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Abstract

Brain tissue microstructure plays an important role in brain function. Estimates of brain mi-
crostructure obtained in vivo can serve as valuable biomarkers to quantify brain tissue changes
in living humans. However, non-invasive neuroimaging techniques, such as Magnetic Reso-
nance Imaging (MRI), are unable to directly provide information on the microstructure of brain
tissue. Estimating microscopic features of brain tissue in vivo requires the use of biophysical
models that relate the measured signal to the underlying microstructure. In line with this, our
focus was on obtaining measures of the morphology of axons composing white matter and of
deposits of iron within brain tissue from data acquired using in vivo neuroimaging techniques.

First, in terms of axonal morphology, we developed a novel biophysical model for the simul-
taneous estimation of axonal radius and relative myelin thickness using MRI and Electroen-
cephalography (EEG) data. The proposed approach for axonal morphology estimation involved
the challenging task of estimating axonal conduction velocities from EEG data in vivo. We ad-
dressed this challenge by implementing a new technique in which conduction velocities were
obtained by the calculation of the interhemispheric transfer time estimated as the latency dif-
ference between the maximal neuronal activity at two homologous visual cortical regions. The
obtained conduction velocities were consistent with existing literature and were then used in the
proposed axonal morphology model. The estimated axonal morphological features were con-
sistent with values from histological studies of brain tissue. These results highlight the potential
of this non-invasive technique in providing an accurate axonal morphology characterization of
white matter tracts.

Second, we investigated the distribution of deposits of magnetic material in subcortical grey
matter. We applied existing biophysical models that account for the impact of magnetic materi-
als on the MRI signal due to transverse relaxation. These models allow for the estimation of the
volume fraction occupied by the magnetic deposits as well as their magnetic susceptibility. The
estimated volume fraction and magnetic susceptibility within the magnetic deposits were in line
with the distribution of iron in ex vivo studies, consistent with the primary source of magnetic
material in these regions being iron. The proposed approach enabled the characterization of
iron deposits within brain tissue with increased specificity, offering a novel approach for the
study of iron-related brain changes in neurodegenerative diseases.

Overall, in this work we characterized i) the morphology of axons in white matter tracts and
ii) the iron deposits within subcortical grey matter. The estimated microstructural features,
obtained in healthy participants non-invasively, were consistent with ex vivo literature, thereby
holding the potential to become useful biomarkers. Such biomarkers may be highly relevant for
assessing microstructural changes in individuals with neurological disorders.

Keywords: MRI, EEG, microstructure, in vivo histology, axonal morphology, iron
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Résumé

La microstructure du tissu cérébral joue un rôle important dans le fonctionnement du cerveau.
Les estimations de la microstructure du cerveau obtenues in vivo peuvent servir de biomar-
queurs précieux pour quantifier les changements du tissu cérébral chez les êtres humains
vivants. Toutefois, les techniques de neuro-imagerie non invasives, telles que l’imagerie par
résonance magnétique (IRM), ne sont pas en mesure de fournir directement des informations
sur la microstructure du tissu cérébral. L’estimation des caractéristiques microscopiques du
tissu cérébral in vivo nécessite l’utilisation de modèles biophysiques qui relient le signal mesuré
et la microstructure sous-jacente. Dans cette optique, notre objectif était d’obtenir des mesures
de la morphologie des axones composant la matière blanche et des dépôts de fer dans le tissu
cérébral à partir de données acquises à l’aide de techniques de neuro-imagerie in vivo.

Tout d’abord, en ce qui concerne la morphologie axonale, nous avons mis au point un nouveau
modèle biophysique pour estimer de manière simultanée le rayon axonal et l’épaisseur rela-
tive de la myéline à l’aide de données d’IRM et d’électroencéphalographie (EEG). L’approche
proposée pour l’estimation de la morphologie axonale impliquait la tâche difficile d’estimer les
vitesses de conduction axonale à partir des données EEG in vivo. Nous avons relevé ce défi
en mettant en œuvre une nouvelle technique dans laquelle les vitesses de conduction ont été
obtenues par le calcul du temps de transfert interhémisphérique estimé comme la différence
de latence entre l’activité neuronale maximale dans deux régions corticales visuelles homo-
logues. Les vitesses de conduction obtenues étaient cohérentes avec la littérature existante et
ont ensuite été utilisées dans le modèle de morphologie axonale proposé. Les caractéristiques
morphologiques estimées des axones étaient cohérentes avec les valeurs des études his-
tologiques des tissus cérébraux. Ces résultats soulignent le potentiel de cette technique non
invasive pour fournir une caractérisation précise de la morphologie axonale.

Deuxièmement, nous avons étudié la distribution des dépôts de matériaux magnétiques dans
la matière grise sous-corticale. Nous avons appliqué des modèles biophysiques existants qui ti-
ennent compte de l’impact des matériaux magnétiques sur le signal IRM causé par la relaxation
transversale. Ces modèles permettent d’estimer la fraction de volume occupée par les dépôts
magnétiques ainsi que leur susceptibilité magnétique. La fraction volumique et la susceptibilité
magnétique estimées à l’intérieur des dépôts magnétiques étaient conformes à la distribution
du fer dans les études ex vivo, cohérent avec le fait que la principale source de matériaux
magnétiques dans ces régions est le fer. L’approche proposée a permis de caractériser les
dépôts de fer dans le tissu cérébral avec une spécificité accrue, offrant une nouvelle approche
pour l’étude des changements cérébraux liés au fer dans les maladies neurodégénératives.

Dans l’ensemble, nous avons caractérisé i) la morphologie des axones dans les faisceaux de
matière blanche et ii) les dépôts de fer dans la matière grise sous-corticale. Les propriétés
microstructurales estimées, obtenues chez des participants sains de manière non invasive,
étaient cohérentes avec la littérature ex vivo, et pourraient donc devenir des biomarqueurs
utiles. Ces biomarqueurs peuvent être très utiles pour évaluer les changements microstruc-
turaux chez les personnes souffrant de troubles neurologiques.

Mots Clés: IRM, EEG, microstructure, histologie in vivo, morphologie axonale, fer
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Chapter 1

Introduction

1.1 Overview

Magnetic resonance imaging (MRI) is a widely used non-invasive imaging technique for inves-
tigating the human brain. In particular, MRI has been extensively used to analyze and segment
macroscopic structural brain features such as cortical thickness (e.g. Fischl and Dale, 2000)
and brain lesions (e.g. Miller et al., 2014). However, MRI falls short of directly resolving mi-
croscopic features of brain tissue, like cell sizes. Estimating such features using non-invasive
techniques constitutes an ongoing challenge in neuroscience and is the core of ‘microstructural
imaging’ or ‘in vivo histology’ (Edwards et al., 2018; Weiskopf et al., 2015; Alexander et al.,
2019).

The bedrock of microstructural imaging lies in biophysical models that map the relationship be-
tween the measured MR signal and the underlying microstructural properties of brain tissue one
aims at estimating (Weiskopf et al., 2015; Edwards et al., 2018). These models vary in com-
plexity, ranging from a simple correlation between a given MRI parameter and a microscopic
feature (e.g. R∗

2 and myelin content (Stüber et al., 2014; Lee et al., 2012)) to more complex
ones (e.g. MRI g-ratio (Stikov et al., 2015)). Biophysical models can be viewed as ”sketches” of
reality (Novikov et al., 2018), as they involve a simplification of the neuronal tissue under con-
sideration. Thus, distinct models are employed to study different brain tissue features and often
require different types of neuroimaging data (Jelescu et al., 2020). For example, relaxometry
MRI data are usually used to infer myelin composition (Does, 2018; MacKay and Laule, 2016)
and diffusion MRI data is commonly used for the estimation of neuronal axon radii (Novikov
et al., 2018).

Assessing microstructural information from MRI data enables the establishment of brain biomark-
ers. Brain biomarkers are measures of brain tissue that can be used to non-invasively assess
and quantify structural or functional changes in the brain. In research, microstructural biomark-
ers may be used to study brain development and ageing (e.g. Zhao et al., 2016). Importantly,
biomarkers have numerous clinical applications that contribute to the diagnostic process, in-
cluding the monitoring of disease progression and the assessment of disease severity (e.g.
Mohammadi and Callaghan, 2021; Jelescu et al., 2016).
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The main objective of this PhD thesis is the characterization of brain tissue microstructure from
data acquired using in vivo neuroimaging techniques. The characterization of microstructure
was performed in two distinct projects. The first project focused on the estimation of morpholog-
ical features of axonal populations (Fig. 1.1A). The second project targeted the characterisation
of deposits of magnetic material within brain tissue, specifically iron (Fig. 1.1B). In this work, we
introduced the methodology for estimating the aforementioned microstructural features of brain
tissue and evaluated their validity in cohorts of healthy individuals. Ultimately, the estimated
features could serve as biomarkers of microstructure with potential clinical utility.

Fig. 1.1. Microstructural brain tissue features of interest in this thesis. (A) The first project focused on
the estimation of morphological features of axonal populations. The electron micrograph shows

multiple axons wrapped in myelin in the corpus callosum (adapted with permission from (Aboitiz et al.,
1992)). (B) The second project focused on the characterization of magnetic deposits - aggregates of
magnetic material such as iron - within brain tissue. The figure obtained by iron histochemistry with

modified Perls’ staining shows iron deposits (blue stain) mainly localized in oligodendrocytes (adapted
with permission from (Zecca et al., 2004)).

1.2 Thesis outline

In this Chapter 1, the current techniques available for the estimation of axonal radius (section
1.3), fibre myelination (section 1.4), axonal conduction velocity (section 1.5), and iron content
(section 1.6) will be detailed. With the motivation and background for this work established, the
objectives behind the two projects implemented as part of this thesis are described (section
1.7).

Since the results regarding the characterization of magnetic material in brain tissue are not yet
published, Chapter 2 is dedicated specifically to outlining the methodology and outcome of this
project.

Chapter 3 offers a summary of the results obtained as part of this PhD project, which led to
two scientific publications from the first project (section 3.1) and one draft manuscript from the
second project (section 3.2). The two published articles derived from this research can be
found in the Appendix.

Chapter 4 thoroughly discusses the results from the first (section 4.1) and second (section 4.2)
projects.
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1.3 Axonal Radius

1.3.1 Background

Axonal radius is a key structural property of neurons facilitating neuronal communication and
determining axonal conduction velocity (Rushton, 1951; Waxman and Bennett, 1972). Larger-
radius axons, mainly localized in primary sensory brain areas, facilitate faster information trans-
fer, while smaller-radius axons prioritize information quantity over speed and are typically found
in higher-level processing areas, such as the pre-frontal cortex (Lamantia and Rakic, 1990).

In healthy individuals, axon radii indices can provide valuable insights into the microstructural
changes of neurons that occur during development and ageing (Stahon et al., 2016; Fan et al.,
2019). Furthermore, axon radius may be used in generative models of brain function, provid-
ing measures of connectivity, for example using dynamic causal models (Honey et al., 2010;
Stephan et al., 2009).

Assessing axon radius in vivo also has important clinical implications, as structural changes in
axon size are associated with a variety of disorders. For example, compared to large axons,
axons of small radius are primarily affected in autism (Wegiel et al., 2018) and multiple sclerosis
(Evangelou et al., 2001). In contrast, in motor-neuron disease larger axons have been shown
to be primarily impaired (Cluskey and Ramsden, 2001).

1.3.2 Techniques for axonal radius mapping

Over the past decades, numerous biophysical models have been proposed aimed at estimating
axon radius in the brain. Diffusion MRI is a particularly well-suited technique for such estima-
tion, due to its sensitivity to the microscopic motion of water molecules within tissue. Given that
the motion of water molecules is hindered by compartmental boundaries like axons, modelling
the water displacement allows for the inference of the underlying tissue architecture (Jelescu
et al., 2020; Hagmann et al., 2006). Most biophysical models describe the measured signal
by a weighted sum of the water signal coming from different tissue compartments and tissue
microstructure information is estimated by fitting the model to the measured diffusion signal
(Panagiotaki et al., 2012; Hagmann et al., 2006).

The first diffusion-based model for axon radius estimation worth mentioning is the one proposed
by Stanisz et al. (1997). The authors described the measured signal using three different tissue
compartments including water exchange between them: 1) spheres, representing glial cells; 2)
ellipsoids, representing axons; and 3) the extracellular matrix. While this model enabled the es-
timation of volume fraction, size, membrane permeability, and diffusivity parameters, it required
knowledge of the fibre orientation and it was not easily generalizable as it was designed and
tested specifically for the bovine optic nerve.

Pioneering work by Assaf and colleagues introduced the CHARMED model (Assaf and Basser,
2005). This two-compartment framework modelled the intra- and extracellular compartments,
assuming no exchange between the two compartments, no glial cell contribution, and axons
of cylindrical geometry with a fixed radius. Even though CHARMED does not allow for the

3



estimation of axon radius per se, it was the basis for an extension put forward by the same
group, coined AxCaliber (Assaf et al., 2008). With AxCaliber, the axon radius distribution –
modelled by a gamma distribution – can be explicitly estimated. This model was validated
by comparing MRI-based and ex vivo axonal radius estimates from excised nerve samples,
yielding a high correspondence between the two types of measurements (Assaf et al., 2008).
Barazany et al. (2009) further refined this method by adding an isotropic diffusion compartment
accounting for cerebrospinal fluid (CSF) contribution. With this model extension, the authors
were able to retrieve the known microstructural variation of radii along the corpus callosum of
in vivo rats.

Despite the aforementioned advantages, AxCaliber and this latter extension (Barazany et al.,
2009) have some limitations worth mentioning. First, both need MRI data to be acquired at high
gradient strengths: 1 T/m for AxCaliber and 300 mT/m for Barazany et al. (2009). Second, they
require long acquisition times: around 24 hours for AxCaliber and 2 hours for Barazany et al.
(2009). Hence, these methods, though informative, cannot be easily applied to clinics, wherein
current scanners provide gradient strengths between 40 and 80 mT/m, and long acquisition
times are hard for individuals to tolerate. Third, these methods require a priori knowledge on
fibre orientation; therefore, axon radius estimation is limited to a few brain structures for which
this information is known.

To address the limitation of a priori knowledge on fibre orientation, AxCaliber 3D was proposed
by Barazany et al. (2011) and applied on a fixed excised porcine spinal cord phantom. To
estimate the full axon radius distribution in any fibre orientation, AxCaliber 3D projects the data
perpendicular to the water-restricted compartment, thereby also being able to estimate axon
radius in regions of crossing fibres.

The ActiveAx model was introduced by Alexander and colleagues (Alexander et al., 2010) and
similarly aimed at providing orientational invariant axon radius estimates. This method suc-
ceeded in retrieving the known axon radii trend along the human corpus callosum in vivo.
This four-compartment tissue model simplifies the two-compartment CHARMED model and
combines it with a CSF compartment (similar to Barazany et al. (2009)) and a compartment
accounting for the water trapped within small structures such as glial cells (similar to Stanisz
et al. (1997)). Rather than the full distribution, ActiveAx provides a single summary index of the
axon radius distribution, referred to as effective radius. Similar to the aforementioned methods,
ActiveAx also assumes that all axons within single voxels have the same single orientation,
therefore refinements to this method were later developed to improve the estimations in re-
gions of orientation dispersions (Zhang et al., 2011b) and crossing fibres (Zhang et al., 2011a).
Despite the improvements offered, ActiveAx and related models again require long acquisition
times (∼1 hour), making it still difficult to be employed in a clinical setting.

ActiveAxADD, an extension of ActiveAx proposed by Romasco and colleagues provides orien-
tational invariant estimates, the novelty being a non-parametric approach and the estimation
of the entire axon radius distribution (Romascano et al., 2019). While ActiveAxADD provided
robust estimates on simulated data, the authors acknowledged that future work is needed to
prove its reliability with in vivo data (Romascano et al., 2019).
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While diffusion-based axon radius mapping acquisition protocols are commonly based on a sin-
gle pair of pulsed-field gradients, i.e. single diffusion encoding (SDE), the acquisition method
proposed by Benjamini et al. (2014, 2016) uses a double pair of pulsed-field gradients, i.e. dou-
ble diffusion encoding (DDE). DDE has gained popularity for the quantification of microscopic
diffusion metrics independent of orientation dispersion, due to the signal modulation that occurs
between the application of the first and second diffusion encoding direction. Similarly to Romas-
cano et al. (2019), the framework proposed in Benjamini et al. (2016) is also non-parametric,
estimating axon radius distribution without a priori assumptions about the underlying form of
the distribution. The major disadvantages of this method are again the need for extremely long
acquisition times – ∼40 hours – and high gradient strengths. Moreover, MRI data acquisition is
restricted to white matter tracts whose long axes are aligned to the main magnetic field.

More recently, to obtain axon radius estimates independent of fibre orientation distribution an
alternative model was proposed by Fan et al. (2020). This method uses the spherical mean
technique (SMT), which serves to integrate the diffusion MRI data along multiple gradient di-
rections, thereby eliminating orientational dispersions. While Fan and colleagues were able
to recover the usually observed trend in axon radius along the corpus callosum and estimate
axon radii in crossing fibre configurations in vivo in humans, their method had similar limita-
tions to the methods discussed above i.e. requiring high gradient strengths (300 mT/m) and
long acquisition times (∼1 hour).

In contrast to the voxel-level axon radius estimation employed by the previously mentioned
methods, Barakovic and colleagues proposed a method to estimate axon radius for each group
of axons with a similar trajectory, i.e. for each streamline. Their approach, entitled COMMI-
TAxSize (Barakovic et al., 2021), is based on microstructure-informed tractography, and was
applicable to crossing fibres, unlike most of the earlier models. This method was tested both
with numerical simulations and in vivo human data and showed a good agreement between
histology and known anatomy.

The AxSI (Diffusion-Based Axonal Spectrum Imaging) model put forward by Gast et al. (2023)
also aims at estimating axon radii along individual streamlines. This model represents a simpli-
fied version of the previously developed AxCaliber and estimates axon radii by utilizing a library
of simulated diffusion MRI signals. In this work, the known neuroanatomical features of axonal
bundles were demonstrated in humans in vivo.

Finally, a diffusion-relaxation protocol model for radius estimation was proposed by Barakovic
and colleagues (Barakovic et al., 2023). Relaxometry MRI is a viable technique for charac-
terizing tissue microstructure, as relaxation rates like T2 also depend on the underlying tissue
structural organization. By performing a histologically-informed calibration, the method imple-
mented in Barakovic et al. (2023) may be sensitive to axon radii below the typical diffusion
resolution limit of ∼1 µm (section 1.3.3). Despite the need for further validation, initial findings
using this method in in vivo human data have demonstrated promising results (Dell’Acqua et al.,
2023).

Table 1.1 summarizes axonal radius estimation methods which can vary in terms of: (i) the
number of compartments; ii) handling of crossing fibres and orientation dispersion; iii) the need

5



for a priori hypotheses on the orientation of the underlying fibres; iv) whether they provide the
entire axon radius distribution or a single summary index; v) and the technical requirements for
use in a clinical setting.

Table 1.1. Axon radius estimation methods. N/D = Not Defined

Scientific
publication

Model
Name

Number of
compartments

Whole
distribution

Orientation
invariant

Suitable for
orientation dispersion

Suitable for
crossing fibres <= 80 mT/T <= 1 hour

(Assaf et al., 2008) AxCaliber 2 Yes No No No No No
(Barazany et al., 2009) AxCaliber (Extension) 3 Yes No No No No No
(Barazany et al., 2011) AxCaliber 3D 2 Yes Yes Yes Yes No N/D
(Alexander et al., 2010) ActiveAx 4 No Yes No No Yes No
(Zhang et al., 2011b) ActiveAx (Extension) 2 No Yes Yes No Yes Yes
(Zhang et al., 2011a) ActiveAx (Extension) 3 No Yes Yes Yes No N/D
(Romascano et al., 2019) ActiveAxADD 2 Yes Yes No No No Yes
(Benjamini et al., 2014) N/D 2 Yes No No No No No
(Fan et al., 2020) N/D 3 No Yes Yes Yes No Yes
(Barakovic et al., 2021) COMMITAxSize 3 Yes Yes No Yes No N/D
(Gast et al., 2023) AxSI 3 Yes Yes Yes No Yes N/D

1.3.3 The challenge of radius overestimation

Despite advances made by the aforementioned models, the estimation of axon radius from in
vivo data remains challenging. In addition to the limitations described in the previous section,
in these models, the axon calibre is commonly overestimated when compared to histological
data (Jones et al., 2018; Jelescu et al., 2020; Veraart et al., 2020). Indeed, typical axon radius
distributions peak around 0.3 – 0.5 µm, with maximum axon radius between 1.5 – 3.0 µm
(Aboitiz et al., 1992; Liewald et al., 2014). In contrast, MRI-derived axon radii are overestimated,
calculated to be within the range of 1.3 – 7.5 µm (Alexander et al., 2010; Huang et al., 2015;
Veraart et al., 2020). This section will attempt to uncover the major factors that contribute to
this overestimation.

Gradient strengths

MRI gradient strengths impose a limitation on axonal radius estimation. Nilsson and colleagues
proposed a metric coined “axon radius limit” or “resolution limit”, corresponding to the smallest
radius (rmin) that can be differentiated from a stick of zero radius given an MRI sequence under
ideal conditions (Nilsson et al., 2017):

2rmin =

(
768

7
· σD0

γ2G2δ

)1/4

(1.1)

D0 is the free diffusivity of the intra-axonal water, G is the gradient amplitude, δ is the pulse
duration, γ the gyromagnetic ratio and σ is the minimal detectable percentage change in the
MRI signal. The rationale behind Eq. 1.1 is that if the signal attenuation coming from the axons
is less than σ, it will be indistinguishable from a cylinder with a radius of zero. As per Eq. 1.1,
the resolution limit critically depends on the gradient amplitude.

According to Nilsson, for a σ =1% (defined for a given significance value and signal-to-noise
ratio level), the resolution limit radius ranges between 2.0 and 4.0 µm for a typical clinical
scanner (with gradient strengths between 60 mT/m and 80 mT/m) and between 1.0 and 2.5
µm for a high gradient strength of 300 mT/m (Nilsson et al., 2017). A recent study by Veraart
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et al. (2020) showed that with a clinical scanner of 80 mT/m, the smallest radius that can
be differentiated from a stick of radius zero is ∼3.2 µm, whereas, with a scanner of gradient
strength 300 mT/m, this value improves to ∼1.5 µm (Fig. 1.2A).

Moreover, it is worth noting that the presence of large-radii axons has a disproportionate influ-
ence on the MR signal contrast (Fig. 1.2B). In the example provided by Jones et al. (2018),
even though only less than 10% of the axons had radii over 1.5 µm, those axons accounted for
50% of the intra-axonal signal. In addition, as gradient amplitudes increase (i.e. decrease in
resolution limit), the percentage of axons above the resolution limit increased from 5% to 20%,
whereas the signal these axons provided increased considerably more, from 35% to 70%.

Fig. 1.2. Gradient strength impact on axon radius estimation. (A) Minimal cylinder radius that can be
detected with a scanner of 80 mT/m (clinical human scanner), 300 mT/m (research human scanner),
and 1500 mT/m (animal scanner), represented in red, blue, and green respectively. As the gradient
increases, the smallest radius that can be differentiated from a stick of zero radius decreases. The

minimum radius that can be measured with a clinical scanner is ∼3.2 µm. The shaded areas represent
the 95% confidence interval (adapted with permission from (Veraart et al., 2020)). (B) The proportion of

axons (blue) above the resolution limit and the proportion of intra-axonal signal (red) originating from
these axons, as a function of gradient strength (adapted with permission from (Jones et al., 2018)).

Both these results demonstrate the strong sensitivity of diffusion MRI to larger axons.

Extracellular contribution

Another factor contributing to the overestimation of axon radius is the extra-axonal signal influ-
ence on the diffusion signal (Fig. 1.3A). Indeed, recent work demonstrated that the diffusion
signal has higher sensitivity to extra- rather than to intra- axonal water under specific diffusion
regimes (Burcaw et al., 2015; Lee et al., 2018).

Single summary index

Using a single metric such as the effective radius to represent the entire diameter distribution
may also contribute to the overestimation of the radius estimates. This is due to the fact that
the effective radius is, by construction, a measure that is weighted towards large axons: reff =(
⟨r6⟩
⟨r2⟩

)1/4
(Burcaw et al., 2015; Veraart et al., 2020). This implies that a small contribution of
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large axons can have a large impact on the estimated effective radius (Fig. 1.3B).

Fig. 1.3. Impact of the extracellular signal contribution and single summary index on axonal radius
estimation. (A) Phase diagram of the diffusion signal. Green–shaded areas indicate that the signal is
most sensitive to the intra–axonal water (Sint) and therefore can have a large impact on axonal radius
estimation. Areas above the red line have a weak contribution from both intra–and extra –axonal (Sext)
signals. The white area, where clinical scanner gradient strengths can be found, corresponds to a weak
gradient regime, where both intra–and extra–axonal water influence the acquired signal, making axonal

radius estimation strongly biased (adapted with permission from (Burcaw et al., 2015)) (B) Changing
the tail of a distribution of axon diameters, by adding a few extra axons in the 2−4 µm range heavily

influences the effective diameter (deff ), as opposed to the mean diameter (dmean) which suffers only a
small shift in value. The fitted MRI radius (dfit) correlates well with the effective diameter (deff ), which

is weighted towards large-calibre axons (adapted with permission from (Paquette et al., 2020)).

Oversimplification of the tissue model

Another challenge in axon radius mapping lies in the simplifications made upon modelling the
tissue architecture. It is commonly assumed that axons are perfect straight cylinders, however,
this is not the case in the brain. First, radius variations along the axon length (undulation)
exist (Andersson et al., 2020; Lee et al., 2019). Second, and differently, to what is assumed
by many state-of-the-art methods, there is no single orientation to describe all axons within
a voxel (orientation dispersion); in particular, crossing, bending, and fanning fibres are some
configurations one can find in the brain (Andersson et al., 2020; Lee et al., 2019; Zhang et al.,
2011b). The work of Andersson et al. (2020) demonstrates how any variation from a cylinder
(e.g. undulation, orientation dispersion, Fig. 1.4A) leads to an overestimation of the axon radius
compared to a perfectly aligned cylinder (Fig. 1.4B).

Finally, most diffusion-based axonal radius models simplify the tissue architecture with two or
three compartments, ignoring glial or other neuronal cell contributions. However, as highlighted
by Veraart and colleagues strong diffusion-weighted MRI can be sensitive to signals originating
from glial cells (Veraart et al., 2023). Along similar lines, accounting for extra and intra-cellular
compartments while neglecting water exchange between them, may also potentially lead to
axon radii overestimation (Fieremans et al., 2010).

To conclude, the series of studies outlined above demonstrate that the overestimation of axon
radius in existing models is an important challenge to overcome and may be explained by:
(i) the currently available neuroimaging hardware (Fig. 1.2); (ii) the large contribution of the
extracellular signal (Fig. 1.3A); (iii) the use of a single summary index (Fig. 1.3B); (iv) the
oversimplification of the tissue architecture (Fig. 1.4).

8



Fig. 1.4. Impact of along-axon radius variations on axon radius estimation. (A) Axon models with
increased complexity (from G1 to G5 and a realistic segmentation of an axon G6). (B) Corresponding

axon diameter estimates. The model of a perfect cylinder (G1) provides the correct simulated diameter
of 2.9 µm. The increase in complexity of the substrate (G2 to G6) leads to an overestimation of the axon
diameter, which increases with diffusion time. (Adapted with permission from Andersson et al. (2020)).

1.4 Fiber myelination

1.4.1 Background

Fibre myelination is another microstructural property of brain tissue contributing to the trans-
mission of neuronal information and hence to brain function (MacKay and Laule, 2016; Lazari
and Lipp, 2021). Changes in myelin content have been identified during brain development and
healthy ageing (Peters, 2009; Ziegler et al., 2019). Moreover, demyelination is the hallmark of
a range of neurological and psychiatric disorders, such as multiple sclerosis (Grossman and
McGowan, 1998), autism (Zikopoulos and Barbas, 2010), schizophrenia (Stedehouder and
Kushner, 2017), and Alzheimer’s disease (Brun and Englund, 1986). Thus, the non-invasive
assessment of myelin content may enable the study of myelin-related changes across healthy
individuals and in a variety of pathological conditions.

1.4.2 Techniques for myelin mapping

Quantifying myelin in vivo involves MRI contrasts that are sensitive to the interactions between
water molecules and the myelin sheath. Such interactions can be detected with longitudinal
relaxation R1 (Koenig, 1991), transverse relaxation R2 (Laule et al., 2007), effective transverse
relaxation R∗

2 (Lee et al., 2012; Wharton and Bowtell, 2012; Stüber et al., 2014; Bagnato et al.,
2018) and Magnetization Transfer(MT)-based metrics such as MT saturation (MTsat) (Laule
et al., 2007; Helms et al., 2008b). Multi-compartment models of R2 or R∗

2, such as Myelin
Water Fraction (MWF) (Mackay et al., 1994; MacKay and Laule, 2016), can also be used to
investigate the contribution of the different types of water content in the brain (e.g. water within
myelin layers, intra- and extracellular water).
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The magnetic properties of myelin also induce local fluctuations in the magnetic field, result-
ing in variations of the MRI signal phase. Such variations can be captured using quantitative
susceptibility mapping (QSM) techniques (Deistung et al., 2017; Wharton and Bowtell, 2012; Li
and Leigh, 2004; Duyn and Schenck, 2017).

Despite the wide use of MRI-based myelin contrasts in neuroscientific and clinical applications
(e.g. Dick et al., 2012; Marques et al., 2017; Helbling et al., 2015), their specificity in measuring
myelin is limited. For instance, MT is sensitive to various macromolecules beyond myelin (Pike,
1996) and R∗

2 is influenced by iron content as well as other factors (section 1.6).

G-ratio imaging (gMRI ) is one approach that allows for improving the specificity of MRI-based
myelin content estimation as it removes sensitivity to the absolute fibre volume fraction (FVF)
when quantifying the relative myelin thickness (Stikov et al., 2015; Campbell et al., 2018). The
g-ratio, defined histologically as the ratio between the inner and outer radius of the myelin
sheath (Stikov et al., 2015, 2011; West et al., 2016), is inaccessible through in vivo measure-
ments. Nonetheless, an ensemble average of g-ratios can be derived from MRI data (gMRI )
using voxel-averages of myelin volume fraction (MVF) and axonal volume fractions (AVF) (Fig.
1.5) (Stikov et al., 2015; Campbell et al., 2018). Despite its current implementation in inves-
tigations of brain health and disease (e.g. Hagiwara et al., 2017; Berman et al., 2018), gMRI

provides a weighted aggregated assessment of axonal myelination, therefore yielding a mea-
sure that is skewed towards larger axons (Campbell et al., 2018).

Fig. 1.5. G-ratio imaging. The aggregate g-ratio can be expressed as a function of the myelin volume
fraction (MVF) and the axon volume fraction (AVF) or fibre volume fraction (FVF) (adapted with

permission from (Stikov et al., 2015)).

Beyond gMRI , other techniques have been proposed to improve MRI specificity to myelination.
Given that MRI contrasts are often influenced by both myelin and iron content, novel methods
have been proposed for the independent quantification of these quantities, thereby improving
the specificity of each measure (section 1.6.2).

Overall, despite several available MRI-based markers of myelination, their sensitivity and speci-
ficity are still a matter of debate. Moreover, inconsistent reporting and differences in method-
ological approaches are some of the factors that prevent establishing a gold standard for MRI-
based myelin imaging and thus, a myelin-sensitive brain biomarker (Lazari and Lipp, 2021;
Mancini et al., 2020).
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1.5 Fiber conduction velocity

Conduction velocity of action potentials along neuronal axons is a crucial property of functional
brain networks. Conduction velocity has been shown to depend on axonal morphology (e.g.
Rushton, 1951; Waxman and Bennett, 1972), specifically the axonal radius and g-ratio (Drake-
smith et al., 2019). As discussed in sections 1.3 and 1.4, MRI has proven a valuable tech-
nique for the in vivo estimation of axonal radius and MRI g-ratio. Therefore, previous studies
have used the dependency of conduction velocity on axonal morphology to deduce, from MRI
measurements, the conduction velocity along white matter fibres (e.g. Berman et al., 2019).
However, rather than using structural measures to estimate functional properties, integrating
structural and functional modalities holds great potential to explore its relationship. For exam-
ple, the concurrent non-invasive estimation of axonal radius and conduction velocities allowed
for the identification of a linear correlation between the two measures in humans (Horowitz
et al., 2015), which has not been demonstrated previously.

Functional measures of brain activity can be estimated through various non-invasive neu-
roimaging techniques, such as electroencephalography (EEG) and functional magnetic res-
onance imaging (fMRI). While standard fMRI has a very low temporal resolution as it is an indi-
rect measure of neuronal activity, electrophysiology-based measures provide a direct measure
of neuronal activity at a high temporal resolution (Helbling et al., 2015; Glover, 2011). There-
fore, electrophysiological measures such as EEG are better suited for assessing conduction
delays, and consequently, conduction velocities in vivo.

One useful approach for the estimation of conduction velocity with EEG is through the calcu-
lation of the interhemispheric transfer time (IHTT). IHTT is the delay of neuronal information
transfer from one hemisphere to the other (Marzi, 1999). In the visual domain, it relies on the
fact that each hemisphere has only access to one-half of the visual field. Thereby, a unilaterally-
presented visual stimulus first reaches the contralateral hemisphere and is then transferred to
the ipsilateral hemisphere (Fig. 1.6), via the splenium of the corpus callosum (Marzi, 1999).
Classically, EEG-based estimation of IHTT is calculated by measuring the latency difference
in evoked activity recorded from homologous electrodes in the two hemispheres (e.g.. Saron
and Davidson, 1989; Brown and Jeeves, 1993). However, this calculation relies on the ad hoc
selection of electrodes at which the transfer is most likely to take place and on the ad hoc
identification of the EEG-evoked response component that underpins this transfer.

The visual IHTT is a valuable metric that has been used to investigate brain lateralization (Chau-
millon et al., 2018) and the structural integrity of the corpus callosum (Westerhausen et al.,
2006). However, the majority of studies predominantly focus on group-averaged IHTT mea-
sures, with limited attention given to single-subject analysis. Studies that do explore individual-
level IHTT fail to provide consistent results across participants, and in some cases, counter-
intuitively, even show negative IHTT values (Saron and Davidson, 1989; Marzi et al., 1991;
Friedrich et al., 2017; Westerhausen et al., 2006). This outlines an important limitation of cur-
rently available techniques for the in vivo estimation of conduction velocities, especially when
aiming to integrate structural and functional measures at the single-subject level.

Despite the achievements of IHTT-based measures of conduction velocity, recent more so-

11



Fig. 1.6. Visual interhemispheric transfer time (IHTT). The estimation of visual IHTT relies on the
crossed organization of the visual system: a unilaterally-presented visual stimulus first reaches the

cortex contralateral to the stimulated visual field (red and blue pathways) and is then transferred to the
ipsilateral cortex (grey and green arrows). IHTT is taken as the difference in latencies between the

signal recorded in both hemispheres (adapted with permission from (Chaumillon et al., 2018)).

phisticated methods have been proposed to estimate axonal velocity in vivo. One noteworthy
approach was proposed by Lemarechal et al. (2022), who introduced a biologically informed
model that enables the estimation of axonal transmission delays from cortico-cortical evoked
potentials. However, this method requires the use of invasive intracerebral depth electrodes
and is therefore not applicable to non-invasive neuroimaging techniques.

An innovative approach that does not rely on invasive techniques was proposed by Sorrentino
et al. (2022) with which single-subject and single-tract transmission delays can be estimated.
The authors used resting-state magnetoencephalography and EEG data, to measure neuronal
avalanches, which represent cascades of neural activity that propagate across different white
matter tracts. Axonal transmission delays can then be derived based on the observed neuronal
avalanches. The authors revealed a strong relationship between conduction velocity and le-
sioned white matter tracts in multiple sclerosis patients. However, the necessity for pre-defined
methodological parameters such as bin length and branching value along with large coarse
cortical parcellations, adds complexity to the widespread implementation of this method.

In an altogether different approach, the combination of EEG and diffusion MRI was used to non-
invasively infer and visualize the flow of information through white matter tracts (Deslauriers-
Gauthier et al., 2019). This approach was based on Bayesian networks and assumes a con-
stant conduction velocity throughout the brain while estimating the white matter pathways in-
volved in the information transfer during a given task. Their subsequent work (Deslauriers-
Gauthier and Deriche, 2019) is built conceptually on their previous approach but differs on the
estimated metrics. Instead of fixing the conduction velocity to estimate the flow of information
along white matter tracts, they now fix the tract responsible for information transfer and focus
on estimating its conduction time and consequently, conduction velocity.

Despite an important contribution to conduction velocity estimation, the aforementioned ap-
proaches rely on complex models, make numerous assumptions, and cannot be easily im-
plemented in vivo. This highlights the potential advantages of adopting simpler, data-driven
methods; a noteworthy example being the IHTT estimation.
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1.6 Iron

1.6.1 Background

Iron is a chemical element naturally present in the brain that is involved in a number of physio-
logical functions. Indeed, iron plays a crucial role in oxygen transportation, myelination, energy
production, and neurotransmitter synthesis and signalling (Hare et al., 2013). While iron is
naturally present in healthy brains, pathological iron accumulation is a hallmark of numerous
disorders such as Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis (Thomp-
son et al., 2001; Zecca et al., 2004; Hare et al., 2013). Iron has also been shown to naturally
accumulate in healthy ageing (Ward et al., 2014). Hence, in vivo assessment of iron con-
tent holds particular relevance. Specifically, characterization of the iron deposits located within
brain tissue (Fig. 1.1B) may enable the identification of the mechanisms responsible for iron
accumulation and improve the accurate and early diagnosis of neurodegenerative diseases.

1.6.2 Techniques for iron mapping

The in vivo quantification of iron content commonly involves relaxometry MRI measures, such
as the longitudinal relaxation rate R1 and the transverse relaxation rate R2, due to the estab-
lished correlation between iron concentration and R1 (Brooks et al., 1998; Ogg and Steen,
1998) as well as R2 (Bartzokis et al., 1994; Schenck, 1996; Vymazal et al., 1995; Graham
et al., 2000). However, both these measures are also influenced by myelin content (Koenig,
1991; Laule et al., 2007) (section 1.4.2). Non-invasive iron characterization is also commonly
carried out using R∗

2 MRI measure. The strong link between R∗
2 maps and iron concentration

was demonstrated with post mortem brain tissue in the seminal work from Fukunaga et al.
(2010) and Langkammer et al. (2010). Along the same lines, Péran et al. (2009) and Yao
et al. (2009) have substantiated this relationship using in vivo data. Despite the potential of
R∗

2 to identify iron patterns in various neuroscientific applications (Deistung et al., 2013; Kirilina
et al., 2020; Duyn et al., 2007), this map is also affected by variations in myelin content within
neuronal tissues (Lee et al., 2012; Wharton and Bowtell, 2012; Stüber et al., 2014; Bagnato
et al., 2018). This may be problematic, as myelin and iron colocalize in some cortical areas
(Fukunaga et al., 2010) (Figure 1.7).

Similarly to myelin, the magnetic susceptibility of iron also contributes to the MRI phase con-
trast and therefore, QSM (Haacke et al., 2015; Deistung et al., 2017). QSM maps have been
instrumental in quantifying iron content in numerous studies, including in healthy ageing (Bilgic
et al., 2012) or in deep grey matter structures (Langkammer et al., 2012).

In QSM, myelin and iron contribute to the MRI contrast with opposing effects: myelin is diamag-
netic and thus has negative susceptibility while iron is paramagnetic, having positive suscepti-
bility. This difference makes the interpretation of QSM measures challenging, which Shin et al.
(2021) elegantly attempted to address with the χ-separation technique. This model attempts
to separate paramagnetic and diamagnetic susceptibility sources. The χ-separation approach
was validated with simulations, phantoms, ex vivo, and in vivo data of healthy volunteers and
multiple sclerosis patients, demonstrating its viability in improving the specificity to iron in vivo.
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Fig. 1.7. Myelin (left panel) and iron (middle panel) histochemical stains of the primary and secondary
visual cortices, as well as a R∗

2 map (right panel) of the same region. As is evident, iron and myelin
often colocalize within the visual cortex. The calcarine sulcus is labelled as the dashed line and the
boundaries between primary (V1) and secondary (V2) visual cortices by the asterisk. The different

arrows indicate the similarities between the iron and myelin stain to the R∗
2 map (adapted with

permission from (Fukunaga et al., 2010)).

Similarly aimed at improving the specificity of iron measures, other methods have been pro-
posed for the independent estimation of iron and myelin concentrations, by combining comple-
mentary quantitative contrasts. Stüber et al. (2014) proposed a multivariate regression model
of R1, R∗

2 and magnetic susceptibility as a function of iron and myelin concentration. Despite
the ex vivo validation of this technique, its in vivo application remains challenging, as was
demonstrated from an in vivo study which yielded physiologically improbable iron and myelin
maps (Marques et al., 2017). An earlier study by Schweser et al. (2011a) attempted to ob-
tain iron-induced myelin-free susceptibility maps by subtracting the concurrent effects of myelin
(obtained using MT maps). In their later work, myelin effects were not removed but estimated
independently of iron content (Schweser et al., 2011b). However, it is worth noting, that these
three approaches (Stüber et al., 2014; Schweser et al., 2011a,b), primarily rely on an empirical
relationship between iron/myelin content and the MRI data and thus lack a biophysical founda-
tion, a crucial point for attaining specificity and for correct interpretation of the results (Novikov
et al., 2018).

While current methods offer voxel-average estimations of iron content, they fall short of fully
capturing the microstructural features of the magnetic material within brain tissue. On the con-
trary, theoretical studies have made significant contributions in modelling the impact of mag-
netic deposits within brain tissue (e.g. iron-loaded cells, myelin) on the MRI signal decay due to
transverse relaxation (Yablonskiy and Haacke, 1994; Jensen and Chandra, 2000; Sukstanskii
and Yablonskiy, 2003; Anderson and Weiss, 1953). Such models have enabled the estima-
tion of volume fractions, size or magnetic susceptibilities of the magnetic deposits in numerous
cases, such as, in suspensions of paramagnetic beads (Storey et al., 2015), in vitro red blood
cell suspensions, ex vivo brain samples (Jensen and Chandra, 2000), and in vivo blood vessels
(Ulrich and Yablonskiy, 2016). However, these theoretical formulations have yet to be applied
for iron quantification in vivo, leaving the voxel-average measures (e.g. R∗

2) as the primary
approach for identifying iron-related microscopic brain changes.
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1.7 Objectives

This thesis comprises two distinct projects, each focusing on different aspects of brain tissue
characterization in vivo.

In the first project, we aimed to characterize the morphology of axons within a white matter tract,
in particular the radius and myelination of the underlying axonal fibres (Fig. 1.1A). Despite the
promising outcomes demonstrated by the current axon radius mapping techniques (section
1.3), challenges such as the need for high gradient strength and long scan times limit their ap-
plication. Additionally, the high sensitivity of the MRI signal to the extra-axonal water also leads
to an overestimation of axon radius by diffusion-based MRI methods. Moreover, none of the
existing approaches appears to simultaneously estimate axonal radius and fibre myelination,
two fundamental morphological properties of axons that can allow for a more comprehensive
assessment of the white matter. To address these limitations and accomplish our objective,
we propose a novel biophysical model for the estimation of axonal radius distribution and rel-
ative fibre myelin thickness of the axons composing a given white matter tract. This method
combines EEG-based measures of conduction velocity with MRI-based structural measures of
relative myelin thickness (MRI g-ratio) acquired along the white matter tract under evaluation,
which in this case was the visual transcallosal tract.

While the measurement of MRI g-ratio from MRI data (section 1.4) is relatively straightforward,
the measurement of conduction velocities from EEG (section 1.5) is more complex. A poten-
tial approach for the estimation of conduction velocities in vivo is via the estimation of IHTT.
However, IHTT estimation is classically performed based on scalp measurements, relying on
a few ad hoc analysis decisions. Moreover, IHTT estimation at the single-subject level re-
mains challenging. To address these limitations, we estimate IHTT at the cortical origins of
the electrode-level measured activity using source reconstruction techniques. Our proposed
framework is based on a data-driven evaluation of the maximal peak of the source-level neural
response to visual stimuli with minimal a priori constraints. This framework also allows for the
single-subject measurement of the IHTT from EEG data.

In the second project, we aimed to characterise the distribution of iron deposits in subcortical
grey matter tissue (Fig. 1.1B). Although numerous methodologies have been proposed for the
in vivo quantification of iron content (section 1.6), these techniques provide voxel-averaged
estimations of iron content. Therefore, here we aim to address this limitation by estimating
microstructural features with increased specificity to the iron deposits, such as their magnetic
susceptibility (proportional to the concentration of iron within the deposit), radius and volume
fraction. To achieve this, we apply existing biophysical models of the effect of magnetic deposits
within brain tissue on the MRI signal. To the best of our knowledge, this is the first account of
these theoretical models being implemented for the in vivo quantification of iron content in
subcortical grey matter regions.
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Chapter 2

Non-exponential transverse relaxation
decay in subcortical grey matter

2.1 Introduction

In MRI data, the decay of the gradient-echo signal due to transverse relaxation is widely consid-
ered to follow an exponential behaviour with a rate R∗

2 (Weiskopf et al., 2014). Estimates of R∗
2

correlate with iron concentration within brain tissue (Péran et al., 2009; Yao et al., 2009; Fuku-
naga et al., 2010; Langkammer et al., 2010), a property of primary importance for the study of
the brain. Iron indeed plays a crucial role in various biological processes such as myelin synthe-
sis, energy production, and neurotransmitter synthesis and signalling (Hare et al., 2013; Möller
et al., 2019). Abnormal accumulation of iron also constitutes a hallmark of neurodegenerative
disorders such as Parkinson’s Disease (Gerlach et al., 1994; Thompson et al., 2001; Ward
et al., 2014). As a result, R∗

2 mapping data are used extensively for the monitoring of iron-
related brain changes for instance in neurodegenerative diseases (Ulla et al., 2013; Damulina
et al., 2020).

However, deposits of magnetic material within brain tissue such as iron-loaded cells, myelin,
or blood vessels, induce microscopic inhomogeneities of the magnetic field which can result in
a non-exponential signal decay (Haacke et al., 2005; Kiselev and Novikov, 2018). According
to theoretical studies, such decay displays a gaussian behaviour at short echo times followed
by an exponential behaviour at longer echo times (Yablonskiy and Haacke, 1994; Jensen and
Chandra, 2000; Kiselev and Novikov, 2002, 2018; Sukstanskii and Yablonskiy, 2003). While this
behaviour has been reported in suspensions of paramagnetic beads (Storey et al., 2015), in ex
vivo brain samples (Jensen and Chandra, 2000) and in vivo blood vessels (Ulrich and Yablon-
skiy, 2016), no evidence has been presented from iron-rich subcortical grey matter regions in
vivo.

The mechanisms that underlie transverse relaxation in the presence of magnetic deposits can
be described under two limiting regimes. In the static dephasing regime (SDR), water diffusion
is assumed to be negligible and signal decay arises from the spatial inhomogeneities of the
magnetic field generated by the deposits. In the diffusion narrowing regime (DNR) (Jensen
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and Chandra, 2000; Sukstanskii and Yablonskiy, 2003), signal decay arises primarily from the
diffusion of water molecules across these spatial inhomogeneities. The large differences in the
relaxation rate measured from spin-echo and gradient-echo data come in support of the SDR
as a plausible mechanism for transverse relaxation in subcortical grey matter regions (Sedlacik
et al., 2014; Brammerloh et al., 2021). On the other hand, investigations of the relationship
between R∗

2 and MRI measures of magnetic susceptibility in the basal ganglia have suggested
the DNR as the most plausible regime (Yablonskiy et al., 2021).

In this work, we provide experimental evidence of non-exponential MRI signal decay due to
transverse relaxation in subcortical brain regions, in gradient-echo data acquired in vivo at 3T.
We fitted the signal decay with theoretical models of the effect of magnetic deposits within brain
tissue on the MRI signal (Anderson and Weiss, 1953; Jensen and Chandra, 2000; Sukstanskii
and Yablonskiy, 2003). From the model parameter estimates of the gaussian and exponential
parts of the signal decay, we assessed the properties of the magnetic deposits within the tissue
at the source of the transverse relaxation, under the assumption of SDR and DNR regimes.

2.2 Theory

2.2.1 Transverse relaxation in the presence of magnetic material

Existing biophysical models of transverse relaxation in biological tissues are based on the diffu-
sion of water molecules across the inhomogenous magnetic field created by magnetic deposits
(Anderson and Weiss, 1953; Jensen and Chandra, 2000; Sukstanskii and Yablonskiy, 2003).
In the model of Anderson and Weiss (1953) (AW), the auto-correlation function of the Larmor
frequency experienced by diffusing water molecules is assumed to take an exponential form.
With the model of Sukstanskii and Yablonskiy (2003) and Jensen and Chandra (2000) (SY)
the auto-correlation function was derived from the analytical expression of spin displacements
due to diffusion within brain tissue. Alternatively, we derived a parametric expression for the
signal decay from the Padé approximation of a transition from gaussian to exponential decay.
The Padé approximation constitutes a flexible parametric approach that does not rely on a spe-
cific set of assumptions. While it lacks a theoretical basis, we refer henceforward to all three
analytical expressions as models of the MRI signal for the sake of simplicity.

With the Padé, AW, and SY models, the decay of the MRI signal due to transverse relaxation is
written as:

SPade = S0 · exp

−
⟨Ω2⟩T 2

E

2(1 + ⟨Ω2⟩
2R∗

2,micro
TE)

−R2,nanoTE

 (2.1)
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−
R∗

2,micro
2

⟨Ω2⟩

(
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R∗
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TE − 1

)
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)
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SSY = S0 · exp
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2

⟨Ω2⟩

(
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)
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where S0 is the signal amplitude at TE=0 and R2,nano is the transverse relaxation rate due to
spin-spin interactions at the molecular/nanoscopic scales. ⟨Ω2⟩ is the mean square frequency
deviation of the field inhomogeneities induced by the magnetic deposits (Novikov et al., 2018)
and drives the behaviour of the signal decay at short echo times (S = S0 · e−

1
2
⟨Ω2⟩TE

2
with

TE ≲ R∗
2,micro

⟨Ω2⟩ ). The transverse relaxation rate R∗
2,micro drives the behaviour of the signal decay

at long echo times (S = S0 · e−R∗
2,microTE with TE ≳ R∗

2,micro

⟨Ω2⟩ ).

The commonly used exponential model is written as:

SExp = S0 · exp (−R∗
2TE) (2.4)

with R∗
2 = R∗

2,micro +R2,nano.

2.2.2 Microscopic underpinnings of non-exponential decay

For magnetic deposits with simple geometries, the signal decay parameters (R∗
2,micro and ⟨Ω2⟩)

can be linked explicitly with the microstructural properties of the magnetic material within brain
tissue. The mean square frequency deviation ⟨Ω2⟩ of the magnetic field inhomogeneities gen-
erated by randomly distributed spherical deposits is (Yablonskiy and Haacke, 1994; Jensen and
Chandra, 2000; Sukstanskii and Yablonskiy, 2003):

⟨Ω2⟩ = 4

5
ζ

(
1

3
γB0

)2

∆χ2 (2.5)

where ζ is the volume fraction of the magnetic deposits, ∆χ is their susceptibility difference
with the surrounding tissue (SI units), γ the gyromagnetic ratio (2.7·108 rad s−1T−1) and B0

the main magnetic field. Note that ⟨Ω2⟩ is an average measure of field inhomogeneities within
a voxel and differs from the frequency deviation generated by an individual magnetic deposit:
δws = 1

3γB0 ∆χ.

In the framework of the SDR (Yablonskiy and Haacke, 1994) and DNR (Jensen and Chan-
dra, 2000; Sukstanskii and Yablonskiy, 2003) the relaxation rate is described by the following
equations:

R∗
2,micro = λSDRζγB0∆χ, λSDR = 1.2092 · 1

3
(2.6a)

R∗
2,micro = λDNRζγ

2B2
0∆χ2τ, λDNR =

8

225
· 6 (2.6b)

where τ = r2

6D is the time scale for water molecules to diffuse away from magnetic deposits with
spherical geometry (radius r). D is the water diffusion coefficient (1 µm2/ms).

In the DNR, the dimensionless parameter α = τ
√

⟨Ω2⟩ (Storey et al., 2015; Kiselev and
Novikov, 2018) represents the amount of spin dephasing induced by the field inhomogeneities
over the period τ . α ≪ 1 is consistent with the assumptions of the DNR.
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2.3 Methods

2.3.1 Participant cohort

MRI data were acquired from 5 healthy volunteers (2 females, mean age=31.8±9 years old).
The study received approval by the local ethics committee and all volunteers gave written in-
formed consent for their participation.

2.3.2 Data acquisition

MRI data were acquired on a 3T whole-body MRI system (Magnetom Prisma; Siemens Medical
Systems, Erlangen, Germany) with a 64-channel receive head coil. The MRI protocol consisted
of multi-echo 3D fast low-angle shot (FLASH) acquisitions with a bipolar readout. Image res-
olution was 1.2 mm3 isotropic, with a field of view 144×192×208. 16 gradient-echo images
were acquired with an echo time TE ranging from 1.25 to 19.25 ms, with 1.2 ms inter-echo
spacing (repetition time TR = 23.2 ms). Partial Fourier (factor 6/8) was used in the phase and
partition directions. Three repetitions were conducted on each participant and the total nominal
acquisition time was 18min09s.

A prospective motion correction system (KinetiCor, HI, Honolulu) was used to reduce image
degradation due to patient motion (Zaitsev et al., 2006; Maclaren et al., 2012). To further pre-
serve image quality in the event of head motion, data acquisition was automatically suspended
during periods of excessive head movement as described in Castella et al. (2018) (∆Mewth=
3.5e−4 mm s−1). To minimize the effect of cardiac-induced noise on the images, data acquisi-
tion was suspended during the systolic period of the cardiac cycle, taken to last for a duration
of 300 ms (Raynaud et al., 2022). For a heart rate of 80 beats per minute, this resulted in an
increase in scan time by approximately 40%. The quality index of the data lay within a narrow
range across participants and did not exceed 3.7 s−1, indicative of high-quality data (Castella
et al., 2018; Lutti et al., 2022).

For the computation of MTsat maps (Helms et al., 2008a), multi-echo 3D FLASH images
were acquired with magnetization transfer-, proton density- and T1-weighted contrasts (radio-
frequency excitation flip angle = 6◦ , 6◦ and 21◦ , respectively; repetition time TR=24.5 ms).
8 echo images were acquired for the T1- and proton density-weighted contrasts and 6 for the
magnetization transfer-weighted contrast. Image resolution was 1 mm3 isotropic, and the image
field of view was 176×240×256mm. B1-field mapping data was acquired (4 mm3 voxel size,
TR/TE = 500/39.1 ms) to correct RF transmit field inhomogeneity effects on the MTsat maps
(Lutti et al., 2010, 2012). For correction of image distortions in the B1 map data, B0-field map
data was acquired with a 2D double-echo FLASH, TR=1,020 ms, α=90 ◦ , TE1/TE2 = 10/12.46
ms, BW = 260 Hz/pixel, slice thickness = 2 mm.

2.3.3 Anatomical imaging processing

MTsat maps were calculated from the magnetization transfer-, proton density- and T1-weighted
images with the hMRI toolbox (Tabelow et al., 2019), as described in Helms et al. (2008b,a).
MTsat maps were segmented into grey and white matter tissue probability maps using the
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Statistical Parametric Mapping software (SPM12, Wellcome Centre for Human Neuroimaging,
London) (Ashburner and Friston, 2005). A grey matter mask was computed by selecting vox-
els with a grey matter probability above 0.95. As B0-field inhomogeneities affect transverse
relaxation, regions with inhomogeneous field (e.g. orbitofrontal cortex, inferior temporal lobe,
amygdala) were removed from the grey matter mask. Globus pallidus (GP), putamen, thalamus,
and caudate regions of interest (ROI) were defined from the grey matter mask and the regional
labels of the Neuromorphometrics atlas (http:// neuromorphometrics.com/). As no label exists
for the substantia nigra (SN), this region was delineated using an ad hoc procedure, from a
cuboid placed appropriately in the space of each MTsat map. Within this cuboid, SN voxels
were identified from the grey matter voxels labelled as brainstem and ventral diencephalon in
the Neuromorphometrics atlas.

2.3.4 Fitting of the transverse relaxation decay

Data were analyzed using bespoke analysis scripts written with MATLAB (The Mathworks,
Natick, MA). The gradient-echo data was denoised using the Marchenko Pastur-PCA method
described in (Does et al., 2019). The PCA decomposition of the signal decay was conducted
from the raw signals within the grey matter mask in cubic regions of 8x8x8 voxels. At each
voxel, we removed scaling and additive effects between the signal decays acquired across
repetitions, due to e.g. head motion in the spatially varying sensitivity profile of the receive coil.
To suppress the noise floor in the magnitude images, background voxels outside the head were
identified from the segmentation of the first gradient-echo image using SPM12 segmentation
(Ashburner and Friston, 2005). The distribution of signal intensities across noise voxels was
fitted assuming a Rician distribution and the resulting value of the noncentrality parameter was
deducted from the signal intensities.

Fitting of the transverse relaxation decay with the analytical models of Section 2.2.1 involved
the multi-echo data acquired across all repetitions simultaneously and was conducted using a
dictionary-based approach. The columns of the dictionary contained signal decays predicted
by all combinations of model parameter values. For all models, the R∗

2,micro ranged from 1e−3

to 80e−3 ms−1. The ⟨Ω2⟩ parameter ranged from 1e−4 to 4e−2 ms−2 for the Padé and AW
models and from 1e−4 to 8e−2 ms−2 for the SY model. R2,nano was set to 10 s−1 (Jensen and
Chandra, 2000; Sedlacik et al., 2014; Brammerloh et al., 2021). To facilitate the visualization of
the signal decays, both the data and dictionary columns were low-pass filtered prior to fitting,
with a Butterworth filter of order 5 and a cut-off frequency of 0.2 of the Nyquist rate. At each
voxel, fitting the multi-echo data involved estimating the value of S0 for each column of the
dictionary. The solution was the set of parameter values of the dictionary column where the
fitting residual was minimum.

The goodness of fit of each model was estimated from the mean squared error of the fit (MSE)
and the Akaike Information Criterion (AIC), which includes a penalty for model complexity.
Lower MSE and AIC values indicate a better model fit. Model parameter estimates for the five
regions of interest were extracted from all voxels and all subjects after the removal of the voxels
where MSE>10, indicative of spurious effects in the data such as physiological noise. We also
excluded voxels where the transition from gaussian to exponential behaviour took place over a
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timescale
R∗

2,micro

⟨Ω2⟩ <0.5 ms, too short to be robustly detectable.

2.3.5 Microscopic underpinnings of non-exponential decay

From the estimates of R∗
2,micro and ⟨Ω2⟩ at each voxel, we estimated the properties of the

magnetic deposits within brain tissue at the source of the non-exponential decay. Under the
assumption of the SDR, we estimated the magnetic susceptibility (∆χ) and volume fractions (ζ)
of the deposits (Eqs. 2.5 and 2.6a). From the values of R∗

2,micro, we also computed estimates of
the MRI magnetic susceptibility, usually computed using QSM techniques (Li and Leigh, 2004;
Schweser et al., 2011b; Deistung et al., 2017):

χMRI = ζ∆χ =
R∗

2,micro

1.2091
3γB0

(2.7)

Under the assumption of the DNR, the model parameters R∗
2,micro and ⟨Ω2⟩ depend on 3 prop-

erties of the magnetic deposits (∆χ, ζ, and τ ), which cannot be estimated from R∗
2,micro and

⟨Ω2⟩ alone. We estimated α and τ instead (Eqs. 2.5 and 2.6b).

We conducted non-parametric Kruskal-Wallis statistical tests of inter-regional differences in the
estimates of ∆χ and ζ obtained under the assumption of the SDR (kruskalwallis function in
Matlab). Post-hoc Tukey’s HSD tests were conducted subsequently to identify the pairs of
regions at the source of these differences (multcompare function in Matlab). To quantify the
magnitude of differences between regions, the effect size was computed using the cliff’s delta.
The AW model was used as an example for this statistical analysis.

2.4 Results

2.4.1 Non-exponential transverse decay in basal ganglia and thalamus

At short echo times (TE <5-10ms), transverse signal decay in the basal ganglia and thalamus
(Fig. 2.1) displays systematic deviations from exponential behaviour (green line in Fig. 2.1): the
log-signal exhibits a quadratic form, with a transition towards a linear dependence at long times.
This behaviour is consistent with the effect of magnetic deposits on the MRI signal predicted
by theoretical studies (Yablonskiy and Haacke, 1994; Jensen and Chandra, 2000; Sukstanskii
and Yablonskiy, 2003)

The non-exponential models of transverse relaxation (AW, SY, Padé) can account for the non-
exponential decay of the MRI signal at short times, leading to an improved fit of the data
(Fig. 2.2A). The residual levels are largely consistent across the non-exponential models (MSE
∼1.3), a factor of ∼3-4 smaller than the exponential model (Fig. 2.2B). The differences in the
values of the AIC (∼60, Fig. 2.2C) show that this residual decrease goes beyond that expected
from the higher number of parameters with non-exponential models.

The ratio of the MSE from the exponential fit over those from the non-exponential fits is higher
in subcortical regions (average ∼6) than in cortical grey matter (average ∼3, Fig.2.3). This
shows that non-exponential signal decays take place primarily in subcortical regions.
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Fig. 2.1. Example transverse relaxation decays in the basal ganglia and thalamus (semilog-scale). The
green line shows the exponential decay fit at long echo times (TE >10ms). At short echo times

(TE ∼<5ms), the data displays a quadratic decay consistent with the effect of magnetic deposits on the
MRI signal predicted by theoretical studies (Yablonskiy and Haacke, 1994; Jensen and Chandra, 2000;

Sukstanskii and Yablonskiy, 2003)

Fig. 2.2. Residual levels across signal models. Non-exponential models of transverse relaxation (e.g.
Padé) can account for the non-exponential decay at short times, leading to an improved fit of the data

(A). As a result, the residual levels (MSE) are reduced by ∼3-4 across subcortical regions, consistently
for all non-exponential models (B). This residual decrease leads to a decrease of the AIC by ∼60 -

beyond that expected from the higher number of parameters of non-exponential models (C).

Fig. 2.3. Example spatial distribution of the ratio of the MSE from the exponential fit over the Padé
signal model fit (A). The higher ratio values in subcortical regions (average ∼6) indicate that the

strongest deviations from exponential behaviour take place in these areas (B). L – left; A – anterior.

2.4.2 Estimates of the MRI signal model parameters

Non-exponential signal decays were reliably detected with
R∗

2,micro

⟨Ω2⟩ >0.5 ms in 88/83/88/84/87%
of voxels in the SN/GP/putamen/thalamus/caudate respectively. In these voxels, the non-
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exponential models (Padé, AW, SY) lead to estimates of R∗
2,micro that are respectively 37%,

30%, and 54% higher than the exponential model (Fig. 2.4A).

The estimates of R∗
2,micro and ⟨Ω2⟩ are spatially organised and are consistent between anatom-

ical regions (Fig. 2.4). The values of R∗
2,micro and ⟨Ω2⟩ are higher in the GP and the SN, consis-

tent with histological measures of iron concentration in brain tissue (Hallgren and Sourander,
1958) and with the expected dependence of these parameters on iron content (Eqs. 2.5 and
2.6).

Fig. 2.4. Non-exponential model parameter estimates. Estimates of R∗
2,micro (A) and ⟨Ω2⟩ (B) are

highest in the GP followed by the SN, in agreement with histological measures of iron concentration
(Hallgren and Sourander, 1958) and Eqs. 2.5 and 2.6. The example maps of R∗

2,micro and ⟨Ω2⟩ were
obtained from the AW model. L – left; A – anterior; Cau – caudate; Put – putamen; GP – globus

pallidus; Thal – thalamus; SN – substantia nigra.

The SY model yields systematically higher values of R∗
2,micro and ⟨Ω2⟩ than the AW and Padé

models (∼30-50%). This arises from the square-root term in the SY signal equation (Eq. 2.3),
which brings a slow modulation of the signal over the range of echo times. As a result, the decay
rate at very large echo times predicted by the SY model (R2(∞)) shows a steeper slope than
the one observable experimentally (Fig. 2.5). On the other hand, the AW model converges to
an exponential decay faster and the predicted decay rate at long echo times matches the slope
of the data. Results from the Padé and AW models are largely consistent.

2.4.3 Characterization of magnetic deposits within subcortical tissue

From the estimates of the MRI signal parameters R∗
2,micro and ⟨Ω2⟩, we characterized the prop-

erties of the magnetic deposits present within brain tissue, at the source of the non-exponential
decay. Under the assumption of the SDR, the estimates of R∗

2,micro and ⟨Ω2⟩ were used to
estimate the volume fraction (ζ) and magnetic susceptibility (∆χ) of the deposits (Eqs. 2.5 and
2.6a). Iron-rich regions such as the GP and SN display larger values of ζ (median value: 0.056
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Fig. 2.5. Example transverse relaxation decay and fit with the AW (solid blue line) and SY (solid yellow
line) models. Semi-log scale. The dashed lines correspond to the asymptotic behaviour of each model

in the long-time limit R2(∞). The slow convergence of the SY model towards an exponential decay
leads to systematic differences between R2(∞) and the decay rate observable experimentally.

and 0.044 from the AW signal model respectively, Fig. 2.6) followed by the putamen (0.038)
and caudate and thalamus (0.033). The SY model yields higher estimates of ζ due to the sys-
tematic differences in the R∗

2,micro and ⟨Ω2⟩ estimates highlighted above. The median of the
estimates of the magnetic susceptibility of the deposits (∆χ ranges from 1.2 to 2.7 ppm. They
are larger in the GP and SN (median ∆χ ∼2.0 ppm and 1.8 ppm respectively from the AW
signal model), followed by the putamen (∆χ ∼1.6 ppm) and caudate and thalamus (∆χ ∼1.4
ppm). Assuming that ferritin is the only source of magnetic material within the deposits, these
estimates of ∆χ indicate iron concentrations (Schenck, 1992) of ∼1.4, 1.5, 1.2, 1.1, and 1.1
mg/g in the SN, GP, putamen, thalamus and caudate, respectively, at a temperature of 310K
and assuming a brain tissue density ρ ∼1.05 g/cm3 (Barber et al., 1970).

The Kruskal-Wallis tests revealed statistically significant differences in ∆χ between at least two
ROIs (F(4, 69373) = [1154], p < 0.001). The Tukey’s HSD tests for multiple comparisons found
significant differences between ∆χ estimates from all ROIs (p<0.001) with small effect sizes,
except between the thalamus and caudate where no significance was found. The SN and GP
showed the strongest effect sizes (>0.14) compared to the remaining regions.

Similarly, the Kruskal-Wallis tests revealed statistically significant differences in ζ between at
least two ROIs (F(4, 69373) = [612], p < 0.001). Tukey’s HSD tests showed significant differ-
ences between the ζ estimates from the GP and those from the putamen, thalamus, and cau-
date with the largest effect size (>0.30). Other inter-regional differences (except those between
the thalamus and caudate) were found significant (p<0.01) with small effect sizes (<0.15).

Under the assumption of the DNR (Fig. 2.7), the estimates of R∗
2,micro and ⟨Ω2⟩ were used to

compute the value of the parameters τ and α (Eqs. 2.5 and 2.6b). The estimates of τ are larger
in the putamen, thalamus, and caudate (median ∼1.6 ms) than in the SN and GP (median ∼1.1
ms). A typical value of τ ∼1.5 ms suggests that the magnetic field inhomogeneities generated
by the deposits have a typical radius r∼3 µm, in the order of a typical cell size. The value of α is
similar across regions (median ∼0.11-0.16), consistent with the assumption of the DNR (α ≪
1).
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Fig. 2.6. Properties of the magnetic deposits present within brain tissue, estimated from the values of
R∗

2,micro and ⟨Ω2⟩ under the assumption of the SDR. The magnetic susceptibility of the deposits is
larger in the SN and GP (∆χ ∼2 ppm) compared to the remaining regions (∆χ ∼1.4 ppm). The GP

exhibits the largest volume fraction of deposits (ζ ∼0.06).

Fig. 2.7. Properties of the magnetic deposits present within brain tissue, estimated from the values of
R∗

2,micro and ⟨Ω2⟩ under the assumption of the DNR. The characteristic diffusion times τ are larger in
the putamen, thalamus, and caudate (∼1.6 ms) compared to SN and GP (∼1.1 ms). The

corresponding estimates of the radius of the magnetic field inhomogeneities generated by the deposits
(r ∼3 µm) are in the order of a typical cell size. α values are similar across regions (∼0.11-0.16) and

consistent with the assumption of the DNR.

Under the assumption of the SDR, estimates of the MRI magnetic susceptibility (χMRI ) were
computed from the estimates of ζ and ∆χ (Eq. 2.7). With the AW and Padé models, the χMRI

estimates are ∼0.11 ppm in the GP, ∼0.08 ppm in the SN, ∼0.06 ppm in the putamen, and
∼0.05 ppm in the thalamus and caudate (Fig. 2.8). The estimates of χMRI from the SY model
are systematically higher by ∼0.03 ppm. These values are consistent with susceptibility esti-
mates obtained from QSM techniques (Bilgic et al., 2012; Langkammer et al., 2012; Yablonskiy
et al., 2021).

Fig. 2.8. MRI magnetic susceptibility (χMRI = ∆χ · ζ ) computed under the assumption of the SDR.
The values of χMRI are consistent with estimates obtained using QSM techniques (Bilgic et al., 2012;

Langkammer et al., 2012; Yablonskiy et al., 2021)
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2.5 Discussion

Here we provide experimental evidence of non-exponential signal decay due to transverse re-
laxation in in vivo MRI data from subcortical regions. In agreement with theoretical studies,
signal decay follows a gaussian behaviour at short echo times with a transition to exponential
behaviour at long echo times. Models of the effect on the MRI signal of magnetic deposits
within brain tissue show an improved fit to the data compared to the widely used exponential
model. The strongest deviations from exponential behaviour were found in iron-rich areas, such
as the GP and SN. From the estimates of the model parameters, we estimated the properties
of the magnetic deposits at the source of the effect. The results are consistent with histological
studies of iron distribution within brain tissue and suggest that non-exponential signal decay
arises from spatially localized iron-rich cells.

2.5.1 Non-exponential transverse relaxation decay

The lack of evidence of non-exponential signal decay in subcortical regions has been attributed
to the short timescale of the transition between the gaussian and exponential behaviours, be-
low the range of achievable echo times (Yablonskiy et al., 2021). Here, we combined a dense
sampling of the decay curve with acquisition strategies that reduce the noise level in the data
(Castella et al., 2018; Raynaud et al., 2022) to collect reliable evidence of non-exponential
signal decay. Transverse relaxation decay exhibits a gaussian behaviour at short echo times
(TE <5 ms) with a transition towards exponential decay (Fig. 2.1). This behaviour was predom-
inantly observed in subcortical grey matter regions (Fig. 2.3) and is consistent with theoretical
models of the effect on the MRI signal of magnetic deposits within brain tissue (Anderson and
Weiss, 1953; Jensen and Chandra, 2000; Sukstanskii and Yablonskiy, 2003). These models
show improved fit to the data compared with the widely used exponential model (Fig. 2.2).
Amongst subcortical regions, the strongest non-exponential behaviours take place in the GP
and SN.

The higher values of R∗
2,micro and ⟨Ω2⟩ in the SN and GP (Fig. 2.4) are consistent with the

higher concentration of iron in these regions (Hallgren and Sourander, 1958; Haacke et al.,
2005; Langkammer et al., 2012; Krebs et al., 2014) and with the expected dependence of
these parameters on iron concentration (Eqs. 2.5 and 2.6). However, other magnetic mate-
rials such as myelin or blood vessels might also contribute, particularly in the thalamus due
to its comparatively high myelin and low iron concentrations (Hallgren and Sourander, 1958).
We considered three models of the MRI signal generated by brain tissue with magnetic de-
posits. All the models fitted the data equally well, with marginal differences between them (Fig.
2.2). Nonetheless, the SY model yields higher estimates of R∗

2,micro and ⟨Ω2⟩ compared to the
AW and Padé models. This results from the long transition from the gaussian to exponential
behaviours predicted by this model, due to the square-root term in Eq. 2.3. As a result, the ex-
ponential decay rate predicted by the SY model differs from the one observable experimentally
(Fig. 2.5).
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2.5.2 Characterization of magnetic deposits within subcortical tissue

From the estimates of the signal model parameters, we were able to estimate the properties
of the magnetic deposits embedded within brain tissue. This would not have been achievable
from the exponential end of the decay alone. This was conducted under the assumption of the
SDR (Fig. 2.6) and DNR (Fig. 2.7) for which different analytical expressions exist.

The estimates of the magnetic susceptibility of the magnetic deposits, obtained under the as-
sumption of the SDR, lie in the range ∆χ ∼1-3 ppm across subcortical regions and MRI signal
models. The ordering of the ∆χ estimates between subcortical values follows the ordering
of ex vivo measures of iron concentration within brain tissue (Hallgren and Sourander, 1958;
Haacke et al., 2005; Langkammer et al., 2012; Krebs et al., 2014). The estimates of ∆χ are
in good agreement with the magnetic susceptibility of iron-rich neuromelanin aggregates in the
SN (Brammerloh et al., 2021). Under the assumption that ferritin is the only magnetic material
within the tissue, these susceptibility estimates lead to estimates of iron concentration [Fe] ∼1-
2 mg/g within the deposits, well in line with the intra-cellular concentrations of iron known from
ex vivo studies (Friedrich et al., 2021). The estimates of the volume fraction of the deposits lie
in the range ζ ∼ 0.03-0.06 across subcortical regions and MRI signal models. The ordering
of the ζ estimates between subcortical values also follows the ordering of ex vivo measures
of iron concentration within brain tissue (Hallgren and Sourander, 1958; Haacke et al., 2005;
Langkammer et al., 2012; Krebs et al., 2014). The estimates of ζ are in broad agreement with
those calculated considering the distribution of iron at the cellular scale: ζcell =

[Fe]bulk
[Fe]cell

∼0.01,
with [Fe]bulk ∼0.02 mg/g (Hallgren and Sourander, 1958) and [Fe]cell ∼1.5 mg/g (Friedrich
et al., 2021). In addition, our ζ estimates are in line with the experimental volume fractions of
neuromelanin observed in the SN (Brammerloh et al., 2021). Overall, these results indicate
that the reported non-exponential signal decay arises from spatially localized clusters consis-
tent with iron-loaded cells, rather than individual ferritin complexes.

The consistency of the estimates of the properties of the magnetic deposits with ex vivo stud-
ies highlights the plausibility of the SDR as the regime underlying transverse relaxation decay
in subcortical grey matter. The estimates of MRI magnetic susceptibility, computed from the
properties of the deposits under the assumption of the SDR (χMRI = ζ∆χ, Fig. 2.8), are also
consistent with those obtained from QSM techniques (∼0.1 ppm, (Bilgic et al., 2012; Langkam-
mer et al., 2012; Yablonskiy et al., 2021).

Under the assumption of the DNR, the values of the signal decay parameters were used to
estimate the parameter τ , the decay time of the frequency auto-correlation of water molecules
diffusing through the inhomogeneous magnetic field generated by the deposits. The τ esti-
mates (∼1.5 ms) suggest a typical radius of ∼3 µm for the magnetic deposits. In agreement
with the SDR analysis, this finding suggests that cell-sized iron clusters are at the source of the
non-exponential decay. This estimate of r is also consistent with the cell-based definition of the
radius of magnetic deposits proposed by Taege et al. (2019) and with the value of r reported
in studies of excised human grey matter tissue (Jensen and Chandra, 2000). In particular, the
latter study also reported larger values of r in the putamen, thalamus, and caudate, compared
to the GP as observed here (Fig. 2.7). Under the DNR, the parameters ∆χ and ζ could not
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be estimated. Instead, we estimated the parameter α = τ
√

⟨Ω2⟩. The resulting estimates are
smaller than 1, suggesting that the time scale τ at which molecules diffuse is smaller than the
time scale of spin dephasing caused by magnetic material, consistently with the assumptions of
the DNR theory. However, the parameter α was computed from estimates of the mean square
frequency deviations averaged across a voxel ⟨Ω2⟩, rather than from the mean frequency gen-
erated by a single magnetic deposit δωs (⟨Ω2⟩ ∝ ζδωs

2). Estimation of α at the scale of the
deposits may lead to higher values inconsistent with the assumptions of the DNR.

The SDR has been proposed as a valid explanation for iron-induced transverse relaxation in
subcortical grey matter, due to the large differences between the relaxation rates in gradient-
echo and spin-echo data (Sedlacik et al., 2014; Brammerloh et al., 2021). However, studies
of the relationship between R∗

2 and magnetic susceptibility suggest that the contribution of iron
to relaxation in the basal ganglia can be described under the DNR, provided that iron is ag-
gregated in clusters with ∼100 nm radius (Shin et al., 2021; Yablonskiy et al., 2021). The
most plausible scenario is that transverse relaxation is the result of a combination of both
regimes. Therefore, models that describe the relaxation process without relying on these as-
sumptions may allow a more accurate characterization of the magnetic deposits at the source of
non-exponential transverse relaxation in subcortical brain regions (Jensen and Chandra, 1999;
Bauer and Nadler, 2002; Ziener et al., 2005).

2.6 Conclusions

In this study, we provided experimental evidence of non-exponential transverse relaxation from
in vivo gradient-echo MRI data in subcortical brain regions at 3T. The behaviour of the decay
is consistent with the effect of magnetic deposits on the MRI signal predicted by theoretical
studies. These theoretical models of the MRI signal yield improved fit with experimental data
compared to the widely used exponential model. The larger deviations from exponential de-
cay were observed in iron-rich subcortical regions (substantia nigra, globus pallidus). From the
estimates of the signal decay parameters, we characterized the distribution of the magnetic
deposits within brain tissue at the source of the non-exponential decay. Our estimates are con-
sistent with ex vivo studies of iron distribution within brain tissue and suggest that the observed
non-exponential signal decay arises from spatially localized iron-rich cells.

Non-exponential decay of the MRI signal due to transverse relaxation allows the characteriza-
tion of iron-rich deposits within subcortical structures from in vivo MRI data and opens new
avenues for the study of iron-related brain changes in neurodegenerative diseases.
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Chapter 3

Summary of the Results

The research carried out during my PhD involved two main projects and has resulted in two
published peer-reviewed papers and an additional draft manuscript.

As part of the first project, the two published papers focused on the characterization of the
morphological features of neuronal axons (see Appendix). As part of the second project, the
third manuscript focused on the characterization of magnetic deposits, in particular iron, within
the brain tissue (Chapter 2).

Here, the main results from the two published articles (section 3.1.1 and 3.1.2) and the third
draft manuscript (section 3.2) are presented as well as a description of my individual contribu-
tions to each of the three scientific communications.

3.1 Characterization of axonal morphology in white matter tracts

To characterize the morphological features of axons composing white matter, we developed a
novel biophysical model for the simultaneous estimation of the axonal radius and relative myelin
thickness using EEG and MRI data (Fig. 3.1).

The MRI data consisted of the MRI g-ratio (section 1.4), a measure of myelin thickness, sam-
pled along a white matter fibre tract (Fig. 3.1, left panel). The MRI g-ratio maps (Stikov et al.,
2015) were computed using the NODDI model (Zhang et al., 2012) and MTsat maps (Helms
et al., 2008a,b). EEG is used to estimate axonal conduction velocity along the visual transcal-
losal white matter tract (Fig. 3.1, left panel). For this purpose, we applied the well-established
Poffenberger’s paradigm to estimate the visual IHTT (section 1.5). The basis for IHTT esti-
mation using this paradigm is that lateralized visual stimuli induce an activity increase in the
contralateral hemisphere prior to the ipsilateral hemisphere. Therefore, IHTT can be estimated
as the latency difference between the maximal neuronal activity (obtained using EEG source
reconstruction techniques) at two homologous visual cortical regions. Finally, conduction ve-
locities can be estimated by dividing the tract length by the IHTT.

From the acquired data we estimate the axonal radius distribution – P (r) – and the axonal
g-ratio – g(r) (Fig. 3.1, right panel). P (r) is defined as a gamma distribution with mode M
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and scale θ. M represents the mode/peak of the axonal radius distribution. By construction, an
increased value of θ indicates a broader spread of P (r) into large radius values. g(r) is given by
a power-law with parameters α, representing the slope of the radius dependence of the axonal
g-ratio, and β is a scaling factor. In this work, from this set of 4 model parameters, parameters
α and M were fixed and θ and β were estimated with the model.

Fig. 3.1. Proposed approach for estimating morphological features of axons in vivo. The in vivo data
(left panel) consists of i) the MRI g-ratio (a measure of relative myelin thickness), sampled along a
white matter fibre tract; ii) the conduction velocity of the axons in the same tract, estimated using

EEG-based measures of IHTT. From the acquired data we estimate the axonal radius distribution P (r)
and the axonal g-ratio g(r) (right panel). P (r) is defined as a gamma distribution with mode M and

scale θ. g(r) is given by a power-law with parameters α and β.

In the first stage of this project, the estimation of the IHTT was obtained from EEG data av-
eraged across a group of 14 subjects. From the group-averaged IHTT and the individual-
measured MRI g-ratio, we used the proposed model to estimate the morphological features of
the axons for each participant. The estimates of axonal radius distribution and fibre myelination
are consistent with previous literature values obtained from ex vivo histological studies of brain
tissue. These results are presented in the first article (section 3.1.1).

Attempting to refine our proposed approach, in the second stage of this project, rather than
using a group-average IHTT measure, we proposed a framework for obtaining subject-specific
estimates of IHTT from EEG data. We successfully demonstrated the feasibility of this approach
in a cohort of 14 volunteers, with the morphological estimates agreeing with literature values.
The corresponding results can be found in the second article (section 3.1.2).
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3.1.1 In vivo Estimation of Axonal Morphology From Magnetic Resonance Imag-
ing and Electroencephalography Data

The first scientific article published on this work is entitled “In vivo Estimation of Axonal Mor-
phology From Magnetic Resonance Imaging and Electroencephalography Data”. It was pub-
lished in Frontiers in Neuroscience in the issue of April 2022, with authors Rita Oliveira, Andria
Pelentritou, Giulia Di Domenicantonio, Marzia De Lucia, and Antoine Lutti, all from the Labora-
tory for Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University
Hospital and University of Lausanne, Lausanne, Switzerland.

As the first author, I actively participated in the development of the model and wrote the nec-
essary code for its implementation. In addition, I led and conducted the MRI/EEG experiment,
and was responsible for data analysis. Finally, I wrote the manuscript describing this work and
was responsible for any revision and editing requirements.

The abstract of this article (Oliveira et al., 2022) is given below:

Purpose: We present a novel approach that allows the estimation of morphological features
of axonal fibers from data acquired in vivo in humans. This approach allows the assessment
of white matter microscopic properties non-invasively with improved specificity.

Theory: The proposed approach is based on a biophysical model of Magnetic Resonance
Imaging (MRI) data and of axonal conduction velocity estimates obtained with Electroen-
cephalography (EEG). In a white matter tract of interest, these data depend on 1) the dis-
tribution of axonal radius – P (r) – and 2) the g-ratio of the individual axons that compose
this tract - g(r). P (r) is assumed to follow a Gamma distribution with mode and scale
parameters, M and θ, and g(r) is described by a power law with parameters α and β.

Theory: The proposed approach is based on a biophysical model of Magnetic Resonance
Imaging (MRI) data and of axonal conduction velocity estimates obtained with Electroen-
cephalography (EEG). In a white matter tract of interest, these data depend on 1) the dis-
tribution of axonal radius – P (r) - and 2) the g-ratio of the individual axons that compose
this tract - g(r). P (r) is assumed to follow a Gamma distribution with mode and scale
parameters, M and θ, and g(r) is described by a power law with parameters α and β.

Methods: MRI and EEG data were recorded from 14 healthy volunteers. MRI data were
collected with a 3T scanner. MRI-measured g-ratio maps were computed and sampled
along the visual transcallosal tract. EEG data were recorded using a 128-lead system with
a visual Poffenberg paradigm. The interhemispheric transfer time and axonal conduction
velocity were computed from the EEG current density at the group level. Using the MRI and
EEG measures and the proposed model, we estimated morphological properties of axons
in the visual transcallosal tract.

Results: The estimated interhemispheric transfer time was 11.72±2.87 ms, leading to an
average conduction velocity across subjects of 13.22±1.18 m/s. Out of the 4 free parame-
ters of the proposed model, we estimated θ - the width of the right tail of the axonal radius
distribution and β - the scaling factor of the axonal g-ratio, a measure of fiber myelination.
Across subjects, the parameter θ was 0.40±0.07 µm and the parameter β was 0.67±0.02
µm−α.

Conclusions: The estimates of axonal radius and myelination are consistent with histolog-
ical findings, illustrating the feasibility of this approach. The proposed method allows the

33



measurement of the distribution of axonal radius and myelination within a white matter tract,
opening new avenues for the combined study of brain structure and function, and for in vivo
histological studies of the human brain.

As part of this publication and to foster open science principles, data analysis custom scripts
and the processed data associated with this work are publicly available, at:

• https://github.com/rita-o/AxonalMorphology

• https://doi.org/10.5281/zenodo.6027335

3.1.2 Single-subject electroencephalography measurement of interhemispheric
transfer-time for the in vivo estimation of axonal morphology

The second scientific article entitled “Single-subject electroencephalography measurement of
interhemispheric transfer-time for the in vivo estimation of axonal morphology” was published
in Human Brain Mapping in July 2023 by Rita Oliveira, Marzia De Lucia, and Antoine Lutti,
the two last authors contributed equally to this work. All authors are from the Laboratory for
Research in Neuroimaging, Department of Clinical Neuroscience, Lausanne University Hospital
and University of Lausanne, Lausanne, Switzerland.

As the first author, I was responsible for the acquisition of a second EEG in a subset of the
participants from the first study. I devised and conducted the analyses described in the paper.
In addition, I wrote the first draft of the manuscript and revised it during the editing and revision
processes.

The abstract of this scientific article (Oliveira et al., 2023) is given below:

Assessing axonal morphology in vivo opens new avenues for the combined study of brain
structure and function. A novel approach has recently been introduced to estimate the
morphology of axonal fibres from the combination of MRI data and EEG measures of the
interhemispheric transfer time (IHTT). In the original study, the IHTT measures were com-
puted from EEG data averaged across a group, leading to bias of the axonal morphology
estimates.

Here, we seek to estimate axonal morphology from individual measures of IHTT, obtained
from EEG data acquired with a visual evoked potential experiment. Subject-specific IHTTs
are computed in a data-driven framework with minimal a priori constraints, based on the
maximal peak of neural responses to visual stimuli within periods of statistically significant
evoked activity in the inverse solution space.

The subject-specific IHTT estimates ranged from 8 to 29 ms except for one participant and
the between-session variability was comparable to between-subject variability. The mean
radius of the axonal radius distribution, computed from the IHTT estimates and the MRI
data, ranged from 0 to 1.09 µm across subjects. The change in axonal g-ratio with axonal
radius ranged from 0.62 to 0.81 µm−α.

The single-subject measurement of the IHTT yields estimates of axonal morphology that
are consistent with histological values. However, improvement of the repeatability of the
IHTT estimates is required to improve the specificity of the single-subject axonal morphol-
ogy estimates.
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Custom code and processed data that enable the replication of these results can be found at:

• https://github.com/rita-o/SingleSubjectIHTTEstimation

• https://doi.org/10.5281/zenodo.7446009

3.2 Characterization of magnetic deposits in subcortical tissue

The second project of this PhD aimed at characterizing the distribution of iron deposits within
subcortical tissue. To achieve this goal, we examined the decay of the MRI signal caused by
transverse relaxation. This signal decay is commonly taken to follow an exponential decay
with a rate R∗

2 (Weiskopf et al., 2014). However, when magnetic material (e.g. iron-loaded
cells, myelin, or blood vessels) is present within the tissue, the signal decay due to transverse
relaxation deviates from an exponential function (Haacke et al., 2005; Kiselev and Novikov,
2018). According to theoretical studies, it instead follows a Gaussian behaviour at short echo
times (dependent on parameter ⟨Ω2⟩) and an exponential decay at long echo times (with rate
R∗

2) (Yablonskiy and Haacke, 1994; Jensen and Chandra, 2000; Kiselev and Novikov, 2002,
2018; Sukstanskii and Yablonskiy, 2003).

With this theoretical approach in mind, we fitted the signal decay in subcortical grey matter with
existing theoretical models of the effect of magnetic deposits within brain tissue on the MRI
signal. From the model parameter estimates of the Gaussian (⟨Ω2⟩) and exponential (R∗

2) parts
of the signal decay (Fig. 3.2, left panel), we estimated properties of the magnetic deposits at
the source of the non-exponential decay. Under the assumption of the SDR, one of the limiting
regimes that can be used to explain transverse relaxation in environments containing magnetic
material (Chapter 2), these properties are the volume fraction occupied by the magnetic de-
posits (ζ) and the magnetic susceptibility (χ) of such deposits (Fig. 3.2, right panel). The latter
is directly proportional to the concentration of magnetic material within the deposits. Under the
assumption of the other limiting regime, DNR, the volume fraction ζ and the magnetic suscepti-
bility χ of the deposits cannot be independently estimated. Instead, the radius r of the magnetic
deposits can be deduced under this regime.

As part of this work, we provided, for the first time, experimental evidence of non-exponential
transverse relaxation in subcortical grey matter. Models of the effect of magnetic deposits on
the MRI signal showed an improved fit to the data compared to the commonly assumed expo-
nential model. The strongest deviations from exponential behaviour, indicative of the presence
of a large amount of magnetic material, were observed in the GP and SN. These results are
consistent with the high iron concentrations observed histologically in these regions (Hallgren
and Sourander, 1958). Under the assumption of the SDR, the estimated volume fraction and
magnetic susceptibility within the magnetic deposits were consistent with ex vivo studies and
point to the fact that the measured magnetic deposits were mainly iron-rich cells. Under the as-
sumption of the DNR, the estimated radius r of the deposits was also consistent with a typical
cell size and in agreement with the SDR results.
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Fig. 3.2. Proposed approach for the characterization of magnetic deposits within subcortical tissue.
The MRI signal decay due to transverse relaxation in tissues containing magnetic material follows a

non-exponential behaviour. We fitted the signal decay with theoretical models of the effect of magnetic
deposits within brain tissue on the MRI signal (left panel). From the model parameter estimates of the

Gaussian (⟨Ω2⟩) and exponential (R∗
2) parts of the signal decay, we calculated the magnetic

susceptibility of magnetic deposits (χ) and the fraction of the voxel occupied by such deposits (ζ) (right
panel). χ is proportional to the concentration of magnetic material within the deposits. In subcortical
grey matter, the region analyzed in this thesis, the magnetic deposits can be assumed to be formed

primarily by iron (Hallgren and Sourander, 1958), and therefore, χ is proportional to the concentration
of iron within the deposits. L - left, A - anterior, SN - substantia nigra, Cau - caudade, Put - putamen,

GP - globus pallidus, Thal - thalamus.

The third manuscript entitled: ”Non-exponential transverse relaxation in subcortical brain re-
gions” is the collective effort of Rita Oliveira1, Quentin Raynaud1, Valerij Kiselev2, Ileana Jelescu3

and Antoine Lutti1 from 1Laboratory for Research in Neuroimaging, Department of Clinical
Neuroscience, Lausanne University Hospital and University of Lausanne, Lausanne, Switzer-
land; 2Medical Physics, Department of Radiology, Faculty of Medicine, University of Freiburg,
Freiburg, Germany; 3Department of Radiology, Lausanne University Hospital (CHUV) and Uni-
versity of Lausanne, Lausanne, Switzerland.

For the third scientific article, I joined an ongoing project, as part of which the data was already
acquired and the majority of the code for the analysis was written. I was involved in a refinement
of the methodology and the analysis code. In addition, I analyzed the data and drafted the
manuscript for this work. Code and Data will become publicly available upon publication to
allow for the replication of the findings.
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Chapter 4

Discussion

This PhD work aimed at the characterization of brain tissue microstructure from in vivo data
and was conducted in two distinct projects.

First, we focused on the characterization of the morphological features of neuronal axons in the
visual transcallosal white matter tract (Fig. 1.1A). For this purpose, we developed a novel bio-
physical model for the simultaneous estimation of axonal radius and relative myelin thickness.
This was achieved by the combination of MRI-based g-ratio measurements and EEG-based
measures of axonal conduction velocity computed from estimates of the IHTT. In our first study,
IHTT was estimated from EEG data averaged across a group of subjects. In our second study,
we refined our approach by estimating IHTT at the single-subject level for a subject-specific
estimation of axonal morphological features.

Second, we characterized the deposits of magnetic material within subcortical tissue (Fig.
1.1B). To this end, we applied existing biophysical models of the effect of magnetic deposits
on the MRI signal due to transverse relaxation. This allowed for the computation of measures
such as the volume fraction and magnetic susceptibility of the magnetic deposits, which, in
subcortical regions, consist predominantly of iron.

The key contributions and the potential clinical translation of the proposed approaches in the
first (section 4.1) and second (section 4.2) project are discussed in this chapter. In addition, the
limitations and future applications are also addressed.

37



4.1 Characterization of axonal morphology in white matter tracts

4.1.1 Estimation of conduction velocity in vivo

The estimation of axonal morphological features involved the acquisition of MRI-based g-ratio
maps and EEG-based measures of axonal conduction velocity via the estimation of the IHTT
(Fig. 3.1). While the computation of the MRI g-ratio is relatively straightforward, the latter
involved the proposal of a novel approach for subject-specific EEG-based estimation of the
IHTT. Hence, prior to addressing the general contributions of our axonal morphology model, in
this section, the advantages and limitations of this approach for IHTT estimation are discussed.

In estimating the IHTT, our proposed methodology was free from the ad hoc selection of elec-
trodes and of the evoked response component, as we estimate the neural origins of the mea-
sured activity from EEG scalp electrodes with minimal a priori constraints using source recon-
struction techniques. Conduction delays were estimated based on the difference in latency of
the maximal peak of neural response to visual stimuli between two homologous cortical re-
gions. Moreover, an additional advantage of our approach compared to previous reports is that
it allows for the estimation of subject-specific IHTT.

Across the 14 subjects analyzed, the estimated subject-specific visual IHTT ranged from 8
to 29 ms; one participant exhibited an implausible negative IHTT. The obtained IHTT values
were consistent with the limited studies estimating subject-specific IHTT from evoked activity at
electrode-level (Chaumillon et al., 2018; Friedrich et al., 2017; Westerhausen et al., 2006). Our
IHTT estimates are also consistent with the delays estimated using intracranial recordings from
whole-brain cortical–cortical connections (Lemarechal et al., 2022). Importantly, our results
suggest a subject-specific neuronal response to visual stimuli and therefore, indicate that the
main challenge in IHTT estimation lies in the definition of a robust metric to extract the IHTT
from the EEG data across subjects in a consistent manner while minimizing assumptions. In
our case, these assumptions included the search time window and the definition of maximal
activity within the visually evoked responses of interest.

The challenge of IHTT estimation at the single-subject level has been observed in numerous
studies. In particular, inconsistent IHTT values across participants, and, similar to our results,
even negative IHTTs have been reported (e.g. Saron and Davidson, 1989; Marzi et al., 1991;
Westerhausen et al., 2006; Friederici et al., 2007). The inconsistent findings across participants
in our study may be explained by differences in brain morphology (Saron and Foxe, 2003) and
inaccuracies in the source estimation algorithms. The localization of the neuronal generators
of scalp-measured EEG activity in deep cortical fissures and the unique characteristics of each
individual’s cortical anatomy can make source reconstruction in the visual cortex challenging
(Creel, 2012). This is of particular relevance when single-subject analysis is considered as was
the case in our second study, due to the lower signal-to-noise ratio. In this context, exploring
the impact of different source reconstruction techniques on IHTT estimation can in turn improve
the calculation of conduction velocity using EEG measures (Plomp et al., 2010; Mahjoory et al.,
2017). An alternative solution for the estimation of conduction velocities in vivo is through
different neuroimaging techniques, such as Transcranial Magnetic Stimulation (Lo and Fook-
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Chong, 2004; Spitzer et al., 2004; Basso et al., 2006; Deftereos et al., 2008; Marzi et al., 2009).

Beyond improved neuroimaging methodologies, more advanced models such as the ones pro-
posed in Sorrentino et al. (2021) and Deslauriers-Gauthier and Deriche (2019) could also be
considered for the estimation of conduction velocities in vivo (section 1.5). However, contrary
to our proposed approach, these models require a high number of parameters and a priori
assumptions.

4.1.2 Key contributions

A major asset of our proposed model is that it enables the simultaneous estimation of two
morphological properties of the neuronal axons (the axon radius and the fibre relative myelin
thickness). This allows for a more comprehensive assessment of the microstructural properties
of white matter tracts.

To demonstrate the viability of our proposed axonal morphology model, we estimated the ax-
onal radius distribution P (r) and the axonal g-ratio dependence on the radius g(r) in the visual
transcallosal white matter tract for a cohort of 14 volunteers (Fig. 3.1), from single-subject
IHTT and MRI-ratio data. The estimated mean axon radius ranged from 0 to 1.09 µm across
subjects. The mean value across subjects was 0.53 µm, in line with previous estimates from
histological studies, reporting ∼0.62 µm in the visual cortex of human tissue (Caminiti et al.,
2009). Moreover, in our study, axons above 2.50 µm represented <0.04% of the total fibre
count. This result was also consistent with the histology literature, wherein maximum axonal
radius was commonly reported to be between ∼1.50–3.00 µm in human brain tissue (Aboitiz
et al., 1992; Caminiti et al., 2009; Liewald et al., 2014). The reduced overestimation of the axon
radius compared to histology stems from the explicit relationship between the MRI/EEG data
and the underlying histological properties of brain tissue (P (r) and g(r)). This is an advantage
of our technique compared to diffusion-based methods that rely only on fitting the radius to the
measured signal, which can even be heavily influenced by the extra-axonal geometry, and thus
fail to accurately reflect the true axonal radius ((Burcaw et al., 2015; Lee et al., 2018), section
1.3.3).

Although only the mean of the axon radius distribution is reported above, it is important to
highlight that our proposed model is specifically tailored to the estimation of the whole distribu-
tion of axonal radii rather than a single summary index, which is not achieved by many other
approaches ((e.g. Alexander et al., 2010), section 1.3.2).

The other axonal feature estimated with our approach (Fig. 3.1) is the axonal g-ratio, a mea-
sure of relative myelin thickness. Specifically, with our model we estimate the axonal g-ratio
parameter β, a scaling factor that equally contributes to axons of all sizes. A large β implies an
overall larger amount of myelin wrapped around the axons. In our results, β ranged from 0.62
to 0.81 µm−α. Despite this parameter not being directly comparable to other in vivo literature,
our estimated g(r) was consistent with histological measures of the axonal g-ratio in the sple-
nium of the corpus callosum (Jung et al., 2018). The successful estimation of g(r) in our study
offers an important contribution to the field as this measure remains largely unresolved in the
literature and has not yet been integrated into any specific tissue model, unlike here.
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Beyond the estimated measures, our proposed axon morphology model offers several technical
advantages compared to other existing methods (section 1.3.2). First, it requires a low MRI
scan time (<1 hour), making it more time-efficient compared to some of the other state-of-the-
art models (e.g. Benjamini et al., 2014; Alexander et al., 2010). Second, unlike other models
(e.g. Assaf et al., 2008; Fan et al., 2020), our approach eliminates the need for high gradient
strength, making it compatible with clinical MRI recordings.

4.1.3 Limitations

Despite the valuable insights obtained from our work, it is essential to acknowledge some limita-
tions that may impact the future use of our axonal morphological estimates as brain biomarkers.

First, our approach for the estimation of axonal morphological features requires the acquisition
of a structural measure of white matter (MRI-based g-ratio) and a measure of brain function
(EEG-based axonal conduction velocity). While the MRI acquisition is simple and could be
easily applied in clinics, the EEG acquisition involves a more complex experimental procedure
with fairly long acquisition times (∼ 2.5 hours), making it difficult to use in a clinical setting.

Second, the validity of the model assumptions in the context of pathological conditions is yet to
be determined. In particular, the peak of the axonal radius distribution M was fixed across white
matter tracts and individuals, as suggested by previous studies (Tomasi et al., 2012; Liewald
et al., 2014). However, this assumption may not hold true in neurological disorders where axons
are impacted differently depending on their size (section 1.3.1).

Third, the proposed approach has not been applied to the entire brain; being limited to the
visual transcallosal tract, where conduction velocity estimation was possible. Moreover, the
estimation of this conduction velocity relied on the IHTT. Although the estimated IHTT aligns
with existing literature, the underlying mechanisms and anatomical pathways involved in the
neuronal transfer of information using the Poffenberger paradigm are still not clear, and further
investigation is needed.

Fourth, our method does not explicitly model orientation dispersions or crossing fibres, contrary
to other state-of-the-art methods (e.g. Zhang et al., 2011b,a). Instead, our estimation of axon
morphology is performed at the single tract level, which implies that all voxels of the tract under
consideration are used when calculating gMRI values, including voxels with crossing fibres or
orientation dispersions.

Finally, despite an agreement with the histological literature, our axonal morphological esti-
mates showed a high level of variability mainly attributed to the estimation of the IHTT at the
single-subject level. Increasing the reproducibility of the IHTT estimates is necessary to im-
prove the specificity of the axonal estimates at the individual level and their subsequent use as
brain biomarkers.

4.1.4 Future applications

In this work, we focused on the morphological assessment of axons only within the visual
transcallosal tract, as axonal conduction velocities are challenging to estimate in all white matter
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tracts. An alternative approach that overcomes the need for conduction velocity, allowing for the
morphological characterization of white matter tracts throughout the entire brain, is to, instead
of estimating both P (r) and g(r) from MRI and EEG data, compute only P (r) from the MRI data
(Fig. 3.1). To accomplish this, one could assume that the axonal g-ratio dependence on the
radius (g(r)) is the same all over the brain. This assumption implies that axons of equivalent
calibres in different tracts would be composed of equal amounts of myelin. To find g(r) in vivo,
one could use the visual transcallosal tract as a calibration step, wherein its scaling factor β is
estimated using both MRI and EEG data (as performed in this thesis). Once β is determined,
its value can be fixed and P (r) can then be estimated in other white matter tracts from the MRI
data alone. Despite promising preliminary results (Fig. 4.1), validation of the assumption of a
constant β across tracts is essential for future analysis.

Fig. 4.1. Future applications of the proposed axonal morphology model. Axonal radius distribution can
be estimated for different white matter tracts by assuming a constant axonal g-ratio dependence on the

radius g(r) across tracts. g(r) was estimated in vivo in the visual transcallosal tract from conduction
velocity estimates obtained using group-averaged EEG data. P (r) was then estimated for the motor
and anterior frontal transcallosal tracts from MRI data alone, by assuming the same g(r) as in the

visual tract. Visual (0.40 µm) and motor (0.44 µm) transcallosal tracts have a larger θ compared to the
frontal tract (0.20 µm); a larger θ indicates a broader spread of the distribution into larger radii.

(Unpublished results presented in a conference abstract at OHBM 2022).

Although the previous proposal bypasses the need for conduction velocities to be acquired
in vivo, the ideal case would be to actually have conduction velocities estimated in vivo for
several white matter tracts. Having structural (P (r) and g(r)) and functional (velocity) measures
acquired in the same white matter tract would allow for the investigation of the relationship
between structure and function across cortical brain regions. Moreover, the in vivo estimation
of both axonal radius distribution (P (r)) and axonal g-ratio dependence on the radius (g(r))
in several white matter tracts would offer novel insights into the structural organization of the
different brain regions. For example, it could validate or refute the assumption of constant
axonal g-ratio dependence on the radius across tracts mentioned in the previous paragraph.
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4.2 Characterization of magnetic deposits in subcortical tissue

4.2.1 Key contributions

To accomplish the characterization of iron deposits within subcortical brain tissue, it was nec-
essary to identify first the non-exponential behaviour of the transverse relaxation signal decay
caused by the iron deposits (Fig. 3.2). In this work, that was made possible through the dense
sampling of the transverse decay and the implementation of acquisition strategies that reduce
the noise level in the data. With this experimental set-up, we were able to provide in vivo ev-
idence in humans for non-exponential MRI signal decay due to transverse relaxation in brain
regions containing magnetic content, such as subcortical grey matter. To the best of our knowl-
edge, this is the first account of the detection of non-exponential signal decay in subcortical
brain tissue in vivo.

The non-exponential decay was observed across the 5 subjects analyzed and consisted of a
gaussian-like behaviour at short echo times (< 5-10 ms) followed by a transition toward ex-
ponential decay at longer echo times (> 5-10 ms), in agreement with theoretical models that
account for the effect of magnetic deposits on the MRI signal decay (Jensen and Chandra,
2000; Sukstanskii and Yablonskiy, 2003; Anderson and Weiss, 1953). Beyond this agreement,
the use of these theoretical models offered an improved fit to in vivo MRI data compared to
the commonly assumed exponential model. Furthermore, the strongest deviations from expo-
nential behaviour were observed in the GP and SN, which is consistent with the known higher
concentration of iron within these regions (Hallgren and Sourander, 1958).

The detection of the non-exponential behaviour of the signal decay allows the subsequent cal-
culation of properties specific to the magnetic deposits at the source of that behaviour, including
the volume fraction ζ and magnetic susceptibility χ of the deposits under the assumption of the
SDR and the radius of the deposits r under the DNR (see Chapter 2 for SDR and DNR defini-
tions).

Under the assumption of SDR, iron-rich regions such as the GP and SN showed the largest
value of ζ (∼0.04 to 0.06), compared to the putamen, caudate and thalamus (∼0.03 to 0.04).
Our ζ estimates were in the same order of magnitude as the experimental volume fractions of
neuromelanin obtained in the SN (Brammerloh et al., 2021). The magnetic susceptibility χ was
also shown to be larger in the SN and GP (χ ∼ 2 ppm) compared to the remaining regions
(χ ∼ 1.4 ppm). Our χ estimates fall in the same range as the intracellular susceptibilities
of neuromelanin estimated in the SN (Brammerloh et al., 2021). From the χ estimates one
can calculate the concentration of iron within the iron deposits. Although several iron-carrying
complexes, such as hemosiderin, neuromelanin, and transferrin, are also present in the brain
(Möller et al., 2019), here, for the sake of simplicity, we consider ferritin as the exclusive source
of magnetic material within iron deposits. This leads to iron concentrations of ∼1.6, 1.8, 1.3,
1.1, and 1.1 mg/g in the SN, GP, putamen, thalamus, and caudate, respectively, in line with
intra-cellular iron concentrations reported in the literature (Friedrich et al., 2021). Under the
assumption of the DNR, the typical radius r of the magnetic deposits is ∼ 3 µm, in the order of
a typical cell size and in agreement with the SDR analysis.
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In summary, our results are consistent with ex vivo studies and suggest that non-exponential
signal decay arises from spatially localized magnetic deposits consistent with iron-loaded cells.
We were able to estimate the magnetic susceptibility within these iron deposits as well as their
volume fraction. Our provided measures offer a higher degree of specificity to iron deposits
compared to many current approaches that primarily rely on voxel-averaged measures to char-
acterize iron content (section 1.6).

Of additional importance, the proposed approach also has technical advantages. It requires
short MRI acquisition times (<20 minutes) and it uses a clinical 3T MRI scanner, making it
easily adaptable to clinical settings.

4.2.2 Limitations and applications

Despite the noteworthy advantages of our model, there are several limitations to consider.
First, this approach requires a minimized level of noise in the data in order to capture small
non-exponential effects. To achieve this, during MRI acquisition we mitigate image degradation
due to patient motion (Zaitsev et al., 2006; Maclaren et al., 2012) and cardiac-induced noise
(Raynaud et al., 2022). These corrections involve the use of a motion correction camera and the
acquisition of pulse oximetry data, which introduces further technical challenges and potentially
limits the widespread implementation of this approach, in research and in clinics.

A second limitation to note is that our approach does not allow for a distinction to be made
between iron and myelin content. Indeed, the microstructural estimates obtained herein can be
the consequence of any magnetic material, such as iron, myelin or blood vessels. Nonetheless,
it is reasonable to hypothesize that within subcortical grey matter, the region of interest of this
study, the primary source of magnetic material is iron-rich cells (Hallgren and Sourander, 1958).

Another important limitation of this approach is that the volume fraction ζ and magnetic suscep-
tibility of the magnetic material χ can only be estimated independently if the SDR is assumed
(Chapter 2). Thus, care must be taken before the application of this approach in other brain
regions, where the SDR assumption may not hold. Under the assumption of the other limiting
regime, DNR, the fitted parameters (< Ω2 > and R∗

2) depend on 3 tissue features of iron de-
posits: volume fraction ζ, magnetic susceptibility χ and diffusion time τ (or radius r). Therefore,
unlike under the assumption of SDR, ζ and χ cannot be disentangled from the two fitted pa-
rameters only. This limitation could be addressed by incorporating QSM maps into this model
as magnetic susceptibilities measured with QSM (χMRI ) depend on our parameters ζ and χ

(χMRI = ζχ, see Chapter 2). This extra data point would therefore enable the independent
estimation of magnetic susceptibility and volume fraction under the assumption of DNR. This
model enhancement would also enable an improved assessment of the validity of the two lim-
iting regimes (SDR and DNR) in subcortical grey matter. This assessment would be achieved
by comparing the plausibility of the ζ and χ estimates obtained under each regime with ex vivo
literature.

Rather than using models that assume one of the limiting regimes (SDR or DNR) to describe
the transverse relaxation as we did here, one could use models that describe the relaxation
process for all diffusion regimes, thereby not relying on the assumptions made under the SDR
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or the DNR (e.g. Jensen and Chandra, 1999; Bauer and Nadler, 2002; Ziener et al., 2005).
Ultimately, such models may allow for more accurate characterization of the magnetic deposits
at the source of non-exponential transverse relaxation in subcortical brain regions.

Finally, this approach is of particular relevance in the context of clinical research. One note-
worthy example is its potential application in the study of neurodegenerative disorders such as
Parkinson’s disease, where pathological iron accumulation is at play (Thompson et al., 2001;
Zecca et al., 2004; Hare et al., 2013). The measurement of magnetic susceptibility within iron
deposits and their volume fraction, as offered by our approach, can improve our understand-
ing of the iron-related mechanisms underlying this disease. For instance, one can address
whether iron accumulation in Parkinson’s is a consequence of increased iron content within
cells or a higher number of iron-rich cells. Similarly, if these iron-related mechanisms differ
across Parkinson’s disease subtypes, these measures could facilitate the more precise classi-
fication of individuals with Parkinson’s disease.
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4.3 Final remarks

Bridging the gap between the low resolution of non-invasive imaging techniques, such as MRI,
and the high resolution obtained using post mortem microscopy methods constitutes an ongo-
ing challenge in neuroscience. This challenging yet intriguing task known as in vivo histology
was the central focus of this thesis. Our successful contributions to this field involved the non-
invasive estimation of axonal morphological features and iron content in healthy participants,
consistent with ex vivo histological studies. This consistency underscores the robustness of our
approaches, highlighting their potential as valuable tools for probing microstructural changes
in neural tissue. Our estimated features may be particularly useful for the in vivo assess-
ment of axonal damage, demyelination and remyelination, and abnormal iron accumulation.
To conclude, our estimates of microstructure represent promising candidates for novel clinical
biomarkers that can offer novel insights into healthy development and ageing as well as into
pathophysiology in numerous clinical conditions.
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Stephan, K. E., Tittgemeyer, M., Knösche, T. R., Moran, R. J., and Friston, K. J. (2009). Tractography-
based priors for dynamic causal models. NeuroImage, 47(4):1628–1638.

Stikov, N., Campbell, J. S., Stroh, T., Lavelée, M., Frey, S., Novek, J., Nuara, S., Ho, M. K., Bedell, B. J.,
Dougherty, R. F., Leppert, I. R., Boudreau, M., Narayanan, S., Duval, T., Cohen-Adad, J., Picard, P. A.,
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Purpose: We present a novel approach that allows the estimation of morphological
features of axonal fibers from data acquired in vivo in humans. This approach allows
the assessment of white matter microscopic properties non-invasively with improved
specificity.

Theory: The proposed approach is based on a biophysical model of Magnetic
Resonance Imaging (MRI) data and of axonal conduction velocity estimates obtained
with Electroencephalography (EEG). In a white matter tract of interest, these data
depend on (1) the distribution of axonal radius [P(r)] and (2) the g-ratio of the individual
axons that compose this tract [g (r)]. P(r) is assumed to follow a Gamma distribution
with mode and scale parameters, M and θ, and g(r) is described by a power law with
parameters α and β .

Methods: MRI and EEG data were recorded from 14 healthy volunteers. MRI data
were collected with a 3T scanner. MRI-measured g-ratio maps were computed and
sampled along the visual transcallosal tract. EEG data were recorded using a 128-
lead system with a visual Poffenberg paradigm. The interhemispheric transfer time
and axonal conduction velocity were computed from the EEG current density at the
group level. Using the MRI and EEG measures and the proposed model, we estimated
morphological properties of axons in the visual transcallosal tract.

Results: The estimated interhemispheric transfer time was 11.72 ± 2.87 ms, leading to
an average conduction velocity across subjects of 13.22 ± 1.18 m/s. Out of the 4 free
parameters of the proposed model, we estimated θ – the width of the right tail of the
axonal radius distribution – and β – the scaling factor of the axonal g-ratio, a measure
of fiber myelination. Across subjects, the parameter θ was 0.40 ± 0.07 µm and the
parameter β was 0.67 ± 0.02 µm −α.
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Conclusion: The estimates of axonal radius and myelination are consistent with
histological findings, illustrating the feasibility of this approach. The proposed method
allows the measurement of the distribution of axonal radius and myelination within a
white matter tract, opening new avenues for the combined study of brain structure and
function, and for in vivo histological studies of the human brain.

Keywords: MRI, EEG, axonal morphology, IHTT, in vivo histology

INTRODUCTION

The characterization of microscopic brain changes in vivo in
clinical populations is essential to the understanding of brain
disease. Magnetic Resonance Imaging (MRI) is non-invasive and
the primary technique for the assessment of brain structure
in vivo (Weiskopf et al., 2015; Kiselev and Novikov, 2018). MRI
is sensitive to a large array of microscopic properties of brain
tissue such as cell density, fiber radius and directionality, myelin,
and iron concentration (Fukunaga et al., 2010; Lutti et al., 2014;
Weiskopf et al., 2015; Jelescu et al., 2020). Biophysical models
of the relationship between tissue microstructure and the MRI
signal allow the assessment of microscopic properties of brain
tissue from in vivo MRI data (“in vivo histology”) (Weiskopf
et al., 2015; Edwards et al., 2018; Kiselev and Novikov, 2018;
Jelescu et al., 2020). Since MRI gives rise to a variety of image
contrasts, each contrast being differentially sensitive to multiple
microscopic properties of brain tissue, such biophysical models
are intrinsically tuned to specific types of MR images (MacKay
and Laule, 2016; Does, 2018; Kiselev and Novikov, 2018; Jelescu
et al., 2020). Here, we focus on axonal radius and myelination and
on the main biophysical models that allow their measurement
from in vivo data.

Axonal radius is a key property of neurons and is the main
determinant of the speed of conduction of action potentials
along axonal fibers (Rushton, 1951; Waxman and Bennett,
1972). Axonal radius plays an essential role in neuronal
communications and is an instrumental structural underpinning
of brain function (Liewald et al., 2014). Axonal radius estimates
have been used as measures of functional connectivity in
generative models of brain function, e.g., using dynamic causal
modeling (Stephan et al., 2009; Honey et al., 2010). Moreover,
axonal radius is a biomarker of brain development and healthy
aging (Weiskopf et al., 2015) and is of high clinical relevance for
a range of disorders such as autism (Wegiel et al., 2018), multiple
sclerosis (Evangelou et al., 2001) and motor-neuron disease
(Cluskey and Ramsden, 2001). Diffusion contrast is the main type
of MRI data used for the measurement of axonal radius in vivo.
Suitable biophysical models include AxCaliber (Assaf et al., 2008;
Barazany et al., 2009), which enables the estimation of the full
distribution of axonal radius. ActiveAx is an alternative model
that enables the estimation of axonal radius in all white matter
tracts without a priori knowledge of fiber orientation (Alexander
et al., 2010). However, this model provides a single summary
index of axonal radius distribution, weighted toward larger axons
(Jones et al., 2018; Veraart et al., 2020). Axonal radius estimates
obtained in vivo from diffusion MRI data are often overestimated
compared to histological values (Aboitiz et al., 1992; Liewald

et al., 2014) due to the limited gradient strength of MRI scanners
and other confounding factors, such as the dominance of the
extra-axonal signal (Burcaw et al., 2015; Nilsson et al., 2017; Jones
et al., 2018; Lee et al., 2018; Jelescu et al., 2020; Veraart et al.,
2020).

Besides axonal radius, axonal fiber myelination is also a
crucial factor in the transmission of neuronal information and
brain function (MacKay and Laule, 2016). The non-invasive
assessment of myelination enables the study of brain plasticity in
healthy individuals and brain changes in a range of neurological
disorders (Lazari and Lipp, 2021). Relaxometry MRI data are
in vivo biomarkers of bulk myelin concentration within brain
tissue (Lutti et al., 2014; Stüber et al., 2014). While their
validity is supported by a large array of empirical evidence,
these biomarkers lack an explicit link with the underlying
histological properties of brain tissue, consequently hindering
the interpretability of results (Weiskopf et al., 2015). Further
specificity may be gained from MRI measures of the fraction of
water embedded within the myelin sheath (Feintuch et al., 2007;
MacKay and Laule, 2016; Does, 2018). Nonetheless, important
aspects pertaining to exchange between compartments and
suitable MRI acquisition sequences remain unclear (Dortch et al.,
2013). Another effort toward improved specificity lies in MRI
measures of the g-ratio, the relative thickness of the myelin sheath
around axons (Stikov et al., 2011, 2015). MRI-measured g-ratio
estimates are aggregate measures of the axonal g-ratio, across all
fibers present in each voxel of an MR image (West et al., 2016).

In summary, current MRI markers of axonal radius and fiber
myelination are averages across populations of axons present in
each voxel of an MR image. To date, estimating the distribution
of these morphological features across axonal populations remain
largely out of reach. To address this limitation, we propose a novel
approach that enables the estimation, from in vivo data, of the
radius and myelination of axonal fibers, across the distribution
of axonal populations in a white matter tract. This approach
is based on the combination of electroencephalography (EEG)
measures of signal conduction velocity along a white matter
tract of interest, and of MRI measures of the g-ratio, sampled
along the same tract. MRI and EEG have been jointly used in
brain connectivity studies and for the combined study of brain
structure and function (Westerhausen et al., 2006; Sui et al.,
2014; Helbling et al., 2015; Horowitz et al., 2015; Deslauriers-
Gauthier et al., 2019). In particular, the high temporal resolution
of EEG allows the estimation of the interhemispheric transfer
time (IHTT) (Saron and Davidson, 1989; Marzi, 1999) using the
established visual Poffenberger paradigm (Westerhausen et al.,
2006; Whitford et al., 2011; Friedrich et al., 2017; Chaumillon
et al., 2018). Subsequently, an estimate of axonal conduction
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velocity can be computed (Caminiti et al., 2013; Horowitz
et al., 2015). The dominant contributions of axonal radius
and myelination to conduction velocity (Drakesmith et al.,
2019) underline the complementarity of this EEG measure
with the MRI measures described above. In the first part of
this paper, we present the biophysical model underlying the
proposed approach (Figure 1). Numerical simulations are then
conducted to illustrate the plausibility of our results in light of
the histology literature and to assess the variability and accuracy
of the morphological estimates. To illustrate the feasibility of the
proposed approach, we present estimates of axonal morphology
obtained using in vivo data from the visual transcallosal white
matter tract of healthy volunteers.

THEORY—BIOPHYSICAL MODEL

Axon Morphological Properties
With the proposed model (Figure 1), both the MRI and EEG
data are described as a function of the distribution of axonal
radius [P (r)] and of the axonal g-ratio [g (r)] within a given white
matter tract. The axonal radius distribution is assumed to be a
Gamma distribution (Sepehrband et al., 2016):

P (r) = P (r|M, θ) = 1

0
(M

θ
+1
)
θ
M
θ
+1
r
M
θ e
−r
θ (1)

where r is the axonal radius. M represents the mode, i.e., the peak
of the axonal radius distribution and the parameter θ represents
the width of the right tail of the axonal radius distribution, a
measure of the number of large axons in a white matter fiber tract.

Histological studies have shown that larger axons exhibit
comparatively thinner myelin sheaths, i.e., larger g-ratios (Ikeda
and Oka, 2012; Gibson et al., 2014). From data obtained in the
peripheral nervous system of the rat, the radius dependence
of the g-ratio was shown to follow (Ikeda and Oka, 2012):
gREF(r) = 0.22 log(2r)+ 0.508. However, to facilitate the
mathematical manipulation of the biophysical model (Eqs. 3 and
5 below), we write the radius dependence of the axonal g-ratio as:

g(r) = β∗rα (2)

With this power law, the exponent α represents the slope of the
radius dependence of the axonal g-ratio, while the parameter β is
a scaling factor. Unlike the mathematical expression for gREF , this
power law does not include an offset term. To verify its validity,
we fitted this power law with the reference relationship (gREF)
of Ikeda and Oka (2012). The result shows an excellent level of
agreement between both expressions (R2= 0.99), with α = 0.18
and β = 0.57 (Figure 2A). We also verified the applicability of
the power law in the human central nervous system, where the
higher axonal g-ratio requires the addition of a systematic offset
to gREF . We estimated this offset to be 0.14, assuming a g-ratio
of 0.7 for an axonal radius of 0.9 µm, based on studies showing
g-ratio estimates between 0.65 and 0.79 (Mohammadi et al., 2015;
Stikov et al., 2015) across the range of axonal radius observed
in the human brain (Aboitiz et al., 1992; Caminiti et al., 2009;
Liewald et al., 2014). Fitting of the power law (Eq. 2) with the

reference relationship (gREF) after addition of this offset leads to
an excellent agreement (R2= 0.99), with α = 0.14 and β = 0.71
(Figure 2B). The latter values will be used when the parameters α

and β are set constant to allow for the estimation of other model
parameters (see section “Model Parameters”).

Modeling of the in vivo Data
In agreement with West et al. (2016), the MRI-measured g-ratio
is written as an ensemble average of the axonal g-ratios within
each image voxel, weighted by the axons’ cross-sectional area:

gMRI
2
=

∫
∞

0 R2g(r)2P(r)dr∫
∞

0 R2P(r)dr
=

∫
∞

0 r2P(r)dr
∫
∞

0
r2

g(r)2 P(r)dr
(3)

where R is the fiber radius [R = r/g(r)]. From Eqs. (1) and (2),
Eq. (3) becomes (see Supplementary Appendix A):
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2
= β2θ2α
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M+3θ+2 θ2
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M

(4)

As described in Waxman and Bennett (1972), axonal
conduction velocity (v) can be derived from the morphological
properties of axons using: v [m/s] = p d [µm]

g , where p (∼5.5–
6.0) represents the contribution of additional axonal factors to the
propagation of action potentials (e.g., length of Ranvier nodes,
electrical properties of the myelin membranes). Assuming an
equal contribution from all axons to the conduction velocity V
measured with EEG, we obtain:

V = 5.5
∫
∞

0
2r P(r)
g(r) dr (5)

From Eqs. (1) and (2), Eq. (5) becomes (see Supplementary
Appendix A):

V = 11θ1−α

β

0
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θ
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)
(6)

Model Parameters
The proposed model (Eqs. 4 and 6) includes 4 free parameters,
pertaining to the distribution of axonal radius (M and θ) and
to the radius-dependent axonal g-ratio (α and β). However, our
proposed model uses only two data types acquired in vivo (MRI-
measured g-ratio and EEG-based axonal conduction velocity). It
is therefore necessary to set two parameters to reference values.

In general terms, the choice of model parameters to
estimate should take into consideration the neural mechanisms
underlying each application study of this model. The exponent α

of the power law g(r) represents the rate of change in thickness
of the myelin sheath with axonal radius and may be a parameter
of interest when considering changes in neuronal shape that
differentially affect axons of different sizes. In contrast, the
scale parameter β equally affects axons of all sizes. Concerning
the distribution of axonal radius, we highlight that histological
studies across white matter tracts and animal species have
reported that, for reasons pertaining to brain size limitations
and metabolism, the mode M of the axonal radius distribution
remains largely constant (Tomasi et al., 2012; Liewald et al.,
2014). This motivates setting M to a constant value from the
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FIGURE 1 | Estimation of microscopic morphological properties of axons from in vivo MRI and EEG data. (A) Maps of MTsat, viso and vic are computed from the raw
MRI data and subsequently used to compute maps of the MRI-measured g-ratio (gMRI ) (left). The MRI-measured g-ratio maps are sampled along the visual
transcallosal tract using the streamlines obtained with diffusion MRI tractography. Estimation of the IHTT is performed after source reconstruction of the EEG data,
based on the difference in latency between the two maxima of activation at the two hemispheres observed on the group-averaged current source time course (right).
(B) The gMRI and IHTT estimates are used to estimate morphological properties of axons within the visual transcallosal tract axonal radius distribution [P(r), left] and
axonal g-ratio [g(r), right].

histological literature and estimating the tail parameter θ from
the in vivo data.

The choice of constant model parameters may also be guided
by the impact of inaccurate constant values on the estimated
morphological features. The bias of the parameter estimates
arising from inaccuracies of 10% in α, M or β was evaluated
using numerical simulations (with the procedure described in
methods section “Estimation of Axonal Morphology From in vivo
Data”). Across a range of plausible gMRI and V , an inaccuracy
of 10% in α leads to an average bias of ∼10 and ∼15% on the
estimated M and θ, respectively (Supplementary Figure 1A).
Similarly, an inaccuracy of 10% in M leads to an average bias
of ∼1 and ∼22% for β and θ, respectively (Supplementary
Figure 1B). However, an inaccuracy of 10% in β leads to an
average bias of ∼155% and ∼92% for M and θ, respectively
(Supplementary Figure 1C).

From the biological and numerical considerations above,
in this study, we chose to set α to 0.14 (see section “Axon
Morphological Properties”) and M to 0.40 µm (Tomasi et al.,
2012; Liewald et al., 2014) and to estimate the parameters β and θ.

MATERIALS AND METHODS

Numerical Simulations
Numerical simulations were conducted using Eqs. (4) and (6),
to examine the values of the model parameters (M, θ, α, and
β) obtained from combinations of the in vivo data (gMRI and V)
using the procedure described in methods section “Estimation of
Axon Morphology From in vivo Data”, and vice versa.

In order to highlight the range of in vivo data values
compatible with the proposed model, estimates of M and θ were
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FIGURE 2 | Radius dependence of the g-ratio. (A) An excellent agreement (R2= 0.99) is found between the proposed power law (green line) and reference
histological measures of the g-ratio [gREF (Ikeda and Oka, 2012), dashed line], with α = 0.18 and β = 0.57 µm−α. (B) The higher axonal g-ratios in the human
central nervous system were accounted for by adding an offset of 0.14 to the reference peripherical nervous system data. The agreement between the proposed
power law and the reference gREF remains very high (R2= 0.99), with α = 0.14 and β = 0.71 µm−α.

computed across a large range of gMRI and V values, setting
α = 0.14 and β = 0.71 (section “Axon Morphological
Properties”). The range of in vivo data values compatible with the
proposed model was determined by comparison of the M and θ

estimates against reference literature values.
Subsequent numerical simulations were conducted by

estimating the parameters β and θ across the range of compatible
in vivo data values, setting α = 0.14 and M to 0.40 µm (section
“Model Parameters”). In particular, we examined the range of
the parameters β and θ across values of gMRI and V reported
in the literature.

The variability of the model parameter estimates in the
presence of noise was also investigated. Simulated estimates of
the in vivo data gMRI and V were computed from combinations
of θ and β values using Eqs. (4) and (6). Noise was added to
the computed gMRI and V values with a standard deviation of
0.03 for gMRI and 0.50 m/s for V , representative of intra-subject
variability in in vivo data. To replicate in vivo conditions, 700
samples of gMRI and one sample of V were taken from the
resulting distributions of gMRI and V , and estimates of θ and β

from noisy data were calculated. This process was repeated 2,000
times and the standard deviation of the θ and β estimates across
repetitions was computed as a measure of their variability.

Finally, we set out to investigate the effect of using a
group averaged conduction velocity rather than subject-specific
velocities. We selected 15 samples of gMRI and V values from
distributions with means of 0.70 and 10 m/s and standard
deviations of 0.05 and 0.80 m/s, respectively, representative of
inter-subject variability in in vivo data. From these simulated
in vivo data, reference values of β and θ were calculated. Estimates
of β and θ were also computed from the average of the 15 samples
of V . We then estimated the bias between the reference β and θ

values and those obtained from the average value of V .

In vivo Data
We acquired data from 17 right-handed healthy volunteers.
All participants had normal or corrected-to-normal vision

and hearing and had no history of psychiatric or neurological
disorders. Participant handedness was evaluated with the
Edinburgh Handedness Inventory (Oldfield, 1971). All
participants gave written informed consent and received
80 Swiss Francs as monetary compensation. The study was
approved by the local ethics committee.

MRI data quality was assessed using the Motion Degradation
Index (MDI) described in Castella et al. (2018) and Lutti et al.
(2022). MDI values were . 4 s−1 for the PD- and T1-weighted
raw images, and . 5 s−1 MT-weighted raw images, indicative
of good quality images (Lutti et al., 2022; see Supplementary
Figure 2). Three participants were excluded due to artifacted
EEG recordings. The final sample consisted of 14 participants (6
females; age = 27.14 ± 3.86 years). Three participants had left
eye dominance, as determined by the eye viewing an object at
a distance when the participant looks through a small opening
(Miles, 1930). An overview of the data processing pipeline of the
in vivo data is shown in Figure 1A.

Magnetic Resonance Imaging-Based Estimation of
the G-Ratio
MRI data were collected on a whole-body 3T MRI system
(Magnetom Prisma; Siemens Medical Systems, Erlangen,
Germany) using a 64-channel receive head coil at the Laboratory
for Neuroimaging Research, Lausanne University Hospital.

Structural Magnetic Resonance Imaging Acquisition
A 3D structural T1-weighted Magnetization-Prepared Rapid
Gradient-Echo (MPRAGE) image was acquired with a 1 mm3

isotropic voxel size and a matrix size of 176 × 232 × 256.
TR/TE = 2,000/2.39 ms. TI/α = 920 ms/9◦. Parallel imaging
(acceleration factor 2, GRAPPA reconstruction) was used along
the phase-encoding direction (Griswold et al., 2002). The total
acquisition time was 4 min.

Relaxometry Magnetic Resonance Imaging Acquisition
The relaxometry MRI protocol consisted of multi-echo 3D
fast low angle shot (FLASH) acquisitions with magnetization
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transfer-weighted (TR/α = 24.5 ms/6◦, 6 echos), proton density-
weighted (TR/α = 24.5 ms/6◦, 8 echos) and T1-weighted
(TR/α = 24.5 ms/21◦, 8 echos) (Melie-Garcia et al., 2018)
image contrasts (Figure 1A). The echo spacing and minimal
echo time were both 2.34 ms. The MR images had a 1 mm3

isotropic voxel size. Parallel imaging (acceleration factor 2,
GRAPPA reconstruction) was used along the phase-encoding
direction (Griswold et al., 2002) and Partial Fourier (acceleration
factor 6/8) was used along the partition direction. B1-field
mapping data was acquired to correct for RF transmit field
inhomogeneities (Lutti et al., 2010, 2012): 4 mm3 voxel size,
TR/TE = 500/39.1 ms. B0-field mapping data was acquired to
correct for image distortions in the B1 mapping data: 2D double-
echo FLASH, TR/ α = 1,020 ms/90◦, TE1/TE2 = 10/12.46 ms,
BW = 260 Hz/pixel, slice thickness = 2 mm. The total acquisition
time was 27 min.

Diffusion-Weighted Imaging
Diffusion-weighted imaging (DWI) data were acquired using a
2D echo-planar imaging sequence (TR/TE = 7,420/69 ms) along
15, 30, and 60 diffusion directions with b = 650/1,000/2,000
s/mm2, respectively (Figure 1A). 13 images with b = 0 were
acquired, interleaved throughout the acquisition (Slater et al.,
2019), making a total of 118 isotropically distributed directions.
Images had a 2 mm2 isotropic voxel size and a matrix size of
96 × 106, with 70 axial slices. Parallel imaging was used along
the phase-encoding direction (acceleration factor 2, GRAPPA
reconstruction). The total acquisition time was 15 min.

Estimation of Magnetic Resonance Imaging Quantitative
Maps
Maps of Magnetization Transfer (MTsat) were computed from
the raw FLASH images as in Helms et al. (2008a,b) (Figure 1A).
The map computation was conducted using the hMRI toolbox
(Tabelow et al., 2019) and included corrections for local RF
transmit field inhomogeneities (Helms et al., 2008a) and for
imperfect RF spoiling (Preibisch and Deichmann, 2009).

DWI data were corrected for geometrical distortions,
using eddy from FMRIB’s Diffusion Toolbox (Andersson and
Sotiropoulos, 2016), and for echo-planar imaging susceptibility
distortions using the SPM12 fieldmap toolbox (Hutton et al.,
2002). DWI images were aligned to the MTsat map using SPM12
and a rigid body transformation. Finally, maps of the isotropic
diffusion (viso) and intracellular (vic) compartments volume
fractions were computed from the DWI data using the NODDI
model (Zhang et al., 2012) and the AMICO toolbox (Daducci
et al., 2015; Figure 1A).

Maps of the MRI-measured g-ratio were estimated from:
gMRI =

√
1/(1+MVF/AVF), where MVF and AVF are the

myelin and the axonal volume fractions, respectively (Stikov
et al., 2015; Figure 1A). The MVF maps were estimated from the
MTsat maps according to: MVF = αMTsat , where the calibration
factor α was set by assuming a median gMRI value of 0.70 in
the splenium of the CC of 11 subjects of a separate cohort
(α = 0.23) (Campbell et al., 2018; Slater et al., 2019). The AVF
maps were estimated as: AVF = (1− αMTsat) (1− viso)vic
(Stikov et al., 2015).

The Freesurfer 6.0 software (Schiffler et al., 2017) was used to
delineate each subject’s Brodmann areas 17 and 18 (Fischl et al.,
2008) from their MPRAGE image, corresponding to the primary
(V1) and secondary (V2) visual cortical areas, respectively.
These regions of interest (ROIs), henceforth called “V1V2”, were
grouped and registered to the diffusion data using FMRIB’s
Linear Image Registration Tool (Jenkinson and Smith, 2001).

Tractography analysis was conducted using the mrTrix
software (Tournier et al., 2019): whole-brain anatomically
constrained tractography was performed using the iFOD2
algorithm, with dynamic seeding to improve the distribution of
reconstructed streamlines density, a maximum of 45◦ between
successive steps, a cut-off of 0.05 in the fiber orientation
distribution amplitude, backtrack and streamlines cropping in
the gray-white matter interface. A total of 20 million streamlines
between 5 and 250 mm in length were selected and submitted
to SIFT2 to penalize streamlines with a reduced agreement with
diffusion data. The visual transcallosal tract was isolated by
selecting the streamlines connecting the V1V2 ROIs in each
hemisphere across the CC. This tract was used to extract samples
from the MRI-measured g-ratio maps (Figure 1A).

Electroencephalography-Based Estimation of the
Interhemispheric Transfer Time
Experimental Paradigm
We implemented the visual Poffenberger paradigm on a 61 cm
widescreen (60 Hz refreshing rate), in line with the literature
(Westerhausen et al., 2006; Whitford et al., 2011; Friedrich
et al., 2017; Chaumillon et al., 2018). The experiment was
administered using Psychtoolbox-3.0.16 in MATLAB (R2019b,
The Mathworks, Natick, MA). Participants were comfortably
seated on a chair in a dimly lit room, at a standardized distance
of 80 cm from the screen, thus 1 cm on the screen represented
0.72◦ of the visual angle. Each trial consisted of the presentation
of a black and white circular checkerboard with a pattern
reversal of 15 Hz on a gray background (20 cd/m2) and with a
duration of 100 ms. The stimuli were of 4◦ diameter and their
outer edge appeared at 6◦ horizontal and 6◦ vertical distance
from the centrally-located fixation cross (0.8◦ size) to the lower
left or right visual hemifield. The acquisition was structured
in 6 blocks with an approximate duration of 6 min each;
a short break was allowed between each experimental block.
Each block consisted of 205 trials (95 for right visual field,
95 for left visual field, and 15 where no stimulus appeared),
presented in a pseudorandom order and with inter-trial intervals
randomly assigned between 1.0 and 2.0 s. Participants were
instructed to avoid unnecessary movements and to press a
button as quickly as possible after the appearance of a stimulus
while keeping their gaze on the fixation cross. Responses were
given with the index finger via a keyboard button press placed
centrally to the subject’s body. The administered blocks alternated
between left and right-hand index finger button presses (three
blocks per hand).

Electroencephalography Data Acquisition
Continuous 128-channel EEG was recorded using the Micromed
recording system (Micromed SystemPlus Evolution, Mogliano
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Veneto, Italy) and an Ag/AgCl electrode cap (waveguardTM

original, ANT Neuro, Hengelo, Netherlands) at a sampling
rate of 1,024 Hz with FPz as the reference electrode and
AFFz as the ground electrode. Two additional horizontal EOG
electrodes were attached to the outer canthi of each eye. Electrode
impedance was kept below 20 k�. Electrode positions and head
shape were acquired for each participant using the xensorTM

digitizer (ANT Neuro, Hengelo, Netherlands).

Electroencephalography Data Analysis
EEG data analysis utilized custom-made MATLAB (R2021a,
The Mathworks, Natick, MA) scripts and open-source toolboxes
Fieldtrip (version 20191206, Oostenveld et al., 2011), EEGLAB
(version 13.4.4b, Delorme and Makeig, 2004), and Brainstorm
(Tadel et al., 2011). Continuous raw EEG was bandpass-
filtered between 0.1 and 40 Hz (digital filters). EEG epochs
were extracted from the filtered data ranging from -100 to
300 ms relative to visual stimulus onset. Artifact trials were
removed based first, on visual inspection. Next, we identified and
removed components containing eye movement related artifacts
by running an Independent Component Analysis based on the
runica algorithm (Bell and Sejnowski, 1995). Epochs containing
additional artifacts were identified based on a threshold of 80
µV and excluded from further analysis. Across participants, an
average of 20.5% (SD: 10.1%, range: 43–220 trials) and 21.3%
(SD: 11.0%, range: 42–206 trials) of the trials were rejected for
the left and right visual field stimulation, respectively. Artifact
electrodes were identified based on a threshold of 80 µV and
were interpolated using the nearest neighbors. On average, 5.9%
of electrodes (SD: 2.4%, range 3–14 electrodes) were interpolated
across participants. Epoched data were re-referenced to the
average reference. We removed DC drift by subtracting the
average within each epoch.

Source reconstruction was performed to identify the neural
origins underlying the visual evoked response to the left and
right hemifield visual stimuli (Figure 1A). Virtual sensors from
artifact-free EEG data were calculated using the minimum-norm
current density method (Hämäläinen and Ilmoniemi, 1994) as
implemented in Brainstorm. The MRI image of each subject was
registered to the electrode positions using an iterative algorithm
that finds the best fit between the head shape obtained using
the MRI data and that obtained via EEG digitization. Surface
reconstructions were obtained using a 3-layer Boundary Element
Method (Kybic et al., 2005; Gramfort et al., 2010) model on
each subject’s MRI image. The source grid was defined with
15,000 points on the gray matter. This way, we estimated the
current densities (CD, pA.m) for each condition, source, and
time point within each subject. The CDs were extracted for
the V1V2 ROI defined in section “MRI-Based Estimation of
the G-Ratio” — for the left and right brain hemisphere —
for each trial and each subject. Next, V1V2 ROI CDs were
averaged across trials within each subject. Given that cortical
anatomies vary considerably across participants due to the
folding patterns of each individual, current source density maps
have ambiguous signs on the group level. Consequently, we took
the absolute value of the CDs of each subject before computing
a group average.

Estimation of the Interhemispheric Transfer Time and
Conduction Velocity
We assumed that lateralized visual stimuli would induce first,
a contralateral activation of the visual cortex, followed by an
activation of the ipsilateral cortex. This visual information
transfer is assumed to be achieved through the CC (Marzi, 1999).

For the IHTT estimation, we identified the first peaks of
activation in each hemisphere based on the maximum of the
average current density value at the group level (Figure 1A).
IHTT was calculated as the latency difference between the
ipsilateral and contralateral activation peaks on the group
average CDs within the V1V2 ROI. A Wilcoxon signed-rank test
(p < 0.05; signrank, in MATLAB) comparing the CDs across
participants at these two maxima to the time-average baseline
values was used to evaluate the significance of these activations
as evoked activity in response to the visual stimuli.

To obtain a confidence interval on the computed IHTT,
we subdivided the artifact-free EEG trials available for each
participant into four non-overlapping splits. We then repeated
four times the CD estimation at group-level where each subject
contributed with data coming from one of the split in order to
obtain four independent estimations of the IHTT. This allowed
us to obtain a standard deviation on the IHTT estimation, which
we used to define a confidence interval on the IHTT estimation:
[IHTT-standard deviation; IHTT+standard deviation].

Of note, we assumed that the right eye dominance of the
majority of the included participants elicited a more reliable
estimation of the evoked activity following the left visual stimuli
in comparison to the right. For this reason, here, we used the
IHTT estimation following the left hemifield visual stimuli.

At the individual level, we extracted the visual transcallosal
tract length as the tractography-based mean streamline length. V
was calculated by dividing the tract length by the IHTT.

Estimation of Axonal Morphology From
in vivo Data
Estimation of axonal morphological features from the in vivo
MRI and EEG data was implemented using MATLAB-based
custom-made analysis scripts. The MRI-measured g-ratio
samples along the visual transcallosal tract and the estimate
of the IHTT were used to estimate model parameter values
using Eqs. (4) and (6) (see section “Axon Morphological
Properties”, Figure 1B). This was achieved using MATLAB’s non-
linear least-square routine (lsqnonl) with a trust-region-reflective
minimization, which minimizes the sum of the squares of the
residuals. The initial conditions used to ensure convergence of
the fitting routine were set to β = 0.70 µm−α and θ = 0.10
µm.

All codes are available on our online repository: https://github.
com/LREN-physics/AxonalMorphology.

RESULTS

Numerical Simulations
We investigated the range of in vivo data compatible with
the proposed model by considering the values of the model
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parameters M and θ computed from each combination of gMRI
and V (Figure 3). Combinations of large values of gMRI and
low values of V lead to unrealistically low values of M (∼10−14

µm). Conversely, small values of gMRI and large values of V lead
to excessively large values of M (∼1 µm) and low values of θ

(∼0.001 µm) (Aboitiz et al., 1992; Caminiti et al., 2009, 2013;
Tomasi et al., 2012; Liewald et al., 2014).

Figure 4 shows the range of the model parameters θ and
β across a large range of gMRI and V values. According to
the literature, frontal transcallosal white matter exhibits MRI-
measured g-ratio values of∼0.62 (Mohammadi et al., 2015; Slater
et al., 2019) and conduction velocities of ∼8 m/s (Caminiti et al.,
2013; see red cross in Figure 4A). The proposed model yields
θ ∼0.05 µm for such combination of gMRI and V , equivalent
to a mean axonal radius of 0.45 µm (Figure 4B). This value
is consistent with histological analyses of such white matter
fibers, with a narrow range of axonal radius (mean∼0.48 µm;
Caminiti et al., 2009). For visual transcallosal white matter (MRI-
measured g-ratio ∼0.72; conduction velocity ∼10 m/s; Caminiti
et al., 2013; Mohammadi et al., 2015; Slater et al., 2019), the
proposed model yields θ ∼0.23µm (see black cross in Figure 4A),
leading to a mean axonal radius of ∼0.63 µm (Figure 4B). This
value is also consistent with histological analyses of such white
matter fibers, with a broad range of axonal radius (mean∼0.62
µm; Caminiti et al., 2009). For both types of white matter
tracts, fibers with a radius above 1.5 µm represent less than
4% of the total number of fibers, consistently with previous
histological studies (Aboitiz et al., 1992; Caminiti et al., 2009;
Liewald et al., 2014). The value of the model parameter β for
frontal and visual transcallosal white matter were 0.68 and 0.73
µm−α, respectively (Figures 4C,D), in line with histological
analyses of the axonal g-ratio in the genu and splenium of the
CC (Stikov et al., 2015).

Figure 5 shows the variability of the θ and β estimates
in the presence of noise in the in vivo data, computed from
combinations of conduction velocity and MRI-measured g-ratio
across a plausible range with 700 gMRI samples and one V sample.

The highest errors in θ (∼35%) are found for the smallest values
of θ, with only a small effect of the parameter β. The highest
errors in β (∼1%) are obtained from a combination of small
values of θ and large values of β. Supplementary Figure 3 shows
the dependence of the variability of the θ and β estimates on
the number of samples of V and gMRI (β = 0.71 µm−α and
θ = 0.22 µm). With only one estimate of V , as was the
case in this study, errors of up to 11% on the θ estimates are
observed. The errors on the β estimates are mostly driven by
the number of gMRI samples included in the estimation: for 100
gMRI samples or more, these errors are below 1% regardless of the
number of V samples.

Figure 6 shows the bias in the θ and β estimates arising
from an estimation of conduction velocity from a cohort of
participants. The bias in θ and β is on average 12 and 0.90% across
participants, reaching up to 40 and 3%, respectively.

Estimation of the Interhemispheric
Transfer Time and Conduction Velocity
At the sensor level, the group-averaged visual evoked response
revealed a positive peak activation, between 115 and 134 ms
post-stimulus onset, contralaterally to the stimulus presentation
(Figure 7, top). The latency of this positive activation
corresponds to the expected latency of the P100 component
(Di Russo et al., 2001) and was followed by asymmetrically
distributed voltage topographies with maximal voltage values at
posterior sites at latencies starting at approximately 153 ms post-
stimulus onset (Figure 7, bottom). After approximately 180 ms,
post-stimulus onset voltage topographies showed an ipsilateral
positivity to the stimulus presentation, suggesting that the P100
activation has traveled to the opposite hemisphere.

Qualitative observations at the electrode-level were confirmed
by the source reconstruction results. Group-averaged absolute
CD exhibited a sharp increase at approximately 100 ms post-
stimulus onset in the right hemisphere compared to the baseline,
peaking at 141 ms (Figure 8B for an overview of the spatial

FIGURE 3 | Range of in vivo data compatible with the proposed model. Combinations of gMRI and V that lead to biologically plausible values of the model
parameters (0.05 < M <0.9 µm and 0.01 < θ<0.9 µm) are located between the two red contour lines.
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FIGURE 4 | Range of the model parameters θ and β. (A) Range of the model parameter θ, computed from combinations of simulated in vivo gMRI and V. (B) Axonal
radius distributions representative of frontal and visual transcallosal white matter (θ = 0.05 and 0.23 µm). (C) Range of the model parameter β, computed from
combinations of simulated in vivo gMRI and V. (D) Dependence of the fiber g-ratio on the axonal radius, representative of frontal and visual transcallosal white matter
(β = 0.68 and 0.73 µm−α). In (A,C), the red and black crosses illustrate values of gMRI and V for frontal and visual transcallosal tracts, taken from the literature
(Caminiti et al., 2013; Mohammadi et al., 2015; Slater et al., 2019).

distribution of the CD for an exemplar subject). The group-
averaged absolute CD on the left visual hemisphere followed the
right visual hemisphere, peaking later on at 152 ms.

The IHTT group estimation yielded a value of 11.72 ms
with a standard deviation of 2.87 ms. The identified peaks were
statistically significantly larger upon visual stimulation when
compared to the baseline with p-values of p < 0.01.

Using the estimated group IHTT, we calculated the conduction
velocity for the visual transcallosal tract using each participant’s
tract length. The average conduction velocity was 13.22 ± 1.18
m/s across participants (Table 1).

Estimation of Axonal Morphology From
in vivo Data
Estimates of the model parameters θ and β were computed
using the proposed model, from the in vivo samples of the
MRI-measured g-ratio along the visual transcallosal tract and

estimates of conduction velocity (Table 1). The average value
of θ was 0.40 ± 0.07 µm across all subjects and ranged
between 0.31 and 0.54 µm (Figure 9A). A θ value of 0.40
µm is equivalent to a mean axonal radius of 0.80 µm, inline
with previous estimates from histological studies (0.62 µm;
Caminiti et al., 2009). For such a value of θ, axons with a
radius above 2 µm represent only < 5% of the total fiber
count, in agreement with histological studies that show that
axonal radius does not exceed ∼1.5–3 µm in the human brain
(Aboitiz et al., 1992; Caminiti et al., 2009; Liewald et al., 2014).
The average value of β was 0.67 ± 0.02 µm−α across all
subjects, and ranged between 0.64 and 0.70 µm−α (Figure 9B).
Figure 9C shows the axonal radius distribution P (r) for
a representative subject (θ = 0.43 µm), with a confidence
interval of 0.27–0.69 µm obtained from the IHTT estimation.
The estimated value of β for this subject was 0.68 µm−α,
with a confidence interval between 0.64 and 0.71 µm−α

(Figure 9D).
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FIGURE 5 | Variability of the θ (left) and β (right) parameter estimates due to noise in the in vivo samples of gMRI and V. The highest errors in θ (∼35%) are found for
the smallest values of θ, with only a small effect of the parameter β. The highest errors in β (∼1%) are obtained from a combination of small values of θ and large
values of β.

FIGURE 6 | Bias of the θ (left) and the β (right) parameter estimates arising from the computation of axonal conduction velocity across a group of subjects (N = 15).
The error bars indicate the standard deviation on the parameter estimates. The bias of θ and β reaches up to 40 and 3%, respectively.

DISCUSSION

In this paper, we propose a novel method that allows the
non-invasive estimation of morphological properties of white
matter axons from in vivo human data. This approach requires
MRI-measured g-ratio and EEG-based measures of axonal
conduction velocity computed from estimates of the IHTT.
From these measures, we estimated the axonal radius and
myelination of axonal fibers, distinct histological features of white
matter. These morphological features were assessed across the
distribution of axons in the visual transcallosal tract, providing
a detailed insight into the microscopic properties of these
white matter fibers.

Estimation of Axonal Morphology From
in vivo Data
The proposed model is based on an explicit link between the
data acquired in vivo and a limited set of histological properties
of white matter axons. The MRI-measured g-ratio is expressed
as a function of the axonal radius distribution [P(r)] and the
g-ratio of axonal fibers [g(r)], inline with recent studies conducted
using MRI and histology data (Stikov et al., 2011, 2015; West
et al., 2016). Similarly, axonal conduction velocity — computed
from the IHTT estimates — is an ensemble average across the
same distribution P(r), assuming an equal contribution of all
axons to the EEG data. As a result, both types of in vivo data
depend on the same properties of axonal fibers: P(r) and g(r). This
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FIGURE 7 | Group sensor space results. Grand-average evoked response (top) and corresponding voltage topographic maps (bottom) after left visual field
stimulation. Topographic maps are shown on a flattened electrode layout with anterior regions at the top and posterior regions at the bottom. Time 0 ms identifies
the onset of the stimulus presentation. Positive amplitudes (yellow) were observed in the hemisphere contralateral to the stimulus presentation between 115 and
134 ms, followed by a bilateral positivity starting at approximately 153 ms.

approach is supported by recent findings which show that from
the numerous histological determinants of conduction velocity
(e.g., axonal radius, g-ratio, the conductance of ion channels,
diameter and length of Ranvier nodes and internodes), the
properties of axons that bring the largest contribution to the
determination of conduction velocity are measurable with MRI
(Drakesmith et al., 2019).

The mathematical definitions of P(r) and g(r) are grounded
on well-established histological findings. P(r) is assumed to
follow a gamma distribution, as commonly posited by models of
axonal radius distribution (Assaf et al., 2008; Sepehrband et al.,
2016). g(r), expressed using a power law, shows a high level
of agreement with histological studies (Ikeda and Oka, 2012;
Gibson et al., 2014; Figure 2). Besides supporting the proposed
model, the histological basis for the expressions of P(r) and g(r)
allows freedom in the choice of the model parameters estimated
from the data, because they reflect different properties of axon
populations that can be set constant or variable according to their
relevance in a neuroscience application of this model.

From the set of 4 model parameters, we opted to set
the mode M of the axonal radius distribution to a constant
value, based on the histological literature (Tomasi et al., 2012;
Liewald et al., 2014). Similarly, the parameter α was set
from a calibration with histological findings (gREF) (Ikeda and
Oka, 2012; see section “Axon Morphological Properties”). The

estimated parameters — θ, the right tail of P(r) and β, the
scaling parameter of g(r) — enabled the simultaneous assessment
of axonal radius and myelination, across the distribution of
axons in the visual transcallosal white matter tract. The average
value of θ was 0.40 µm across participants, leading to a mean
axonal radius of 0.80 µm, inline with previous estimates from
histological studies (0.62 µm; Caminiti et al., 2009). The average
value of β was 0.67 µm −α across participants, consistent with
histological measures of the axonal g-ratio in the splenium of the
CC (Jung et al., 2018).

The proposed approach inherits the limitations of the MRI
methodologies used to estimate the intra-cellular and myelin
volume fractions, and subsequently the MRI-measured g-ratio.
In the current application, the NODDI model was used to
estimate the intra-cellular volume fraction (Zhang et al., 2012).
This model assumes identical parallel diffusivity in the extra-
and intra-cellular spaces, set to 1.7 µm2/ms (Zhang et al., 2012).
This simplifying assumption might lead to potential bias of
the parameter estimates (Jelescu et al., 2015). We estimated
that a change in diffusivity within a realistic range (1.5–1.9
µm2/ms, Guerrero et al., 2019) leads to a change of 4–5%
and 1–2% for θ and β, respectively, smaller than the bias
arising from the use of group-averaged conduction velocities
(12% for θ and 0.90% for β). Alternatives models (e.g., Assaf
and Basser, 2005; Fieremans et al., 2011; Campbell et al., 2018;
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FIGURE 8 | Source space results. (A) Group averaged CD for the left visual field stimulation (left panel). The mean activation in the V1V2 ROI on the left and right
hemispheres are shown in dashed and solid lines, respectively. Time 0 ms identifies the onset of the stimulus presentation. A first peak on the right hemisphere is
observed between 100 and 145 ms, followed by a peak on the left hemisphere after 145 ms. Vertical lines identify the peaks of activation in both hemispheres. IHTT
was calculated as the difference between the peak of activation on the hemisphere ipsilateral (left) and contralateral (right) to the stimulation visual field: 11.72 ms.
The grand-average sensor level topographic voltage maps corresponding to the identified peaks are shown on the right panel. (B) Spatial distribution of the CDs of
one exemplar subject projected on this subject’s cortex for the left visual field stimulation during the post-stimulus period. Highlighted in white is the V1V2 ROI of
interest. For the sake of clarity, we show only groups of source values that contained more than 30 vertices and were 36% above minimal activation. L: Left; S:
Superior; A: Anterior.

Ellerbrock and Mohammadi, 2018) may be considered in light
of their assumptions, as well as their applicability given
the available data.

Estimation of the Interhemispheric
Transfer Time and Conduction Velocity
The IHTT was estimated from the group averaged CDs, which
allowed for easy identification of the first two maxima of
activation in the two hemispheres (Figure 8). The IHTT derived
as a result of the time interval separating the peaks of CDs at the
group level (11.72 ± 2.87 ms) falls within the range (i.e., 8 and

30 ms) of previous IHTT estimates based on a priori selection of
voltage measurement at electrodes at occipital sites (e.g., Saron
and Foxe, 2003; Westerhausen et al., 2006; Whitford et al., 2011;
Friedrich et al., 2017; Chaumillon et al., 2018). In our study,
we opted for a CD-based estimation of the IHTT as the closest
reflection of the evoked neural activity in the regions of interest,
consistent with the corresponding white matter tract selection
(section “MRI-Based Estimation of the g-ratio”). In addition, this
approach helps to overcome the ambiguity of electrode selection
in electrode-based IHTT estimations. The resulting estimates of
conduction velocity are in agreement with the values reported by
Caminiti and colleagues (10 m/s, Caminiti et al., 2013), obtained
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TABLE 1 | MRI-measured g-ratios, measured tract length, and estimated
conduction velocity with corresponding confidence interval, for each subject in the
visual transcallosal tract.

gMRI Tract length
(mm)

Velocity
(m/s)

Velocity confidence
interval (m/s)

0.69 ± 0.03 155.03 13.23 [10.63; 17.52]

0.71 ± 0.03 149.38 12.75 [10.20; 16.88]

0.71 ± 0.04 133.43 11.38 [9.15; 15.08]

0.69 ± 0.04 136.25 11.63 [9.34; 15.40]

0.67 ± 0.04 154.32 13.17 [10.58; 17.44]

0.69 ± 0.03 171.41 14.63 [11.75; 19.37]

0.71 ± 0.04 157.94 13.48 [10.83; 17.85]

0.71 ± 0.03 149.95 12.79 [10.28; 16.94]

0.69 ± 0.04 152.98 13.05 [10.49; 17.29]

0.68 ± 0.03 142.29 12.14 [9.75; 16.08]

0.68 ± 0.04 155.49 13.27 [10.66; 17.57]

0.69 ± 0.03 172.32 14.70 [11.81; 19.47]

0.69 ± 0.03 184.48 15.74 [12.64; 20.85]

0.69 ± 0.04 154.40 13.17 [10.58; 17.45]

from human histological samples of the same fiber tract. Our
results are also consistent with a more recent report that uses
a different approach based on Bayesian networks to map the
flow of information following left visual stimulation (Deslauriers-
Gauthier et al., 2019). The authors observed a transfer of
information from the right to the left occipital cortex, between
140 and 160 ms (Deslauriers-Gauthier et al., 2019), in agreement
with the latencies of the right and left activations observed
in our analysis.

Ideally, IHTT estimates should be performed at the single-
subject level to provide microstructure measures specific to each
subject. However, the presence of multiple peaks of activation in
some individual datasets and the resulting ambiguity in defining
the maxima of activation consistently across subjects prevented
the estimation of individual IHTT values. These singularities
might arise from differences in brain morphology (Saron and
Foxe, 2003), inaccurate estimation of the sources, or from the
lack of an objective criterion for selecting subjects fulfilling our
assumptions on the expected pattern of activations. The difficulty
in estimating the IHTT at the subject level has been pointed
out in many other studies that showed inconsistent IHTT values
across participants and counterintuitively, even negative values
in some cases (e.g., Saron and Davidson, 1989; Marzi et al., 1991;
Westerhausen et al., 2006; Friedrich et al., 2017). Estimation of
the IHTT might be improved with further development on the
computation of the inverse solution (Plomp et al., 2010; Mahjoory
et al., 2017), and by introducing priors to constrain the time
courses of the activations.

Anatomical Substrate for the
Interhemispheric Transfer
The proposed model is based on the combination of a structural
measure of white matter (MRI-measured g-ratio) and a measure
of brain function (axonal conduction velocity). The validity of
this model relies on the assumption that both measures may be

obtained for a given white matter tract. Anatomical delineation
of a white matter tract is generally a routine procedure thanks
to MRI tractography techniques (Caminiti et al., 2013; Horowitz
et al., 2015; Tournier et al., 2019), allowing the sampling of the
MRI-measured g-ratio data along this tract (Schiavi et al., 2022).
On the other hand, the underlying mechanisms and anatomy of
the inter-hemispheric transfer of the evoked visual activity with
Poffenberger’s paradigm are still under investigation. Previous
literature has used this paradigm to demonstrate an increase
in IHTT in acallosal subjects, highlighting the primary role of
the CC in visual interhemispheric transfer (Marzi et al., 1991;
Di Stefano et al., 1992; Aglioti et al., 1993; Tassinari et al.,
1994). In addition, Westerhausen et al. (2006) showed that
IHTT is significantly correlated with the structural integrity of
the posterior CC, suggesting splenium fibers as the most likely
pathway for visual interhemispheric transfer.

The source and target cortical areas of the visual
interhemispheric transfer remain to be fully identified. Previous
studies have demonstrated the existence of a small patch of
transcallosal axons between visual areas 17 and 18 (Clarke and
Miklossy, 1990; Aboitiz and Montiel, 2003). This motivated
our choice of source and target cortical areas, which led to
conduction velocity estimates consistent with previous studies
(Caminiti et al., 2013). However, it has been suggested that these
connections alone might be insufficient to produce an effective
interhemispheric transfer (Innocenti et al., 2015) and higher
visual processing areas might be involved.

Future Prospects
The proposed model requires a measure of the MRI-measured
g-ratio and axonal conduction velocity in a specific white matter
tract of interest. Since measurements of conduction velocity
may only be conducted for a limited set of white matter tracts
in the human brain, this model, in its current form, cannot
be extended to the entire white matter in contrast to other
models (e.g., Assaf et al., 2008; Zhang et al., 2011). Instead,
this model is geared toward the detailed characterization of
a restricted set of white matter tracts. In its proposed form,
two parameters relating to the morphology of white matter
axons may be estimated from a total of four. Extending the
number of estimated parameters requires the use of additional
data integrated into the proposed framework. The nature of
this data needs to be carefully considered. Alternatively, as was
outlined in this work, a subset of the model parameters may be
set to a constant value based on histological studies. A prime
candidate is the mode of the axonal radius distribution (M),
preserved between white matter tracts, individuals, and animal
species (Tomasi et al., 2012; Liewald et al., 2014). This choice
may need to be reconsidered for the study of brain pathologies
that might differentially affect axons of different sizes. Other
potential candidates are the parameters α or β that describe the
dependence of the fiber g-ratio on axonal radius. In this study, we
opted to set α to a constant in expectation of fiber myelination
differences identical for all radii. Alternatively, setting β to a
constant value may be preferred to allow for the estimation of
α, in cases where myelin thickness differences are expected to
depend on axonal radius.
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FIGURE 9 | Estimates of axonal morphology obtained from the in vivo gMRI and IHTT samples. (A) Estimates of the model parameter θ — the width of the right tail of
the axonal radius distribution — in the visual transcallosal tract across all study participants. (B) Estimates of the model parameter θ — the scaling factor of the
axonal g-ratio — in the visual transcallosal tract across all study participants. The error bars indicate the confidence intervals on the parameter estimates.
(C) Exemplar axonal radius distribution in the visual transcallosal tract for a representative subject (θ = 0.43 µm; confidence interval: 0.27–0.69 µm, shaded area).
(D) Exemplar dependence of the fiber g-ratio on the axonal radius for the same subject (β = 0.68 µm−α, confidence interval: 0.64–0.71 µm−α, shaded area).

In the current study, the estimate of the IHTT was
calculated from the average of the EEG-based CD across
participants. This led to an average bias in θ and β of
12% and 0.90% across participants, reaching up to 40
and 3%, respectively (Figure 6). While small compared to
differences between tracts (∼350% for θ and ∼7% for β,
see Figure 4), this is of the order of the inter-subject
differences for these parameters (Figure 9) and prevents the
estimation of axonal morphological features at the individual
level. This limitation represents the primary avenue for
future improvements. The question of the accuracy of the
parameter estimates and their comparison with histological
data might arise subsequently. Estimation of the IHTT from
alternative techniques such as transcranial magnetic stimulation
might also be considered (Lo and Fook-Chong, 2004; Spitzer
et al., 2004; Basso et al., 2006; Deftereos et al., 2008;
Marzi et al., 2009). We highlight that the parameters of the
proposed model touch on properties of brain tissue that have
received little attention in histological studies to date. These

include the radius dependence of the axonal g-ratio and the
radius dependence of fiber myelination change in health and
disease. Validation of the proposed model may therefore bring
opportunities for new research avenues for histological studies of
the human brain.

CONCLUSION

In summary, we present a novel method that allows the
estimation of morphological properties of axons from MRI
and EEG data acquired in vivo in healthy volunteers. This
method enables the combined estimation of axonal radius
and myelin thickness and opens the way for improved
specificity in studies of the brain conducted from in vivo
data. The method enables the assessment of the distribution
of morphological features across axons and represents
a significant step toward in vivo histological studies in
the human brain.
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Abstract

Assessing axonal morphology in vivo opens new avenues for the combined study of

brain structure and function. A novel approach has recently been introduced to esti-

mate the morphology of axonal fibers from the combination of magnetic resonance

imaging (MRI) data and electroencephalography (EEG) measures of the interhemi-

spheric transfer time (IHTT). In the original study, the IHTT measures were computed

from EEG data averaged across a group, leading to bias of the axonal morphology

estimates. Here, we seek to estimate axonal morphology from individual measures of

IHTT, obtained from EEG data acquired in a visual evoked potential experiment.

Subject-specific IHTTs are computed in a data-driven framework with minimal a

priori constraints, based on the maximal peak of neural responses to visual stimuli

within periods of statistically significant evoked activity in the inverse solution space.

The subject-specific IHTT estimates ranged from 8 to 29 ms except for one partici-

pant and the between-session variability was comparable to between-subject vari-

ability. The mean radius of the axonal radius distribution, computed from the IHTT

estimates and the MRI data, ranged from 0 to 1.09 μm across subjects. The change in

axonal g-ratio with axonal radius ranged from 0.62 to 0.81 μm�α. The single-subject

measurement of the IHTT yields estimates of axonal morphology that are consistent

with histological values. However, improvement of the repeatability of the IHTT esti-

mates is required to improve the specificity of the single-subject axonal morphology

estimates.

K E YWORD S

conduction velocity, EEG, g-ratio, MRI, myelination, tractography

1 | INTRODUCTION

The radius and myelin thickness of axons are morphological features

that play an essential role in neuronal communications and

consequently, brain function (MacKay & Laule, 2016; Rushton, 1951;

Waxman & Bennett, 1972). Axons of different radius are affected dif-

ferentially over the course of diseases such as multiple sclerosis

(Evangelou et al., 2001), autism (Wegiel et al., 2018), and motor neu-

ron disease (Cluskey & Ramsden, 2001). Therefore, the specific

assessment of morphological properties of axons from in-vivo data isMarzia De Lucia and Antoine Lutti contributed equally to this study.
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essential for the study of brain function, and for the monitoring of dis-

ease evolution in patient populations. Biomarkers computed from

magnetic resonance imaging (MRI) data can allow the in-vivo monitor-

ing of microscopic properties of brain tissue (Does, 2018; Lutti

et al., 2014; Stikov et al., 2015). However, these biomarkers suffer

from a lack of specificity with regards to morphological properties of

axons, and represent averages across the large axon populations pre-

sent within an MRI voxel.

Recent developments have aimed to address the lack of specific-

ity of MRI data to morphological properties of axons. Theoretical

models have been introduced that describe the MRI signal as a func-

tion of microscopic properties of brain tissue such as axonal radius

(Alexander et al., 2010; Assaf et al., 2008; Barakovic et al., 2021;

Benjamini et al., 2014; Fan et al., 2020; Harkins et al., 2021; Zhang

et al., 2011) or relative myelination (Mohammadi & Callaghan, 2021;

Stikov et al., 2015). Such models have been applied to the study of

the relationship between brain structure and function (Berman

et al., 2019; Horowitz et al., 2015; Mancini et al., 2021), the study of

variations of axonal radius across the brain (Barakovic et al., 2021;

Huang et al., 2020), and to the study of the spinal cord (Warner

et al., 2023). However, diffusion MRI lacks sensitivity to small axons,

leading to overestimation of axonal radius estimates in studies of the

central nervous system (Drobnjak et al., 2016; Nilsson et al., 2017;

Veraart et al., 2020).

Recently, we proposed a new approach that allows the non-

invasive estimation of axonal radius and relative myelination of axonal

fibers in humans (Oliveira et al., 2022). The proposed method relies on

a biophysical model that links these morphological properties of white

matter fibers and data collected in vivo. This in-vivo data consists of

MRI measures of the g-ratio (gMRI, Campbell et al., 2018)—sampled

along a white matter tract of interest—and a measure of axonal con-

duction velocity in the same tract. In Oliveira et al., 2022 we focused

on the visual transcallosal tract, whose conduction velocity can be

estimated with an electroencephalography (EEG) paradigm that mea-

sures the delay of visual information transfer across hemispheres, that

is, the interhemispheric transfer time (IHTT).

The bedrock of visual IHTT estimation is the crossed organization

of the visual system: a unilaterally presented visual stimulus first

reaches the contralateral cortex and is then transferred to the ipsilat-

eral cortex (Chaumillon et al., 2018; Saron & Davidson, 1989) via the

splenium of the corpus callosum (e.g., Martin et al., 2007; Saron &

Davidson, 1989). Due to its temporal resolution, EEG is particularly

suited for non-invasive estimation of the IHTT. Classically, this estima-

tion is based on the latency difference of the evoked activity recorded

from homologous electrodes (e.g., Brown et al., 1994; Saron &

Davidson, 1989). This approach relies on the assumption that maxima

in the voltage spatial distribution across the electrode montage reflect

the maxima of the underlying electromagnetic field produced by

active neurons. An ad hoc selection of the electrodes of interest and

of the latency at which the transfer is most likely to occur is required

for this approach. Either the positive (P1) or negative

(N1) components of the event-related potentials (ERPs) have been

considered as a proxy for the neuronal activations (e.g., Brown

et al., 1994; Ipata et al., 1997; Moes et al., 2007; Saron &

Davidson, 1989; Westerhausen et al., 2006; Whitford et al., 2011).

The P1 component represents an early stage of visual processing

(Martin et al., 2007; Whitford et al., 2011), while N1 may be a closer

reflection of callosal transfer (Brown & Jeeves, 1993; Ipata

et al., 1997). Moreover, while P1 originates from spatially localized

activations over the extrastriate cortex of the fusiform gyrus

(Di Russo et al., 2001; Ipata et al., 1997), the voltage generators for

N1 are widespread, encompassing occipital and parietal regions

(Di Russo et al., 2001; Ipata et al., 1997). In the absence of sufficient

knowledge of the spatio-temporal distributions of neural activations

in response to visual stimuli, the ad hoc selection of electrodes and

latencies remains an open question.

In this light, our previous work aimed to improve IHTT estimation

by proposing an alternative source-based IHTT estimation approach

that overcomes the a priori choice of electrodes and components

(Oliveira et al., 2022). Performing source reconstruction on the volt-

age measurements enhances EEG spatial resolution. It also allows the

reconstruction of neuronal activity within homologous cortical regions

and consequently, the computation of the IHTT from the latency dif-

ference between the two maximal neuronal activations. In Oliveira

et al., 2022, however, estimation of the IHTT was conducted from a

group average of the time courses of the source reconstructed signal.

According to simulation results, this may have led to bias of up to

40% in the resulting subject-specific estimates of axonal radius and

myelination (Oliveira et al., 2022). Thus, estimation of the IHTT at the

subject level is of the utmost importance for the accurate estimation

of axonal morphological features with this approach.

In the current study, we seek to obtain subject-specific estimates

of the IHTT from EEG data to allow accurate estimation of axonal

morphology at the subject level. We extend the cortical region consid-

ered for the estimation of the maximal activity upon visual stimula-

tion. This enables the inclusion of activity originating from widespread

generators of the visual response and mitigates the effect of errors in

the localization of the signal sources that have more impact

in subject-level analyses. We introduce three quantitative metrics that

help resolve ambiguities on the selection of the maximal activity in

each hemisphere and support the attribution of the IHTT estimates to

visual-evoked activity. We evaluate the within- and between-session

repeatability of the IHTT estimates. Finally, we use the subject-

specific IHTT values to compute estimates of axonal morphology in

the occipital transcallosal tract of each participant. The between-ses-

sion and between-subject variabilities of the morphological estimates

were compared to assess the specificity of axonal morphological

estimates.

2 | METHODS

2.1 | Participants

The same dataset as in Oliveira et al., 2022 was used. In brief, the data

includes a set of EEG and MRI recordings obtained from 17 healthy
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volunteers. Three participants were excluded due to artifacted EEG

recordings, resulting in a final dataset of 14 participants (eight males;

age: mean ± SD = 27.14 ± 3.86 years). All participants were right-

handed as assessed with the Edinburgh Handedness Inventory

(Oldfield, 1971) and three of them were left-eye dominant as evalu-

ated by looking through a small opening at a distant object

(Miles, 1930). The participants did not have neurological/psychiatric

disorders and had normal or corrected-to-normal vision. Three of

these participants were invited to do a second EEG recording session

for a test–retest evaluation.

2.2 | Electroencephalography-based estimation of
the IHTT

2.2.1 | Experimental paradigm

The experimental paradigm is the same as previously reported by our

group (Oliveira et al., 2022). We presented a black and white checker-

board on a gray background presented on the lower left visual field

(LVF) or right visual field (RVF). The checkboard (4� diameter) was pre-

sented on a gray background (20 cd/m2) for 100 ms at 6� horizontal

and 6� vertical distance from the centrally located fixation cross (0.8�

in size). Each experimental block contained 205 trials (95 for each

visual field and 15 with no stimulus). Inter-trial intervals varied ran-

domly from 1 to 2 s—sufficient for the visual neuronal activity to

reach a baseline before presentation of a new stimulus given that

manual reaction times are in the range of �200–300 ms

(e.g., Fendrich et al., 2004; Marzi et al., 1991) The trials were pre-

sented in a pseudorandom order. The experiment was administered

using Psychtoolbox-3.0.16 in Matlab (R2019b, The Mathworks,

Natick, MA). Participants were seated 80 cm away from a screen

(61 cm, 60 Hz refreshing rate). Subjects were instructed to keep their

gaze on the central fixation cross and press a button (with index fin-

ger) as quickly as possible after each stimulus appearance. There were

six experimental blocks presented pseudo-randomly, three

were answered with the right hand and the remaining three with the

left hand.

2.2.2 | Data acquisition

Continuous 128-channel EEG was recorded with an Ag/AgCl elec-

trode cap (waveguard™original, ANT Neuro, Hengelo, Netherlands)

and the Micromed recording system (Micromed SystemPlus Evolution,

Mogliano Veneto, Italy). All electrodes were referenced to FPz and

grounded at AFFz. Electrooculogram was recorded using two addi-

tional horizontal electrodes placed to the outer canthi of each eye.

The sampling rate was 1024 Hz. Electrode impedance was below

20 kΩ. Using the xensor™ digitizer (ANT Neuro, Hengelo,

Netherlands) the 3D head shape and electrode positions were digi-

tized for each participant.

2.2.3 | Data processing

The data was pre-processed using Fieldtrip, version 20191206

(Oostenveld et al., 2011) and EEGLAB, version 13.4.4b (Delorme &

Makeig, 2004) toolboxes on MATLAB (R2021a, The Mathworks,

Natick, MA). We first bandpass-filtered (digital filters) the continuous

raw EEG signal at 0.1–40 Hz and extracted EEG epochs from 100 ms

prior to stimulus onset to 300 ms after stimulus presentation. During

this 100 ms, we could reasonably assume there was no influence of

the evoked activity of the previous stimulus given the large inter-trial

intervals value which ranges between 1 and 2 s; a 100-ms baseline

period is also a typical choice across a range of studies of visual

evoked analysis (Friedrich et al., 2017; Horowitz et al., 2015; Plomp

et al., 2010; Westerhausen et al., 2006). Trials containing large eye

movements were first removed on visual inspection. Next, we used

Independent Component Analysis with the runica algorithm (Bell &

Sejnowski, 1995) to identify and remove components containing eye

movement-related artifacts. Semi-automatic artifact detection with a

threshold of 80 μV was used to identify and exclude additional artifact

epochs from further analysis: 20.5% and 21.3% of the trials were

rejected on average across participants, leading to an average number

of accepted trials of 453 (range: 350–528) and 449 (range: 364–528)

for the LVF and RVF stimulation, respectively. The same threshold of

80 μV was used to identify artifact electrodes, which were next inter-

polated using the nearest neighbor: 5.9% of electrodes (range 3–14

electrodes) were interpolated on average across participants. The EEG

epochs were re-referenced to the average reference and DC drift was

removed by subtracting the average amplitude within each epoch.

The global field power (GFP), a measure of the spatial standard devia-

tion of the electrical potentials, was computed for each dataset in

order to relate the evoked components with the IHTT latencies

(Hamburger & Michelle, 1991).

For source reconstruction, we used Brainstorm, version 16-04-2021

(Tadel et al., 2011) toolbox. Each subject's MRI-based head was first reg-

istered to the EEG-digitized head with an iterative algorithm. A head

model using a 3-layer Boundary Element Method (Gramfort et al., 2010;

Kybic et al., 2005) was created on each subject MRI image with 15,000

vertices on the gray matter. Finally, current densities (CD, pA.m) time

courses were estimated for each condition (LVF; RVF), source vertice,

and trial for each subject using the minimum-norm current density

approach (Hämäläinen & Ilmoniemi, 1994).

We defined the occipital region of interest (ROI) as including the

inferior parietal, lateral occipital, superior parietal, cuneus, lingual, fusi-

form, pericalcarine, precuneus of the Desikan-Killiany atlas (Desikan

et al., 2006). The use of a bigger cortical region at the subject-specific

level compared to the primary and secondary visual cortices used

originally (Oliveira et al., 2022) is motivated by several reasons. First,

the localization of neuronal generators in deep cortical fissures and

the specificities of each individual's cortex make the source recon-

struction around the calcarine sulcus challenging (Creel, 2012). Conse-

quently, mislocalization of the signal between hemispheres or across

neighboring regions within the same hemisphere is likely to occur
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(Cuffin, 1998; Grech et al., 2008), with a stronger impact on IHTT esti-

mates at the subject- than group-level (lower signal-to-noise ratio).

Second, the widespread distribution of generators over the posterior

cortex is consistent with the late latencies of maximal cortical activity

used for IHTT estimation (>140 ms). In particular, between 136 and

146 ms (late P1 component), the neuronal generators are localized in

the ventral extrastriate cortex of the fusiform gyrus, and from 150 to

200 ms (N1 complex), deep sources can be found in the parietal lobe

(Di Russo et al., 2001). Therefore, given that the visual response is not

restricted within the primary visual areas, by adopting a larger region

we include the activity originating from the main generators of such

response.

2.2.4 | Cluster-based statistical test

In order to ensure that neuronal activity was due to the evoked activ-

ity in response to the visual stimuli, we identified the post-stimulus

period during which the estimated CDs were statistically different

compared to the baseline period (Figure S1a). To this aim, we imple-

mented a cluster permutation statistical test (Maris & Oostenveld,

2007) on the CD waveforms (time � source vertice � trial matrix)

extracted within our ROI for each participant and condition. We

defined the post-stimulus period between 100 and 250 ms after stim-

ulus onset for each trial and source vertice. This interval is shorter

than the full post-stimulus period but includes the main components

of the visual response (Di Russo et al., 2001), avoiding the need to

extend the cluster permutation analysis to the whole post-stimulus

period and alleviating computational demand. The fluctuations of the

baseline activity over time are not of interest given that we aim at

testing the modulation of the activity after the presentation of the

stimulus in comparison to a representative average brain activity

within the baseline, i.e. a period of no stimulus. Thus we defined the

baseline period as the time-average of the 100 ms prior to stimulus

onset for each trial and source vertice. To keep the time dimension of

the baseline matrix (time � source vertice � trial matrix) consistent

with the post-stimulus period in subsequent analyses, the average

baseline value for each trial and source vertice was replicated along

the time dimension.

In brief, the cluster permutation statistical test starts by clustering

individual data samples based on temporal and spatial proximity exhi-

biting significant t-values (p < .05). The sum of the samples' t-values

belonging to each cluster is submitted to a second-order inference

stage. Trial labels (baseline and post-stimulus) are permuted 5000

times to estimate the distribution of maximal cluster-level statistics. A

two-tailed Monte-Carlo p-value (p < .05) is then used to identify the

significant clusters. While this statistical test identifies the clusters in

time and space with significant differences between baseline and

post-stimulus, the sign of the t-statistic does not provide information

regarding which of the periods has a stronger response in magnitude

(Figure S1a). For instance, an increase in positive activity from base-

line (B) to post-stimulus (P) (e.g., from 5 to 10 pA.m) produces the

same effect as a decrease in negative activity from baseline to post-

stimulus (e.g., from �10 to �5 pA.m). To probe where the response

was stronger, we computed the absolute difference between the

post-stimulus and baseline period (jPj-jBj, Figure S1b), allowing us to

distinguish between the two aforementioned cases (jPj-jBj > 0 and

jPj-jBj < 0). The space–time matrix where the post-stimulus activity

was higher compared to the baseline is then multiplied by the previ-

ously obtained clusters to provide the final matrix (Figure S1c). This

final matrix contained the clusters in space and time (time � source

vertice matrix) that were statistically significant and higher in the

post-stimulus period compared to the ongoing activity and was used

to mask the evoked CD within the post-stimulus period (time-

� source vertice matrix).

2.2.5 | Measures of interhemispheric transfer time

The hypothesis underlying the applied EEG paradigm is that latera-

lized visual stimuli induce an activity increase in the contralateral

hemisphere prior to the ipsilateral one. IHTT can then be estimated at

the source-level by taking the latency difference between the two

maximal neuronal activations of occipital homologous regions. The

maximal neuronal activations are measured on the CD time courses

within our ROI.

For each participant and condition, we extracted the original CD

time courses, this is, without statistical analysis (of dimension time

points � source vertices � number of trials) within our regions of

interest in the left and right hemispheres separately. The CDs were

averaged across trials (leading to a matrix of dimension time

points � source vertices). The absolute value of the resulting CDs was

averaged across vertices in each hemisphere, resulting in a time

course of CDs (time vector) that was used to estimate IHTT for each

participant and condition. For the group IHTT estimation, for

each condition, the CD time courses were averaged across subjects to

create a group time course.

To estimate IHTT, we first used an automatic peak-picking algo-

rithm (findpeaks from MATLAB with minimum peak width of 4 ms) to

identify the peak with maximum intensity in the interval between

130 and 220 ms post-stimulus onset in the ipsilateral and contralat-

eral CD time courses. This interval was defined in order to include the

two maxima in the CD time courses at the group level. IHTT was cal-

culated by subtracting the latency of the peak associated with the

direct path response (contralateral activation—e.g., right hemisphere

for the LVF) from the latency of the peak of the indirect path

response (ipsilateral—e.g., left hemisphere for the LVF). This proce-

dure produced an IHTT estimation based on the reconstructed time

course in the source space.

To confirm the origin of the estimated IHTT as the result of a

visual-evoked activity, we computed the IHTT from an additional two

waveforms obtained from the statistical analysis: the CDs masked

with the masking matrix of the significant clusters (Section 2.2.4) and

the time course of the number of vertices of the significant clusters of

the same masking matrix. Estimating IHTT based on the number

of vertices within the significant clusters rather than on the

4 OLIVEIRA ET AL.
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waveforms of activity represents another proxy for the interhemi-

spheric transfer given that the significant activation is expected to

increase spatially first in the contralateral and then later in the ipsilat-

eral hemisphere. As previously, we used the same peak-picking algo-

rithm (findpeaks from MATLAB) to extract the peak of activity within

our ROI in these two waveforms and estimated IHTT by taking the

latency difference between the ipsilateral and contralateral peaks.

The consistency of the IHTT estimates obtained from the original

CDs, from the CDs masked with the significant clusters, and from the

time course of the number of significant vertices was measured with a

Pearson's Correlation Coefficient.

All codes are available on our online repository: https://github.

com/DNC-EEG-platform/SingleSubjectIHTTEstimation.

Peak selection reliability

To identify the subjects and conditions for which the IHTT estimates

were uncertain due to the presence of multiple peaks, we searched in

the three types of waveforms all possible maxima falling within 5% of

the global maximum, using the findpeaks MATLAB command.

Within-session and between-session repeatability

The within-session repeatability of the IHTT estimates obtained on

the original CDs waveforms was assessed by subdividing the trials

from the first session of each participant into two non-overlapping

random subsets and estimating the IHTT on each of the subsets. The

consistency of the IHTT estimates between the two subsets was

assessed with Pearson's Correlation Coefficient across participants.

To evaluate the magnitude of the within-session IHTT variability we

computed the absolute difference between the IHTT estimates from

the two subsets of trials.

To measure the repeatability of the IHTT estimates between ses-

sions, we performed a second EEG recording session on three of the

participants and estimated IHTT on the original CDs waveforms.

The consistency of the IHTT estimates between sessions was

assessed with Pearson's Correlation Coefficient across participants.

To evaluate the magnitude of the between-session IHTT variability

we computed the mean absolute difference between the IHTT esti-

mates across participants.

2.3 | Magnetic resonance imaging-based
estimation of the G-Ratio

2.3.1 | Data acquisition

Data acquisition was conducted as reported in our previous work

(Oliveira et al., 2022). In brief, MRI data were collected on a 3 T MRI

system (Magnetom Prisma; Siemens Medical Systems, Erlangen,

Germany). The MRI protocol included a 3D MPRAGE scan (1 mm3 iso-

tropic voxel size) with TR/TE/TI = 2000/2.39/920 ms and α = 9�; a

multi-parameter protocol that included three multi-echo 3D FLASH

scans (1 mm3 isotropic voxel size) with magnetization transfer-, pro-

ton density- and T1-weighted contrasts (TR/α/number of

echoes = 24.5 ms/6�/6, 24.5 ms/6�/8 and 24.5 ms/21�/8, respec-

tively; Melie-Garcia et al., 2018) and a B1 mapping scan as described

in (Lutti et al., 2012); a 2D EPI scan (2 mm3 isotropic voxel size) with

118 diffusion-encoding directions (15 at b = 650 s/mm2, 30 at

b = 1000 s/mm2, 60 at b = 2000 s/mm2 and 13 at b = 0 s/mm2

interleaved through the acquisition; Slater et al., 2019).

2.3.2 | Data processing

A full description of the data analysis can be found in Oliveira

et al., 2022. Freesurfer (Fischl, 2012) was used to delineate the occipi-

tal ROI from the MPRAGE images (defined in Section 2.2.3). We per-

formed whole-brain anatomically constrained tractography analyses

of the diffusion data with the iFOD2 algorithm of mrTrix (Tournier

et al., 2019). Twenty million streamlines were generated, from 5 to

250 mm in length, and cropped at the gray-white matter interface.

The SIFT2 algorithm of mrTrix was subsequently applied to improve

the biological accuracy of the streamline reconstruction (Smith

et al., 2015). We then delineated the tract of interest by selecting the

streamlines that connected the occipital ROI of the two brain hemi-

spheres and crossed the corpus callosum.

MTsat maps were calculated from the magnetization transfer-, pro-

ton density-, and T1-weighted images with the hMRI toolbox (Tabelow

et al., 2019), as described by Helms, Dathe, and Dechent (2008) and

Helms, Dathe, Kallenberg, and Dechent (2008). Eddy current effects in

the diffusion data were corrected with FSL (Andersson &

Sotiropoulos, 2016) and image distortions were corrected using the

fieldmap toolbox of SPM (Hutton et al., 2002). The NODDI model

(Zhang et al., 2012) was fitted to the preprocessed diffusion data with

the AMICO toolbox (Daducci et al., 2015), leading to maps of the isotro-

pic diffusion (viso) and intracellular (vic) compartment volume fractions.

Maps of gMRI were computed from maps of viso and vic obtained

from the NODDI model and MTsat maps (Stikov et al., 2015): gMRI =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= 1þ αMTsat

1�αMTsatð Þ 1�visoð Þvic

� �r
. The value of α (α¼ :23) was taken from

Slater et al., 2019, who estimated this factor using MRI data

from 11 subjects assumed to show minimal variability. This data was

acquired with a protocol identical to the current study. The MRI-

measured g-ratio maps were sampled along the white matter transcal-

losal tract delineated with diffusion MRI tractography.

2.4 | Axonal morphology analysis

The IHTT values were averaged between the measures obtained from

the CDs in each experimental condition (LVF and RVF). Estimates of

axonal conduction velocity were computed by dividing the length

of the transcallosal white matter tract in each dataset by the corre-

sponding estimate of IHTT. Subsequently, the measures of gMRI and

conduction velocity were used to estimate morphological properties

of axons in the transcallosal white matter tract using the model pro-

posed in Oliveira et al., 2022. The axonal morphological properties

included:

OLIVEIRA ET AL. 5
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• the scale parameter θ of the distribution of axonal radius P rð Þ,
where P rð Þ is taken as a gamma distribution: P rð Þ¼ 1

Γ M
θþ1ð ÞθMθþ1

r
M
θ e

�r
θ ,

r is the axonal radius and M is the mode of the distribution. An

increasing value of θ indicates a broader spread of P rð Þ into large

radius values.

• the scaling factor β of the dependence of the axonal g-ratio on

axonal radius: g rð Þ¼ β� rα.

Previous work has shown that a 10% bias of the estimate of the

mode M of the axonal radius distribution leads to a moderate bias in

the estimated parameters θ (�22%) and β (1%) (Oliveira et al., 2022).

Also, M has been reported to be largely constant across white matter

tracts and even animal species (Liewald et al., 2014; Tomasi

et al., 2012). Thus the model parameters α and M were set to 0.14

and 0.30μm, respectively, in agreement with histological studies

(Liewald et al., 2014; Tomasi et al., 2012).

The specificity of the θ and β estimates computed from each sub-

ject was assessed by comparing between-session variability and

between-subject variability. Between-session variability was esti-

mated as the mean absolute difference of the θ and β estimates

between sessions. Between-subject variability was estimated as the

standard deviation of the θ and β estimates across the 14 datasets of

the first session.

3 | RESULTS

3.1 | Group IHTT estimation

Group-averaged CD waveforms exhibit a sharp increase compared to

the baseline activity starting at approximately 115 ms post-stimulus

onset (Figure 1). This increase is first observed in the hemisphere

contralateral to the visual stimulation—right hemisphere (red line in

Figure 1) for LVF stimulations—and later in the ipsilateral

hemisphere—left hemisphere (blue line in Figure 1) for LVF stimula-

tions. These results confirm our assumptions on the expected pattern

of neuronal activations, that is, a response of the hemisphere directly

stimulated (direct pathway) occurring earlier than the opposite one

(indirect pathway). The group-averaged estimates of IHTT were

11 and 19 ms for the LVF and RVF, respectively.

3.2 | Subject-specific IHTT estimation

Similarly to the group CD waveforms (Figure 1), the time course of

the individual original CD waveforms typically exhibit a first peak in

the contralateral hemisphere, followed by a peak in the ipsilateral

hemisphere (solid lines in Figure 2a,b). The same peak latencies are

identified by the CD waveforms masked with the results of the cluster

permutation statistical analysis, indicating that these peaks lie within

the period of the stimulus-evoked activity (dashed lines in

Figure 2a,b). The latency of the peaks on the CD waveforms are con-

sistent with the latencies of the ERP component N1 (�120–210 ms)

as observed in the GFP waveforms of the corresponding ERPs

(Figure 2c,d). The cluster permutation identifies clusters of activation

that increase in size with time. The clusters on the contralateral and

ipsilateral hemispheres show a time-lag between them and the maxi-

mum peaks of activation lie within the period of analysis (100–

250 ms) (Figure 2e,f). The latencies of the maximum number of activa-

tion vertices in each hemisphere approximately correspond to the

latencies of the peaks seen on the CD waveforms. The results for

the remaining subjects can be found in Figure S2.

Table 1 shows the IHTT estimated from the original CDs, the CDs

waveforms masked with the significant clusters, and the time course

F IGURE 1 Group averaged CD for the LVF (left) and RVF (right) conditions. Stimulus onset took place at t = 0 ms. The CDs inside the
occipital ROI on the left and right hemispheres are depicted in blue and red lines, respectively. The peaks of activation in each hemisphere are
shown by the vertical dashed lines. Voltage topographies maps are shown for the time points corresponding to the identified peaks.

6 OLIVEIRA ET AL.

 10970193, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26420 by B
cu L

ausanne, W
iley O

nline L
ibrary on [20/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



of the number of vertices inside the significant clusters, for each sub-

ject and condition. A positive IHTT reflects a transfer in the direction

predicted anatomically, where the response of the hemisphere

directly stimulated (direct pathway) occurs earlier than the opposite

one (indirect pathway). For the LVF, the estimated IHTT was in the

direction predicted anatomically in 12 subjects out of 14 from

the original CDs and the masked CDs, and in 10 subjects out of

14 from the significant number of vertices. For the RVF, IHTT was in

the direction predicted anatomically in nine subjects out of 14 from

the original CDs and the significant number of vertices and eight sub-

jects out of 14 from the masked CDs. The mean IHTT across condi-

tions from the original CDs ranged from 8 to 29 ms across

participants (with a mean of 19 ms), excluding one participant with a

negative IHTT of �25 ms.

The correlation coefficient of the IHTT estimates from the origi-

nal CDs and masked CDs was .95, from the original CDs and number

of voxels was .68, and between the masked CDs and number of vox-

els was .76. In all three cases, the correlation coefficient was signifi-

cant (p < .001).

3.3 | Peak selection reliability

To identify unreliable IHTT estimates due to the presence of multiple

peaks, we searched for a second peak with an amplitude within 5% of

the global maximum (* in Table 1). For the LVF, unreliable IHTT esti-

mates were found in two subjects from the original CDs or masked

CDs and in five subjects from the significant number of vertices.

F IGURE 2 Summary of the IHTT estimation in an exemplar participant. (a, b) CD waveforms for one example subject for both visual
conditions (LVF and RVF). The original CDs inside the occipital ROI on the left and right hemispheres are depicted with blue and red solid lines,

respectively. The masked CDs in the same ROI on the left and right hemispheres are shown in the blue and red dashed lines, respectively. The
vertical dashed lines indicate the peaks in each hemisphere, identified from the original CDs. The voltage topographies correspond to those
identified peaks. (c,d) Global field power time course and topographies corresponding to the main components. The * identifies the component
closest to the first peak identified in (a, b). (e, f) Number of significant voxels (percentage) in the post-stimulus period. Left and right hemispheres'
timecourses are shown with blue and red lines, respectively. Vertical lines correspond to peaks. Time 0 ms identifies the onset of the stimulus for
all the graphs.

OLIVEIRA ET AL. 7
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Similarly for the RVF, unreliable IHTT estimates were found in one

subject from the original CDs, in two subjects from the masked CDs,

and in six subjects from the significant number of vertices. The IHTT

estimated from the first and second highest peaks is detailed in

Table S1. The mean absolute difference between the IHTT measured

from the first and the second highest maximum of neuronal activity is

32 ms for the LVF and 26 ms for the RVF.

By considering the second-highest amplitude maximum on the

CD waveforms, the disagreement between the metrics is often miti-

gated. This can be observed in the LVF of S3, where the IHTT

obtained on original data is positive (23 ms, Figure 3a). The

IHTT obtained on the masked data is negative and thus anatomically

unplausible when obtained with the absolute maximum (�7 ms,

Figure 3b) but when calculated with the second highest maximum is

positive and in-line with the one obtained from the original data

(24 ms, Figure 3c).

3.4 | IHTT within-session and between-session
repeatability

In the assessment of within-session repeatability, the IHTT estimates

from the first subset of trials showed moderate repeatability with the

ones from the second subset of trials (r = .68, p < .001, Figure 4a).

The mean IHTT absolute difference across the two subsets was

�11 ms with some differences reaching up to 63 ms. The IHTT

estimates obtained from each subset (circles in Figure 4b) differ from

the IHTT value obtained from all the trials (horizontal lines in

Figure 4b): the absolute differences between the mean IHTT across

subsets and the IHTT obtained from all the trials are on average 6 ms

for the LVF and 5 ms for the RVF.

In the assessment of between-session repeatability, the CD

waveforms showed a high level of visual correspondence between

repetitions (Figure 5). For the LVF, the IHTT was 12, 23, and 36 ms in

the first session and 12, 17, and 20 ms in the second session. For the

RVF, the IHTT was 42, 5, and �10 ms in the first session and 5, �1,

and �7 ms in the second session. After averaging the IHTT estimated

for the LVF and RVF conditions, the average difference in IHTT

between sessions was 10 ms and the resulting difference in conduc-

tion velocity estimates was 11 m/s.

3.5 | Estimation of axonal morphology from the
MRI and EEG data

The conduction velocities ranged from 4.7 to 18.5 m/s (excluding

one negative conduction velocity not considered in subsequent

analyses, Table 2). Mean gMRI values within the occipital transcal-

losal tract ranged from 0.67 to 0.71. The latter conduction veloci-

ties and gMRI estimates were used to estimate the parameter θ of

the axonal radius distribution and the parameter β of the change in

axonal g-ratio with axonal radius (Table 2). The average θ across

TABLE 1 Overview of the IHTT estimation at the single-subject level.

Left visual field (LVF) Right visual field (RVF) Averaged conditions

Latency
contralateral
activation

Original
CDs

Masked
CDs

Number
of
vertices

Latency
contralateral
activation

Original
CDs

Masked
CDs

Number
of
vertices

Original
CDs

Masked
CDs

Number
of
vertices

S1 155 35 36 46* 155 22 23 29 29 30 38

S2 150 12 11 9 144 42 42 43* 27 26 26

S3 157 23* �7* �18* 172 5 4 6 14 �1 �6

S4 179 29* 31 �5* 159 �1 �1 7 14 15 1

S5 159 35 37* �1 175 19 �7* �13 27 15 �7

S6 187 2 4 9 141 56 57 13* 29 30 11

S7 159 36 35 32 194 �10 �11 �16* 13 12 8

S8 169 47 50 51* 179 �20 �21 �22* 14 15 15

S9 154 49 49 51 195 �13 �14 �8 18 18 22

S10 179 15 13 13* 143 25* 22* 20* 20 17 16

S11 195 13 15 14 193 21 22 16* 17 18 15

S12 193 �15 �15 �16 205 �35 �39 �38 �25 �27 �27

S13 166 9 7 7 161 15 15 16 12 11 11

S14 139 �1 0 44 172 18 18 20 8 9 32

Note: Latency contralateral activation refers to the contralateral peak latency as measured from the original CDs. IHTT estimates for the LVF and RVF with

the three metrics for the 14 subjects and average across conditions. Highlighted in bold are the values of the IHTT used for the morphological estimates. *

identifies the cases where the waveforms contained multiple peaks with amplitude values within 5% of the global maximum and therefore considered less

reliable than the values without *. Time is always shown in ms.

Abbreviations: CDs, current densities; IHTT, interhemispheric transfer time.
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subjects was 0.23μm and ranged from 0.00 to 0.79μm (Table 2). Sub-

ject S1 was the only one with a value of θ near zero (<0.01μm). The

average β across subjects was 0.72μm�α ranging from 0.62 to

0.81μm�α (Table 2).

The between-subject variability of the model estimates was

0.22 μm and 0.06 μm�α for θ and β respectively. A qualitative impres-

sion of the variability of θ and β is provided in Figure 6a and

Figure 6b, respectively. For comparison, the between-session variabil-

ity of θ and β was 0.57μm and 0.11μm�α, respectively. This is larger

than between-subject variability and indicates low specificity of the

axonal morphology estimates to each individual subject.

To further investigate the origin of the low specificity of the axo-

nal morphology estimates, we plotted the values of θ (Figure 7a) and β

(Figure 7b) obtained from subjects within the 2-dimensional space of

possible combinations of conduction velocities and gMRI. Differences

in θ of �0.8 are present across the range of conduction velocity esti-

mates obtained experimentally, larger than the differences in θ values

across the range of gMRI estimates (�0.03). Similarly, the differences

in the value of β are much larger across the range of conduction veloc-

ity estimates (�0.2) than across the range of gMRI estimates (�0.03).

This finding shows that conduction velocity (rather than gMRI) is the

primary determinant of the individual estimates of θ and β obtained

from each dataset. Improving the specificity of the axonal morphology

estimates, therefore, requires further improvements in the repeatabil-

ity of the conduction velocity estimates. Moreover, supplementary

analyses show that a 10% bias in conduction velocity leads to an aver-

age bias in θ of about 22% and an average bias in β of approximately

2% (Figure S3). These results highlight the importance of accurate

conduction velocity estimates for the model estimates.

4 | DISCUSSION

In this work, we proposed a novel framework to estimate the IHTT at

the single-subject level from EEG data, based on a data-driven evalua-

tion of the maximal peak of neural response to visual stimuli with min-

imal a priori constraints. The resulting subject-specific estimates of

IHTT were used to estimate morphological features of axons within

the occipital transcallosal white matter tract, using a recently intro-

duced biophysical model (Oliveira et al., 2022).

F IGURE 3 Example CD time courses showing multiple peaks with
amplitude within 5% of the global maximum. (a) The original CDs in
the occipital ROI of the left and right hemispheres are depicted with
blue and red solid lines, respectively. The masked CDs from the same
ROI are shown with blue and red dashed lines, respectively. Time
0 ms identifies the onset of the stimulus. The vertical dashed lines
indicate the selected peaks in the original CDs. The estimated IHTT is
23 ms. (b) Zoom in on the masked CDs of (a). The vertical blue dashed
line indicates the global maximum of the left hemisphere. The
estimated IHTT is �7 ms. (c) Zoom in on the masked CDs of (a). The
vertical blue dashed line indicates the second-highest amplitude peak
in the left hemisphere. The estimated IHTT is 24 ms, in-line with the

estimated IHTT on the original CDs shown in (a).

F IGURE 4 Within-session variability of the IHTT estimates. (a) IHTT estimates were obtained from two non-overlapping subsets of the trials
for each subject and condition. There is a significant correlation (r = .68, p < .001) between the two subsets. (b) IHTT estimates obtained from the
two non-overlapping subsets of the trials (circles) and IHTT estimates from all the trials (horizontal lines) for each participant and condition. The
mean absolute difference between the latter and the mean IHTT across subsets was on average 6 ms for the LVF and 5 ms for the RVF.
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The proposed framework relies on the estimation of the neural

activity in the source space. This avoids the ad hoc selection of elec-

trodes and ERP components at the electrode level and overcomes

ambiguities related to the undetermined relation between voltage

measurements at the scalp and those of the underlying and

neurophysiologically interpretable electric fields (Nunez &

Srinivasan, 2009). The subject-specific IHTT estimates are in agree-

ment with the literature (average = 18.6 ms), except for one negative

value. From the values of the IHTT, the scale parameter of the axonal

radius distribution (θ), was estimated as 0.23μm on average across

F IGURE 5 CD waveforms obtained in two separate sessions from subjects S2 (RVF) and S7 (LVF). The original CDs from the occipital ROI in
the left and right hemispheres are depicted with blue and red solid lines, respectively. The masked CDs from the same ROI are shown with the
blue and red dashed lines. The vertical dashed lines indicate the selected peaks for each hemisphere from the original data. Time 0 ms identifies
the onset of the stimulus for all the graphs.

TABLE 2 Final IHTT estimates averaged across conditions for the 14 subjects (ms). Length of the white matter tract (mm). Conduction
velocity along the white matter tract (m/s). Estimated θ (μm) and β (μm�α) for each subject.

IHTT estimated from original CDs (ms) Length (mm) Velocity (m/s) θ (μm) β (μm�α)

S1 29 136.5 4.7 0.00 0.81

S2 27 134.6 5.0 0.02 0.81

S3 14 127.7 9.1 0.26 0.71

S4 14 133.6 9.5 0.27 0.69

S5 27 149.0 5.5 0.03 0.77

S6 29 147.3 5.1 0.01 0.79

S7 13 143.9 11.1 0.38 0.69

S8 14 136.3 9.7 0.29 0.70

S9 18 141.6 7.9 0.18 0.72

S10 20 135.4 6.8 0.11 0.74

S11 17 155.8 9.2 0.25 0.70

S12 �25 155.6 �6.2 — —

S13 12 154.2 12.9 0.46 0.65

S14 8 147.8 18.5 0.79 0.62

Abbreviations: CDs, current densities; IHTT, interhemispheric transfer time.
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subjects, corresponding to a mean axonal radius of 0.53μm. The

amplitude of the change in axonal g-ratio with axonal radius (β) is

0.72μm�α on average across subjects. These estimates are consistent

with histology findings obtained from ex-vivo data (Caminiti

et al., 2009; Jung et al., 2018).

4.1 | IHTT measures

The IHTT estimates obtained from the original CDs at the group

level are consistent with previous literature (Chaumillon

et al., 2018; Friedrich et al., 2017; Saron & Davidson, 1989). More-

over, faster right-to-left transfer (i.e. LVF, 11 ms) than left-to-right

transfer (i.e. RVF, 19 ms) is consistent with previous findings in

right-hand dominated cohorts (Chaumillon et al., 2018; Martin

et al., 2007; Marzi et al., 1991; Moes et al., 2007; Whitford

et al., 2011).

As for the subject-specific estimates, the mean IHTT across the

two visual conditions (LVF and RVF) ranged from 8 to 29 ms across

participants – excluding one participant with a negative IHTT of

�25 ms (Table 1). These results are in agreement with the few

electrode-based studies that report subject-specific IHTT values

(Chaumillon et al., 2018; Friedrich et al., 2017; Westerhausen

et al., 2006). Our range of estimated IHTT is also in-line with the

delays estimated with intracranial recordings from whole-brain

cortical–cortical connections (Lemarechal et al., 2022).

F IGURE 6 (a) Axonal radius distribution P(r) computed from the minimum, maximum (solid lines), and average (dashed line) values of the scale
parameter θ. (b) Axonal g-ratio (g(r)), computed from the minimum, maximum (solid lines), and average (dashed line) values of the scaling factor β.

F IGURE 7 Value of the model parameters θ (a) and β (b) computed from combinations of simulated in vivo MRI g-ratio and conduction
velocities. The crosses indicate the individual MRI g-ratio and conduction velocities estimates obtained experimentally from each subject. The
conduction velocities, rather than gMRI, are the primary determinant of the values of θ and β. As a result, the variability of the conduction
velocity estimates drives the specificity of the θ and β estimates obtained from each subject.
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The reliability of the subject-specific measures of IHTT was

assessed by estimating the consistency of the IHTT estimates across

different metrics (the original CDs, masked CDs, and number of signif-

icant vertices), two of them computed from a statistical analysis to

ensure that neuronal activity was due to the evoked activity in

response to the visual stimuli. The correlation coefficients between

two pairs of metrics were above 0.68 and significant (p < .001) in all

cases. The overall agreement between the three metrics confirms the

origin of the estimated IHTT on the original CDs as the result of a

stimulus-elicited activity.

Analysis of the repeatability of the IHTT estimates within-session

(Figure 4a), conducted from non-overlapping subsets of trials for each

participant, showed moderate repeatability (r = .68, p < .001). The

average variability in IHTT within-session was 11 ms, approximately

half of the mean IHTT across subjects. The between-session repeat-

ability, analyzed on a subgroup of 3 participants, shows a weak linear

relationship between the IHTT estimated on two different sessions.

After averaging the IHTT estimated for the LVF and RVF conditions,

the average variability between sessions was 10 ms. This is compara-

ble to within-session variability despite contributions from environ-

mental or contextual factors such as activation strength and

attentional resource allocations (Nishimoto et al., 2020).

The variability of the IHTT estimates between sessions was also

comparable to the differences in IHTT estimates between subjects

(7 ms), highlighting the low specificity of the IHTT estimates to each

participant. Nevertheless, the pattern of neuronal activity is qualita-

tively reproducible across sessions (Figure 5). This result suggests that

peaks of maximal activation might be insufficient to estimate the

IHTT. Other approaches, such as transfer entropy (Vicente

et al., 2011) or mutual information (Ince et al., 2017) could be consid-

ered as future alternatives at the expense of a high number of param-

eters and assumptions. Confidence intervals on the IHTT values for

each subject could also be estimated with a bootstrapping approach,

by sampling the delays from the subject's trial data with replacement

(Cichy et al., 2014).

4.2 | Subject-specific neuronal activity

At the single-subject level, only one subject (S12) did not fulfill our

expected patterns of activity—i.e. increase in activation in the contra-

lateral hemisphere prior to the ipsilateral hemisphere—and thus has

negative IHTT in both visual conditions. The reason for this remains

unclear. We postulate that the simple process that we assume to

describe the visual transfer (peak in one hemisphere and then transfer

to the other hemisphere) might be too simplistic. For instance, multi-

ple transfers might occur within a short period (Deslauriers-Gauthier

et al., 2019). Also, undeniably, rather than a single IHTT value, there

exists a distribution of delays due to the underlying axonal radius dis-

tribution (Caminiti et al., 2013).

While the peaks of maximal neuronal response are very evident

in the group CD waveforms (Figure 1), the same is not always true for

the individual data. Variability in the latencies and topographies of the

neuronal response, and in the cortical anatomy across subjects has

been extensively reported (Baumgartner et al., 2018; Foxe &

Simpson, 2002; Proverbio et al., 2007). Hence, understanding the spe-

cific dynamics of each individual data (Figure S2) is fundamental when

analyzing the data-driven IHTT estimates. In particular, the presence

of multiple peaks with analogous amplitudes on the waveforms hin-

ders the IHTT estimation. If we take such cases into account

(Table S1), the overall agreement between IHTT metrics is even more

evident. These results support the existence of a subject-specific neu-

ronal response, the difficulty being in the definition of a robust metric

to extract IHTT from the CD time courses that is consistent across

subjects and requires a minimal set of assumptions.

The presence of multiple peaks in at least two of the metrics was

observed in three cases (the LVF of S3 (Figure 3a), RVF of S10, and

LVF of S4). For these participants, two possible IHTT estimates exist

for all three metrics, with only one of the two options being anatomi-

cally plausible (i.e. positive IHTT). For example, the LVF IHTT of S3

may be 23, 24, and 23 ms or � 5, �7, and � 18 ms from the original

CDs, masked CDs, and number of significant vertices, and no objec-

tive metric exists to guide the choice of a maximum. Because our

expected pattern of activity is a contralateral peak occurring before

the ipsilateral one (positive IHTT), we could potentially impose an

extra constraint on the positivity of the IHTT. However, that would

diverge from a data-driven approach with minimal constraints which

we are proposing here.

In the absence of a more specific measure, we used the IHTT as a

proxy for the conduction time of axon potentials along white matter

axons. However, synaptic transfer and signal conduction within the

gray matter contribute to the measured IHTT, leading to an overesti-

mation of the conduction time with this approach. The magnitude of

this confound is challenging to estimate. In principle, generative

models of the effect of gray matter dynamics on the current density

curves may provide IHTT estimates with no contribution from gray

matter. Another avenue would be to resolve the distribution of cur-

rent densities across the cortical ribbon and estimate the IHTT from

the white-gray matter interface. Unfortunately, both options remain

out of reach.

We highlight that, unlike Oliveira et al., 2022, conduction veloci-

ties were measured from an average of the two experimental condi-

tions (LVF and RVF). This allows for a more representative

characterization of the white matter tract, independent of the direc-

tion of propagation of neurons.

In summary, we use a simple assumption for the pattern of inter-

hemispheric transfer, with minimal constraints to obtain single-subject

IHTT estimates. We showed that with our approach, estimating the

subject-specific IHTT based on the original CDs is associated with

some level of uncertainty due to the presence of peaks with similar

amplitudes in only 3 out of 28 cases (Section 3.3). In any case, for

these 3 cases, the maximum peak, which is the one we chose by

default, is the one providing an IHTT in the direction predicted ana-

tomically. The IHTT based on the original CDs is also supported by

the other two metrics obtained from statistical analysis, ensuring that

neuronal activity was due to the evoked activity in response to the

12 OLIVEIRA ET AL.

 10970193, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26420 by B
cu L

ausanne, W
iley O

nline L
ibrary on [20/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



visual stimuli. Additionally, the agreement of the IHTT estimates with

the literature is compelling.

4.3 | Subject-specific axonal morphologic
estimates

The scale parameter θ of the axonal radius distribution within a white

matter tract ranged from 0.00 to 0.79μm (Figure 6a). The parameter

β, which represents the amplitude of the change in axonal g-ratio with

axonal radius, ranged from 0.62 to 0.81 μm�α (Figure 6b). The mean

value of the scale parameter θ across subjects was 0.23μm. This cor-

responds to an average radius of 0.53μm, in-line with previous esti-

mates from histological studies (0.62μm; Caminiti et al., 2009). For

such value of θ, axons above 2.5μm represent <0.04% of the total

fiber count. This is consistent with previous histological findings

showing that these axons represent <0.02% of the total fiber count

across the corpus callosum (Aboitiz et al., 1992) and more generally,

that the maximum axonal radius in the human brain is �1.5–3μm

(Aboitiz et al., 1992; Caminiti et al., 2009; Liewald et al., 2014).

The cornerstone of the proposed white matter model is that the

structural (MRI g-ratio) and functional (conduction velocity) measures

originate from the same white matter tract: the MRI g-ratio values are

sampled along this tract and the IHTT estimates are divided by the

tract's length used to compute the conduction velocity. The extent of

evoked activity from primary to high-order visual areas in response to

visual stimulation may imply the involvement of multiple white matter

tracts for interhemispheric transfer. As these tracts remain undefined,

the tract length was chosen as the mean length of the streamlines that

connect the occipital regions across both hemispheres. This tract is

12 mm (8%) smaller than the tract that connects the primary and sec-

ondary visual cortices used in our previous study (Oliveira et al., 2022).

Differences in gMRI values between these tracts were minimal (<1%).

4.4 | Future directions

This study focuses on the single-subject measurement of the IHTT,

which is essential to the assessment of axonal morphology in-vivo in

separate individuals. The consistency of the axonal radius and

myelination estimates with the histological literature highlights the

long-term potential of this technique. However, we found that the

variability of the morphological estimates between repetitions was in

the order of—or larger than—the difference of these estimates

between subjects. Our results suggest that the measurement of the

IHTT is the primary source of variability in the estimates of axonal

morphology. Increasing the reproducibility of the IHTT estimates may

be achieved by considering other source reconstruction methods,

alternative metrics for IHTT estimation from the CD time course, or

different EEG paradigms with a focus on other tracts. Alternative

techniques, such as the newly proposed approach for single-subject

and single-tract IHTT estimation, based on resting-state EEG data

(Sorrentino et al., 2022) should also be considered. Moreover, our

parsimonious approach to IHTT estimation from the current source

densities could be improved by the usage of PCA or ICA methods

(Barbati et al., 2008; Debener et al., 2005; Porcaro et al., 2010) to

enhance source separation of relevant signals, at the expense of a

strong hypothesis on the response of the investigated phenomenon.

Comparison of EEG-based IHTT estimates with intracranial recordings

of local field potentials and histological measures are essential to

ensure their validity as in-vivo measures of axonal conduction

velocity.

5 | CONCLUSIONS

This work represents the first attempt to estimate morphological

properties of white matter axons from combined MRI and EEG data

acquired in-vivo in individual subjects. In particular, we propose a new

data-driven framework with minimal a priori constraints that allows

the single-subject measurement of the IHTT from EEG data, based on

the maximal peak of neural response upon visual stimulation. This

framework provides evidence that the IHTT estimates are the result

of activity elicited by the visual stimulus. The estimated IHTT values

are in the reported range of electrode-based and intracranial EEG

studies (Chaumillon et al., 2018; Friedrich et al., 2017; Lemarechal

et al., 2022; Saron & Davidson, 1989). The MRI data and EEG-based

measures of the IHTT were used to estimate morphological properties

of white matter axons. The agreement of the estimates of axonal

radius and myelination with the histological literature highlights the

long-term potential of this technique. However, these morphological

estimates showed a high level of variability that arises primarily from

the estimation of the IHTT. Increasing the repeatability of the IHTT

estimates and comparison with alternative measures of conduction

velocity are essential future steps toward the measurement of axonal

morphological properties from in-vivo data.
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