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Abstract
Outburst floods triggered by breaching of landslide dams may cause severe loss of life and 
property downstream. Accurate identification and assessment of such floods, especially 
when leading to secondary impacts, are critical. In 2018, the Baige landslide in the Tibetan 
Plateau twice blocked the Jinsha River, eventually resulting in a severe outburst flood. The 
Baige landslide remains active, and it is possible that a breach happens again. Based on 
numerical simulation using a hydrodynamic model, remote sensing, and field investigation, 
we reproduce the outburst flood process and assess the hazard associated with future floods. 
The results show that the hydrodynamic model could accurately simulate the outburst flood 
process, with overall accuracy and Kappa accuracy for the flood extent of 0.956 and 0.911. 
Three future dam break scenarios were considered with landslide dams of heights 30 m, 
35 m, and 51 m. The potential storage capacity and length of upstream flow back up in 
the upstream valley for these heights were 142 ×  106m3/32  km, 182 ×  106m3/40  km, and 
331 ×  106m3/50 km. Failure of these three dams leads to maximum inundation extents of 
0.18  km2, 0.34  km2, and 0.43  km2, which is significant out-of-bank flow and serious infra-
structure impacts. These results demonstrate the seriousness of secondary hazards associ-
ated with this region.
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1 Introduction

Landslide damming of laterally confined rivers is reported with increasing frequency 
(Knapp et al. 2018; Fan et al. 2019; Ermini and Casagli 2003; Chen et al. 2013; Guo et al. 
2021). If these dams breach, the subsequent outburst floods may induce catastrophic casu-
alties and major damage to property downstream (Fan et al. 2020c; Bonnard 2006; Wang 
et al. 2021). The Tibetan Plateau, European Alps, and Western North American mountain-
ous regions are those where landslide dam breaches are most commonly reported (Knapp 
et  al. 2018; Fan et  al. 2019). Examination of previous dam failures shows that globally 
about 80 to 90% fail within the first year of formation (Costa and Schuster 1988b, a; Fan 
et al. 2020c). Fan et al. (2020c) record more than 410 landslide dams around the world, of 
which about 80% failed in less than one year. Ermini and Casagli (2003) recorded more 
than 350 landslides dams worldwide, either rainfall or earthquake triggered with 80% and 
57% of them breaching and triggering a flood disaster, respectively. In China, giant land-
slide-dammed events are most common in mountainous areas. The Yigong landslide is a 
good example, feeding sediment into the Zhamunong tributary and blocking the Yigong 
River with a barrier of about 50 m to 80 m height in 1901 and 2000 (Zhou et al. 2016; 
Shang et al. 2003; Xu et al. 2012). Subsequently, the outburst flood travelled over 500 km 
south into India (Delaney and Evans 2015), it threatened about 4000 people downstream, 
and the economic loss from the flooding was about $169 000 US dollars (Shang et  al. 
2005; Evans and Delaney 2011).

On October 10, and November 3, 2018, two successive landslides occurred at Baige Vil-
lage, Jiangda County, Tibetan Autonomous Region, P.R. China (Wu et al. 2019; Yang et al. 
2019; Wang et al. 2020; Li et al. 2020a, b; Ding et al. 2021; An et al. 2021; Zhang et al. 
2020). They delivered about 18.7 ×  106m3 and 6.3 ×  106m3 of sediment, blocking the Jinsha 
River and forming landslide-dammed lakes (Chen et  al. 2021a, b; Ouyang et  al. 2019). 
After each dam formed, the barrier lake breached and the outburst floods caused flood 
disaster damage downstream. The landslide dams blocked the Jinsha River for 44 h and 
13 days, respectively. The dam heights were 47 m and 72 m, and the subsequent lake that 
formed extended 45 km and 70 km, and the peak storage capacity reached 0.29 ×  109m3 
and 0.58 ×  109m3. There was significant infrastructure damage, and the whole of Boluo 
Town was inundated (Chen et al. 2021a, b; Gao et al. 2021; Xiong et al. 2020). With the 
dam break, the river discharge increased to 10,000  m3s−1 and 31,000  m3s−1, respectively. 
The outburst flood reached 670 km downstream, with roads, houses, farms, and bridges 
damaged; for example, 18 bridges were affected and collapsed (Zhang et al. 2021; Liu et al. 
2020a, b). Fortunately, the two flood events did not induce casualties due to sufficient time 
between breaches and inundation, so that warnings could be issued.

The rear edge of the Baige landslide has continued to deform since the first two land-
slide events, and there is a high probability of further secondary hazards involving dam 
formation and breaching (Chen et al. 2021a, b; Fan et al. 2020a, b). Although future out-
burst flood hazard assessment for the Baige landslide is essential, most of the attention 
has been on post-outburst floods. This work has struggled to quantify post-flood impacts 
using remote sensing (Liu et al. 2020a, b; Yang et al. 2021), notably because of poor image 
quality. The one-dimensional HEC–RAS hydraulic model has been used to simulate the 
flood (Fan et al. 2020d; Gao et al. 2021), but its precision is insufficient because it relies on 
cross section density and struggles to reproduce spatial patterns of inundation when there 
is substantial flux of water on the floodplain rather than in the channel. Improvements in 
hydraulic modelling are needed, to allow for a better assessment of inundation patterns 
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in two dimensions. The aim of this paper is to develop a coupled approach to landslide 
dam failure and two-dimensional hydraulic modelling for assessing downstream flood risk, 
applied here to the Baige landslide.

2  Overview of the landslide and the study area

The Baige landslide is located at Boluo Town, Jiangda County, in the Tibet Autonomous 
Region, China (31.082336°N, 98.704722°E). It periodically dams the Jinsha River of the 
Tibetan Plateau. It is in the Jinsha River suture zone and is associated with strong tectonic 
activity; the tectonic setting of the area is quite complex; faults and folds are well devel-
oped. Proterozoic, Carboniferous, and Triassic strata are the major rocks in the study area. 
The major faults in the area generally strike NW–SE, and the Boluo–Muxie Fault is the 
nearest one to the slides which strike N30° W and dip 50 to 70° to SW. The fault is 146 km 
long, and its fault belt is 100 to 300 m wide. The Jinsha River undercuts the plateau form-
ing a V-shaped valley which allows for the Baige landslide to readily block the river.

According to field investigations and remote sensing, a total of 41 towns were affected 
by two Baige outburst floods, with a maximum inundated area of about 102  km2 in the 
second flood. This paper focuses on a 9 km reach at Zhubalong Town in the Jinsha River in 
Batang County (Fig. 1). Zhubalong Town was selected for the focus as it is a city of con-
siderable importance in terms of infrastructure. It was 180 km downstream of the dam but 
still experienced serious flood impacts. The study reach is representative of other reaches 
impacted by the floods in that it comprises a wide floodplain.

3  Overall methodology and data sources

Figure 2 provides an overview of the outburst flood analysis presented in the paper. It is 
based upon coupling and upstream analysis of likely dam breach risk and impact in terms 
of an extreme discharge event with a two-dimensional hydrodynamic model, applied here 
to a downstream reach at Zhubalong Town. It focuses on the largest of the 2018 events, 
which provides for validation of the analysis. Then, the hydrodynamic model is applied to 
determine the inundation for possible future dam breach scenarios. This approach, whilst 
determining locally specific data for model application and calibration is generic and there-
fore of wider use.

3.1  Data sources

The flood hazard assessment in this work was based upon numerical simulation, satellite 
imagery, Digital Elevation Model (DEM) data, and hydrological information. First, the 
PlanetScope satellite imagery data were obtained from the “Planet Developer Resource 
Centre (Planet Explorer)”. PlanetScope data are based upon approximately 130 satellites 
and can image the entire land surface of the Earth daily. PlanetScope images are approxi-
mately 3 m or 3.7 m per pixel resolution and are generally divided into 4 bands (B, G, 
R, and NIR) (Table  1). These data were used to identify maximum flood extent during 
the event (see below). The flood has a clear signature in terms of maximum extent due to 
extensive fine sediment deposition. Second, the ALOS (Advanced Land Observing Satel-
lite) DEM data, produced using ALOS panchromatic three-line images, were used for the 
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hydrodynamic model. These data have a spatial resolution of 5 m and were obtained from 
the Geographical Survey Institute of Japan. Finally, discharge data were provided from the 
Batang gauging station in the Jinsha River (Fig. 3), providing reliable real-time monitor-
ing data (Gao et al. 2021; Chen et al. 2021a, b). A peak discharge of 20,900  m3s−1 was 
recorded during the second flood (Fig. 3).

3.2  Methods

3.2.1  Remote sensing interpretation

The outburst floods occurred on 12 October and 13 November 2018.  7 October and  15 
November 2018 were selected as dates with cloud-free imagery from before to after the 
two events; as the second flood was larger,  15 November data are likely representa-
tive of this event. The imagery records the extent of the flood’s impact, and it can be 
used to distinguish between inundated and non-inundated zones (vegetation-covered 

Fig. 1  Location of the Baige landslide and the study area. a, c Baige landslide flood impact extent. b Study 
area satellite image. d Baige landslide aerial image
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zone). The maximum inundated extent impacted by the outburst floods was mapped by 
comparing imagery from before to after the flood. The eCogition Developer version 9.0 
software was used to conduct the remote sensing. First, the RGB bands were displayed 
(Fig. 4a). Second, a multi-resolution segmentation algorithm (MESA; Benz et al. 2004) 
was applied at the pixel scale. This algorithm starts with individual pixels and merges 
them with adjacent pixels according to their homogeneity. The MRSA was applied with 

Fig. 2  Flow chart of the outburst flood analysis

Table 1  Satellite image and DEM data source

Data Acquisition time Spatial resolution Data source

PlanetScope (satellite) 2018.10.07 3 m Planet developer resource 
centre (https:// accou nt. 
planet. com/)

2018.10.25 3 m
2018.11.15 3 m

DEM –- 5 m ALOS

https://account.planet.com/
https://account.planet.com/
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a scale parameter of 25 m (Fig. 4b). Third, the Normalised Difference Vegetation Index 
(NDVI) was determined (Fig. 4c):

(1)NDVI =
NIRmean − Rmean

NIRmean + Rmean

Fig. 3  Discharge hydrograph measured for the Batang County reach

Fig. 4  Method to delineate flood inundation extent using remote sensing
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The NDVI is used to detect vegetation growth state, vegetation coverage and eliminate 
partial radiation error. It reflects well on the characteristics of plant distribution and is 
easy to distinguish from inundated zones. Fourth, the imagery was classified into vegeta-
tion zones (non-inundated zone) and inundated zones based upon a threshold value of the 
NDVI. In this study, the NDVI of the vegetation zones was between 0.16 and 1.0 (Fig. 4d). 
Fifth, a manual classification was undertaken to provide validation data got assessing the 
automated classification (Fig.  4e). Sixth, the classes were merged to produce non-inun-
dated zones (vegetation-covered zones) and inundated zones (Fig. 4f).

3.2.2  Determination of potential landslide dam height

The secondary failure and landslide-dammed lake risk of the Baige landslide are high with 
the continuous deformation of the landslide edge and rear (Chen et al. 2021a, b; Zhang et al. 
2021; Zhou et al. 2022). Crack zones have been identified in several detailed field investiga-
tions, which implies that the area of landslide potential high-risk zones can be determined 
(Fig. 5a–e). A deep displacement monitoring instrument (SINCO) was used to detect slope 
deformation and to identify the landslide sliding surface with manual measurement, once per 
month on average. The total monitoring time was from June 2019 to December 2021. The 

Fig. 5  Deformation characteristics of the Baige landslide. a  Deformation area and crack distribution of the 
Baige landslide edge and rear. b Boundary crack of the Baige landslide rear. c Historical deformation scarp. 
d Crack propagation in engineering cutting area. e Severe deformation zone
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potential landslide volume was calculated based upon surface area and the estimated depth to 
the shear plane.

The potential landslide dam height was determined based upon the landslide volume, dam 
shape, and the shape of the deposit (dam breach deposit) that formed downstream from the 
breach. For the two 2018 breaches, distinctive dam breach deposit shapes were identified 
(Fig. 6a). These deposits then determined the required landslide mass needed to create a land-
slide dam during future landslide failures (Fig. 6a). The landslide dam shape, especially the 
back and front slope, could be extracted to restrict the crest of the dam assuming that the land-
slide accumulation process operates in a similar way (Fig. 6b, c). Using this approach, it was 
possible to identify landslide dam heights at risk of future breaching.

3.2.3  Hydrodynamic model

The simulation of inundation was based upon the shallow water equations which solve for 
continuity (conservation of mass or volume) and momentum to calculate the propagation of 
shallow water flows over natural topography. There are four aspects that must be considered: 
(1) the form of the terms use to describe conservation of mass and momentum; (2) numeri-
cal solution of the associated partial differential equations; (3) parameterization (as shown in 
Table 2), notably of flow resistance which is generally the parameter that has most impact on 
flood inundation prediction; and (4) the description of channel and floodplain geometry (Lane 
1998; Worni et al. 2013).

The two-dimensional numerical model BASEMENT (Zischg et  al. 2018) was used to 
investigate and simulate flood inundation in the study reach. BASEMENT has been designed 
as a tool for application to the study of flood inundation and coupled water–sediment pro-
cesses (Lala et al. 2018). The 2D shallow water Eqs. (2) through (4) are solved with an explicit 
finite-volume method on an unstructured mesh (Worni et al. 2013). The water depth h and 
specific discharges (q = uh, r = vh) are the primary variables in the coordinate directions.

(2)
�h

�t
+

�(uh)

�x
+

�(�h)

�y
= 0

Fig. 6  a Landslide dam cross sections and dam breach deltas for the two flood events. b Longitudinal pro-
file for the first 2018 event. c Longitudinal profile for the second 2018 event
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where u is the velocity in x direction, v is velocity in y direction, g is the gravitational 
acceleration, ρ is the fluid density, and ZB is the bottom elevation. The bed shear stresses 
(τBx, τBy) act in the direction of depth-averaged velocities and are determined using the 
quadratic resistance law with cf being the dimensionless friction factor as (5). Flow resist-
ance is generally described by the empirical Strickler (Range: 7 ~ 40  m1/3  s−1) or Manning 
coefficients (Range: 0.025 ~ 0.143  m−1/3 s) (Vanzo et al. 2021).

Generating an irregular triangle mesh is a fundamental step in the process. DEM data 
were used to generate the nodes, each with an elevation value. Triangular meshes were 
generated by using the pre-processing plug-in in QGIS software, as shown in Fig.  7. 
Finally, with execution of the BASEMENT model, flood data on water depth, velocity, 
and water surface elevation (WSE) were obtained.

The study area has low forest coverage and housing density, and so, the Manning’s 
friction was set as 0.03 (Chow et al. 1988). The run time of the flood simulation was 
set as 46,800 s, noting the peak discharge occurred at 10,800 s and that the maximum 
inundation extent was reached well before the end of this time for the second flood. The 
boundary condition was set as the stage-discharge curve of Batang County upstream and 
a normal depth condition downstream. The associated parameters are shown in Table 2.

3.2.4  Accuracy analysis of model predictions

Kappa-based contingency analysis (Cohen 1960) was used to assess the accuracy of the 
BASEMENT simulation flood result using predicted and observed inundation patterns. 
The foundation of all accuracy assessments is an error matrix (Fig. 8). With two classes, 
inundated or not, the error matrix is a 2 × 2 space (Fig. 8). Here,  n11 and  n22 are rep-
resented the numbers of cells of consistent wet and consistent dry classes in both the 

(3)
�

�t
(hu) +

�

�x

(

hu2 +
1

2
gh2

)

+
�

�y
(huv) = −gh

�ZB

�x
−

�Bx

�

(4)
�

�t
(hv) +

�

�x
(huv) +

�

�y

(

hv2 +
1

2
gh2

)

= −gh
�ZB

�x
−

�By

�

(5)�Bx = �
√

u2 + v2u∕c2
f
, �By = �

√

u2 + v2v∕c2
f

Table 2  Parameters of the BASEMENT model simulation outburst flood

Gravity 
 (ms−2)

Viscosity 
 (m−2 s)

Reynolds 
number (kg/
m3)

Boundary condition Friction 
 (sm−1/3)

Total run time 
(s)

9.8 0.000001 5000 Inlet Outlet 0.03 46,800 (actual 
process)

Data: 
discharge 
Slope:3 
(per mill)

Data: the 
normal 
depth 
Slope:3 
(per mill)
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simulation and the actual results. n12 and n21 are represented the number of cells of the 
‘wet versus dry’ and the ‘dry versus wet’ between the simulation and the actual results.

The overall accuracy is identified from Eq. (6) as the sum of the correctly predicted 
cells divided by the total number of cells (Yu and Lane 2006). However, this statistic 
takes no account of random level of agreement in the contingency table.

Following Cohen (1960), we therefore used Kappa analysis, and a discrete multivari-
ate technique that is used to allow statistical analysis of model performance and to test if 
one error matrix is different from the actual result (Fig. 6) (Bishop et al. 1975).

Equation (7) is essentially expressing the ratio of the observed excess over chance 
agreement to the maximum possible excess over chance agreement, with K = 1.0 at 
perfect agreement and K = 0.0 when observed agreement equals chance agreement 
(Everitt 1998). Data required for this assessment were based upon the spatial extent of 
the modelled domain.

3.2.5  Calculation of the potential outburst flood peak discharge

We aimed to quantify how inundation changes as a function of different magnitudes 
of river valley blockage by the landslides. This needed simulations of outburst flood 
magnitudes for different dam heights and their attenuation with distance downstream. 
The peak discharge is the key parameter that determines the submergence range, scour 
intensity, and the arrival time of floods downstream. Empirical models and hydrologi-
cal experiments are the main two ways to determine the peak discharge for potential 
dam breaching (Costa 1985; Costa and Schuster 1988b, a; Costa and Schuster 1991; 
Walder and O’Connor 1997; Fread 1988; Peng and Zhang 2012; Habib et al. 2014; Li 
et  al. 2021). Empirical models vary in their complexity. For example, Costa’s (1985) 
empirical model only considered dam height (Hd) for calculating peak flow (Qp), and 
Costa and Schuster (1988b, a, 1991) only considered dam height (Hd) and barrier lake 
storage capacity (Vl). Peng and Zhang (2012) proposed an empirical model to calculate 
peak discharge, which has been successfully applied to the peak discharge calculation 
of glacier lake and landslide dam outburst flood (Rivas et al. 2015; Shi et al. 2017). The 
method was based upon a database of 1239 landslide dams, including 257 dams formed 
during the Wenchuan earthquake on May 12, 2008. The model considered dam height, 
dam width, dam volume, reservoir storage capacity of barrier lake, and dam erodibility. 
The model is shown in (7):

where Qp is the peak discharge at dam burst  (m3s−1), Hd is dam height (m), Hr = 1 m (Peng 
and Zhang 2012), Vl is storage capacity of barrier lake  (m3), g = 9.8  ms−1, and e = 2.718, 

(6)Overall accuracy =

∑k

i=1
nii

n

(7)K =
n
∑k

i=1
nii −

�

∑k

i=1
ni1 +

∑k

j=1
nij

�

×
�

∑k

i=1
ni2 +

∑k

j=1
n2j

�

n2 −
�

∑k

i=1
ni1 +

∑k

j=1
nij

�

×
�

∑k

i=1
ni2 +

∑k

j=1
n2j

�

(7)
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and ɑ is the dam erodibility parameter which can be divided into three grades: high (1.236), 
medium (− 0.380), and low (− 1.615) (Peng and Zhang 2012; Briaud 2008; Hanson and 
Simon 2001).

The spatial analysis tool in Arcgis 10.2 was used to calculate the storage capacity (Vl) 
and, as a by-product, the inundation area upstream of different height. The SRTM 30 m 
spatial resolution DEM data were combined with the dam height to determine the water 
level height and its intersection with valley topography upstream. This was then overlain 
on the DEM and, using the cut fill tool of the Arcgis 10.2, allowed the volume of water 
stored for each dam to be determined. Table  3 illustrates example calculations and also 
the sensitivity to the dam erodibility parameter ɑ. In this case, we could also back-validate 
the Peng and Zhang (2012) model against the measured peak discharge calculation for the 
Baige landslide. For the first outburst flood, and using ɑ = − 0.38, the landslide dam height 

Fig. 7  Irregular triangulation mesh for the BASEMENT flood simulation of the study reach
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was 47 m corresponding to an actual outburst flood peak discharge of 10,000  m3s−1. Equa-
tion (7) gives 9590  m3s−1 for that dam height (47 m). The modelled peak discharge is very 
close to the actual result, which means Peng and Zhang (2012) model is likely to be effec-
tive. For the second outburst flood, the landslide dam height was 72 m corresponding to 
an actual outburst flood peak discharge of 31,000  m3s−1. Equation (7) gives 11,347  m3s−1 
for that dam height (72 m) with using ɑ = − 0.38. This model result appears distorted com-
pared with the second peak discharge with the dam height significantly increasing. This 
deviation likely implies that the dam erodibility parameter (ɑ) of this model is not correct. 
In addition, with the dam height increasing, the estimation of the peak discharge may be 
too small. However, the dam height for 47 m close to the future potential dam heights con-
sidered herein of 30, 35, and 51 m presented a good result.

Whilst this analysis gives the peak discharge at the dam breach, it was also necessary 
to quantify the evolution of the peak discharge with distance downstream due to attenua-
tion. Data suggested that the shape of the hydrograph retained similarity as the flood wave 
moved downstream. This allowed the shape of the simulated hydrographs to be scaled to 
the estimated peak discharge (Figs. 9 and 10).

Error matrix

Actual result (Interpretation + field 

investigation)

Wet dry ... Class

Simulation 

result

wet n11 n12 n1j 1

dry n21 n22 n2j 2

... ni1 ni2 nij k 

Class 1 2 k ...

Kappa value degrees: slight (0.0 - 0.2), fair (0.21 - 0.4), moderate (0.41 - 0.6), substantial 

(0.61 - 0.8), almost perfect (0.81 - 1.0) (Cohen 1960; Landis and Koch 1977)  

Fig. 8  Error matrix for the Kappa accuracy analysis
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4  Result

4.1  Validation of flood inundation simulations

Figure 11 shows the estimated active river bed before the second flood and then, after, the 
latter likely indicating the maximum inundation extent. The remote sensing results sug-
gest that the river was inundated to an extent of 1.5  km2 (i.e. in the first flood, before the 
second flood) and that this area increased by 1.6  km2 in the second flood, such that the total 
flooded area in the study area is 3.1  km2. The remote sensing results are used to define the 
actual flooded area.

Figure 12 superimposes the modelled and predicted inundation and is visually encour-
aging. The modelled result is in good accordance with the actual result suggesting that the 
data sources used, and the model parameterization are appropriate. This was confirmed 
quantitatively with an overall accuracy reaches of 0.956 and a Kappa value of 0.911. Fig-
ure 13 confirms a qualitatively good agreement between the measured and the modelled 
water depths. Mismatches in this figure are likely to reflect inaccuracies in the DEM data 
and local inconsistencies relating to minor topographical details. The spatial resolution is a 
significant difference between the DEM data (30 m) and the imagery data (3 m) which may 
also cause the mismatches.

4.2  Potential landslide dam heights

Investigation and monitoring results show that CZ1-1, CZ1-2, and CZ2-1 were at the high-
est risk of potential failure (Fig. 5a). Their volumes were about 0.8 ×  106m3, 0.8 ×  106m3, 
and 3.3 ×  106m3. In addition, there is about 1.0 ×  106m3 of landslide debris residue in the 
landslide groove created from the last landslide event. Although the volume of potential 
material (total 5.9 ×  106m3) is lower than for the past two landslide events, its potential haz-
ards will likely be similar and so potentially serious because the breach of the last landslide 
dam was only small in size. Notably, CZ1-1, CZ1-2, and CZ2-1 are the highest risk zones 
now. The crack zone boundary is further up-slope, and the extent of potential slope insta-
bility may be bigger (Fig. 5).

Based on the shape of the 2018 dams, the dam breach deposit shape, and potential 
landslide volume, the potential dam height can be calculated. Figure  14 shows three 
scenarios for potential landslide failures in terms of the high-risk zone covering ‘CZ1-
1’, ‘CZ1-1 + CZ2-1’, and ‘CZ1-1 + CZ1-2 + CZ2-1’. The three scenarios are as fol-
lows: ‘CZ1-1’ is likely the first failure because of the highest risk; CZ1-1 and CZ2-1 
(‘CZ1-1 + CZ2-1’) are likely simultaneous start-ups considering the most severe defor-
mation; CZ1-1, CZ1-2, and CZ2-1 (‘CZ1-1 + CZ1-2 + CZ2-1’) are likely simultaneous 
failures because the crack zones are interconnected (Fig.  5). The associated landslide 
failure volumes are 1.3 ×  106m3, 2.6 ×  106m3, and 5.9 ×  106m3 and form landslide dams 
30 m, 35 m, and 51 m high, respectively (Fig. 14).

4.3  Flood simulations for the November 2018 event

The main three simulation outputs were depths, velocities, and the maximum flood inun-
dated area of the outburst flood. The total simulation time is 46,800  s, which has been 
divided into four steps that included 10,800  s, 21,600  s, 324,00  s, and 43,200  s for 
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visualization. Because the landslide dam breaching process was slow, the flood process 
lasted a long time; whilst the study area was only 9 km long, the flood lasted more than 
13 h. The peak discharge time was at 10800 s (Figs. 15 and 16). As shown in Fig. 15, the 
maximum flood depth was about 27 m at 10,800 s, and it then sharply decreased to 15 m 
by 43,200 s. As shown in Fig. 16, the largest flood velocity occurred during the peak dis-
charge stage of 10,800 s and reach up to ~ 19  ms−1. Most of the flood discharges are below 
16  ms−1, but there are locally high velocities due to a bedrock valley constraint. The maxi-
mum flood inundation at the 10,800 s stage is shown in Figs. 15 and 16.

Fig. 9  Dam downstream outburst hydrographs. a First dam breach: October 2018. b Second dam breach: 
November 2018; here, the black dotted line represented the water level change of Boluo town 20  km 
upstream of the dam

Fig. 10  Potential peak discharge 
attenuation downstream of the 
dam
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4.4  Upstream impacts of different landslide dam scenarios

The 30  m, 35  m, and 51  m dam height scenarios induce a storage capacity up to 
142 ×  106  m3, 182 ×  106  m3, and 331 ×  106  m3, with the back-flow extending upstream 
by 32 km, 40 km, and 50 km, respectively (Table 4 and Fig. 17). The potential flooded 
area upstream of these dams is 5.0  km2, 6.1  km2, and 9.1  km2, respectively (Table 4). 
Compared with the two landslide dam flood events of October and November 2018, the 
flooded area and back-flow distance of the potential events are lower, but the impacts 
would be no less serious. Take Boluo Town as an example, located 20 km upstream of 
the landslide dam, the 2018 floods inundated the whole town. The scenario of the 51 m 
dam height will also inundate the whole town (Fig. 17). There is a nonlinear relation-
ship between the storage capacity and the inundated area, which reflects the form of the 

Fig. 11  November dam outburst flood illustrating the active zone of the river before the flood (a), after the 
flood (b), and the estimated flood area that results (c)
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valley upstream of the Baige landslide (Fig. 18). The increasing velocity of the flooded 
area is greater than the storage capacity (Fig. 18).

Fig. 12  Flood extent measured using remote sensing (a), modelled (b), and difference between the two (c)

Fig.13  Flooded depth difference between the interpretation and the simulation result
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4.5  Outburst flood impacts downstream of the simulated dams

Following from the peak discharge calculation and application of attenuation, the peak 
discharges at the study area located at Batang county reach are 5300  m3s−1, 5644  m3s−1, 
and 6664  m3s−1 for dam heights 30 m, 35 m, and 51 m, respectively. The BASEMENT 
simulation results show that the potential flood areas are 0.18  km2, 0.34  km2, and 0.43  km2 
on both sides of the river under the three different dam height scenarios (Fig. 19). These 
compare with a proportionately much higher flooded area for the inundated area of the 
72 m height dam failure in November 2018, and this reflects the fact that the inundated 
width of the floodplain increases markedly for the discharges associated with the higher 
case (Fig. 20).

Fig. 14  Potential dam heights caused by future blockage by the Baige landslide

Fig. 15  Outburst flood depth evolution process based on the BASEMENT model
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5  Discussion

The Baige landslide is continuously deforming due to gravity, and this resulted in land-
slide dams that breached on two closely spaced dates in 2018 (Fan et al. 2020d; Chen et al. 
2021a, b; Liu et al. 2021; Yang et al. 2021). The potentially unstable slope continues to 
erode and is likely already blocking the Jinsha River again. This paper, using the Baige 
landslide as a case study, focussed on quantifying how the dam drives inundation both 
upstream and downstream of the dam, the former due to storage of water upstream, and 
the latter due to an outburst flood with impacts downstream. Remote sensing was com-
bined with the hydrodynamic model BASEMENT to estimate flood extent and with a good 
agreement between measurements and model predictions (Figs. 12, 13) reflected in Kappa 
value > 0.9. This approach was aided by high quality remotely sensed imagery for valida-
tion. The BASEMENT modelling, however, is crucially dependent upon estimates of the 
size of the flood discharge and hence, dam heights, the liberation of water during failure 
and attenuation of the discharge wave as it moves downstream.

Fig. 16  Outburst flood velocity evolution process based on the BASEMENT model

Table 4  Dam upstream potential landslide dam disasters. The table shows data for the measured 2018 
events and the three simulated dam heights

Dam height (breach, m) Dam volume 
(×  104m3)

Storage capacity 
(×  106m3)

Flooded area 
 (km2)

Back-flow 
distance 
(km)

30 130 142 5.01 32
35 260 182 6.12 40
47 measured 1800 290 9.1 45
51 590 331 10.75 50
72 measured 630 580 16.43 70
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First, the potential dam heights were impacted by the dam shape, dam breach deposit 
volume, and landslide volume. Based upon the landslide accumulation process, the dam 
shape and dam breach deposit size are easily determined after the breach. However, accu-
rately determining landslide volume before the breach is harder. The volume calculation 
appeared distinct differences between different scholars even in the failed Baige landslide 

Fig. 17  Upstream inundation extent for different dam heights

Fig. 18  Dam height, storage 
capacity, and dam volume rela-
tion upstream
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events (Fan et  al. 2020d; Xu et  al. 2018; Chen et  al. 2021a, b; Gao et  al. 2021). Fan 
and Xu et  al. (Fan et  al. 2020d; Xu et  al. 2018) calculated the Baige landslide volume 
to be ~ 30.0 ×  106  m3 in the first and 12.0 ×  106m3 in the second by superposing estimated 
topography before and after failure; Chen et al. (Chen et al. 2021a, b) calculated the vol-
umes to be 27.0 ×  106  m3 in the first and 8.0 ×  106m3 in the second also using topographic 
superposition methods; Chen et al. (2021a, b), Gao et al. (2021) calculated the volumes to 
be 18.7 ×  106  m3 in the first and 6.3 ×  106m3 in the second using field measurements and 
before and after topographic superposition methods. The potential deformation range and 
unstable zones of the Baige landslide themselves have also differed according to the meth-
ods adopted (Fan et al. 2020d; Chen et al. 2021a, b). This work shows that the dam height 
has an important and nonlinear impact upon both upstream inundation (Fig. 18) and nota-
bly downstream outburst flood extent (Fig. 20), emphasising that determining the potential 
landslide volume and the form of the dam it produces is a key challenge for flood hazard 
assessment.

Second, the peak discharge is a critical driver of the outburst flood simulation. Although 
there is a long history in the application of empirical determinations of peak discharge, it is 
not clear that a universal model exists and that it is suitable for all landslides within a region 
let alone for all regions (Costa and Schuster 1988b, a; Walder and O’Connor 1997; Fread 

Fig. 19  Flooded area and water depth downstream for failure at different dam heights. Note that only one of 
the measured events is simulated
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1988). Most empirical models only undertake simple fitting of geometrical parameters for 
different dams in a particular area and use few parameters (Costa 1985; Evans 1986; Cen-
derelli 2000; Pierce et al. 2010; Habib et al. 2014; Li et al. 2021). Many researchers have 
captured the geometry and size of landslide dams (such as dam volume, dam height, and 
breach depth and width) and barrier lakes (for example lake depth and storage capacity) to 
drive the empirical formula for calculating the peak discharge of the dam breaching (e.g. 
Evans 1986; Cenderelli 2000; Pierce et al. 2010; Liu et al. 2016 Fan et al. 2012). The dam 
height (or water depth), storage capacity, and breach size are very frequently used param-
eters. The dam height controls the storage capacity upstream, whereas the storage capacity 
exerts strong pressure on the dam and controlled the potential of the peak discharge (Cen-
derelli 2000; Pierce et al. 2010). Despite the size and shape of the dam breach being very 
effective parameters for calculating the peak discharge, they generally can only be deter-
mined reliably after the dam break. Fortunately, predictive models that represent the dam 
break process is now being developed based upon dam failure statistics, experiments, and 
numerical modelling (Peter et al. 2018; Xue et al. 2021), which could be used to calculate 
the peak discharge before the dam break. However, most of the models rarely consider dam 
materials and internal structures.

The estimations of peak discharge can be highly sensitive to the model used, as shown 
for the Baige landslide (Table 5). It implies that specific models need to be selected accord-
ing to the specific study area. More challenging is the fact that the correct discharge height 
model may depend on landslide height. With only two landslide events available to cali-
brate such models, this uncertainty is extreme and a major weakness with the work pre-
sented in this paper. The model of Peng and Zhang (2012) is appropriate to calculate the 
potential peak discharge of the Baige landslide dam because it not only applied the geom-
etry of the dam but also considered the erodibility of the dam. This model is based upon 
a large database of 1239 landslide dams and has been successfully applied to other sites 
(Rivas et al. 2015; Shi et al. 2017). A distinct deficiency is likely that the erodibility (ɑ) 
value divided into high (1.236), medium (− 0.380), and low (− 1.615) needs a finer resolu-
tion formulation as well as further testing data. In this paper, we select the medium value 
(− 0.380) as the erodibility (ɑ) value because the Baige landslide is neither a soil landslide 
nor a rock landslide but somewhere between the two.

Fig. 20  Relation between dam 
height and potential inundated 
area for the study reach
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Third, the inundation extent downstream is not only a function of the magnitude of the 
dam breach but also the attenuation of the flood wave. In this case, empirical evidence sug-
gested a relatively simple decline in peak discharge with distance downstream (Fig.  11) 
and little change in flood wave shape (Fig. 10). This facilitated the analysis. However, there 
is some evidence that the form of these decay curves (Figs. 10, 11) depends on the dam 
height with a more nonlinear decay in peak discharge with distance for the first and smaller 
of the two dam breach events. This suggests that hydraulic modelling of flood wave attenu-
ation should be explored.

Finally, the BASEMENT model validation was surprisingly good given that the model 
had not been optimised against remotely sensed inundation extent. That said, there are a 
range of known impacts of hydraulic model parameters on flood extent, notably roughness 
(e.g. Yu and Lane 2006) as represented here by the Manning friction coefficient, and also 
the quality of floodplain topography. As shown in Table 6, the choice of the Manning fric-
tion coefficient depended on the land-use types (Chow et al. 1988; Jeremy et al. 2015). The 
study area is located in the dry hot and deep valley segment of the Jinsha River. Meadow 
and bare land are the primary land covers, and the forest and infrastructure and covers are 
not extensive. According to the land-use type, we value the Manning friction coefficient 
as 0.3 (Table 2). Other research (e.g. Yu and Lane 2006) has shown that flood inundation 
predictions are relative insensitive to parameterizations of flood plain roughness; the speci-
fication of roughness in the channel, which determines the discharge at which out-of-bank 
flow starts, is much more important. The mesh used for model solution may also have a 
significant impact (Lala et al. 2018). Testing of mesh effects may be worthwhile, especially 
as these interact with model parameters and notably friction parameterization. A crucial 
finding of this work was that the relationship between dam height and downstream flood 
extent is likely to be nonlinear (Fig.  20) emphasising the importance of using hydrody-
namic models for evaluating the downstream impacts of outburst flood events.

Table 5  Empirical models of the peak discharge calculation of the Baige first two landslides

Hw = water depth (m); Hd = dam height (m); Vl = storage capacity (×  106m3) (as shown in Table 3); Hr = Ref-
erence height (1.0); a is erodibility parameter (Peng and Zhang (2012)), here a = 0.38

Source Empirical equation Peak discharge  (m3/s−1)

Dam height 47 m Dam height 72 m

Costa (1985) QP = 0.981(HdVl)
0.42 17,707 28,339

Froehlich (1995) Qp = 0.607
(

V0.295
l

H1.24
w

)

22,540 46,924
Evans (1986) QP = 0.72V0.53

l
21,999 31,765

USBR(1982) Qp = 19.1H1.85
w

23,681 52,131
McDonald and Landridge 

Monopolis (1984)
Qp = 1.154

(

VlHw

)0.412 17,282 27,413

Cenderelli (2000) QP = 3.4V0.46
l

26,557 36,530
Pierce et al. (2010) QP = 1.9(HdVl)

0.40 21,505 33,655
QP = 0.0176(HdVl)

0.606 24,379 78,050
Peng and Zhang (2012) QP∕(g1∕2H

5∕2
d ) = (Hd∕Hr)−1.371

(V1∕3
l ∕Hd)1.536ea

9590 11,347

Measured 10,000 31,000
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6  Conclusion

The Baige landslide dam has failed and twice-triggered severe outburst floods. Unfortu-
nately, the Baige landslide is continuously deforming and continues to be a significant 
potential hazard. As such, it is representative of a wider set of known flood risk cases where 
the risk cascades from an initial event (e.g. a landslide that blocks a valley) through a sec-
ondary event (e.g. landslide breach) through to a downstream risk (e.g. flood inundation) 
that can be catastrophic. In this paper, we developed a coupled approach to evaluating this 
problem showing how it is both necessary and possible to couple analysis of a landslide, 
to estimation of the dam that it may form in the valley below, to estimation of inundation 
downstream if that dam then breaches. We tested it successfully on the Baige landslide 
DEM case and it would merit being tested for a wider number of cases. We emphasise that 
volume of sediment may produce empirical relationships for dam breaching and the likely 
outflow flood that results and application of a suitable hydrodynamic model. In terms of 
the latter, we showed that BASEMENT is an accurate and effective hydrodynamic model 
for simulating outburst flooding process, and associated scenarios can be used to assess 
future flood hazard. This was confirmed here by comparison with remotely sensed data.

Three key conclusions follow for the case study consider here. First, remote sensing 
showed that the second time the Baige dam breached, and it triggered an inundated area 
reaching up to 3.1  km2 within a length 9 km of downstream river valley. Second, the Baige 
landslide is continuously deforming which implies a high probability of future outburst 
flood events. Third, there is some evidence that the relationships between landslide height 
and both upstream inundation extent and downstream outburst flood extent are nonlinear. 
This emphasises that the likely consequences of an outburst flood will depend upon the 
size of the landslide dam and also the time since the last failure event. This hypothesis 
could be a very major consequence for river valleys at risk of landslide dam (or other) out-
burst floods and so merits assessment in other cases.
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