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Summary

BACKGROUND: Epigenetic modifications may contribute 
to inter-individual variation that is unexplainable by 
presently known risk factors for COVID-19 severity (e.g., 
age, excess weight, or other health conditions). Estimates 
of youth capital (YC) reflect the difference between an in-
dividual’s epigenetic – or biological – age and chronologi-
cal age, and may quantify abnormal aging due to lifestyle 
or other environmental exposures, providing insights that 
could inform risk-stratification for severe COVID-19 out-
comes. This study aims to thereby a) assess the associa-
tion between YC and epigenetic signatures of lifestyle ex-
posures with COVID-19 severity, and b) to assess whether 
the inclusion of these signatures in addition to a signature 
of COVID-19 severity (EPICOVID) improved the prediction 
of COVID-19 severity.

METHODS: This study uses data from two publicly-avail-
able studies accessed via the Gene Expression Omnibus 
(GEO) platform (accession references: GSE168739 and 
GSE174818). The GSE168739 is a retrospective, cross-
sectional study of 407 individuals with confirmed 
COVID-19 across 14 hospitals in Spain, while the 
GSE174818 sample is a single-center observational study 
of individuals admitted to the hospital for COVID-19 symp-
toms (n = 102). YC was estimated using the (a) Gonseth-
Nusslé, (b) Horvath, (c) Hannum, and (d) PhenoAge es-
timates of epigenetic age. Study-specific definitions of 
COVID-19 severity were used, including hospitalization 
status (yes/no) (GSE168739) or vital status at the end of 
follow-up (alive/dead) (GSE174818). Logistic regression 
models were used to assess the association between YC, 
lifestyle exposures, and COVID-19 severity.

RESULTS: Higher YC as estimated using the Gonseth-
Nusslé, Hannum and PhenoAge measures was associat-
ed with reduced odds of severe symptoms (OR = 0.95, 
95% CI = 0.91–1.00; OR = 0.81, 95% CI = 0.75 - 0.86; 
and OR = 0.85, 95% CI = 0.81–0.88, respectively) (adjust-
ing for chronological age and sex). In contrast, a one-unit 
increase in the epigenetic signature for alcohol consump-
tion was associated with 13% increased odds of severe 
symptoms (OR = 1.13, 95% CI = 1.05–1.23). Compared 
to the model including only age, sex and the EPICOVID

signature, the additional inclusion of PhenoAge and the
epigenetic signature for alcohol consumption improved the
prediction of COVID-19 severity (AUC = 0.94, 95% CI =
0.91–0.96 versus AUC = 0.95, 95% CI = 0.93–0.97; p =
0.01). In the GSE174818 sample, only PhenoAge was as-
sociated with COVID-related mortality (OR = 0.93, 95% CI
= 0.87–1.00) (adjusting for age, sex, BMI and Charlson co-
morbidity index).

CONCLUSIONS: Epigenetic age is a potentially useful
tool in primary prevention, particularly as an incentive to-
wards lifestyle changes that target reducing the risk of se-
vere COVID-19 symptoms. However, additional research
is needed to establish potential causal pathways and the
directionality of this effect.

Introduction

Among the many identified risk factors for Coronavirus
disease (COVID-19) severity, such as sex, obesity, diabetes
or hypertension, COVID-19 severity is strongly associated
with age, with older individuals having a notably higher
risk of mortality [1]. However, much inter-individual vari-
ation exists, even within age groups, that is not explainable
by presently known risk factors [2, 3]. One potential ex-
planation for the inter-individual variation could be differ-
ences in individuals’ epigenetic profiles.

Epigenetic modifications – which can be induced by en-
vironmental and lifestyle behaviors and subsequently alter
gene expression – have been implicated in the pathophys-
iology of COVID-19 severity [4], with epigenetic factors
potentially contributing to COVID-19 susceptibility by in-
terfering with viral replication and infection [5]. For ex-
ample, recent evidence suggests that epigenetic regulation
of interferons and inflammatory signaling modulates ex-
pression of the ACE2 gene (a gene responsible for the pro-
duction of the angiotensin converting enzyme 2); it is via
ACE2 enzyme receptors that SARS-CoV-2 (severe acute
respiratory syndrome coronavirus 2, the virus responsible
for COVID-19) enters the human body [4, 6]. Likewise,
epigenetic modifications have also been linked with the
severity of response to infection, particularly in relation to
inflammation and the so-called “cytokine storm” [7]. Epi-
genetic modifications, in particular estimates of epigenet-
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ic age, could thereby help explain the observed variation
in COVID-19 symptom severity. To this effect, estimates
of epigenetic age have been linked to adverse health out-
comes such as cardiovascular disease, dementia and mor-
tality [8]. Moreover, the difference between epigenetic and
chronological age has been shown to be a consequence of
lifestyle and environmental exposures [9, 10].

According to a recent survey in Nature, like other coron-
avirus variants, 60% of scientists believe that the SARS-
CoV-2 virus will very likely become endemic [11]. Identi-
fying long-term targeted therapies are therefore imperative
for secondary prevention to reduce COVID-19 severity
among individuals infected with the SARS-CoV-2 virus.
Of note is that most epigenetic modifications are re-
versible. Identification of differential patterns of methyla-
tion associated with COVID severity could aid in iden-
tifying secondary, epigenetic targets of intervention.
Moreover, estimates of youth capital (YC), which reflect
the difference between an individual’s epigenetic and
chronological age, may quantify abnormal aging due to
lifestyle or other environmental exposures and provide in-
sights that could inform risk-stratification for severe
COVID-19 outcomes. The specific aims of the present
study are to assess the association between different mea-
sures of epigenetic age and COVID-19 severity, as well
as the added predictive value when including estimates of
youth capital alongside the EPICOVID signature. We hy-
pothesize that older epigenetic age and lifestyle exposures,
including tobacco exposure and alcohol consumption, are
associated with more severe COVID-19 outcomes.

Methods and materials

Data sources

This study is based on two study samples, referred to here
by their Gene Expression Omnibus (GEO) accession refer-
ences: GSE168739 [12] and GSE174818 [13]. Described
in detail by Castro de Moura et al., briefly the GSE168739
is a retrospective, cross-sectional study that included 407
individuals with confirmed COVID-19 from 14 hospitals
across Spain, had a BMI <30, not presenting with risk
factors for comorbidities (diabetes, hypertension, auto-im-
mune disorders, and chronic cardiovascular or lung dis-
eases), non-smokers (including previous smokers) and less
than 61 years of age [14]. COVID-19 severity was cate-
gorized into asymptomatic or paucisymptomatic (not hos-
pitalized) and severe (requiring hospitalization including
oxygen therapy or mechanical ventilation). The original
study further stratified between those requiring oxygen
therapies and those requiring mechanical ventilation.
Whole blood samples – from which peripheral blood-de-
rived DNA methylation was obtained – were retrospective-
ly collected between March 7th 2020 and September 14th

2020.

In contrast, the second sample (GSE174818) is a single-
center observational study of individuals admitted to the
hospital for COVID-19 symptoms (n = 102), 18 years
or older, who provided consent and were not at risk of
imminent death. In this sample, Balnis et al. collected
information on COVID-19 severity (intensive care unit
[ICU] admittance or non-ICU), mortality status, as well
as sociodemographic characteristics, severity indexes (e.g.,

Charlson comorbidity index), and other biomarkers of in-
terest (e.g., C-Reactive protein [CRP]) [13]. Whole blood
samples were collected at the time of study enrollment,
succeeding admittance to Albany Medical Center, from
April 6th 2020 through to May 1st 2020. Information on
non-COVID patients (n = 26) admitted for unrelated respi-
ratory health concerns, as well as healthy control patients
(n = 39) identified prior to the COVID-19 pandemic, was
also collected in the original study. However, these patients
are excluded from the present manuscript. Given that this
study is a secondary analysis of publicly available data, the
sample size was pre-determined.

Data management and normalization

For both the GSE168739 and GSE174818 samples, DNA
methylation was obtained using the Illumina Infinium
MethylationEPIC Beadchip array (850K). DNA methyla-
tion is an epigenetic modification incorporated via the co-
valent attachment of a methyl group to the 5’ position of
the cytosine ring; the location of this chemical modifica-
tion is termed a ‘CpG site’. Beta values quantify the level
of methylation at each individual CpG site, with zero rep-
resenting no methylation and one representing full methy-
lation. Files containing raw data were downloaded from
GEO accession and subsequently normalized using an in-
ternally adapted version of the quantile normalization that
included an eight-sample reference to ensure comparabili-
ty [15,16]. Beta values were calculated using the reference
sample-normalized data. Additional variables on patient-
specific outcomes were obtained from the original study
authors directly via e-mail (addresses obtained from the
description page for each study on the GEO website) (e.g.,
Charlson comorbidity index, BMI, Fibrinogin, Albumin);
details on variable collection are provided in the original
manuscript [13,14]. An open science protocol was not pre-
pared, nor registered for the present study.

Epigenetic signatures

Epigenetic age was assessed using three individual mea-
sures; epigenetic age as proposed by Hannum et al. [17]
(Hannum), Horvath et al.[18] (Horvath), Levine et al.[19]
(DNAm PhenoAge; referred to as PhenoAge in the present
study) and Gonseth-Nusslé et al.(Gonseth-Nusslé). These
individual epigenetic signatures represent first- (Horvath
and HannumHa) and second-generation (Gonseth-Nusslé,
and PhenoAge) estimates of epigenetic age. Whereas first-
generation signatures were maximized to predict chrono-
logical age, second-generation signatures maximize “bi-
ological age” and subsequent disease prediction. To this
effect, the Gonseth-Nusslé epigenetic signature accounts
more for lifestyle effects, while the PhenoAge signature
maximizes disease prediction. Lifestyle exposures, and to-
bacco and alcohol consumption were also assessed using
epigenetic signatures.

Briefly, the lifestyle signatures for tobacco and alcohol
consumption were determined by generating hundreds of
thousands of models using data from a general population-
based cohort (n = 694) [20], which included random com-
binations of CpGs identified in the literature as explanatory
variables and respectively the number of cigarettes smoked
per day or the number of standard glasses drunk per week
as dependent variables. To minimize the risk of false find-
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ings, each random model went through a stepwise proce-
dure based on Bayesian Information Criterion (BIC) sta-
tistics, and the CpG combination that maximized the
goodness-of-fit (r-squared) was finally selected as the epi-
genetic signature. In a second step, an epigenetic age for-
mula was estimated using a conditional regression frame-
work to account for the contribution of lifestyle exposures
on epigenetic age (Patent reference: EP 22 162 216.0),
thereby identifying CpG sites associated with chronologi-
cal age without controlling for lifestyle exposures. Signa-
tures were calibrated using a subset of the original popu-
lation (n = 442), and then validated using data from the
remaining subset (n = 248). The epigenetic signature for al-
cohol consumption was then transformed to correspond to
units of alcohol consumed, whereby a score of 12 equates
to a consumption of 12 standard units of alcohol per week.
CpGs identified for inclusion in the Gonseth-Nusslé epi-
genetic age signature were conditional on maximizing the
association between the residual of the age-CpG model
with lifestyle exposures. The epigenetic signatures Hor-
vath, Hannum, and PhenoAge have been described previ-
ously [17–19]. Youth capital was calculated as the differ-
ence between epigenetic age and chronological age, such
that a higher youth capital denotes a lower epigenetic age
compared to the chronological age. The EPICOVID sig-
nature, described previously by Castro de Moura et al., is
an epigenetic signature composed of 44 CpGs identified as
being associated with the clinical severity of COVID-19
[14].

Ethics approval and consent to participate

Ethics approvals from the institutional ethics review
boards, and written informed consent from all participants
were obtained in the previous studies included in this work
[13, 14].

Statistical analysis

Age, BMI, the Charlson comorbidity index (an ordered
variable ranging from 0 to 11) and all epigenetic signa-
tures, including youth capital, were considered as continu-
ous variables. Only sex was considered as a dichotomous
(male/female) variable. In case of missing data, cases were
planned to be excluded from statistical analyses, although
data were non-missing for variables of interest (age, sex,
and epigenetic signatures). The association between youth
capital, as the independent variable of interest, and

COVID-19 severity, as the primary dependent variable of
interest, was assessed using logistic regression models;
model assumptions were tested [21]. Separate models were
used for each measure of youth capital (e.g., Hannum, Hor-
vath, PhenoAge, and Gonseth-Nusslé), as well as for epi-
genetic signatures of lifestyle exposures, including alcohol
consumption (GSE168739 and GSE174818 samples), and
tobacco consumption (only the GSE174818 sample). To
assess the predictive capacity of models to predict severi-
ty status when including youth capital and other epigenetic
signatures, confidence intervals and point estimates for the
receiving operator curve (ROC) summary area under the
curve (AUC) measure were estimated using 10-fold cross-
validation with the cvAUC package. Sensitivity – i.e., the
ability of the model to correctly identify true positives –
and specificity – the ability of the model to correctly iden-
tify true negatives – values (according to a threshold of
0.5) are also reported. Due to the likely overestimation of
youth capital with increasing age, and the known influence
of age on COVID-19 severity, all models were adjusted for
chronological age and sex [22].

All analyses were carried out using R Studio (R version
4.0.2) [23].

Results

Descriptive statistics for the GSE168739 and GSE174818
studies are provided in table 1. Participants included in
the GSE168739 study and who had severe clinical symp-
toms were on average older than those without symptoms
or paucisymptomatic, had a higher average epigenetic age,
and a greater proportion were male (67.6%) (table 1).

Similar sample distributions were observed for the
GSE174818 study. A higher correlation between youth
capital and chronological age was observed for the
GSE174818 sample compared to the GSE168739 sample
(figure 1). In comparison to individuals with less severe
symptoms, youth capital was lower for those with severe
symptoms; similarly, individuals who died had lower
youth capital in comparison to those who survived (table
1 and figure 1). The epigenetic age estimated by Gonseth-
Nusslé et al. was the only measure that reported an average
epigenetic age that was older than the reported chronolog-
ical age (table 1). Across all measures of epigenetic age,
youth capital improved with chronological age (figure 1).

Table 1:
Descriptive table of study characteristics, stratified by severity.

GSE168739 (n = 407) GSE 157103 (n = 102)

Asymptomatic / paucisymptomatic (n = 194) Severe (n = 213) Alive (n = 77) Dead (n = 25)

Mean (SD); Q1,Q3 Mean (SD); Q1,Q3 Mean (SD); Q1,Q3 Mean (SD); Q1,Q3

Chronological age (years) 39.4 (10.7); 31.0, 47.0 44.6 (9.4); 39.0, 51.0 58.8 (16.3); 50.0, 72.0 69.3 (14.1); 64.0, 78.0

Epigenetic age Gonseth-Nusslé 42.5 (11.8); 33.5, 51.8 50.0 (10.7); 42.3,57.1 61.0 (14.7); 52.2, 69.7 71.3 (14.7); 67.0,82.7

Horvath 36.3 (10.9); 28.3, 44.6 41.3 (10.2); 34.0, 48.5 51.6 (13.2); 43.5, 60.4 60.1 (14.5); 55.0, 69.8

Hannum 31.1 (10.2); 23.7, 38.7 39.5 (8.4); 34.0, 44.5 50.6 (13.1); 44.3, 59.8 60.0 (11.2); 58.1, 65.8

PhenoAge 27.1 (14.3); 16.5, 37.2 39.3 (10.4); 32.9, 46.2 54.4 (16.2); 46.0, 65.3 67.5 (15.1); 66.1, 75.1

Youth capital Gonseth-Nusslé –3.1 (5.3); –5.9, –0.3 –5.42 (5.5); –8.5, –2.3 –2.1 (7.3); –7.0, 2.1 –1.9 (7. 6); –6.6, 4.0

Horvath 3.0 (4.9); 0.2, 5.9 3.3 (5.1); 0.3, 6.6 7.4 (6.1); 3.3, 11.8 9.5 (5.9); 3.6, 14.2

Hannum 8.3 (4.7); 5.6, 10.8 5.1 (4.8); 1.9, 8.0 8.0 (6.0); 3.3, 12.0 9.1 (6.7); 4.8, 13.0

PhenoAge 12.2 (8.0); 8.5, 15.6 5.2 (7.0); 0.7,9.7 4.4 (7.5); –0.5, 8.6 1.8 (7.7); –4.1, 7.5

Females; n (%) 153 (78.9) 69 (32.4) 29 (37.7) 10 (40.0)
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Figure 1: Correlation between youth capital and chronological age. Plots depict the correlation between measures of youth capital (y-axis) and
chronological age (x-axis) (assessed using Spearman’s rank correlation coefficient). Plots on the left-hand side correspond to COVID-19
severity in the GSE168739 sample; plots on the right-hand side correspond to COVID-19 severity in the GSE174818 sample. For all plots, the
green line represents less severe symptoms, and the red line represents severe symptoms/death.
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Epigenetic age and symptom severity

Improved youth capital was associated with reduced odds
of severe symptoms for the Gonseth-Nusslé, Hannum and
PhenoAge measures (OR = 0.95, 95% CI = 0.91–1.00;
OR = 0.81, 95% CI = 0.75–0.86; and OR = 0.85, 95%
CI = 0.81–0.88, respectively), albeit not Horvath (table 2).
Moreover, when adjusting for age and sex, the PhenoAge
youth capital was associated with reduced odds of COVID-
associated mortality (OR = 0.93, 95% CI = 0.86–0.99; un-
adjusted OR = 0.96, 95% CI = 0.90–1.02). This association
persisted when additionally adjusting for BMI, the Charl-
son comorbidity index. A weak association was also ob-
served for Hannum’s youth capital, although not signifi-
cant (p = 0.09). The epigenetic signature (ES) for alcohol
consumption, was associated with COVID-19 severity in
the GSE168739 study. For example, a one-unit increase in
the ES of alcohol consumption was associated with a 13%
increased odds of severe symptoms (OR = 1.13, 95% CI
= 1.05–1.23). This association remained even when adjust-
ing for youth capital. No lifestyle exposures were associ-
ated with COVID-associated mortality in the GSE174818
sample.

In comparison with the base model (adjusting only for age
and sex), the AUC value was significantly improved when
also including the ES of alcohol consumption and the Phe-
noAge youth capital estimate (AUC = 0.79, 95% CI =
0.74–0.83 versus 0.85, 95% CI = 0.81–0.88, respectively:
p <0.001) (figure 2). At a threshold of 0.5, the base model
had a sensitivity of 75.8% and specificity of 70.4%, while
the model, including the PhenoAge youth capital and the
ES for alcohol consumption had a sensitivity of 80.4% and
specificity of 80.8%. Finally, the inclusion of the epige-
netic signature for alcohol consumption and the PhenoAge
youth capital with the EPICOVID signature improved the
model performance (AUC = 0.94, 95% CI = 0.91–0.96 ver-
sus AUC = 0.95, 95% CI = 0.93–0.97; p = 0.01).

Discussion

All measures of epigenetic age, except for the Horvath sig-
nature, were associated with COVID-19 symptom sever-
ity. However, the association across individual epigenetic
signatures was not homogenous, as a stronger association
with COVID-19 severity was observed for both the Han-
num and PhenoAge signatures. The inclusion of PhenoAge
youth capital and the EpiAlc signature alongside the age,
sex, and the EPICOVID signature modestly improved the
predictive capacity for COVID-19 severity. Finally, only
the PhenoAge-based measure of youth capital was associ-
ated with an elevated COVID-related mortality.

The results from the present study support evidence for an
association between epigenetic age and COVID-19-relat-
ed outcomes. The observed variation in the strength of as-
sociation across epigenetic signatures likely reflects differ-

ences in how the individual signatures were developed, but
may also capture different aging processes [24]. For in-
stance, the epigenetic age signature by Horvath et al. was
developed using 51 different tissue and cell types and a
27k DNA methylation array, uses 353 age-associated CpG
sites, and was optimized to measure chronological age
[25]. In contrast, Hannum et al. used blood-derived DNA,
an Illumina 450k micro-array platform, and subsequently
identified 71 CpG sites associated with chronological age
[17]. Gonseth-Nusslé et al. similarly used blood-derived
DNA, but used an EPIC 850k micro-array platform, and
identified chronological age-associated CpGs (n = 11) that
were conditional on maximizing the contribution by epi-
genetic signatures of lifestyle exposures (patent reference:
EP 22 162 216.0). Of the epigenetic signatures included
in the present study, the DNAm PhenoAge signature is the
only one that specifically incorporated measures of inflam-
mation and immune system reactivity in its initial creation
[19]. Recent evidence has pointed towards a so-called cy-
tokine storm to be at the root of severe COVID-19 out-
comes [26]. To this effect, age-associated changes to the
immune system modify the immune response, particular-
ly contributing to over activity, which may help to explain
the worse COVID-19 symptomology observed among the
elderly [26]. This could, in turn, explain why the DNAm
PhenoAge signature – but not the other signatures – was
associated with COVID-related mortality. Importantly, re-
cent evidence based on Mendelian Randomization tech-

Figure 2: ROC curves for COVID-19 severity discrimination
(GSE168739). The orange, solid line corresponds to the base
model (age and sex); the green, short-dashed line corresponds to
the model adjusting for age, sex, the epigenetic signature for alco-
hol and PhenoAge youth capital; the blue, dashed line corre-
sponds to the model adjusting for age, sex, the epigenetic signa-
ture for alcohol consumption, PhenoAge youth capital, and the
EPICOVID signature.

Table 2:
Logistic regression results for the association between youth capital and COVID-19 severity (GSE168739). Presented coefficients represent odds ratios and 95% confidence in-
tervals. COVID-19 severity is defined according to hospitalization status (yes/no).

Gonseth-Nusslé Horvath Hannum PhenoAge

Unadjusted model 0.92 (0.8–0.95) 1.01 (0.97–1.05) 0.85 (0.80–0.89) 0.85 (0.82–0.88)

Adjusted model Youth capital 0.95 (0.91–1.00) 1.00 (0.96–1.05) 0.81 (0.75–0.86) 0.85 (0.81–0.88)

Chronological age 1.05 (1.03–1.07) 1.05 (1.02–1.07) 1.09 (1.06–1.13) 1.06 (1.03–1.08)

Sex 6.62 (4.17–10.71) 7.49 (4.77–11.99) 4.64 (2.83–7.70) 8.07 (4.77–13.64)
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niques suggests that epigenetic age does not lead to in-
creased COVID-19 severity [27].

Epigenetic age is not sufficient to triage patients in the hos-
pital as it is not as effective as the EPICOVID signature or
interferon-based detection tests [28]. However, these sig-
natures could serve to inform prevention efforts aimed at
lifestyle management to prevent severe COVID-19 symp-
tomology [29]. To this effect, the Gonseth-Nusslé signa-
ture also represents a convenient way of capturing the im-
pact of exposure to lifestyle even when these exposures
have not been adequately assessed in a given study. Re-
cently, promising results have demonstrated the reversibil-
ity of epigenetic age. For example, a randomized clinical
trial that targeted sleep, diet, physical activity, stress, and
the gut microbiome found that at the end of the 8-week
treatment program, participants in the intervention arm re-
duced their epigenetic age (measured using the Horvath
signature) by an average of nearly two years [30]. Another
clinical study targeted epigenetic age by repurposing phar-
macological therapies, and administering individual-based
doses of rhGH, DHEA, and metformin [31]. At the end
of a 1-year study protocol, epigenetic age was reduced
by an average of 2.5 years; an effect that persisted for
up to six months post-study [31]. Unfortunately, consider-
ing the very small sample size (n = 10), further validation
is needed. Targeting epigenetic modifications associated
with COVID-19 severity could also inform the develop-
ment of medications (e.g., “epidrugs”) to limit the severity
of symptoms or in the identification of currently existing
drug therapies that could be repurposed for tertiary preven-
tion (i.e., the reduction of symptom severity) [32]. Finally,
while DNA methylation techniques based on microarrays
remain expensive and slow, emerging techniques – such as
nanopore sequencing – could accelerate DNA methylation
sequencing for use in a triage setting [33].

Strengths and limitations

The present study uses two separate, publicly available
datasets to investigate the association between epigenetic
age and COVID-19 severity. Both included studies were
restricted to individuals identified in a hospital setting with
COVID-19 diagnosis. The GSE168739 sample excluded
individuals who smoked tobacco, presented with comor-
bidities (e.g., BMI ³30), and were 61 years of age or older
at time of inclusion. Results are thus not generalizable to
the broader general population, particularly those known to
be at higher risk of experiencing more severe COVID-19
symptomology. Furthermore, given the restriction to non-
smokers it was not possible to investigate the contribution
of tobacco consumption to COVID-19 severity. However,
although there was no evidence for an association between
the epigenetic signature of tobacco consumption and
symptom severity in the GSE174818 sample, this could be
due to the limited power to detect small effect sizes. Final-
ly, the restriction of the GSE168739 sample to a population
without known risk factors for COVID-19 severity, but al-
so disease in the general population, may have contributed
to the weaker association between the Gonseth-Nusslé epi-
genetic age and COVID-19 symptom severity.

In comparison to other epigenetic ages, the Gonseth-Nus-
slé estimated overall poorer youth capital, while the epi-
genetic age estimated using Hannum’s signature was over-

all younger. Such global differences could be influenced
by platform effects, insomuch that the Hannum score was
built based on a 450K assay, while the Gonseth-Nusslé
score was based on the 850K EPIC assay. Moreover, while
epigenetic age measures may capture different underlying
aging processes, estimates of epigenetic age may be sub-
ject to measurement error or survivor bias, particularly
among the elderly. El Khoury et al. recently demonstrated
the systematic underestimation of epigenetic age among
the elderly [22]. In theory, if such an effect is not present,
youth capital should remain uncorrelated with chronologi-
cal age; in the present study, although the Hannum signa-
ture was most strongly associated with COVID-19 severity
in the GSE168739 sample, youth capital was also corre-
lated with chronological age; demonstrating a dependence
on chronological age (R2 = 0.3). In contrast, youth capital
remained weakly associated with chronological age when
measured using the Gonseth-Nusslé or PhenoAge signa-
tures (R2 = 0.02 and 0.07, respectively). Another limitation
of the present study is the lack of longitudinal measures of
epigenetic age. It is thus unclear whether factors external to
epigenetic age influence COVID-19 severity, which subse-
quently increases epigenetic age, or whether higher epige-
netic age prior to infection plays a role in disease severity.
Contributing to this incertitude, the stability of epigenet-
ic mechanisms and signatures of epigenetic age is not well
understood. Finally, it is necessary to note that the analyses
included within this study are secondary analyses based on
datasets that have additionally been used in two prior pub-
lications[34,35]. Complementing the results of these pre-
vious publications, this study investigates novel signatures
of epigenetic age, tobacco, and alcohol consumption in as-
sociation with COVID-19 outcomes.

Conclusions

Consideration of epigenetic age does not meaningfully im-
prove the prediction of COVID-19 severity, but is a po-
tentially useful tool in primary prevention, particularly as
an incentive towards lifestyle changes that target reducing
the risk of severe COVID-19 symptoms. Therefore, the de-
velopment and extension of epigenetic-based tools towards
routine clinical care should be encouraged, particularly in
the context of chronic disease prevention. Unfortunately,
the results from the present study cannot disentangle the
relationship between COVID-19 severity and epigenetic
age. To address this limitation, longitudinal studies are re-
quired to understand the interplay between epigenetic age
and COVID-19 severity.
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Appendix

Figure S2: Youth capital stratified by categories of age and severity. 
Legend: Red boxplot corresponds to youth capital calculated using the Gonseth-Nusslé signature; green to 
those calculated with Hannum signature; teal to Horvath signature; and purple to the youth capital when 
using PhenoAge signature.

Figure S1: Correlation between chronological age and epigenetic ages (Horvath, Hannum, and Gonseth-Nusslé). Plots A-C correspond to
COVID-19 severity in the GSE168739 sample; D-E correspond to COVID-19 severity in the GSE174818 sample. For all plots, the blue line
represents less severe symptoms, and the red line represents severe symptoms/death.
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