretion
	4.3.3 Role of Cavs in acid-induced CGRP secretion
	4.3.4 Role of TRPV1 in acid-induced CGRP secretion
	4.3.5 Role of Navs in acid-induced CGRP secretion
	4.3.6 Comparison of our results on CGRP secretion from DRG neurons with the literature

	4.4 Behavioural experiments with mice
	4.4.1 Mechanical allodynia-like behaviour induced by SNI
	4.4.2 Thermal allodynia-like behaviour in the tail flick and the hot plate test

	4.5 Conclusion
	4.6 Perspectives

	5. Annexes
	5.1 Supplementary images of in-situ hybridization on DRG neurons

	6. References


