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Abstract: Patients admitted to the intensive care unit (ICU) often experience endotoxemia, nosoco-
mial infections and sepsis. Polymorphonuclear and monocytic myeloid-derived suppressor cells
(PMN-MDSCs and M-MDSCs) can have an important impact on the development of infectious dis-
eases, but little is known about their potential predictive value in critically ill patients. Here, we used
unsupervised flow cytometry analyses to quantify MDSC-like cells in healthy subjects challenged
with endotoxin and in critically ill patients admitted to intensive care units and at risk of developing
infections. Cells phenotypically similar to PMN-MDSCs and M-MDSCs increased after endotoxin
challenge. Similar cells were elevated in patients at ICU admission and normalized at ICU discharge.
A subpopulation of M-MDSC-like cells expressing intermediate levels of CD15 (CD15int M-MDSCs)
was associated with overall mortality (p = 0.02). Interestingly, the high abundance of PMN-MDSCs
and CD15int M-MDSCs was a good predictor of mortality (p = 0.0046 and 0.014), with area under
the ROC curve for mortality of 0.70 (95% CI = 0.4–1.0) and 0.86 (0.62–1.0), respectively. Overall, our
observations support the idea that MDSCs represent biomarkers for sepsis and that flow cytometry
monitoring of MDSCs may be used to risk-stratify ICU patients for targeted therapy.

Keywords: myeloid-derived suppressor cell; biomarker; endotoxemia; critically ill patient; intensive
care; sepsis; hospital acquired pneumoniae

1. Introduction

Sepsis is a heterogeneous syndrome defined as a life-threatening organ dysfunction
caused by a dysregulated host response to infection [1]. Despite major improvements in
patient care, the incidence of sepsis is rising. The Global Burden of Disease Study estimated
that sepsis affects around 49 million people and is accountable for 11 million deaths per
year, representing close to 20% of all deaths worldwide. Moreover, almost half of patients
surviving sepsis are re-hospitalized within a year. Hence, sepsis is a leading cause of critical
illness and mortality worldwide [2]. Sepsis is accompanied by immune alterations affecting
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the innate and adaptive arms of the immune system. At the outset, septic patients exhibit
signs of exacerbated proinflammatory responses associated with organ failure, followed by
counter-regulatory immune modulating mechanisms that result in immunoparalysis and
the development of secondary infections. Unfortunately, despite numerous clinical trials,
this knowledge has yet to be translated into clinical application [3–10].

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells arising from
the bone marrow and displaying immunosuppressive functions [11,12]. MDSCs are divided
into two major subsets: polymorphonuclear MDSCs (PMN-MDSCs) defined as low-density
granulocytes or as CD11b+ CD14− CD15+ CD16low/intermediate CD33+ CD66b+ cells, and
monocytic MDSCs (M-MDSCs) defined as CD11b+ CD14+ CD15− CD33+

HLA-DRlow/negative cells [11,13]. In addition, a population of early-stage MDSCs (eMDSCs)
that do not express lineage markers has been reported [13–15]. MDSCs are barely de-
tectable in the peripheral blood of healthy subjects, but their abundance increases under
myelopoiesis-stimulating conditions such as inflammation and cancer. The great majority
of our knowledge of MDSCs has been obtained in the field of oncology. MDSCs restrain
innate and adaptive immune responses through the expression of arginase 1, programmed
cell death ligand-1, reactive oxygen and nitrogen species (ROS and RNS), interleukin (IL)-10,
transforming growth factor-β or lactate and the activation of T regulatory cells [12,16,17].
MDSCs are enriched in the tumor environment and can become one of the main leukocyte
subtypes in the peripheral blood of cancer patients. Targeting MDSCs is thus considered
for several diseases, and clinical trials against MDSCs have shown promising results in
cancer [17,18]. The role of MDSCs in infection and sepsis is incompletely understood. In
general, it is assumed that the immunosuppressive functions of MDSCs are detrimental
to host defenses. Yet, MDSCs are phagocytic cells producing high amounts of bacteri-
cidal molecules such as ROS and RNS, thus actively participating in host defenses. In
addition, through their regulatory functions, MDSCs may counterbalance the detrimental
inflammatory response occurring during sepsis [6,16,17,19–25].

In-hospital mortality of intensive care unit (ICU) patients ranges from 7% to 40%
and is frequently associated with nosocomial infections and sepsis. Moreover, endo-
toxemia is common in ICU patients [1,26]. Rapidly measurable prognostic biomarkers
would be invaluable to risk-stratify critically ill patients to select and/or adapt treatment
options [8,27–30]. In the present study, we aimed to assess whether MDSCs represent
biomarkers in sepsis using unsupervised flow cytometry to quantify MDSC-like cells.
We first applied our approach to the model of experimental human endotoxemia, a well-
controlled model of acute systemic inflammation in healthy volunteers, in order to find
clues about the impact of an acute inflammatory response on the expression of MDSC-like
cells. Second, we analyzed the expression of MDSC-like cells in non-infectious critically ill
patients admitted to the ICU with a high likelihood of developing infection.

2. Materials and Methods
2.1. Ethics, Subjects, and Study Design

The endotoxemia study was conducted at the Radboud University Nijmegen Medical
Centre, Nijmegen, the Netherlands. Eight healthy male volunteers were challenged with
2 ng/kg of Escherichia coli O:113 lipopolysaccharide (LPS, lot #94332B1, National Institutes
of Health, Bethesda, MD, USA) following a standard protocol [31]. Blood was collected
in EDTA tubes before endotoxin administration (baseline) and 1, 2, 3, 4, 6, 8, 24,168 and
336 h after endotoxin administration. The PIPOVAP (Profile, Interaction, and PrOgnosis in
Ventilator-Associated Pneumonia) study was a prospective, observational study conducted
at the Lausanne Hospital University, Lausanne, Switzerland. Thirty-three non-infected,
intubated adult patients admitted to the ICU with an anticipated length of mechanical
ventilation greater than 48 h were included. Exclusion criteria were treatment with im-
munosuppressive agents or treatment with antibiotics. Blood was collected in EDTA tubes
and serum tubes within 24 h of admission to the ICU and at discharge.
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2.2. Flow Cytometry

One hundred µL of blood was added to DURAClone tubes (Beckman Coulter, Brea,
CA, USA) containing lyophilized antibodies directed against (clone name, labelling)
HLA-DR (Immu-357, FITC), CD3 (UCHT1, APC-AF700 or AF-700), CD11b (Bear1,
PE-Cy7), CD14 (RMO52, APC-AF750), CD15 (80H5, Pacific Blue), CD16 (3G8, ECD), CD19
(J3-119, APC-AF700 or AF-700), CD33 (D3HL60.251, APC), CD45 (J33, Krome Orange),
CD56 (NKH-1, APC-AF700 or AF-700), and CD124 (G077F6, PE). Lineage-positive (lin+)
cells were defined as positive for either CD3, CD19 or CD56. After 20 min at 22 ◦C
in the dark, 900 µL of 1 × BD FACS™ lysing solution (BD Biosciences, San Jose, CA,
USA) was added to lyse the red blood cells and fix leukocytes. The tubes were kept at
−80 ◦C until analysis. The samples were thawed 1 min at 37 ◦C, washed and reconsti-
tuted with PBS containing 0.5% BSA and sodium azide 0.02%, and analyzed on an Attune
NxT Flow Cytometer (Thermo Fisher scientific, Waltham, MA, USA). Debris, doublets,
and non-hematopoietic cells were excluded using FlowJo™ 10.6.2 (BD Life Sciences, Ash-
land, OR, USA) (Supplementary Figure S1). We performed unsupervised clustering with
FlowSOM using the biexponential transformed and normalized expression levels of the
markers and relative forward and side scatter areas (FSC-A, SSC-A). The resulting 100 clus-
ters were reduced to 30 metaclusters and manually merged into populations based on
marker expression and biological knowledge: MDSCs, basophils, eosinophils, neutrophils,
classical monocytes, intermediate/non-classical (NC) monocytes, lineage-positive (lin+)
cells, and DCs (Figure 1A,B and 2A) [32]. PMN-MDSCs (CD11b+ CD14− CD15+ CD16+

CD33− HLA-DR− cells) were identified based on the low expression levels of CD11b
and CD16 when compared to mature PMNs. M-MDSCs (CD11b+ CD14+ CD15−/low

CD16− CD33+ HLA-DR−/low cells) were identified based on the low expression levels of
HLA-DR [11,13,23,33]. Unsupervised clustering identified CD15low and CD15int M-MDSC
subpopulations in blood samples from the PIPOVAP study.

2.3. Measurement of Serum Mediators by Multiplex Bead Assay

The concentrations of IL-1RA, IL-6, IL-8, IL-10, CCL2, CCL3, CCL4, and TNF in
the serum from healthy volunteers challenged with LPS were quantified using Luminex
technology (Luminex Corporation, Austin, TX, USA). The concentrations of 45 mediators in
the serum samples obtained from patients at their admission to the ICU (PIPOVAP study)
were determined by the clinical laboratory of the Service of Immunology and Allergy,
Lausanne University Hospital, using Luminex xMAP Technology as described [34].

2.4. Statistical Analysis

The data generated during this study, as well as detailed patient’s demographics, are avail-
able in Supplementary Table S1. Baseline comparisons were performed using the chi-square
exact test, Mann–Whitney U test, and Kruskal–Wallis test, as appropriate. The relationship
between the percentages of cell population and clinical data (i.e., categorial variables) was
assessed using the Mann–Whitney U test. The expression levels of PMN-MDSCs ≤ 10%
and >10% of leukocytes and of CD15int M-MDSCs ≤ 1.3% and >1.3% of leukocytes (cutoff
value based on tertile) were categorized as high and low levels and were used to analyze
mortality over time. Survival curves were compared using the log-rank test. Luminex data
were analyzed using Spearman’s rank correlation controlling for FDR (false discovery rate)
using the Benjamini and Hochberg procedure. Mediators with a coefficient of correlation
greater than 0.3 with a population of MDSCs are reported. Statistics and illustrations were
achieved employing R v.3.6.0 (R Foundation for Statistical Computing, Vienna, Austria). Each
dot represents an individual sample. *, p < 0.05; **, p ≤ 0.01; ***, p ≤ 0.001; ****, p ≤ 0.0001.

3. Results
3.1. MDSC-like Cells in Healthy Subjects Challenged with Endotoxin

We used an experimental model of endotoxemia to delineate the impact of systemic
inflammation on the expression of MDSCs since endotoxemia is a common feature of
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ICU patients. Eight healthy male volunteers (median age 23.5 years, interquartile range
[IQR]: [22–27]) were challenged with 2 ng/kg of LPS (Table 1). Blood was collected before
and up to 336 h after endotoxin administration (Figure 1A).
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Figure 1. MDSC-like cells in the blood of healthy subjects challenged with endotoxin. (A) Study
design. Eight healthy subjects were challenged with 2 ng/kg endotoxin. Blood was collected just
before and 1–336 h after endotoxin infusion in DURAClone tubes and analyzed via flow cytometry.
(B) Relative expression levels of cell surface markers and forward and side scatter areas (FSC-A,
SSC-A) of leukocyte populations. (C) t-SNE plots of leukocyte populations over time. (D) Absolute
counts and percentage in leukocytes of PMN-MDSCs and neutrophils. (E) Absolute counts and
percentage in monocytic cells of M-MDSCs, classical monocytes and intermediate/non-classical
monocytes. (F) Concentrations of cytokines and chemokines. Graphs show medians with standard
deviations. DCs: dendritic cells, Lin+: lineage (i.e., CD3, CD19 or CD56)-positive. * Values above the
upper limit of quantification (IL-1RA at 3 and 4 h, panel (F)).
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Table 1. Characteristic of healthy volunteers and patients.

Endotoxin Study ICU Study

Baseline ICU Survivor ICU Non-Survivor

Number of subjects/patients 8 29 4
Gender, male 8 (100%) * 15 (52%) 3 (75%)
Age (years) 23.5 [22–27] * 65 [52–68] 63 [53–67]
Severity of illness at admission:

Mechanical ventilation - 29 (100%) 4 (100%)
APACHE II score - 19 [16–23] 20.5 [18.5–22.3]
SOFA score - 12 [10–14] 11.5 [7.8–15.5]

Developed a secondary infection - 23 (79%) 2 (50%)
Type of secondary infection:

VAP/HAP - 14 (48%) 1 (25%)
HAI - 9 (31%) 1 (25%)

ICU stay (days) - 8.5 [6.00–16.25] 7 [5.50–9.25]
Leukocytes (× 109/L) 4.7 [4.5–5.6] 8.4 [5.6–9.8] 6.0 [4.7–7.3]
CRP (mg/L) - 168 [122–281] 103, 86 †

Lactate (mmol/L) - 1.1 [0.8–1.7] 0.8, 0.6 †

* Medians [IQR] or n (%). † Data available from 2 patients. APACHE II: acute physiology and chronic health
evaluation II; CRP: C-reactive protein; HAI: hospital-acquired pneumoniae; HAP: hospital-acquired pneumonia;
ICU: intensive care unit; SOFA: sequential organ failure assessment; VAP: ventilator-associated pneumonia;
95% CI: 95% confidence interval.

The baseline leukocyte count was 4.7 [4.5–5.6] × 106 cells/mL. Leukocytes dropped
2.3-fold 1 h after the endotoxin challenge, increased above normal values over the next 8 h,
and returned to baseline values within 24 to 168 h (Supplementary Figure S2). We then
analyzed blood leukocytes using a flow cytometry pipeline constructed to minimize techni-
cal and analytical variations. Whole blood was collected in tubes containing lyophilized
antibodies, the samples were frozen to perform all acquisitions at once, and the data were
analyzed via unsupervised clustering (see Section 2.2 and [23,33]). Unsupervised clustering
identified cell populations phenotypically reminiscent of PMN-MDSCs and M-MDSCs
alongside basophils, eosinophils, neutrophils, classical monocytes, intermediate/non-
classical (NC) monocytes, and lineage-positive (lin+: CD3, CD19 or CD56 positive) cells
and DCs (Figure 1B,C). For the sake of clarity, we will refer to PMN-MDSCs and M-MDSCs
in the next chapters, although the immunosuppressive activity of the cells was not charac-
terized functionally.

Neutrophils declined from 2.5 [2.2–3.1] × 106 cells/mL at baseline to 0.79 cells
[0.58–1.23] × 106 cells/mL 1 h after endotoxin challenge (p = 0.007). They increased be-
tween 2 and 8 h and returned to baseline levels after 168 h (Figure 1D). Neutrophils
constituted 40–69% of leukocytes throughout follow-up. At baseline, the number of
PMN-MDSCs was 0.03 [0.02–0.07] × 106 cells/mL, representing 0.6% [0.4–1.4] of leuko-
cytes (Figure 1D). PMN-MDSCs increased 2 h after endotoxin challenge and plateaued at
3.7 [2.6–4.2] × 106 cells/mL after 6 h (0 versus 6 h: p = 0.0002), where they represented up to
30% [20–36] of leukocytes. PMN-MDSCs returned to baseline levels after 24 h (Figure 1D).

Monocytes (classical, intermediate, and non-classical) dropped from
0.32 [0.26–0.35] × 106 cells/mL at baseline to 0.036 [0.025–0.041] × 106 cells/mL 1 h af-
ter endotoxin challenge (p = 0.008). Monocytes steadily increased to baseline levels
after 8 h (0.31 [0.22–0.39] 106 cells/mL, p = 0.20 versus baseline). Like PMN-MDSCs,
M-MDSCs were lowly abundant at baseline (0.026 [0.022–0.079] × 106 cells/mL), repre-
senting 0.6% [0.4–1.6] of leukocytes (Figure 1E). M-MDSCs increased between 4 and 8 h to
reach 0.22 [0.18–0.29] × 106 cells/mL (0 versus 8 h: p = 0.0006). M-MDSC levels returned
to baseline after 24 h. As a result, M-MDSCs represented 8.2% [5.9–27.3] of monocytic cells
at homeostasis, but 46.5% [31.7–54.3], 43.5% [39.8–49.8] and 46.9% [30.2–57.4] of monocytic
cells 4, 6 and 8 h after endotoxin challenge (Figure 1E).

Since cytokines influence the production of MDSCs [12,16,17], we measured the con-
centrations of IL-1RA, IL-6, IL-8, IL-10, CCL2, CCL3, CCL4, and TNF in blood samples.
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As expected, TNF peaked after 1 h, while IL-6, IL-8, CCL2, CCL3, CCL4 reached their
maximum values after 2 h, and IL-1-RA and IL-10 reached their maximum after 3 h of
endotoxin challenge (Figure 1F). So, proinflammatory cytokine response preceded MDSC
accumulation in peripheral blood. The cytokines returned to baseline levels after 4–8 h,
except for CCL2 and IL-1RA, which returned to baseline levels between 8 and 336 h. Over-
all, endotoxin administration induced a massive and transient accumulation of MDSC-like
cells in the circulation, accompanied by elevated levels of cytokines.

3.2. MDSC-like Cells in Mechanically Ventilated ICU Patients

We set up a clinical study to test whether MDSC-like cells represent useful biomarkers
in critically ill patients with a high probability of being infected during hospitalization.
Thirty-three uninfected mechanically ventilated ICU patients (median age 65 [52–68] years)
were studied (Figure 2A). The median ICU stay was 8.0 [6.0–14.0] days. Twenty-five patients
(75.7%) developed an infection during their ICU stay (time to onset: 1 [0–2] day), consisting
of ventilator–associated pneumonia (VAP) in fifteen patients (45.4%) and a non-VAP in ten
patients (30.3%). Four patients (12.5%) died (days till death: 7.0 [5.5–9.3] days) (Table 1).
Survivors and non-survivors had similar acute physiology and chronic health evaluation
II (APACHE II) and sequential organ failure assessment (SOFA) scores (Table 1). The
CRP values were high in ICU patients when compared to healthy subjects (normal values:
<5 mg/L). In contrast, lactate levels in patients were close to normal values (<1 mol/L),
suggesting that patients were not in acute circulatory distress/shock. Indeed, patients
were selected without infection and with a likelihood of surviving the first 24 h. The
blood was collected at the time of ICU admission in all patients and at ICU discharge
in 17 patients. Flow cytometry analyses identified basophils, eosinophils, neutrophils,
classical monocytes, intermediate/non-classical monocytes, lin+ cells and DCs, as well
as cell populations phenotypically reminiscent of PMN-MDSCs and M-MDSCs, which
were further sub-clustered into CD15 intermediate (CD15int) and CD15low M-MDSCs
(Figure 2B,C). Counts and frequencies of neutrophils and monocytes did not differ between
admission and discharge from the ICU (Figure 2D and Supplementary Figure S3).

Cells 2024, 13, x FOR PEER REVIEW  7  of  16 
 

 

 

Figure 2. MDSC-like cells in the blood of mechanically ventilated ICU patients. (A) Study design. 

Blood was collected at  ICU admission  (n = 32) and at ICU discharge  (n = 17)  from mechanically 

ventilated ICU patients without infection and analyzed as described in Figure 1. (B) t-SNE plot of 

leukocyte populations. (C) Relative expression levels of cell surface markers and forward and side 

scatter areas (FSC-A, SSC-A) of leukocyte populations. (D) Absolute counts (millions of cells per mL) 

of neutrophils,  lineage-positive (lin+) cells and dendritic cells (DCs), polymorphonuclear MDSCs 

(PMN-MDSCs), classical monocytes,  intermediate/non-classical  (inter/NC) monocytes, monocytic 

MDSCs (M-MDSCs), and CD15low and CD15intermediate (CD15int) M-MDSCs. Boxplots show medians 

and upper and lower quartiles, whiskers show the 5 to 95 percentiles, and dots show the individual 

values. 

3.3. MDSC‐Like Cells in Relation with Cytokines and Growth Factors Levels in ICU Patients 

We performed correlation studies between cytokines/growth factors and MDSCs in 

blood collected at ICU admission (Figure 3). We quantified 23 cytokines, 10 chemokines, 

and 12 growth  factors. A coefficient of correlation  (ρ)  ≥ 0.3 or  ≤ −0.3 with MDSCs was 

detected for 19 mediators (ρ ≥ 0.3 for IL-6, IL-18, CCL3, CCL4, CCL11, CXCL8, CXCL12, 

HGF and ρ ≤ −0.3 for IL-1β, IL-2, IL-4, IL-13, IL-23, IL-31, IFNγ, BDNF, EGF, FGF-2, GM-

CSF). The frequencies of PMN-MDSCs, M-MDSCs and CD15int M-MDSCs correlated neg-

atively with IL-18 and BDNF, IL-31 and BDNF, IL-4, IL-31, IFNγ, BDNF, EGF, and GM-

CSF, while the frequencies of M-MDSCs and CD15low M-MDSCs correlated positively with 

IL-6, CXCL8 and HGF and IL-6, IL-18, CXCL8, and HGF, respectively. After false discov-

ery rate correction, the negative correlation between IL-31, a member of the IL-6 cytokine 

family, and CD15int M-MDSCs remained statistically significant (ρ = −0.48, p = 0.049). This 

negative correlation is consistent with the observation that IL-31 inhibits the motility and 

activity of MDSCs in a model of breast carcinoma [35]. Finally, PMN-MDSC and CD15int 

M-MDSC expression levels correlated positively (ρ = 0.43, p = 0.03). 

Figure 2. MDSC-like cells in the blood of mechanically ventilated ICU patients. (A) Study design. Blood
was collected at ICU admission (n = 32) and at ICU discharge (n = 17) from mechanically ventilated ICU



Cells 2024, 13, 314 7 of 16

patients without infection and analyzed as described in Figure 1. (B) t-SNE plot of leukocyte populations.
(C) Relative expression levels of cell surface markers and forward and side scatter areas (FSC-A, SSC-A)
of leukocyte populations. (D) Absolute counts (millions of cells per mL) of neutrophils, lineage-positive
(lin+) cells and dendritic cells (DCs), polymorphonuclear MDSCs (PMN-MDSCs), classical monocytes,
intermediate/non-classical (inter/NC) monocytes, monocytic MDSCs (M-MDSCs), and CD15low and
CD15intermediate (CD15int) M-MDSCs. Boxplots show medians and upper and lower quartiles, whiskers
show the 5 to 95 percentiles, and dots show the individual values.

PMN-MDSCs decreased from 0.24 [0.05–1.6] × 106 cells/mL at ICU admission to
0.05 [0.01–0.13] × 106 cells/mL at discharge (p = 0.008), while M-MDSCs decreased from
0.13 [0.07–0.21] to 0.04 [0.02–0.11] × 106 cells/mL (p = 0.007) (Figure 2D and Supplementary
Figure S3). The results were similar when the analyses were performed on paired samples
from survivors. Among M-MDSCs, CD15int M-MDSCs were more abundant than CD15low

M-MDSCs at ICU admission (0.059 versus 0.036 × 106 cells/mL, p > 0.05). Both populations
decreased at discharge (0.024 versus 0.018 × 106 cells/mL).

PMN-MDSC and M-MDSC numbers at ICU admission were significantly higher
than those measured in healthy subjects before the endotoxin challenge (12 and 6.5-fold,
p = 0.0016 and p = 0.00016), indicating that the deterioration in underlying conditions
was associated with higher levels of MDSCs. Yet, PMN-MDSCs at ICU admission were
9.1-fold lower than 8 h after endotoxin challenge (p = 0.019), while M-MDSC counts
were comparable under the same conditions. This confirmed the power of LPS to stim-
ulate the rise of MDSCs, particularly PMN-MDSCs. PMN-MDSC and M-MDSC levels
at ICU discharge were comparable to those of healthy subjects (p = 0.17 and p = 0.67)
(Supplementary Figure S4A,B).

3.3. MDSC-like Cells in Relation with Cytokines and Growth Factors Levels in ICU Patients

We performed correlation studies between cytokines/growth factors and MDSCs in
blood collected at ICU admission (Figure 3). We quantified 23 cytokines, 10 chemokines,
and 12 growth factors. A coefficient of correlation (ρ) ≥ 0.3 or ≤ −0.3 with MDSCs was
detected for 19 mediators (ρ ≥ 0.3 for IL-6, IL-18, CCL3, CCL4, CCL11, CXCL8, CXCL12,
HGF and ρ ≤ −0.3 for IL-1β, IL-2, IL-4, IL-13, IL-23, IL-31, IFNγ, BDNF, EGF, FGF-2,
GM-CSF). The frequencies of PMN-MDSCs, M-MDSCs and CD15int M-MDSCs correlated
negatively with IL-18 and BDNF, IL-31 and BDNF, IL-4, IL-31, IFNγ, BDNF, EGF, and GM-
CSF, while the frequencies of M-MDSCs and CD15low M-MDSCs correlated positively with
IL-6, CXCL8 and HGF and IL-6, IL-18, CXCL8, and HGF, respectively. After false discovery
rate correction, the negative correlation between IL-31, a member of the IL-6 cytokine
family, and CD15int M-MDSCs remained statistically significant (ρ = −0.48, p = 0.049). This
negative correlation is consistent with the observation that IL-31 inhibits the motility and
activity of MDSCs in a model of breast carcinoma [35]. Finally, PMN-MDSC and CD15int

M-MDSC expression levels correlated positively (ρ = 0.43, p = 0.03).
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growth factors (see Section 2). Correlations were calculated using Spearman’s rank correlation, which
was controlled for false discovery rate using the Benjamini and Hochberg step-up procedure. The
correlation plot represents mediators with a correlation coefficient ≥ 0.3 or ≤ −0.3 with at least one
population of MDSCs. * p < 0.05, ** p ≤ 0.01, *** p ≤ 0.001. The color scale ranges from blue for negative
correlation to red for positive one. The size of the dots is proportional to the p value.

3.4. MDSC-like Cells and Nosocomial Infections in ICU Patients

PMN-MDSCs and M-MDSCs at ICU admission (percentages and absolute counts) were
not related to the development of hospital-acquired infection (HAI) and VAP (Figure 4A
and Supplementary Figure S5A). Neither were they associated with the time to develop
infection and the occurrence of sepsis or septic shock. The absence of an association between
MDSCs and infection could reflect that MDSCs were elevated prior to ICU admission, while
the time to develop infection was short. Furthermore, no other cell population (basophils,
eosinophils, neutrophils, monocytes, monocytes, and lin+ cells and DCs) was related to the
development of infections.
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Figure 4. Proportions of MDSC-like cells in patients who developed or did not develop infections
during their ICU stay. (A) PMN-MDSCs and M-MDSCs in patients who did (n = 25) or did not
(n = 8) develop an infection. Infections were sorted into hospital-acquired infection (HAI, n = 10) and
ventilator-associated pneumonia (VAP, n = 15). (B) PMN-MDSCs, M-MDSCs, CD15int M-MDSCs,
and CD15low M-MDSCs at ICU admission in patients who subsequently developed Gram-negative
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or Gram-positive bacterial infections. Boxplots show medians and upper and lower quartiles,
whiskers show 5 to 95 percentiles, and dots show individual values to the p value.

Eighteen patients developed a Gram-negative bacterial infection, and four patients
developed a Gram-positive bacterial infection. The frequency (% of total leukocytes) and
the absolute count of PMN-MDSCs at ICU admission were not related to infection with
either Gram-positive or Gram-negative bacteria (Figure 4B and Supplementary Figure S5B).
In contrast, the levels of M-MDSCs at ICU admission were four times higher in patients
who developed Gram-negative bacterial infections (2.8% [1.1–3.8]) than in patients who
developed Gram-positive bacterial infections (0.7% [0.6–1.5]) (p = 0.019). Furthermore,
significant differences in the abundance of CD15int M-MDSCs were found between patients
who developed infections with Gram-negative and Gram-positive bacteria (Gram-negative:
1.0% [0.7–2.0] or 0.095 [0.048–0.146] × 106 cells/mL; Gram-positive: 0.4% [0.3–0.5] or
0.027 [0.025–0.0.034] × 106 cells/mL for; p = 0.011 and p = 0.04) (Figure 4B).

3.5. MDSC-like Cells and Outcome of ICU Patients

The abundance of PMN-MDSCs and M-MDSCs at ICU admission were higher in
patients who died during their hospital stay (PMN-MDSCs and M-MDSCs: 1.18 [0.74–1.92]
and 0.19 [0.17–0.22] × 106 cells/mL; 23.9% [11.1–37.4] and 3.2% [2.6–3.8] of leukocytes,
respectively), although the results were statistically significant only for CD15int M-MDSCs
(survivors: 0.05 [0.03–0.10] × 106 cells/mL, 0.7% [0.5–1.3], non-survivors:
0.12 [0.10–0.14] × 106 cells/mL, 2.1% [1.8–2.4], p = 0.02) (Figure 5A,B).
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non-survivors. Boxplots show medians and upper and lower quartiles, whiskers 5 to 95 per-
centiles, and dots individual values. The association of MDSCs with survival was assessed using the
Mann–Whitney U and the Kruskal–Wallis tests. (C) Kaplan–Meier survival curves based on low and
high levels of PMN-MDSCs (≤ 10% and >10% of leukocytes). (D) Kaplan–Meier survival curves based
on low and high levels of CD15int M-MDSCs (≤1.3% and >1.3% of leukocytes). (E) Kaplan–Meier
survival curves based on low and high levels of PMN-MDSCs and/or CD15int M-MDSCs.
(F) Receiver operating characteristic (ROC) curves of PMN-MDSCs and CD15int M-MDSCs for mortality.
The cutoff values used to segregate low and high levels of PMN-MDSCs and CD15int M-MDSCs were
based on the highest tertile. Statistical differences were assessed using the log-rank test. AUC: area
under the curve; CI: confidence of intervals; FPR: false positive rate; TPR: true positive rate.

To test whether high levels of MDSCs were associated with worse outcomes, we
stratified patients according to low and high expression levels of MDSCs using cutoff
values corresponding to the highest tertile (≤ 10% and > 10% for PMN-MDSCs, ≤1.3% and
>1.3% for CD15int M-MDSCs). All patients with a low abundance of PMN-MDSCs (n = 20)
survived, while 33% of patients with high levels of PMN-MDSCs (n = 12) died (p = 0.0046)
(Figure 5C). Additionally, patients with low levels of CD15int M-MDSCs (n = 21) survived,
while 36% of patients with high levels of CD15int M-MDSCs (n = 11) died (p = 0.014,
Figure 5D). All patients with low levels of PMN-MDSCs and/or CD15int M-MDSCs
(n = 24) survived, while 50% of patients with high levels of PMN-MDSCs and/or high
levels of CD15int M-MDSCs (n = 8) died (p = 0.0014) (Figure 5E). Receiver operating
characteristic (ROC) curve analyses were performed to evaluate the predictive survival
performance of MDSCs (Figure 5F). The area under the ROC curve (AUC) for PMN-MDSCs
was 0.70 (95% confidence interval [CI] = 0.40–1). The AUC for CD15int M-MDSCs was
0.86 (95% CI = 0.62–1).

4. Discussion

We report that MDSC-like cells rise sharply and transiently in the blood of healthy
subjects challenged with endotoxin. In uninfected mechanically ventilated patients ad-
mitted to the ICU, the levels of CD15int M-MDSCs correlated with the development of
Gram-negative bacterial infections, whereas elevated levels of PMN-MDSCs or CD15int

M-MDSCs were associated with mortality. Therefore, MDSCs (or MDSC-like cells) may
represent biomarkers for critically ill and infected patients [15,36].

The abundance of MDSCs in healthy subjects and in sepsis patients differed noticeably
between studies [15,16,19–21,23,36–40]. This is partly because the quantification of MDSCs
via flow cytometry is influenced by factors including the type of sample (whole blood,
freshly isolated or frozen PBMCs) and the immunophenotyping strategy [13,15,23,36,40].
It is also possible that MDSCs progress phenotypically during sepsis. In our study, we
used phenotypical standards [13]. To minimize analytical variations, we collected whole
blood in tubes containing lyophilized antibodies and used clustering of flow cytometry
data to identify MDSCs. An advantage of whole blood is that it enables MDSCs and
neutrophils to be quantified in a single sample. However, this is at the expense of using the
low-density characteristic of PMN-MDSCs for discrimination purposes. While functional
suppressive activity is the gold standard for defining MDSCs [11,12,17], phenotypical
evaluation via flow cytometry is preferred in routine practice, and more so on whole blood
than on density gradient-purified PBMCs. To improve immunophenotyping, the panel
of antibodies could be enriched. For example, we could target lectin-type oxidized LDL
receptor 1, which is expressed by human PMN-MDSCs in cancer patients and septic shock
and severe coronavirus disease 2019 (COVID-19) patients [41,42]. Another candidate is
CD300ld, which was discovered in an in vivo CRISPR-Cas9 screen and was shown to be
increased in PMN-MDSCs involved in tumor progression in mouse models, as well as in
human tissues from colon and lung cancers [43].
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In sepsis patients, single-cell RNAseq analyses of MDSCs have shown specific tran-
scriptomes [22] but have failed to devise phenotypic markers, allowing for the unambigu-
ous identification of MDSCs via flow cytometry. Furthermore, in-depth explorations of
neutrophilic cells (i.e., including cells that should be PMN-MDSCs) via single-cell RNAseq
suggested that neutrophils transit through states rather than durable subsets that are
more easily traceable and that functional signatures transcend specific subsets of activa-
tion [44,45]. A recent whole-blood single-cell multiomic atlas in sepsis patients identified
immunosuppressive CD66b+ neutrophils and features of emergency granulopoiesis with
a higher frequency of immature neutrophils in a subgroup of patients with poor out-
comes [46]. Altogether, the most recent single-cell analyses indicate that it may be difficult
to identify universal, stably expressed, phenotypical markers to track MDSCs.

Human experimental endotoxemia is the only model available to study the impact of a
systemic inflammatory response in humans in a well-controlled setting. M-MDSCs showed
an initial drop before a progressive increase, which reflects the transient monocytopenia
observed in endotoxemia [47]. Even considering this initial decrease, globally, MDSCs
(re)increased quite rapidly after the LPS challenge. This is in line with mouse studies
showing that MDSCs increased in blood, spleen, and liver 3 to 12 h after intraperitoneal
or the intratracheal administration of LPS [48–50]. In models of chronic sepsis induced by
cecal ligation and puncture, MDSCs increased more gradually over several days [51,52],
suggesting that the inflammatory burst has a deep impact on the generation of MDSCs.
Indeed, the administration of LPS increased cytokines and chemokines that stimulate
myelopoiesis and the development of MDSCs. Endotoxemia is common in ICU patients
suffering from trauma, abdominal and cardiovascular surgery, as well as COVID-19 and
bacterial sepsis [26,53]. Thus, endotoxemia may contribute to an increase in MDSCs in
uninfected and infected critically ill patients.

Our analytical strategy identified CD15int and CD15low M-MDSCs subgroups in ICU
patients. CD15, known as Lewis X antigen, is expressed by granulocytes but also monocytes,
macrophages, eosinophils, mast cells, and myeloid precursor cells. Interestingly, a study
in the late 1990s described a subpopulation of whole-blood monocytes that resembles
M-MDSCs with high SSC parameters and the robust expression of CD15 and ROS [54].
Clustering did not identify the CD15int M-MDSCs subpopulation in the endotoxin study,
possibly due to the limited number of individuals analyzed or because this subpopulation
is expressed more specifically in critically ill patients. Indeed, two recent studies applying
unsupervised clustering of PBMCs and semi-automated analysis of whole blood in sepsis
patients reported a dichotomous distribution of CD15 expression by what appears to be
M-MDSCs [15,36]. A so-called unconventional CD15+ CD11b+ CD14+ CD33+ CD66b+

HLA-DR− subset increased early during sepsis and returned to physiological levels in
survivors [15]. Likewise, we observed that CD15int M-MDSCs were elevated at ICU
admission compared to ICU discharge. The subdivision of M-MDSCs based on CD15 might
be useful in stratifying critically care patients. Unfortunately, due to the design of our study,
we were not able to cell sort and further characterize this subpopulation of M-MDSCs.

MDSCs increase in patients was probably initiated before their admission to the ICU.
If so, we possibly did not capture the full range of mediators relevant to MDSC expansion
in the blood collected at ICU admission. It would explain why only one association was
statistically significant. The sample size combined with the large number of comparisons
(45 mediators and four cell populations) is another factor that reduced sensitivity. Though
not statistically significant after correction for multiple testing, positive associations in-
volving IL6, CCL3, CCL4, CCL11, CXCL12, and HGF would be consistent with the impact
these mediators have on the generation of MDSCs. For example, IL-6 plays a critical role
in regulating the accumulation and activation of MDSCs. Moreover, MDSCs have been
reported to express receptors for IL-6 (IL-6R), CCL3, CCL4, CCL11 (CCR2/3/5), CXCL8
(CXCR1/2), CXCL12 (CXCR4/7), and HGF (HGFR/Met receptor). Unfortunately, we were
not able to quantify the expression of these receptors.
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MDSC levels did not correlate with nosocomial infections, which contrasts with other
reports [19–21,23]. However, high levels of M-MDSCs, particularly CD15int MDSCs, corre-
lated with the occurrence of Gram-negative bacterial infection. Additionally, M-MDSCs
increased 10-fold during endotoxemia, and high levels of M-MDSCs have been associated
with Gram-negative bacterial sepsis [19,37]. Of note, on a per-cell basis, M-MDSCs are
more potent immunosuppressive than PMN-MDSCs. Hence, a minor subpopulation of
MDSCs may have a significant pathophysiological impact. Remarkably, patients who did
not survive presented to the ICU with high levels of PMN-MDSCs and CD15int M-MDSCs,
while clinical severity scores were slightly lower compared to survivors. The stratification
of the patients into those with high and low expression of MDSCs and ROC curve analyses
revealed a good discriminative value of MDSCs. Accordingly, high levels of PMN-MDSCs
and/or M-MDSCs at study inclusion correlated with mortality in patients with sepsis
and COVID-19 and in non-surgical ICU patients. In addition, MDSCs play a role in es-
tablishing or maintaining a protracted immunosuppressive environment, contributing to
chronic critical illness, secondary infections, and long-term morbidity and mortality in ICU
patients [16,19–22,33,39]. Overall, the data suggest that MDSCs could be biomarkers for
stratifying patients and selecting those who might benefit from targeted therapy. Preclinical
studies have shown promising results with strategies to reduce MDSCs levels and increase
T-cell function during sepsis, while phase II clinical trials targeting MDSCs in oncologic
patients are in progress.

Our study has several limitations. We identified MDSCs through phenotypical and
non-functional analyses. However, the immunosuppressive function of MDSCs isolated
based on the expression of cell surface markers (through magnetic or flow cytometry cell
sorting) has been reported in numerous studies [19,38]. Of note, quantification of MDSC-like
cells in blood via flow cytometry is currently the best option for clinical development, while
it is not conceivable to introduce functional tests for immunosuppressive functions of
MDSCs in routine. We used a stain/fix/freeze procedure before samples were analyzed.
Although unusual, this method, developed by others (see, for example, [55,56]), permits
the acquisition of all samples in a row, thus limiting the impact of possible fluctuations
in instrument performance. The endotoxemia study was performed with males. The
harmonization of the study group was intended, but it may be considered suboptimal as
there is sexual dimorphism in the host response to microbial products. One should keep in
mind that MDSCs are barely detected in the blood of healthy subjects. Therefore, it might be
problematic to define a normal range in healthy people and challenging to stratify via flow
cytometry ICU patients for targeted therapy. The limited sample size and the quantification
of mediators at a given time point restricted the sensitivity of detecting associations between
MDSCs and biological parameters in ICU patients. In addition, the predictive model of
outcomes is based on a small number of patients who did not survive. Thus, larger cohorts
should be studied to confirm that MDSC levels might be used to stratify patients, and to
validate the association between elevated levels of PMN-MDSCs and/or CD15int M-MDSCs
with mortality and to characterize the functions of CD15int M-MDSCs.

5. Conclusions

In conclusion, we show that MDSC-like cells were highly responsive to endotoxin
challenge and that elevated levels of PMN-MDSCs and CD15int M-MDSCs in blood correlated
with the development of Gram-negative bacterial nosocomial infections and patient outcomes.
Our observations support the idea that MDSCs may be used as biomarkers contributing to
mortality prognosis and risk stratification of ICU patients for targeted therapy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells13040314/s1, Figure S1: Gating strategy of flow cytometry
data to exclude debris, doublets and CD45- non-hematopoietic cells (A), univariate histogram plots of
cell surface marker expression by whole blood cells from the endotoxemia study (B) and ICU study
(C) study, and back-gating of samples from ICU study (D); Figure S2: Leukocyte counts in the blood
of healthy subjects infused with endotoxin; Figure S3: MDSC-like cells in non-infectious mechanically
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ventilated ICU patients; Figure S4: Comparison of MDSC-like cells levels between healthy subjects
challenged with endotoxin and ICU patients; Figure S5: Absolute counts of MDSC-like cells in relation
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