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Abstract
Gram-positive Firmicutes bacteria and their mobile genetic elements (plasmids and bacteriophages) encode peptide- 
based quorum-sensing systems (QSSs) that orchestrate behavioral transitions as a function of population densities. 
In their simplest form, termed “RRNPP”, these QSSs are composed of two adjacent genes: a communication propep
tide and its cognate intracellular receptor. RRNPP QSSs notably regulate social/competitive behaviors such as viru
lence or biofilm formation in bacteria, conjugation in plasmids, or lysogeny in temperate bacteriophages. However, 
the genetic diversity and the prevalence of these communication systems, together with the breadth of behaviors 
they control, remain largely underappreciated. To better assess the impact of density dependency on microbial com
munity dynamics and evolution, we developed the RRNPP_detector software, which predicts known and novel 
RRNPP QSSs in chromosomes, plasmids, and bacteriophages of Firmicutes. Applying RRNPP_detector against avail
able complete genomes of viruses and Firmicutes, we identified a rich repertoire of RRNPP QSSs from 11 already 
known subfamilies and 21 novel high-confidence candidate subfamilies distributed across a vast diversity of taxa. 
The analysis of high-confidence RRNPP subfamilies notably revealed 14 subfamilies shared between chromo
somes/plasmids/phages, 181 plasmids and 82 phages encoding multiple communication systems, phage-encoded 
QSSs predicted to dynamically modulate bacterial behaviors, and 196 candidate biosynthetic gene clusters under 
density-dependent regulation. Overall, our work enhances the field of quorum-sensing research and reveals novel 
insights into the coevolution of gram-positive bacteria and their mobile genetic elements.
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A
rticle Introduction

Quorum sensing is the mechanism by which microbial en
tities sense when their population density reaches a threshold 
level and thereupon typically switch from individual to group 
behaviors (Mukherjee and Bassler 2019). The population 
density is reflected by the extracellular concentration of a 
communication signal, produced and secreted by individual 
entities. The quorum is met when this signal reaches a thresh
old concentration, at which it starts to be robustly detected 
and transduced population-wide by its cognate receptor 
module. If quorum sensing seems to be used by diverse pro
karyotic and unicellular eukaryotic lineages (Hornby et al. 
2001; Paggi et al. 2003; Sun et al. 2004; Sharif et al. 
2008; Tian et al. 2018), most of the knowledge about 
this communication mechanism comes from the three 
Pseudomonadota (formerly Proteobacteria), Actinomycetota 
(formerly Actinobacteria), and Bacillota (formerly Firmicutes) 

bacterial phyla. In the Pseudomonadota/Proteobacteria and 
Actinomycetota/Actinobacteria phyla, the communication 
signals typically are small molecules synthesized by enzymes 
(Papenfort and Bassler 2016; Polkade et al. 2016), whereas in 
the Bacillota/Firmicutes phylum, these are oligopeptides, ma
tured from genetically encoded propeptides (Bhatt 2019). 
Peptide-based quorum-sensing systems (QSSs) can be di
vided into two main categories: those with a receptor mod
ule composed of a membrane-bound sensor coupled with 
an intracellular response regulator (two-component system) 
like the ComX-ComQ-ComP-ComA of Bacillus subtilis 
(Sturme et al. 2002) and those in which the receptor is an 
intracellular transcription factor (or a protein inhibitor) 
that gets either turned-on or -off upon binding with the im
ported communication peptide (one-component system) 
(Rocha-Estrada et al. 2010; Neiditch et al. 2017). The latter 
are generally included under the term RRNPP, named after 
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the five first experimentally characterized subfamilies of such 
receptors: Rap (Bacillus genus), Rgg (Streptococcus genus), 
NprR (Bacillus cereus group), PlcR (B. cereus group), and 
PrgX (pCF10 plasmid of Enterococcus faecalis) (Do and 
Kumaraswami 2016; Perez-Pascual et al. 2016; Neiditch 
et al. 2017).

The initial members of the RRNPP group of QSSs were 
reported to trigger key biological pathways when their en
coding population reaches high densities: from virulence 
(Rgg, PlcR) to competence (Rgg, Rap), necrotropism 
(NprR), sporulation, biofilm formation (Rap, NprR), and in
hibition of conjugation (PrgX) (Do and Kumaraswami 
2016; Perez-Pascual et al. 2016; Neiditch et al. 2017). 
Considering that the virulence of Bacillus and 
Streptococcus pathogens may cause infectious diseases in 
humans (Baldwin 2020; Lannes-Costa et al. 2021), that 
the spore is the transmissive form of many Bacillus and 
Clostridium human pathogens (Mallozzi et al. 2010), that 
biofilms contribute to infections or food poisoning 
(Costerton et al. 1999; Høiby et al. 2011; Galié et al. 
2018), and that competence and conjugation are respon
sible for the spread of antibiotic resistance genes (von 
Wintersdorff et al. 2016), RRNPP QSSs are directly linked 
to central health issues.

Interestingly, the case of the plasmidic PrgX system illus
trates that RRNPP QSSs may be not only present on bacter
ial chromosomes but also on mobile genetic elements 
(MGEs). However, conjugative elements are not the only 
MGEs relying on RRNPP QSSs as a means to assess their 
population density. Indeed, in 2017, Erez et al. made the 
groundbreaking discovery of the viral “arbitrium” communi
cation system, an RRNPP QSS encoded by temperate phages 
of Bacillus and guiding the lysis–lysogeny decision upon 
Bacillus infection (Erez et al. 2017; Stokar-Avihail et al. 2019).

In total, to our knowledge, we can count today 11 sub
families of RRNPP receptors with experimental evidence of 
interaction with a communication peptide: the five afore
mentioned initial RRNPP members Rgg, Rap, NprR, PrgX, 
and PlcR (which can be divided into the PlcR and TprA 
subfamilies [Hoover et al. 2015]) (Neiditch et al. 2017) 
and the six following additional members: 

• TraA—plasmids of E. faecalis (Kohler et al. 2019),
• AimR—temperate phages of Bacillus (Stokar-Avihail 

et al. 2019),
• ComR—Streptococcus genus (Shanker et al. 2016),
• AloR—Paenibacillaceae family (Voichek et al. 2020),
• Qsr—Clostridium acetobutylicum (Kotte et al. 2020), 

and
• QssR—Clostridium saccharoperbutylacetonicum 

(Feng et al. 2020) (fig. 1B)

Yet, the genetic diversity of RRNPP QSSs may not have 
been fully explored, as hinted, for instance, by the candi
date receptors of E. faecalis reported to harbor local simi
larities with regions of Rap, PlcR, or Rgg (Parthasarathy 
et al. 2020). Hence, new communication codes as well as 
novel density-dependent evolutionary strategies likely 

await to be discovered. These discoveries not only could 
transform our views of microbial interaction, adaptation, 
and evolution, but also could have major practical out
comes as novel communication systems could regulate 
the production of new antimicrobial compounds 
(Hoover et al. 2015; Rued et al. 2021) or could underlie 
adaptive mechanisms by which some human pathogens 
acquire virulence (Edwards et al. 2016, 2019; Do et al. 
2017, 2019). However, expanding this diversity requires 
overcoming an important challenge: identifying candidate 
systems beyond close homologs of already known RRNPP 
subfamilies.

Conveniently, we noticed that the members of all the 
aforementioned experimentally validated RRNPP subfam
ilies share a common signature of five criteria (fig. 1B): 1) 
the propeptide is a small protein (10–100aa); 2) the pro
peptide is secreted via the SEC translocon and further ma
tured by exopeptidases into a communication peptide 
(with the exception of propeptides of short hydrophobic 
peptides (SHPs) and PrgQ mature peptides associated 
with Rgg and PrgX receptors that are translocated via 
the PptAB export system[Neiditch et al. 2017]); 3) the re
ceptor has a length comprised between 250 and 500aa; 4) 
the receptor harbors tetratricopeptide repeats (TPRs), 
which are structural motifs involved in the binding of small 
peptides (in this case, the cognate communication peptide); 
and 5) the genes encoding the propeptide and the receptor 
are directly adjacent to each other. Advantageously, a large 
amount of reference hidden Markov models (HMMs) from 
the Cath-Gene3D (Sillitoe et al. 2021), Superfamily (Wilson 
et al. 2009), SMART (Letunic et al. 2021), Pfam (Mistry et al. 
2021), and TIGRFAM (Haft et al. 2013) databases are already 
available to detect TPRs in protein sequences. Moreover, a 
tool called SignalP specifically computes the likelihood 
that proteins harbor a signal sequence for the SEC translo
con (Almagro Armenteros et al. 2019) (fig. 1). Consequently, 
the generic, yet specific signature of RRNPP QSSs could be 
detectable in silico, without requiring homology searches 
that would limit the output to representatives of already 
known QSSs.

On this basis, we have developed RRNPP_detector, a 
Python software dedicated to the detection of the 
RRNPP signature in chromosomes, plasmids, and bacterio
phages of gram-positive bacteria, available at https:// 
github.com/TeamAIRE/RRNPP_detector. The fact that 
the Rgg and PrgX subfamilies involve a secretion of their 
cognate SHP and PrgQ propeptides via the PptAB translo
con rather than via the SEC translocon (Neiditch et al. 
2017) implies that some functional RRNPP QSSs can slight
ly deviate from the previously described canonical signa
ture. Accordingly, RRNPP_detector was designed to 
identify putative QSSs with three different strictness levels: 
1) the “strict” level outputs all candidate receptor–pro
peptide pairs with the propeptide being annotated or pre
ceded by a high-confidence ribosomal binding site (RBS) 
motif and either matching the HMM profile of SHPs 
or predicted to undergo a SEC/SPI-dependent secretion 
according to SignalP; 2) the “relaxed” level outputs all 
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FIG. 1. Characteristics of RRNPP QSSs. (A) Canonical molecular mechanism of communication via an RRNPP QSS. . An RRNPP QSS can be en
coded by chromosomes, plasmids, phage genomes, or prophages (phage genomes inserted within the bacterial genome). Either way, upon bac
terial expression, the propeptide is secreted via the bacterial SEC translocon and is cleaved extracellularly into a short mature communication 
peptide. As a QSS-encoding element replicates, the communication peptide accumulates in the extracellular environment. At high concentra
tions of the peptide, reflecting a quorum of bacterial cells, plasmids, and/or (pro)phages, the peptide starts to be frequently imported within 
bacterial cells. In bacterial cells hosting the QSS-encoding genetic element(s), the communication peptide binds to the TPRs of its cognate cyto
solic receptor. Consequently, the receptor gets either turned-on or -off as a protein inhibitor or as a transcription factor, which is at the basis of 
density-dependent regulations of target proteins or genes. As a result, a behavioral transition is initiated at the scale of the entire QSS-encoding 
population. (B) Common features between experimentally validated RRNPP QSSs. Each genomic context corresponds to the representative QSS 
of an experimentally validated subfamily of RRNPP QSSs. . A gray gene indicates an adjacent target gene (or set of genes) demonstrated to be 
regulated by the QSS. The legend on the top-left corresponding to the PlcR-PapR QSS indicates all genomic features being displayed for each 
QSS. The different QSSs share a computationally testable signature of five criteria: 1) the propeptide is small; 2) the propeptide is secreted by the 
SEC translocon (computationally testable by SignalP); 3) the receptor is ∼250–500aa long; 4) the receptor harbors TPRs involved in the recog
nition of the mature communication peptide (computationally testable by HMMs of TPRs); and 5) the receptor and the propeptide genes are 
direct neighbors. (C ) RRNPP QSSs involving a secretion of the propeptide via the alternative PptAB translocon. Consistently, SignalP did not 
predict a SEC-dependent secretion for them (as shown by a SEC-secretion likelihood score colored in gray).
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remaining receptor–propeptide pairs in which the 
propeptide harbors any of the SP(Sec/SPI), TAT(Tat/SPI), 
or LIPO(Sec/SPII) secretion tag according to PrediSi 
(Hiller et al. 2004) or SignalP (Almagro Armenteros et al. 
2019); and 3) the “loose” level outputs remaining 
TPR-containing putative receptors only if found adjacent 
to a peptide without a detected secretion tag but with a 
high-confidence upstream Shine–Dalgarno RBS (SD RBS) 
motif indicative of a likely translation (Shine and 
Dalgarno 1975; Omotajo et al. 2015), with the cognate 
peptide being chosen as the most likely translated small 
protein in the close genomic vicinity of the candidate re
ceptor (fig. 2). Of course, the relaxed and loose outputs 
are associated with a higher risk of false positives but are 
nonetheless interesting for exploratory purposes.

To assess the extent of the impact of RRNPP QSSs on mi
crobial community dynamics and evolution, we applied 
RRNPP_detector against all complete genomes and chromo
somes of Firmicutes and viruses available on the NCBI. We re
port a wide phylogenetic, genetic, and functional diversity of 
RRNPP QSSs that enhances our current knowledge of the co
evolution of gram-positive Bacillota and their MGEs.

Results
RRNPP_Detector Operates with a Mean Precision of 
99% and a Mean Recall of 94% on a Benchmarking 
Data Set of Genomes with Well-Characterized 
Repertoires of RRNPP QSSs
Before using RRNPP_detector to identify novel candidate 
genetic subfamilies of RRNPP QSSs, we wanted to ensure 
that this software is conservative enough to detect only 
RRNPP QSSs while being sensitive enough to not miss a 
substantial number of these QSSs within genomes. 
Accordingly, we built a benchmarking data set comprising 
nine genomes in which the repertoire of RRNPP QSSs has 
been extensively studied to test our method (table 1). 
These nine reference genomes were chosen to cover a sub
stantial taxonomic diversity and to encode QSSs represen
tative of the diversity of already known RRNPP subfamilies. 
Of the 50 receptor–adjacent propeptide pairs previously 
described in the literature for these reference genomes, 
the “strict” detection module of RRNPP_detector was 
able to detect 44 pairs and made only 45 predictions (table 
1; see Materials and Methods). The averages of recalls and 
precisions computed for each of the nine genomes were 
94% and 99%, respectively (table 1). In particular, the 
mean precision of 99% offers guarantee that the novel gen
etic systems that RRNPP_detector was designed to predict 
could be considered as reliable candidate RRNPP QSSs.

RRNPP_Detector Identifies Tens of Thousands of 
Candidate RRNPP QSSs in Complete Bacterial 
Chromosomes, Plasmids, and Phage Genomes
As a first step, we launched RRNPP_detector (see Materials 
and Methods) against the 7,974 complete genomes and 
chromosomes of Firmicutes and the 47,982 complete 

genomes of viruses available on the NCBI Assembly 
Database (fig. 2). We describe how such analyses can be 
easily done with the practical example of viruses in the 
readme file of RRNPP_detector: https://github.com/ 
TeamAIRE/RRNPP_detector/readme.md. We report the 
identification of 12,050 pairs predicted with the “strict” 
mode, which allowed to capture 5,609 additional un
detected pairs with the homology search module of 
RRNPP_detector (see Materials and Methods). Finally, 
we report 44,800 additional pairs predicted either with 
the “relaxed” or “loose” modes of detection.

The 12,050 “strict” pairs are distributed in 511 different 
species, whereas the 48,800 pairs corresponding to the “re
laxed” and “loose” detection strictness levels are distributed 
in 2,129 different species (supplementary table S1, 
Supplementary Material online). To classify these pairs as 
either chromosomal, plasmidic, or viral, we retrieved the 
prophage regions (genomes of lysogenic phages inserted 
within host genomes) predicted within QSS-encoding 
chromosomes and plasmids present in the PHASTER data
base (Arndt et al. 2016). Then, if the genomic coordinates of 
a candidate QSS were found to fall within a prophage re
gion, we classified this QSS as viral instead of bacterial. Of 
the 12,050 strict pairs, we found that 9,545 are chromosom
al (on 2,965 distinct chromosomes), 964 are plasmidic (on 
677 distinct plasmids), 28 are observed within sequenced 
phage genomes (on 18 distinct genomes), and 1,523 were 
assessed by PHASTER as belonging to 1,383 distinct pro
phages (638 assessed as intact, 292 as questionable, and 
453 as incomplete and thus presumably domesticated by 
the bacterial host [Bobay et al. 2014]) (supplementary 
table S1, Supplementary Material online). The 48,800 
more hypothetical pairs are distributed across 7,915 dis
tinct chromosomes, 504 distinct plasmids, 136 distinct se
quenced phage genomes, and 692 distinct prophages 
(supplementary table S1, Supplementary Material online).

This unprecedented massive library of bacterial, plasmi
dic, and viral candidate communication systems represents 
a great potential for expanding our knowledge of density- 
dependent processes within microbial communities.

Identification of 21 Novel High-Confidence 
Subfamilies of Candidate RRNPP QSSs
To facilitate the exploration of this library, we sought to 
classify into clusters the detected pairs (irrespective of 
their detection strictness level), based on the sequence 
similarity of the receptors. We designed our clustering 
method such that a cluster would correspond as closely 
as possible to the definition of a subfamily of RRNPP recep
tors, using the 11 already known subfamilies of receptors 
described in the literature as a baseline for testing (see 
Materials and Methods). In the method chosen for this 
task, the sequences of receptors are Blasted again each 
other, resulting in a weighted sequence similarity network 
in which the Markov Clustering Algorithm (MCL algo
rithm) identifies natural clusters by exploiting the prop
erty that random walks on a network will infrequently 
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FIG. 2. Workflow of RRNPP_detector illustrated with real data from complete genomes/chromosomes of Firmicutes and viruses. RRNPP_detector 
defines candidate RRNPP-type QSSs with a “strict” detection strictness level as tandems of adjacent genes encoding a candidate receptor (250– 
500aa protein matching HMMs of peptide-binding TPRs) and a candidate propeptide (10–100aa protein predicted by SignalP to be secreted via 
the SEC translocon or matching the HMM of SHP propeptides). Each green and red rectangle represents a step toward the final identification of 
“strict” candidate receptors and candidate propeptides, respectively (details in Materials and Methods). The final “strict” receptors and propep
tides subsequently serve as queries in a Blastp search to identify additional homologous QSSs that did not pass the conservative thresholds of 
RRNPP_detector. Additional pairs are predicted with either a “relaxed” or a “loose” detection strictness level (Materials and Methods).
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go from one natural cluster to another (Enright et al. 2002) 
(more details in Materials and Methods). Applying this al
gorithm to all hypothetical receptors, 307 natural clusters 
were identified, of which 76 contained at least one recep
tor forming a QSS detected at the “strict” level. We then 
filtered down these 76 clusters to 34 high-confidence clus
ters in which 1) the domain architecture of receptors com
plies with that of reference RRNPP receptors, 2) the 
amino-acid profiles of cognate propeptides comply that 
of reference RRNPP propeptides, and 3) the size of the 
cluster is consistent with the number of sequenced gen
omes for the taxonomic range of encoding taxa 
(supplementary table S2, Supplementary Material online; 
Materials and Methods). With this filtering procedure, 
the 12,050 “strict” pairs were narrowed down to 11,872 
“strict” pairs (supplementary table S2, Supplementary 
Material online). An overview of the size, the functional 
characteristics, the MGE distribution, and the taxonomic 
distribution of the candidate RRNPP QSSs from these 34 
high-confidence clusters is given in figure 3. As desired, 
each of the 11 already known Rgg, Rap, NprR, PlcR, PrgX, 
TraA, AimR, ComR, AloR, Qsr, and QssR receptor subfam
ilies was depicted by a single cluster, with the exception of 
the AimR subfamily, in which communication systems en
coded by phages of the B. cereus group were grouped in 
two clusters whereas those encoded by phages of the B. 
subtilis group were grouped in one cluster. Hence, only 
13 clusters of the 34 identified clusters were already known 
prior to this study. In other words, with the “strict” output 
only, our results may represent more than a 2-fold expan
sion of the described genetic diversity of RRNPP QSSs. The 
similarity distance matrix of these 34 clusters and the phyl
ogeny of the closest, alignable clusters are displayed in 
supplementary figure S2, Supplementary Material online. 
Finally, we report 16 additional clusters composed of “re
laxed” and/or “loose” pairs that also satisfy the three afore
mentioned filtering criteria and encompass propeptides 
which, although not asserted as carrying a SEC-secretion 
tag, had a Sec/SPI likelihood score >0.2 and aRBS motif 
of high confidence (bin > 13) (supplementary table S3, 
Supplementary Material online).

A Treasure Trove of Peptide-Based Communication 
Codes
To gain insights on the potential of these data to unravel no
vel communication codes, we analyzed the sequences of 
sampled candidate propeptides from all the 34 high- 
confidence clusters (supplementary fig. S1, Supplementary 
Material online). As expected, the “strict” candidate propep
tides associated with these clusters harbor the canonical 
properties of RRNPP propeptides (specific example of novel 
cluster 8 identified in chromosomes, plasmids, and phages 
of Paenibacillaceae bacteria in fig. 4A, overview of the 34 clus
ters in supplementary fig. S1, Supplementary Material online), 
with a small N-terminal basic region, a central hydrophobic 
region, and a C-terminus that usually correspond to the ma
ture communication peptide released by membrane-bound 

peptidases and/or exopeptidases (Pottathil and Lazazzera 
2003; Erez et al. 2017; Bernard et al. 2020). On this basis, the 
array of propeptides, both within known and novel clusters, 
show great promise for the discovery of novel communica
tion codes.

We then explored the potential of the “relaxed” and 
“loose” outputs of RRNPP_detector to predict RRNPP 
QSSs involving a noncanonical SEC-dependent secretion 
of their propeptides. To this end, we focused on the well- 
described Rgg subfamily (high-confidence cluster 2), be
cause the cognate SHP propeptides of Rgg receptors are 
known to be exported by the PptAB translocon 
(Aggarwal et al. 2014) and are consistently not recognized 
by SignalP as being exported via the SEC translocon (fig. 1B). 
Accordingly, only propeptides adjacent to Rgg receptors 
matching the HMM of canonical SHP propeptides are 
placed in the “strict” output of RRNPP_detector. Yet, other 
PptAB-secreted propeptides that have an amino-acid pro
file different from that of reference SHPs might be genuine 
QS propeptides. With this respect, figure 4B shows that “re
laxed” and “loose” propeptides found in the chromosomes 
of Streptococcus bacteria that are not matched by the 
HMM of SHPs but whose cognate receptors nonetheless 
belong to the Rgg cluster can harbor N-terminal basic resi
dues followed by a hydrophobic region that likely corre
sponds to a signal sequence for the PptAB translocon. 
Hence, these candidate propeptides may be divergent var
iants of canonical SHP propeptides and illustrate that the 
“relaxed” and “loose” outputs of RRNPP_detector can be 
relevant to identify candidate functional QS propeptides 
undergoing alternative secretory processes.

According to these observations, our collection of “strict,” 
“relaxed,” and “loose” RRNPP QSSs may represent a real treas
ure trove of communication codes awaiting functional char
acterization. Thus, to foster these discoveries, we made the 
whole data set of candidate RRNPP propeptides publicly 
available at: https://github.com/TeamAIRE/RRNPP_candidate_ 
propeptides_exploration_dataset/raw/main/RRNPP_candidate_ 
propeptides_exploration_dataset.zip.

Some Plasmids and Bacteriophages Encode Multiple 
Communication Systems Belonging to Distinct 
RRNPP Subfamilies
Interestingly, the distribution of “strict” candidate RRNPP 
QSSs from the 34 high-confidence clusters across chromo
somes, plasmids, and phage genomes revealed that despite 
the important metabolic cost associated with RRNPP com
munication systems (Dogsa et al. 2021), many genetic ele
ments can encode multiple QSSs (fig. 3). If the presence of 
multiple QSSs on a single chromosome is not rare (Do and 
Kumaraswami 2016; Even-Tov et al. 2016b; Voichek et al. 
2020; Gallegos-Monterrosa et al. 2021) due to the selective 
pressure that may exist for the acquisition of a QSS with a 
novel peptide–receptor specificity (Even-Tov et al. 2016a, 
2016b; Kalamara et al. 2018), only two phage genomes 
were previously reported to encode two RRNPP QSSs 
(Bernard et al. 2020). Here, we identified 263 “multilingual” 
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MGEs, which represent 12.65% of the MGEs predicted to 
encode at least one QSS. Indeed, we found more than 
one “strict” candidate RRNPP QSSs in 181 plasmids (up 
to nine QSSs in the megaplasmid pYC1 of Bacillus thurin
giensis YC-10), in six sequenced genomes of Bacillus phages 
(all encoding two QSSs), and in 76 Bacillus prophages (up 
to three in an intact prophage of Bacillus licheniformis CP6) 
(supplementary table S4, Supplementary Material online). 

If some MGEs encode multiple copies of a same cluster of 
RRNPP QSSs, like the aforementioned B. licheniformis pro
phage that carries three variants from the Rap–Phr cluster, 
some MGEs were found to encode QSSs belonging to dis
tinct clusters. In particular, we identified the combination 
of the AimR–AimP system with the Rap–Phr system in 67 
Bacillus (pro)phages, a combination that we previously de
scribed only in two (pro)phages (Bernard et al. 2020). The 

FIG. 3. Size, functional characteristics, MGE distribution, and taxonomic representation of the 34 high-confidence clusters of candidate RRNPP 
QSSs. On this figure, rows represent genetic clusters of candidate RRNPP QSSs predicted at a “strict” detection strictness level and are ordered by 
cluster size. Each column corresponds to a cluster’s characteristic. Column 1: known or novel cluster. Column 2: number of detected candidate 
receptors. Column 3: number of detected encoding elements. Column 4: number of detected encoding viral elements. Column 5: proportion of 
encoding chromosomes, plasmids, and temperate phages. Column 6: proportion of candidate receptors with a detected N-terminal HTH 
DNA-binding domain indicative of a transcription factor activity (dark green). Of note, some receptors like AimR can have an HTH domain 
but can still not be matched by public HMMs of HTH. Column 7: proportion of QSSs found in the different genomic orientation. Column 8: 
proportion of QSSs with and without an annotated candidate cognate propeptide. Column 9: Distribution and prevalence across taxonomic 
families. Column 10: representative species. Column 11: number of additional QSSs detected by the expansion_to_homologs search module 
of RRNPP_detector.
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Rap and PlcR clusters were also found co-occurrent within 
ten plasmids. Interestingly, if almost all of the detected 
“multilingual” MGEs were associated with hosts from the 
Bacillus genus, we also found plasmids encoding two 
QSSs within Priestia koreensis FS-1 (two NprR–NprX sys
tems) and Brevibacillus laterosporus LMG 15,441 (one 
AloR–AloP system and a novel candidate system corre
sponding to cluster 8 [fig. 4A]) (supplementary table S4, 
Supplementary Material online). Overall, the presence of 
multiple communication systems within MGEs might 

confer upon these entities a high adaptability to changes 
in their social context.

Some Subfamilies of RRNPP Communication Systems 
Are Found Across Chromosomes, Plasmids, and 
Phages
From a host–MGE coevolution perspective, it is also inter
esting to note that 14 clusters of candidate RRNPP 
QSSs are found to be shared between chromosomes and 

A

B

FIG. 4. MSAs of candidate propeptides associated with novel clusters of receptors corresponding to different detection strictness levels. For each 
alignment, residues are colored according to the “Clustal” color code based on their physicochemical properties (see http://www.jalview.org/ 
help/html/colourSchemes/clustal.html). The canonical amino-acid profile of RRNPP propeptides involves an N-terminal signal sequence for 
a secretion system composed of a short basic domain, followed by a longer hydrophobic region. The C-terminal region is composed of cleavage 
sites for membrane-bound peptidase and/or exopeptidase. Although there are exceptions to this trend (e.g., in the NrpX propeptides), the last 
four to ten residues at the C-terminal usually correspond to the mature communication peptide. (A) Sampled “strict” propeptides encoded by 
chromosomes, plasmids, or phage genomes associated with the cluster 8 (Paenibacillaceae family). (B) Sampled “relaxed” and “loose” chromo
somal propeptides from Streptococcus bacteria associated with the known Rgg cluster.
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MGEs, which highlight that some communication systems 
may be externalized between chromosomes, plasmids, and 
phages (Corel et al. 2018) (fig. 3). If this feature has previ
ously been reported for already known clusters of RRNPP 
QSSs (Bernard et al. 2020; Felipe-Ruiz et al. 2022), it is inter
esting to note that this can also be the case for certain no
vel candidate subfamilies (figs. 3 and 4A). Here, we took 
advantage of the large amount of viral and plasmidic 
QSSs within the Rap–Phr cluster to investigate in more de
tails the evolutionary dynamics that may underlie the dis
tribution of communication systems across distinct 
genetic elements. To this end, we inferred the phylogeny 
of Rap receptors forming a detected Rap–Phr system 
and looked at the distribution of the chromosomal, plas
midic, and viral members in this phylogeny. Remarkably, 
the Rap–Phr QSSs encoded by phages and plasmids ap
peared highly polyphyletic, hinting at multiple independ
ent acquisitions of this communication system within 
MGEs. Overall, our observations suggest that bacteria, 
plasmids, and phages can frequently exchange communi
cation systems (fig. 5).

Clues That Phage and Prophage-Encoded QSSs May 
Regulate Bacterial Behaviors as a Function of (Pro) 
Phage Densities
The existence of homologous QSSs found in chromosomes 
and MGEs also implies that some QSSs may interfere with 
the regulation of target genes in different genomes/genetic 
elements, which may notably give rise to density- 
dependent manipulations of bacterial hosts by MGEs, as 
shown for non-RRNPP QSSs in Silpe and Bassler (2019). 
In this regard, the case of the previously analyzed Rap– 
Phr cluster is interesting because in Bacillus bacteria, Rap 
is a well-known protein inhibitor of ComA and/or 
Spo0F-P, which are key activators of the competence 
and sporulation pathways, themselves linked to processes 
as important as biofilm formation, cannibalism, and public 
good production (Schultz et al. 2009, 2013; 
González-Pastor 2011; Kalamara et al. 2018). When the en
coding subpopulation is small, cheating or vegetative 
growth is advantageously promoted through 
Rap-mediated inhibition of ComA-P/SpoF-P, when larger 
subpopulations of Bacillus bacteria either produce public 
goods or commit to sporulation and leave nutrients avail
able (González-Pastor 2011; Pollak et al. 2016; Kalamara 
et al. 2018). However, when the Rap–Phr encoding subpo
pulation gets larger and is no longer in minority in the local 
neighborhood, the Rap-mediated inhibition of cheating/ 
sporulation becomes detrimental and is alleviated by the 
inhibition of Rap by its cognate Phr communication pep
tide (Pollak et al. 2016; Kalamara et al. 2018). Here, the de
tected presence of Rap–Phr systems on 1,531 MGEs 
suggest that this dynamic regulation of competence/ 
sporulation may sometimes be dependent on a local dens
ity of MGEs rather than on a genuine density of bacterial 
cells, as shown for plasmids in Cardoso et al. (2020) and 
as hinted in prophages by the observed inhibition of 

Spo0F-P upon heterologous expression of a 
prophage-encoded Rap receptor (Even-Tov et al. 2016a; 
Bernard et al. 2020).

Surprisingly, the analysis of viral candidate QSSs from 
the “strict” data set suggested that Rap–Phr systems may 
not be the only viral QSSs associated with bacterial sporu
lation modulation. Indeed, we identified additional viral 
RRNPP QSSs belonging to distinct clusters with a putative 
sporulation-hijacking genomic signature. This prediction 
lies on the observation that their receptor harbors a 
DNA-binding domain and thus likely regulates the expres
sion of adjacent genes (a trend especially true in MGEs 
[Erez et al. 2017; Neiditch et al. 2017; Kohler et al. 2019; 
Stokar-Avihail et al. 2019], as shown in fig. 1) and that a vir
al homolog of the bacterial spo0E or arbB sporulation regu
lator is found adjacent of the QSSs (fig. 6). The same 
genomic context, albeit not encoded by a phage, was 
shown to underlie a density-dependent regulation of the 
spo0E-like gene by the adjacent QSS in Paenibacillus poly
myxa (Voichek et al. 2020). As a matter of fact, the Spo0E, 
AbrB, and Rap proteins form a decision-making circuit that 
controls the timing of sporulation in Bacilli by regulating 
the accumulation of Spo0A-P, the master activator of 
the sporulation initiation pathway (Shafikhani and 
Leighton 2004; Fujita and Losick 2005; Schultz et al. 2009, 
2013). On this basis, if the aforementioned (pro) 
phage-encoded spo0E-like or abrB-like genes were genuine 
sporulation regulators, the (pro)phage-(pro)phage com
munication systems predicted to control the expression 
of these genes could influence SpoA-P accumulation dy
namics within the hosts and thereby dynamically manipu
late the sporulation initiation pathway. With regard to this 
hypothesis, it is interesting to mention that a mutant for 
the putative receptor encoded by the intact prophage of 
C. acetobutylicum ATCC 824 presented in figure 6 was ex
perimentally shown to produce three times less endo
spores than the wild-type after 7 days of culture (Kotte 
et al. 2020).

Identification of 196 BGCs Inferred to Be Regulated by 
an Adjacent Candidate RRNPP QSS
In addition to these fundamental aspects of bacteria–MGE 
coevolution, RRNPP QSSs may also regulate adaptive bac
terial traits of applied interest, such as the production of 
public good metabolites, for example antimicrobial com
pounds, because only a collective production may bring 
such molecules to the concentration levels required to ex
ert a significant effect on the microbial community 
(Heilmann et al. 2015; Palmer and Foster 2022). 
Consistent with the fact that QSSs in which the receptor 
is a one component tends to regulate adjacent genes 
(fig. 1; Engebrecht et al. 1983; Brotherton et al. 2018; He 
et al. 2018), many biosynthetic gene clusters (BGCs) that 
produce antimicrobials have been demonstrated to be 
controlled by a QSS located in their genomic vicinity, be 
it a small molecule-based (Brotherton et al. 2018; He 
et al. 2018) or a peptide-based QSS (fig. 7A; Hoover et al. 
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2015; Rued et al. 2021). As a major challenge in the field of 
natural product discovery is that many BGCs are not ex
pressed under laboratory growth conditions (Rutledge 
and Challis 2015), identifying BGCs regulated by an adja
cent QSS may be promising as their link with population 
density provides some understanding about how to elicit 
their production in the laboratory. Hence, to identify can
didate QSS-regulated BGCs, we first searched for BGCs 
with antiSMASH standalone version 6.0.0 (default para
meters) (Blin et al. 2021) in the genetic elements encoding 
a “strict” candidate RRNPP QSS with a receptor detected 
as a transcription factor (harboring an HTH 
DNA-binding domain). We then intersected the list of 
the BCGs detected by antiSMASH with our list of candi
date RRNPP QSSs on the basis of the inclusion of the 
QSS region (from the start codon of the first gene to the 

stop codon of the second gene) within the region of a 
BGC defined by antiSMASH. This resulted in a subset of 
196 candidate BGCs potentially under control of an 
RRNPP QSSs, distributed in the Alicyclobacillaceae (n =  
10), Bacillaceae (n = 25), Paenibacillaceae (n = 10), 
Staphylococcaceae 
(n = 5), Thermoactinomycetaceae (n = 4), Carnobacteriaceae 
(n = 2), Lactobacillaceae (n = 6), Streptococcaceae (n = 125), 
Clostridiaceae (n = 7), Peptoniphilaceae (n = 1), and 
Tissierellaceae (n = 1) taxonomic families (supplementary 
table S5, Supplementary Material online, and fig. 7). 
Among these putative QSS-regulated BGCs, six are plasmi
dic, of which five are inferred by antiSMASH to produce 
antimicrobial peptides (fig. 7B). As these plasmidic 
RRNPP QSSs likely enact the production of defense meta
bolites only when the quorum of plasmids is met, these 

FIG. 5. Polyphyly of viral Rap–Phr systems. The figure displays the maximum-likelihood phylogenetic tree of the detected receptors from the Rap 
cluster (no DNA-binding domain) and the detected receptors from the NprR cluster (DNA-binding domain). NprR was used as an outgroup for 
rooting the tree, consistently with the common phylogenetic of the Rap and NprR subfamilies (Perchat et al. 2016). Gray dots indicate branches 
supported by >90% bootstraps. Branch lengths are proportional to the expected number of substitution per site, as indicated by the scale bar at 
the top left. The color strip surrounding the phylogenetic tree assigns a color to each receptor forming a QSS based on the type of encoding 
genetic element: blue for chromosomes, orange for plasmids, and dark purple for sequenced genomes of temperate bacteriophages, different 
levels of purple for PHASTER-predicted intact, questionable, and incomplete prophages. QSSs encoded by incomplete prophages may be indi
cative of a capture of a viral QSS by a host, as a result of prophage domestication by the host genome (Bobay et al. 2014).
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QSSs might create a selective pressure for the acquisition 
of the plasmid by host cells at high plasmid densities, sup
porting complex scenarios of coevolution. Interestingly, 
the 196 putative QSS-regulated BGCs produce major 
classes of natural products (supplementary table s5, 
Supplementary Material online, and fig. 7C), including ri
bosomally synthesized and posttranslationally modified 
peptides (RiPPs), nonribosomal peptides, and polyketides. 
Worth to note, RiPPs are of most frequent occurrence, like
ly reflecting the important roles of RiPPs in bacterial physi
ology (Li and Rebuffat 2020).

Discussion
We predicted a wide range of novel candidate RRNPP QSSs in 
chromosomes or in MGEs (e.g., plasmids and phages) of 
Firmicutes using a computational approach that does not 
rely on sequence similarity search using known QSS proteins 
as queries (supplementary tables S1–S3, Supplementary 
Material online and figs. 2 and 3). This massive, publicly avail
able library of candidate communication systems shows great 
promise for the characterization of many density-dependent 
mechanisms in bacteria, plasmids, and phages, with major 
fundamental and applied outcomes.

In this regard, we gave a few examples of how the predic
tion of QSSs can be coupled with functional insights, by 

exploiting the trend that the target regulon of an RRNPP 
QSS often lies in its genomic vicinity, a trend especially 
true for MGEs (Erez et al. 2017; Neiditch et al. 2017; 
Kohler et al. 2019; Stokar-Avihail et al. 2019). This allowed 
to highlight a putative convergent evolution of the func
tional association between QS-mediated phage–phage 
communication and bacterial sporulation manipulation, 
with nonhomologous viral QSSs from different bacterio
phage species found adjacent to a viral homolog of one 
of the bacterial Rap, AbrB, or Spo0E sporulation regulator 
(fig. 6). If this association was experimentally validated, 
the fact that phages and/or prophages could communicate 
to decipher when it is the most evolutionary advantageous 
to manipulate host pathways would capture a novel feature 
of bacteria–phages coevolution, since the experimentally 
validated phage-encoded QSSs were thus far shown to 
only regulate viral processes such as the lysis–lysogeny de
cision (Erez et al. 2017). In addition, this validation could in
vite to reconsider the sporulation decision-making process 
as a biological process that may sometimes fall under the 
scope of a (pro)phage–host collective, rather a strict bac
terial process of last resort, with important implications 
considering that the endospore is the transmissive form 
of many bacteria, be they commensal or pathogens for hu
mans (Mallozzi et al. 2010; Postollec et al. 2012; Swick et al. 
2016).

FIG. 6. Multiple occurrences of a putative density-dependent sporulation-hijacking genomic signature in various temperate bacteriophages of 
Firmicutes. Each genomic context highlights a candidate “strict” RRNPP QSSs with a putative adjacent target regulon comprising a viral homolog 
of a bacterial sporulation initiation regulator (either Rap, Spo0E, or AbrB) in a sequenced phage genome (virion icon) or in a prophage (lyso
genized chromosome icon). Genes are colored according to their functional roles, as displayed in the legend. For each candidate QSS, the cor
responding “strict” RRNPP cluster as well as the NCBI id of the receptor are displayed. The five last genomic contexts correspond to an “RRNPP 
QSS—divergently transcribed c1 repressor—potential operon of codirectional genes” configuration, which has been shown to be indicative of a 
regulation of the operon by the viral RRNPP QSS in Stokar-Avihail et al. (2019).
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A

B

C

FIG. 7. Selection of BGCs inferred to be regulated by an adjacent “strict” candidate RRNPP QSS. For each genomic context, a thumbnail indicates 
the genetic element encoding the BGC region (chromosome or plasmid) and is followed by the name of the cluster of the candidate RRNPP QSS 
and the NCBI ID of its receptor. Finally, the name of the encoding genome along with its NCBI accession is given. The second line indicates the 
biosynthesis mode of the BGC, as classified by antiSMASH. The tick marks at the bottom of each BGC correspond to genomic coordinates (in 
bp). (A) Proof of concept provided by a BGC demonstrated to be regulated by a RRNPP QSS in Hoover et al. (2015) and captured by our method. 
(B) Plasmidic BGCs inferred to be regulated by a candidate RRNPP QSS. (C ) Small overview of chromosomal BGCs inferred to be regulated by a 
candidate RRNPP QSS.

13

https://doi.org/10.1093/molbev/msad062


Bernard et al. · https://doi.org/10.1093/molbev/msad062 MBE

It is also interesting to mention that we found one of 
these putative host-hijacking QSS, the Rap–Phr system, 
in co-occurrence with the arbitrium system within 67 
Bacillus phage genomes (supplementary table S4; 
Supplementary Material online). Although the arbitrium 
system regulates the lysis–lysogeny transition upon 
Bacillus infection, we previously hypothesized that 
prophage-encoded Rap–Phr systems might confer upon 
lysogenized hosts selective advantages over nonlysogen
ized hosts such as the evasion to public good production 
at low population densities, for the evolutionary benefit 
of the prophage–host collective (Bernard et al. 2020). In 
general, owning multiple QSSs regulating distinct biologic
al processes might enable behavioral transitions according 
to different regimes of densities, reflected by the different 
quorums associated with each QSS (Mehta et al. 2009). In 
total, of the 2,078 MGEs within which at least one “strict” 
candidate QSS has been predicted, 263 were found to en
code more than one QSS (supplementary table S4; 
Supplementary Material online). The observation that 
12.65% of the QSS-encoding detected MGEs encode mul
tiple QSSs generalizes the notion that phages and plasmids 
may subtly assess changes in their social context and adapt 
their evolutionary strategy accordingly. In light of the con
sideration that different QSSs owned by an MGE can be 
more or less conserved across nonkin MGEs, neighbors, 
or hosts, such “multilingual” MGEs could theoretically re
act to the density of multiple heterogeneous subpopula
tions to which these MGEs nonetheless always belong. 
Accordingly, encoding several QSSs more or less specific 
to its kins might enable an MGE to contextualize its own 
population density with respect to that of other heteroge
neous populations.

In addition to these fundamental aspects of bacteria– 
MGE coevolution, a more applied example of the function
al investigations conducted in this study was given by the 
identification of 196 BGCs of specialized metabolism in
ferred to be regulated by a candidate RRNPP QSS. 
Importantly, the predicted density-dependent expression 
of these BGCs hints at important adaptive ecological roles 
for the metabolites they produce. Thus, functional charac
terization of these BGCs may not only lead to the discovery 
of novel molecules of applied interest, such as novel anti
microbial molecules or candidate virulence factors to fight 
against, but could also be rich in lessons to better under
stand the lifestyle of their encoding species.

Overall, our analyses demonstrate that our methodology 
can unlock new biological knowledge regarding peptide- 
based biocommunication and can reveal novel density- 
dependent decision-making processes in bacteria, plasmids, 
and bacteriophages, with potential to enhance our under
standing of microbial adaptation and bacteria–MGE co
evolution. Yet, the communication systems described in 
this study likely do not represent the entire landscape of 
RRNPP QSSs. Indeed, we analyzed only complete genomes 
of Firmicutes, and many candidate RRNPP QSSs likely await 
to be unearthed in bacterial scaffolds, contigs, and 
metagenomics-assembled genomes. In this respect, it is 

important to mention that the Firmicutes phylum represents 
with Bacteroidetes the most prevalent phylum in human gut 
microbiomes (Manor et al. 2020). Accordingly, the application 
of our publicly available RRNPP_detector software against 
human-associated metagenomics-assembled genomes or 
MGEs (e.g., from the human MGE database [Lai et al. 2021] 
or the Gut Phage Database [Camarillo-Guerrero et al. 
2021]) would be of high relevance to infer density-dependent 
behaviors that may take place within human intestinal micro
biomes, plasmidomes, and viromes.

Materials and Methods
Definition of the RRNPP Signature
We carefully mined the literature to identify all experimen
tally validated RRNPP subfamilies and identify one function
ally validated representative QSS for each subfamily 
(Pottathil and Lazazzera 2003; Aggarwal et al. 2014; 
Hoover et al. 2015; Do and Kumaraswami 2016; Shanker 
et al. 2016; Even-Tov et al. 2016a; Erez et al. 2017; Neiditch 
et al. 2017; Stokar-Avihail et al. 2019; Feng et al. 2020; 
Kotte et al. 2020; Voichek et al. 2020). We then fetched 
the sequences of the reference QSSs from the NCBI or the 
IMG database (NCBI Resource Coordinators 2016; Chen 
et al. 2021), visualized their genomic context, and analyzed 
their similarities to delineate decision rules for the detection 
by RRNPP_detector of candidate RRNPP QSSs at a “strict” 
detection strictness level. The results of these preliminary 
analyses are fully summarized in figure 1B. The extreme va
lues in the lengths of the validated receptors (285–473aa) 
and propeptides (21–50aa) (fig. 1B) were used as references 
to define default ranges of lengths for candidate receptors 
(250–500aa) and propeptides (10–100aa). We chose an 
upper limit of 100aa for candidate propeptides due to the 
intragenic duplications reported to frequently happen in 
their coding sequences (Even-Tov et al. 2016a). Likewise, 
the extreme values of intergenic distances (−50 to 
191 bp) between reference receptors and propeptides (fig. 
1B) served as a baseline to define the default intergenic dis
tance (−60 to 400 bp) to define a candidate receptor–pro
peptide pair. Using InterProScan (Jones et al. 2014), motif 
search reliant on the Pfam, Smart, Tigrfam, Superfamily, 
Panther, and Cath-Gene3D databases of HMMs was con
ducted against the protein sequences of the reference re
ceptors to illustrate the fact that the publicly available 
curated libraries and superfamilies of HMMs of TPRs and 
DNA-binding domains matching these proteins are relevant 
to identify RRNPP receptors (fig. 1B). SignalP version 5.0b 
Linux x86_64 was run with the option “-org gram+” against 
the reference propeptides to illustrate the reliability of this 
software to predict the SEC-dependent secretion of 
quorum-sensing propeptides (Almagro Armenteros et al. 
2019). Indeed, only the PrgQ and SHP reference propeptides 
were not predicted by SignalP to harbor a SEC-secretion tag 
(fig. 1), consistent with the fact that they are the only RRNPP 
propeptides mentioned to be exported via the alternative 
PptAB translocon (Neiditch et al. 2017).
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Constitution of the Library of HMMs of TPRs Used to 
Detect Putative RRNPP Receptors
The single HMMs (from the Smart, Pfam, and Tigrfam da
tabases of HMMs) and superfamilies/collections of HMMs 
(from the Cath-Gene3d and Superfamily databases of 
HMMs) matching the sequences of RRNPP receptors 
(shown in fig. 1) were retrieved and compiled in a library 
of HMMs of TPRs. In addition, based on the observation 
that these generic HMMs were not sufficient to identify 
all AimR receptors described in Stokar-Avihail et al. 
(2019), we built an HMM from the entire multiple se
quence alignment (MSA) of AimR receptors described in 
Erez et al. (2017), as well as an HMM corresponding to 
the conserved C-terminal TPRs in the MSA of AimR de
scribed in Stokar-Avihail et al. (2019) (MSAs are available 
in https://github.com/TeamAIRE/RRNPP_detector/tree/ 
main/data/fasta). Finally, we included within this library 
the following additional HMMs of TPRs from the Pfam 
database: TPR_1 (PF00515.30), TPR_2 (PF07719.19), 
TPR_3 (PF07720.14), TPR_4 (PF07721.16), TPR_5 
(PF12688.9), TPR_6 (PF13174.8), TPR_7 (PF13176.8), 
TPR_9 (PF13371.8), TPR_10 (PF13374.8), TPR_11 
(PF13414.8), TPR_14 (PF13428.8), TPR_15 (PF13429.8), 
TPR_16 (PF13432.8), TPR_17 (PF13431.8), TPR_18 
(PF13512.8), TPR_19 (PF14559.8), TPR_20 (PF14561.8), 
TPR_21 (PF09976.11), TPR_22 (PF18833.3), ComR_TPR 
(PF18710), and TPR_MalT (PF17874.3).

RRNPP_Detector Algorithm
The minimal input of RRNPP_detector is a FASTA file 
of the nucleotide sequences of target genome(s), 
metagenomics-assembled genome(s) or contig(s). In this 
case, RRNPP_detector calls Prodigal to find coding se
quences within these genomes and output their pro
teome(s) (Hyatt et al. 2010). It is also possible to directly 
submit a FASTA file of annotated protein sequences and 
a general feature format (GFF) file referencing the coordi
nates of their coding sequences in target genome(s). 
However, in this case, RRNPP_detector will be constrained 
to work only with annotated proteins. The best option is to 
provide the FASTA files corresponding to the target gen
ome(s) and their corresponding annotated proteome(s), 
along with the annotations. At first, RRNPP_detector first 
reduces the search space by retaining only annotated pro
teins (provided by the user or detected by Prodigal) that 
have a length compatible with RRNPP receptors (by default 
250–500aa) and propeptides (by default 10–100aa). Then, 
the aforementioned HMMs of TPRs are used as queries in 
an HMMSearch against the 250–500aa-long proteins to 
identify putative receptors (E-value < 1E−5, HMM cover
age > 65%) (Eddy 2011). Optionally, if the user calls 
RRNPP_detector with the “—tprpred” option, the comple
mentary TprPred software will be launched against the 
250–500 proteins not detected by HMMsearch to identify 
additional TPR-containing putative receptors (Karpenahalli 
et al. 2007). These potential receptors next undergo a com
putational characterization step. First, a Blastp search 

(Altschul et al. 1990) of reference RRNPP receptors against 
these potential receptors is launched to identify the subset 
of candidate receptors with sequence similarity to known 
QSS receptors (by default: E-value ≤ 1E−5, identity ≥  
20%, and alignment coverage ≥ 60% of the length of both 
the query and the target sequences). In addition, an 
HMMSearch of DNA-binding domains found in reference 
receptors (PFAM: PF01381; Gene3D: 1.10.260.40; 
Superfamily: 47,413; SMART: SM00530) is launched to iden
tify candidate receptors with a predicted transcription fac
tor activity. Then, only annotated proteins of 10–100 found 
directly adjacent to these putative TPR-containing recep
tors are retained. In addition, if the nucleotide FASTA file 
of target genome(s) is available, RRNPP_detector will 
search for putative unannotated propeptides encoded in 
the flanking regions of each coding sequence of a candidate 
receptor, using a module we named Small Peptide with RBS 
Annotation Tool (SPRAT). SPRAT defines upstream and 
downstream flanking regions based on the minimal and 
maximal allowed intergenic distances between the recep
tor and the propeptide genes (by default −60 to 400 bp) 
and on the maximal length of the propeptide (by default 
100aa, therefore 303 bp). Orfipy is then called against the 
flanking regions of each candidate receptor to identify 
any putative protein-coding sequence within the length 
boundaries of a candidate propeptide (by default, starting 
with the ATG start codon) (Singh and Wurtele 2021). 
Nested open reading frames (ORFs) are then identified by 
SPRAT (e.g., if an in-frame start codon is found within a de
tected ORF). To limit the risk of false positives associated 
with the detection of small genes, SPRAT takes advantage 
of the observation that the absence of a 
translation-initiation SD RBS motif upstream from a gene 
in Firmicutes can be considered as a strong predictor that 
the gene is likely not translated/functional, as more than 
90% of the annotated protein-coding genes encoded by 
Firmicutes are preceded by a SD RBS (Omotajo et al. 
2015). Accordingly, SPRAT leverages the 27 hierarchical 
regular expressions introduced by Prodigal to detect SD 
RBS motifs (referred as bins) upstream from the putative 
protein-coding small ORFs (from −21 to −1 bp to start co
don). By default, SPRAT then exploits the results of the sys
tematic analysis of RBS bin usage across prokaryotes led by 
Omatajo et al. to define the list of RBS motifs most predict
ive of a translation initiation (bins 27, 24, 23, 22, 20, 19, 16, 
15, and 14). Accordingly, by default, only unannotated 
small peptides encoded in the vicinity of receptors that 
are preceded by these bins are retained. Subsequently, 
SignalP (and optionally PrediSi) is called to predict putative 
secretion tag within the remaining annotated and unanno
tated 10–100aa proteins (Hiller et al. 2004; Almagro 
Armenteros et al. 2019). If a protein is not predicted to har
bor a SEC/SPI-secretion tag by SignalP and is adjacent to a 
Rgg receptor (corresponding to the TIGR01716 HMM of 
TPRs), an HMMSearch of the HMM of SHP propeptides is 
launched against it. All receptor–propeptide pairs with 
the propeptide being annotated or unannotated with an 
RBS bin > 13 that either matches the HMM profile of 
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SHPs or is predicted to undergo a SEC/SPI-dependent secre
tion according to SignalP are then placed in the output 
folder associated with the “strict” detection strictness level. 
Optionally, RRNPP_detector can use the strict candidate 
receptors and propeptides as Blastp queries to detect hom
ologous QSSs that did not pass the initial conservative 
thresholds. All remaining receptor–propeptide pairs in 
which the propeptide harbors any of the SP(Sec/SPI), 
TAT(Tat/SPI), or LIPO(Sec/SPII) signal sequence according 
to PrediSi or SignalP are placed in the output folder asso
ciated with the “relaxed” detection strictness level. Finally, 
the “loose” level outputs remaining TPR-containing puta
tive receptors only if found adjacent to a peptide without 
a detected secretion tag but with an upstream SD RBS of 
high-usage across prokaryotes (bins 27, 24, 23, 22, 20, 19, 
16, 15, 14, 13, 12, and 6), with the cognate peptide being 
chosen as the one with the highest RBS bin in the close gen
omic vicinity of the candidate receptor.

Benchmarking
The known QSSs in the nine reference genomes were de
scribed in the studies referenced in table 1. The nine gen
omes were fetched from the NCBI and were given as input 
to RRNPP_detector, in a run with and without the default 
RBS filter to assess its impact on recall and precision. 
Reported hits in table 1 correspond to QSSs predicted at 
the “strict” detection strictness level and additional homo
logs identified by the “expansion_to_homologs” module 
of RRNPP_detector.

Prophage Detection
When the NCBI genomic accession of a QSS-encoding elem
ent was present in the PHASTER database of already com
puted genomes, the corresponding prophage regions were 
retrieved. Each QSS was defined as viral if its genomic coordi
nates on a given chromosome/plasmid fell within a region 
predicted by PHASTER to belong to a prophage (qualified 
as either “intact,” “questionable,” or “incomplete” prophage).

Clustering of QSSs
As a baseline for testing different clustering methods, we 
used the data set of AimR receptors from Stokar-Avihail 
et al. (2019) and a data set composed of receptors detected 
by RRNPP_detector in the Bacillus genomes from 
(Even-Tov et al. 2016a) and assessed by Blastp as close 
homologs of either Rap, PlcR, NprR, and AimR. Our goal 
was to define a method that would group each members 
of a subfamily of receptors into a single cluster, to convey 
the idea that one cluster = one genetic subfamily of 
QSSs. At first, we tried the three following clustering meth
ods that have in common to start with an all-versus-all 
alignment, subsequently filtered by fixed cutoff(s): 1) non
transitive Mmseq2 clustering algorithm with sequence 
identity and alignment coverage cutoffs (Steinegger and 
Söding 2017), 2) connected components with sequence 
identity and alignment coverage cutoffs (Méheust et al. 
2018), and 3) EFI-EST–connected components with a 

Blastp E-value cutoff (Zallot et al. 2019). By varying the dif
ferent cutoffs for each method, we observed that no sets of 
parameters successfully resulted in clusters matching the 
definition of RRNPP subfamilies in the literature. In con
trast, we found that the MCL algorithm (Enright et al. 
2002) that does not rely on fixed cutoffs for clustering 
but rather identify natural clusters based on simulation 
of stochastic flow in weighted graphs successfully assigned 
a single cluster to each of the AimR, Rap, PlcR, and NprR 
subfamilies. In a nutshell, the MCL algorithm, which is not
ably integrated in the pipeline of famous orthology infer
ence methods (Li et al. 2003; Emms and Kelly 2019), finds 
cluster structure by exploiting the propriety that random 
walks on a graph will infrequently go from one natural clus
ter to another, based on graph transition probability esti
mates. MCL was applied as follows: 1) Blastp all versus all 
of the receptors, 2) application of a -log10 transform to 
the E-values of each pairwise alignment, with a ceiling set 
to 200 for any E-value below 1e−200; 3) weight normaliza
tion by the minimal percentage of the coverage between 
two proteins; 4) application of MCL to the resulting 
weighted sequence similarity graph with an inflating par
ameter of 1.4. Typically, the inflation affects the granularity 
or resolution of the clustering outcome, with low values 
(1.3, 1.4) leading to fewer and larger clusters and high values 
(5, 6) leading to more and smaller clusters. For protein fam
ily detection, an inflating parameter of 1.3 or 1.4 is 
recommended.

Cluster Filtering
For each cluster, a search of randomly chosen receptors 
against the conserved domain database of the NCBI was 
used to discard clusters based on the detection of suspi
cious domain architecture, for example, proteins harboring 
suspicious domains not found in reference RRNPP recep
tors or N-terminal position of the TPR region as opposed 
to C-terminal, etc.…. Then, clusters for which the associated 
propeptides have an amino-acid profile different from that 
of reference RRNPP propeptides (basic N-terminal residues, 
long hydrophobic central region) were discarded. Finally, 
we accounted for sampling bias to retain small clusters 
only if encoded by species with a low number of sequenced 
genomes available (e.g., Gemella haemolysans).

Identification of Already Known Clusters of 
Homologous Receptors
A Blastp search was launched using as queries the RapA 
(NP_389125.1), NprR (WP_001187960.1), PlcR (WP_000 
542912.1), Rgg2 (WP_002990747.1), AimR (APD21232.1), 
AimR-like (AID50226.1), PrgX (WP_002366018.1), TraA 
(BAA11197.1), AloR13 (IMG: 2547357582), QsrB (AAK7 
8305.1), QssR5 (AGF59421.1), and ComR (ADX23594.1) 
reference receptors and as a target database, the receptors 
from the high-confidence clusters. If the best hit of a refer
ence RRNPP-type receptor gave rise to a sequence iden
tity ≥ 30% over at least 80% mutual coverage, then the 
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cluster to which this best hit belonged was considered as 
an already known cluster.

Phylogenetic Tree of NprR and Rap Receptors
An MSA of the protein sequences of the NprR and Rap re
ceptors forming a complete QSS was performed using 
MAFFT version v7.453 (Katoh et al. 2002). The MSA was 
then given as input to IQ-TREE version multicore 1.6.10 
to infer a maximum-likelihood phylogenetic tree under 
the LG + G model with 1,000 ultrafast bootstraps 
(Nguyen et al. 2015). The tree was further edited via the 
Interactive Tree Of Life (iTOL) online tool (Letunic and 
Bork 2019).

Identification of Putative BGCs Regulated by an 
Adjacent Candidate RRNPP QSS
BGCs were searched with antiSMASH standalone version 
6.0.0 (default parameters) (Blin et al. 2021) in the 937 gen
etic elements encoding at least one candidate RRNPP QSS 
with a receptor detected as a transcription factor 
(matched by an HMM of an HTH DNA-binding domain). 
We then intersected the list of the 5,893 BCGs detected 
by antiSMASH with our list of candidate RRNPP QSSs en
coded by these 937 genetic elements on the basis of the 
inclusion of the QSS region (from the start codon of the 
first gene to the stop codon of the second gene) within 
the region of a BGC defined by antiSMASH (region that ex
tends slightly beyond the BGC itself).

Supplementary Material
Supplementary data are available at Molecular Biology and 
Evolution online.
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