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Abstract

More distant targets are harder to attack, and hence increased distance between potential

attackers and targets may reduce fatalities. To study this, we model violence as interaction

across space, using a game-theoretic model. To estimate the structural parameters of the

model, we use fine-grained data from Northern Ireland on local religious composition, and on

the identity of attackers and victims in violent events in 1969-1989. Quantifying the effect of

distance adds dramatically to our understanding of where violence arises in a conflict. Our

model also predicts the trajectory of attacks, the construction of so-called “peacewalls”and

suggests that changing distances due to population movements can account for a large part

of the drop in violence in the 1980s.
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1 Introduction

Interactions between people are typically easier, and hence more intense and frequent, when

they are geographically close. This decay of interaction with increasing distance has been found

to be relevant for various fields in economics. For example, trade economists refer to "iceberg

trade costs" increasing in distance and use "gravity models of trade" to account for the fact that

trade between more distant places is more costly.1 Similarly, textbook models of monopolistic

competition have distance costs built into their very core. Consumer demand for all kinds of

products has been shown to be decreasing in distance. But distance decay is not restricted to

benevolent interactions. Criminologists have found that criminals more frequently commit crimes

closer to home, allowing the computation of "distance-decay functions of crime". Empirical

studies in economics suggest that distance to potential offenders may reduce risk.2 It seems

therefore obvious that geographical distance between actors should also matter for armed conflict.

This is especially true in civil conflict where different parts of the population attack each other.

Yet, theoretical research which separates the location of attackers and targets and models their

interaction in space is extremely scarce.

The purpose of the current paper is to offer a model of violence as a spatial interaction. As a

starting point for our model of civil war we assume that attackers have a base for their operation

and that an attack’s success rate decays with distance to this base.3 In the model we show

that, under some additional assumptions, the expected origins of attacks can be backed out from

the spatial distributions of casualties and population. We also show that our theory of conflict

provides new insights when compared to existing theoretical concepts such as ethnic polarization

or segregation or tools such as spatial econometrics models (see section 2).

1For theoretical foundation see Anderson (1979). For an excellent review see Behar and Venables (2011).
2See, for example, Linden and Rockoff (2008) who show that house prices fall significantly when registered sex

offenders move into a neighbourhood.
3 In civil wars these bases are typically located in neighborhoods which support the attackers through e.g.

personnel, logistics and, crucially, information provision.
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We further apply our model to novel, fine-grained data on the religious dimension of the

Northern Irish conflict. Northern Ireland —being a rare example of a developed country expe-

riencing an intense conflict—provides a unique setting that allows us to match detailed conflict

events and location data with fine-grained census data on the exact number of members from

different religious groups in 582 local administrative wards.

Figure 1, Panel a) illustrates a classic approach towards this data which follows the literature

on ethnic polarization applied to the micro level. On the x-axis we show the polarization score in

each of the 582 wards of Northern Ireland and on the y-axis we display the number of casualties per

1000 population in each of the wards.4 There is no discernable association between polarization

on the ward level and casualties.

This motivates the development of our theory targeted at explaining patterns of violence

at the micro level. Our data together with the model allows us to estimate the distribution

of violence in space. We find that violence observed in a given ward can be explained by the

spatial interaction of different populations, and that increasing the distance between potential

perpetrators and targets has a quantitatively important effect of reducing violence. In particular,

for a given level of fighting motivation, an interaction within ward is 2 to 6 times more dangerous

than between wards. The results are shown to be robust to a variety of alternative assumptions,

alternative samples and alternative treatment of standard errors. A placebo test is also carried

out.

A truly spatial model of the interaction in conflict offers large advantages when predicting

the location of attacks compared to other models. Figure 1, Panel b) shares the same y-axis with

Figure 1, Panel a) but plots on the x-axis our estimate of fighting effort which is derived from

the same population data but based on our micro-founded theory. The positive association with

casualties per capita is clearly visible in the Figure.

4To construct Figure 1 we have used population numbers from the 1971 census (NISRA, 2015) and casualties

from Sutton (1994) and CAIN (2015). The polarization formula is discussed in detail in Montalvo and Reynal-

Querol (2005).
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Figure 1: Understanding Casualties at the Local Level

The explanatory power of the theory is a first, clear advantage of introducing quantitative

estimates of the effect of distance into a standard model of violence. Yet, our model also permits us

to estimate the origin and, hence, path taken by attacks. We illustrate this by using the model to

generate a ward-by-ward analysis of the predicted number of attacks across each ward boundary.

We compare our predictions with the actual placement of barriers by the UK government. It

turns out that we can predict well the placement of these "peace walls" using the expected extent

of violence that travels through a location. We use ward fixed effects at origin and destination to

show that it is the interaction across space, and not ward characteristics per se, that drives the

placement of walls on specific boundaries of a ward.

Finally, our estimates allow us to study how actual changes in the distribution of the popu-

lation might have affected violence, holding transport costs constant. To demonstrate this, we

apply parameter estimates from the beginning of the conflict (the 1970s) to the distribution of
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population in the 1980s. In this way we can predict the biggest reductions of local violence in the

1980s, and show that changes in the composition and distribution of population from the 1970s

to the 1980s can explain large parts of the overall fall of violence in this period.

While the data we use is specific, we believe the model of violence as an interaction across space

to be widely applicable. It is particularly useful for conflict settings of "complex warfare", i.e. civil

conflicts that blur the traditional distinction between insurgency and sectarian violence. Recent

conflicts in Syria, Ukraine, Yemen, Mali, Iraq and Afghanistan, for example, share elements

with traditional guerrilla warfare, but also feature a large amount of violence between different

religious or ethnic groups.5 A series of estimates of violence decay could also be used to forecast

the violence potential of countries and regions that are currently peaceful.

A caveat applies to our argument. We study how geographical proximity affects the risk of

attacks in an ongoing conflict. This focus makes perfect sense in the short-run when fighting is

acute. However, in the long-run, positive interactions between ethnic or religious groups could

build trust between them and the actual motives for attacks may be reduced (see Rohner, Thoenig

and Zilibotti, 2013). Hence, while bigger geographical distances can indeed reduce the number

of attacks during a conflict (as emphasized by the current paper), in post-conflict reconstruction

"building bridges" and reducing inter-group distance may be important policies to re-enforce

peace. This subtle point has important policy implications: While physically separating groups

(e.g. through so-called "peace lines" in Northern Ireland) may indeed be justifiable while fighting

is still virulent, it may be optimal to tear down such walls once conflict is over and reconciliation

starts.

The paper is organized as follows: Section 2 links our framework to existing concepts and

surveys the related literature, while in Section 3 we set up a simple formal model of spatial

interaction, predicting the origin and destination of attacks. In Section 4 we discuss the context

of the "Troubles" in Northern Ireland, and present the data, whereas in Section 5 we carry out

5Support by the population plays a key role even in asymmetric civil conflicts like insurgencies. See, for example,

US Army (2006).
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the econometric analysis and present the main results and robustness checks. In Section 6 we

show how the model can be usefully applied to generate novel insights. Section 7 provides a

discussion of external validity and Section 8 concludes. Four appendices provide further details

and results.

2 Links to Existing Concepts and Related Literature

Conceptually, our approach aims to build a bridge between the cross-country conflict literature

and research using micro data. We want to do this by introducing the idea of transport costs

into a canonical model of conflict.6 In this section we first motivate this research agenda from an

empirical perspective and then discuss related literature.

When cross-country studies link ethnic / religious diversity to conflict, their focus lies on

the role of the overall size of different ethnic groups (i.e. ethnic polarization or fractionalization

measures). This corresponds to making the implicit assumption that — for given fixed group

population proportions—the average distance between members of the groups does not matter.

Figure 2 illustrates the shortcomings of this assumption. Both the country of the left panel

and the country of the right panel have the same number of regions (12) and the same level of

nationwide population shares (with ethnic groups A and B being present in 6 regions each in

both countries). However, in the left panel the average distance of a given region populated by

A to the closest region populated by B is far greater than in the right panel where each of the

six A regions is directly bordering some of the six B regions. When one assumes that the cost

of committing attacks is increasing in the distance from the target, then the country in the right

panel faces a higher expected number of attacks, despite the fact that it has the same population

shares as the country to the left. Hence, our model can help to understand country heterogeneity

in violence holding composition constant.

6This approach has been extremely successful in the trade literature with recent contributions by Donaldson

(2018) and Fajgelbaum and Schaal (2017) integrating trade models with empirical measures of trade costs to shed

light on the distribution of economic activity across space.
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Figure 2: Two countries with the same ethnic composition but different spatial interaction
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Figure 3: Same level of segregation but different spatial interaction

In addition, a model based on interactions can also take into account features like terrain

characteristics that affect the way that these interactions play out. In Figure 3 we depict an

extreme case. While in the left panel the "barrier" (which can be natural, e.g. a mountain, or

artificial, e.g. a separating wall) is at the country borders, in the right panel it is in the middle

between the two groups. Hence, even for a similar degree of segregation, the level of spatial

interaction can be very different depending on the topology of the interaction (e.g. the location

of barriers). Note that the logic is similar if for example instead of the existance of a barrier

the population density varies across different regions. Conflict incentives would be smaller if low

population density zones are located where the groups are close (i.e. in the second and/or third

row of the left panel of Figure 2) than when they are located at places far away from other groups

(i.e. in the first and/or fourth row of the left panel of Figure 2). Again, even for a similar degree

of segregation, different locations of low and high population density areas can result in very

different patterns of spatial interaction.

Figure 4 illustrates the idea behind our identification strategy. The figure shows a spatial
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Figure 4: Different violence patterns for the same group constellation

distribution of ethnic groups A and B and two violence distributions. Violence, indicated by a

grey shading, in the example on the left, is concentrated at the boundary between group A and

B, while this is not the case in the right panel.

Note, that the standard method of regressing violence on characteristics within units would

not indicate any difference between these two patterns. Both examples will register a correlation

of violence with characteristic A. Yet, violence in the left panel could also be generated by

attacks of B on A. Hence, ignoring the interaction between groups across space may result in

misinterpretation and erroneous conclusions. Note also that running an existing standard spatial

econometrics regression, such as a Spatial Durbin model (SDM), would not help if violence is

indeed driven by the interaction of A and B.

In terms of particular contributions, our paper is related to the theoretical literature on ethnic

and religious conflict (e.g. Horowitz, 2000; Varshney, 2001; Esteban and Ray, 2008, 2011; Rohner,

2011; Caselli and Coleman, 2013), and the empirical studies linking ethnic diversity to civil war

at the country-year level (see. Fearon and Laitin, 2003; Collier and Hoeffl er, 2004; Montalvo and

Reynal-Querol, 2005; Cederman and Girardin, 2007; Collier and Rohner, 2008; Collier, Hoeffl er,

and Rohner, 2009; Esteban, Mayoral and Ray, 2012; Michalopoulos and Papaioannou, 2016).

These papers generally find that ethnic heterogeneity (and in particular ethnic polarization)

increases the risk of conflict, but — contrary to our current contribution — they do not study

the spatial patterns of ethnic violence.7 In a different vein, the impact of segregation is still

7Results in Spolaore and Wacziarg (2016) suggest hat this might not hold for international wars where genetically

8



controversial, with some scholars finding that it increases the risk of ethnic conflict (Diez Medrano,

1994; Olzak et al., 1996), while others argue that "partition", could be a solution to ethnic conflict

(Horowitz, 2000).8

In recent years there has been an increasing number of papers studying violence at a disag-

gregate, local level (e.g. La Ferrara and Harari, 2012; Rohner, Thoenig, and Zilibotti, 2013b;

Dube and Vargas, 2013; Berman et al., 2017; König et al., 2017), but most of these contributions

do either not contain a formal model of conflict or do not take into account the local ethnic

composition, usually due to data limitations.9 Also the micro-level literature on insurgency and

counter-insurgency is relevant, see Kalyvas (2006), Lyall (2010), Bhavnani et al (2011), Kocher,

Pepinsky and Kalyvas (2011), and Berman, Shapiro and Felter (2011).

Maybe closest to our contribution is the literature focusing on spatial patterns of violence.

There is a small literature in political science studying —inspired by the epidemiological literature

on the spread of diseases— diffusion and clustering patterns of violence over space and time

(Townsley, Johnson, and Ratcliffe, 2008, Schutte and Weidmann, 2011). Further, Novta (2016)

builds a simulation-based model of how conflict spreads. Contrary to our setting of insurgency

and terrorism, her framework is designed to study traditional military warfare between two

standing armies. The features of her model are found to be consistent with the spread of violence

in the 109 municipalities of Bosnia. Novta models the armed groups in each municipality as

separate players who can only attack in their home village while the focus of our framework lies

precisely on the across-ward attacks.10 Bhavnani et al. (2014) link segregation to urban conflict,

using a simulated agent-based model, calibrated for Jerusalem. Finally, the purely empirical

similar populations are engaged more in conflict.
8Sambanis (2000) concludes that partition does not significantly prevent conflict.
9There are also a few papers selecting an intermediate level of disaggregation and building a panel dataset

on the ethnic group level covering a large number of countries (e.g. Buhaug, Cederman, and Rod, 2008; Morelli

and Rohner, 2015; Esteban, Morelli and Rohner, 2015). However, their level of disaggregation is still much less

fine-grained than in the current paper, and they do not focus on local ethnic cleavages and the interaction between

ethnic groups across regions.
10Klasnja and Novta (2016) apply a related framework to Hindu-Muslim riots and the Bosnian Civil War.
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contribution of Balcells, Daniels, and Escribà-Folch (2016) studies post-conflict sectarian clashes

in Northern Ireland from 2005-2012. In a nutshell, a main difference between our current paper

and the existing work on spatial violence patterns is that —contrary to the existing literature—our

empirical analysis estimates the structural parameters of a formal model of optimizing, farsighted

players.

Finally, the predictive power of our framework is also useful when it comes to forecasting the

impact of conflict on economic outcomes. Besley and Mueller (2012) show for Northern Ireland

that compared to peaceful areas, housing in the most violent areas sold for between 2 and 17

percent less - depending on the level of violence, and Mueller (2016) shows that changes in the

distribution of violence within a country can have a substantial impact on aggregate growth.

Thus, predicting well the location of attacks does not only help in forecasting local economic

outcomes, but also countrywide performance.

3 Model

In this section we provide a game-theoretic model of local violence, where two groups are in a

contest about appropriating rents. In line with the conflict economics literature, the share of

rents grabbed by a group depends on its relative fighting effort. In our setting, the two groups

locally recruit fighters for attacking a weighted average of opponents nearby. It turns out that

this simple framework will allow us to predict the spatial distribution of violence in Northern

Ireland to a stunning degree.

3.1 Set Up

In this one-period framework we model violence in a country with n regions indexed by i. In

each region live two groups labelled, to fix ideas, g ∈ {c, p}. The population of group g in region

(ward) i is Ng
i , where i ∈ {1, ..., n}, and their distribution across regions can be expressed by

Ng =


Ng
1

...

Ng
n

 .
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Violence in these regions is conducted by two paramilitary groups that recruit themselves

from the groups g, denoted F gi , forming

Fg =


F g1
...

F gn

 .

The central leaderships of each of the two paramilitary groups want to maximize the share of

rents R that they capture. These rents can be thought of as nationwide gains of holding power,

which we assume to be private goods.

For the purpose of rent-maximization both group leaderships have to decide simultaneously

on recruiting the optimal number of local fighters in each region.

The share of rents captured by a group g is given by the following Tullock-form contest-

success-function,

Ag

Ag +A−g
,

where Ag are total attacks inflicted by group g, A−g are attacks inflicted by group −g. Note,

that, in order to make the model solvable, we distinguish attacks from casualties which are a

random outcome. In other words, we assume that the competition for rents is affected by how

many attacks the group makes and not how deadly they are.

Recruiting fighters is costly. Typically, salary costs of fighters should be thought of as convex,

as the first few hirings will be cheap given that it will be feasible to target exclusively individuals

with low wages in the regular economy (and hence low opportunity costs of fighting) and/or with

low moral costs of killing. When extending the pool of fighters in a region, the group also needs

to recruit individuals with better outside options and higher moral costs who will require higher

monetary compensation.

Further, the larger the population of locals of a given group in a given region the cheaper the

hiring costs, as the fighters face lower risks of identification and being arrested and can benefit

from more local support and safehouses.

We assume the following functional form of a convex cost function which captures these

aspects:
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1

2

(F gi )
2

(Ng
i )
µ
,

where µ ≥ 0.

This functional form has several advantages. First of all, using a square term of the effort

variable (and normalizing by 1/2) is the simplest way of capturing convexity, and has been used

in a large number of contributions in different fields of economics. Second, the term (Ng
i )
µ is

very flexible: If µ = 1, then the costs of recruiting for group g drop with higher population from

group g; if µ = 0, local support doesn’t matter in the sense that the costs of recruiters scales only

with the total number of fighters in the region. We find that µ ≈ 1 yields the best fit to the data

which indicates that local support for the fighting effort is important.

The number of attacks is a function of the available targets and their proximity. We model

interaction across space flexibly by defining a group-specific symmetric spatial weights matrix

Wg =
(
Wg

1 · · · Wg
n

)
=


wg11 · · · wg1n
...

. . .
...

wgn1 · · · wgnn


with wgij = wgji for all i, j. The spatial weight w

g
ij parametrizes how costly it is for group g

to project violence from region i to region j. The number of attacks perpetrated by group g

emanating from location i are given by

Agi = F gi

n∑
j=1

wijN
−g
j = F gi (W

g
i )
′
N−g, (1)

where −g denotes the opposite group. This means that attacks launched from i by g are the

interaction of the number of perpetrators (fighters) in i and the spatially weighted number of

potential victims (population) in all regions. Thus, overall attacks by group g are

Ag =
n∑
i=1

Agi = (F
g)′ (Wg)N−g.

Putting these elements together, the payoff function of a group g’s leadership becomes

πg =
Ag

Ag +A−g
R− 1

2

n∑
i=1

(
(F gi )

2

(Ng
i )
µ

)
.
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3.2 Characterization of the Equilibrium

The equilibrium is determined by the number of fighters that each group recruits in each region.

Each group has to optimally select recruiting numbers for every region, F gi , given the number of

fighters that the other group recruits. Hence, we will obtain a system of 2×n first-order conditions

(FOC) and 2× n unknowns. Given that in each FOC the benefits of a marginal recruit (i.e. the

first term) are strictly concave, while the marginal costs (i.e. the second term) are strictly convex,

the second-order conditions (SOC) hold and there is a unique interior equilibrium.

The marginal fighting strength increase of an additional fighter of group g in region i corre-

sponds to

∂Ag

∂F gi
= (Wg

i )
′
N−g,

which implies that the incentive to recruit fighters locally will be a weighted function of the

possible targets for those fighters. For each region i we therefore get a FOC, which for group g

is given by

∂πg

∂F gi
=
(Wg

i )
′
N−gÃ−g(

Ãg + Ã−g
)2 R− F̃ gi

(Ng
i )
µ
= 0,

where Ãg, Ã−g and F̃ gi are equilibrium values. The optimal choice of local fighting effort satisfies

F̃ gi =
Ã−g(

Ãg + Ã−g
)2R× (Wg

i )
′
N−g(Ng

i )
µ. (2)

Equation (2) says that local fighting effort is a function of a part which is constant across all

regions, Ã−g

(Ãg+Ã−g)
2R, and a part which varies from region to region (Wg

i )
′
N−g(Ng

i )
µ. Note, that

(Wg
i )
′
N−g(Ng

i )
µ is the weighted sum of all population in group −g interacted with (Ng

i )
µ. The

easier it is to recruit, i.e. the higher (Ng
i )
µ, the more fighters will be recruited locally. Further,

the more targets are in reach, i.e. the higher (Wg
i )
′
N−g, the more fighters will be recruited.

In the empirical analysis we will be able to make use of the fact that the relative fighting effort

between regions is only a function of demographic exogenous variables and the effectiveness of

fighting captured by the spatial weights wgij . While the absolute magnitude of the w
g
ij parameters

is diffi cult to interpret, one should expect all wgij ≥ 0, and w
g
i′j < wgij if dist(i′, j) > dist(i, j),

and wgij′ < wgij if dist(i, j′) > dist(i, j). In other words, we expect effectiveness to decrease in

distance.
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Given the equilibrium number of fighters originating from each region it is easy to calculate

the number of attacks targeted at each region. Casualties of group g in region i are given by

casgi = Ng
i

(
W−g

i

)′
F̃−g + εi, (3)

where F̃−g is the vector version of equation (2) given by

F̃−g =
Ãg(

Ãg + Ã−g
)2R× diag [(W−g)′Ng

]
(N−g)µ, (4)

where (N−g)µ is an element-by-element exponent and diag
[
(W−g)

′
Ng
]
is a matrix with the

values of (W−g)
′
Ng on the diagonal and zero otherwise.11 The error term εi, with E(εi) = 0,

in equation (3) reflects the fact that there is some randomness in the transmission from attacks

to casualties. Not all successfully carried out attacks do result in the same number of fatalities,

which is the variable observed by the econometrician.

Equation (3) captures the essence of our theory. Violence at location i is the result of an

interaction between targets in location i, Ng
i , and the number of attackers based in all locations,

F̃−g. How dangerous these interactions are for the population at i depends on the vector of

weightsW−g
i . Note, however, that the full weighting matrix for all locations,W

−g, also plays a

role (through F̃−g) because it determines how many fighters are recruited by the other group.

Thus, a general fall in transport costs (increase in w−gij ) has two effects. First, fighters in

the neighborhood of i are more effective and therefore attack more in region i. This is the effect

coming from W−g
i in equation (3). Second, more fighters are recruited in all other locations

because they can attack more effectively in their respective neighborhoods. This effect is captured

by the matrixW−g in equation (4).

11We have F̃−g = Ãg

(Ãg+Ã−g)2
R×


Ng
1w
−g
11 +Ng

2w
−g
21 ...+Ng

nw
−g
n1 · · · 0

...
. . .

...

0 · · · Ng
1w
−g
1n +Ng

2w
−g
2n ...+Ng

nw
−g
nn



(
N−g1

)µ
...(

N−gn
)µ
 .
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4 Empirical Implementation: The Data

The structural parameters of the model are estimated using data from the conflict in Northern

Ireland. This is one of the most important and costliest conflicts in a developed country over

the last decades. Studying the Northern Irish "Troubles" allows us to draw on very fine grained

group location and fighting event location data. Below we shall start by describing the context

of this conflict, before providing a detailed description of the data used.

4.1 Context of Conflict in Northern Ireland

The Northern part of Ireland, Ulster, has been religiously divided since its conquest by England

and the Reformation, taking both place in the 16th century.12 Since then the Catholic popu-

lation from Gaelic Irish origin and the Protestant population of English and Scottish settlers

have lived "separate lives" characterized by very stable patterns of land holdings and relatively

few religiously mixed marriages (Mulholland, 2002). When the Republic of Ireland achieved

independence from Britain in 1922, the six Northern counties of Ireland remained part of the

UK.

In the early 1920s "Troubles" broke out with the Irish Republican Army (IRA) challenging

British authority over Ulster and engaging in violent combats against the British troops and

Protestant paramilitary organizations such as the Ulster Volunteer Force (UVF). The following

decades were characterized by "home rule" and the new Parliament of Northern Ireland at Stor-

mont near Belfast. The political divide persisted between the Catholic Nationalists (also called

Republicans) who wanted to join the Republic of Ireland and the Protestant Unionists (also called

Loyalists) who wanted to remain united with the UK.

While in the 1950s and early 1960s there were relatively low levels of political violence, in

1968 the situation became again more confrontational when the Civil Rights Movements asked

for more rights for Catholic citizens. Some of the initially peaceful demonstrations and marches

12This subsection draws heavily on Mulholland (2002).
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were met with repression and resulted in fatalities. From August 1969 onwards sectarian violence

exploded. In September 1969 radical militants took control of the previously dormant IRA and

created its radical wing, the Provisional IRA. The "Provos" achieved an ever tighter grip over

traditional Catholic working class strongholds like the Falls Road in Belfast or the Bogside in

Derry.

Further, alarmed by the rise of the IRA and the seeming willingness of the UK government to

make political concessions, loyalist paramilitary organizations stepped up in the 1970s, intimidat-

ing Catholic families from mixed and Protestant areas and starting a violent campaign against

civilian Catholics.

After 1976 the UK built up a stronger Royal Ulster Constabulary (RUC) that together with

the British Army and the SAS troops stepped up efforts to militarily weaken the IRA. This effort

led the loyalist paramilitaries to lower their violence and the IRA to retrieve from large-scale

open confrontations and to adopt a cellular structure common in terrorist organizations.

Even carefully planned attacks by the paramilitary groups had to rely on operational centres

based on religion. Dillon (1999), for example, describes an IRA operation in October 1972 as

follows:

"The intelligence offi cer of the 1st Battalion said Twinbrook was the best for an assault on

the laundry van [...]. He reckoned that if the van was attacked in Twinbrook an IRA unit could

make an escape with ease and be in the safety of the Andersontown district within a matter of

five to ten minutes."(Dillon 1999, page 42).

In Andersontown the 1971 census counted 5588 Catholics and 51 Protestants. The quote

shows that the IRA was operating from and around this Catholic ward. This made attacks on

Protestants and state forces close to Andersontown more likely.

4.2 Data from Northern Ireland

We use two main data sources. Data on religious composition is from the UK 1971 census and

is provided by NISRA (2015). Most data on violence comes from Sutton (1994) and has been

updated by the Conflict Archive on the Internet (CAIN) website (CAIN, 2015). We use address
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data in the description of killings to derive geo-references data. We then use these references to

match killings to wards and grid-cells. The violence data is unique as it reports the religion of

each victim (unless for members of the state forces) and the group that attacked him or her.

We have data on 582 wards (our unit of analysis), which are regrouped into 101 larger District

Electoral Areas (DEA) which again map into 26 local government districts.13 Table 1 shows the

summary statistics of the most relevant variables. The number of Catholics and Protestants are

in thousands. Table 1 also summarizes our data on conflict-related casualties. The special feature

of this data is that it reports the group affi liation of victims of violence.

We first notice that while the average number of casualties per ward is relatively small, the

variance is very large. While in many wards no fatalities occur, the most violent ward records

97 casualties. We further see that casualties are relatively evenly split between catholic and

protestant victims and that there is a large heterogeneity in the group composition of wards and

their neighborhood.

In our main analysis we focus on the settlement patterns and violence data from the 1970s,

when most of the violence takes place. Table 1 shows that there are 3.14 casualties on average per

ward in the 1970s and 1.25 casualties in the 1980s. In a sensitivity test, we also show robustness of

the findings when including the 1980s. We focus on the first decade (1970s) to ensure that reverse

causality between settlement patterns and violence are less of a concern. Since the census data

is from the start of the respective decade we should be able to capture the effect of settlement

patterns before violence broke out. It is much harder to argue this for the 1980s or 1990s. For

this reason we focus on a cross-section of wards for the 1970s (the potential endogeneity of the

1980s and 1990s census population data prevents us from making use of the panel structure over

the three decades).

Figure 5 below illustrates the type of data we use, focusing on a part of Belfast for a particu-

13The wards are from the District Electoral Areas (Northern Ireland) Order 1993. These boundaries

have been revised in 2014. A list of 1993 wards and their corresponding DEAs can be found under

http://www.legislation.gov.uk/uksi/1993/226/made.
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Data from the 1970s Observations Mean SD Min Max
casualties 582 3.14 8.63 0 97
catholic casualties 582 1.45 4.71 0 62
protestant casualties 582 1.69 4.46 0 46
catholics (in 1000s) 582 1.18 1.08 0 9.72
protestants (in 1000s) 582 1.45 1.88 0 14.42
catholics in direct
neighbourhood (in 1000s) 582 7.08 4.91 0.36 32.84
protestants in direct
neighbourhood (in 1000s) 582 8.07 10.37 0.00 76.97
catholics in two wards
distance (in 1000s) 582 16.45 9.46 0.92 51.25
protestants in two wards
distance (in 1000s) 582 18.32 21.77 0.21 138.51

Data from the 1980s Observations Mean SD Min Max
casualties 582 1.25 2.54 0 19
catholic casualties 582 0.48 1.36 0 11
protestant casualties 582 0.77 1.61 0 13
catholics (in 1000s) 582 1.44 0.84 0.04 5
protestants (in 1000s) 582 1.07 1.33 0.00 7
catholics in direct
neighbourhood (in 1000s) 582 8.61 4.40 1.04 23
protestants in direct
neighbourhood (in 1000s) 582 5.82 7.24 0.00 45
catholics in two wards
distance (in 1000s) 582 19.74 9.78 1.86 58
protestants in two wards
distance (in 1000s) 582 13.09 15.61 0.00 97
Notes: From CAIN (2015), Sutton (1994) and NISRA (2015). We code casualties of the state forces as
protestant casualties if a ward has casualties whose religion is not revealed.

Table 1: Summary Statistics
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Figure 5: Map of inner Belfast wards with information on demographics and fatalities

larly violent period of the conflict (1969-1976). Our data contain information on the demographic

composition of all administrative wards (with the white area in the upper-right corner depicting

the sea), as well as information on the location and religious affi liation of all recorded fatalities.

In line with our theory we see that many fatalities take place in either religiously mixed wards

or in religiously homogeneous wards located close to strongholds of the other religious commu-

nity. In contrast, religiously homogenous wards located far away from the other religious group

experience only small levels of violence.

5 Estimations

One unique feature of our setting and data is that it allows us to estimate the decay of distance

parameters captured by the spatial weights matrix Wg. In this section we first estimate Wg

and then demonstrate the dramatic gains the estimated model brings towards understanding the

distribution of violence.
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5.1 Estimation of the Decay of Distance Parameters

Applying the model (see equation (3)) to Northern Ireland, we now label the Protestants (p) and

Catholics (c) killed in some region (ward) j as caspj and cas
c
j , respectively. The data on Northern

Ireland do not allow R to be identified, so we normalize it to 1. We also normalize the parameter

µ to 1 (but show in the Appendix B that a maximum likelihood grid search indeed suggests µ

to be around 1, and that the results are robust to other values of µ). Again, for the sake of

tractability, we shall first focus on within ward violence and on violence between neighbors of the

first degree. In a second step, we will also consider violence between higher degree neighbors.

For the empirical estimation, we shall assume that the spatial weight for within-ward interac-

tions is the same in all wards, i.e. wgii = wgjj . Similarly, the spatial weight for direct neighboring

wards is assumed to be the same for all neighbor pairs, i.e. if i, j, l are a triad of neighboring

wards, then wgij = wgil = wgjl. For simplicity, we label these coeffi cients of interest of the spatial

weights matrixWg as kg0 , g = {c, p} , for within-ward violence (i.e. where w
g
ij has i = j), and as

kg1 for direct neighboring wards (i.e. with w
g
ij where i and j are direct neighboring wards).

With these assumptions we can simplify equation (3). Call n1(j) the neighboring wards of

j. We can then write casualties suffered by groups p or c in ward j as a function of targets, Ng
j ,

interacted with the number of attackers F̃−gj and F̃−gi∈n1(j), i.e. we can write

caspj = Np
j

(
Wc

j

)′
F̃c + εj (5)

= Np
j

kc0F̃ cj + kc1 ∑
i∈n1(j)

F̃ ci

+ εj ,
cascj = N c

j

kp0F̃ pj + kp1 ∑
i∈n1(j)

F̃ pi

+ εj , (6)

where the equilibrium number of attackers in each location is given by

F̃ cj =
Ãp(

Ãc + Ãp
)2 [(kc0Np

j + k
c
1

∑
i∈n1(j)

Np
n1(i))(N

c
j )
µ], (7)

F̃ pj =
Ãc(

Ãc + Ãp
)2 [(kp0N c

j + k
p
1

∑
i∈n1(j)

N c
n1(i))(N

p
j )
µ]. (8)

Note, that equations (7) and (8) indicate that the recruitment of attackers is driven by the

respective neighborhood. This implies that, in order to estimate equations (5) and (6), we need
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(1) (2) (3) (4)
VARIABLES protestant casualties protestant casualties catholic casualties catholic casualties

k0 10.88*** 9.98*** 10.48*** 9.68**
(0.93) (1.43) (2.79) (4.51)

k1 1.77*** 1.20*** 2.94*** 1.63
(0.11) (0.40) (0.38) (2.44)

k2 0.41 0.91
(0.35) (0.94)

p value: k0=k1 0.00 0.00 0.02 0.23
p value: k0=k2 . 0.00 . 0.02
p value: k1=k2 . 0.29 . 0.83
Observations 582 582 582 582
R­squared 0.61 0.61 0.76 0.77
Notes: Robust standard errors in parentheses. Standard errors are clustered at the electoral district level (101
clusters). *** p<0.01, ** p<0.05, * p<0.1. "Protestant casualties" are casualties of state forces and protestants.
"Catholic casualties" are casualties of catholics. The model's parameter "mu" (determining how the recruitment of
fighters relies on local population) is normalized to 1. "k0­k2" are decay parameters. k0 captures the transport cost of
conducting attacks within the same ward. k1 captures the transport cost of conducting attacks in the direct (bordering)
neighbourhood of the ward. k2 captures the transport cost of crossing one ward to carry out an attack. In columns (1)
and (2) we report the k parameters of catholic paramilitaries and in columns (3) and (4) we report the k parameters of
protestant armed groups.

Table 2: Main estimation of the spatial weight parameters, separately for protestant and catholic

casualties

data for the composition of the direct neighborhood and data for the composition of the neighbor’s

direct neighborhood. Variation in the neighborhood composition is essential for our identification

strategy.

We take the number of casualties caused by the two groups as the best estimate for the

number of equilibrium attacks, Ãp and Ãc, and assume that all protestant victims and casualties

amongst the state forces were caused by catholic fighters and that all catholic victims were caused

by protestant fighters. This brings Ãc + Ãp as close as possible to the total number of casualties

while still using information on the violence perpetuated by the two sides in the conflict.

Table 2 displays the results of our estimates of the spatial weight parameters in our model.

The parameter kg0 captures the effectiveness of attacks within the same ward, k
g
1 captures the

effectiveness of attacks in the direct (bordering) neighborhood of the ward, and kg2 captures the

effectiveness of attacks of second-degree neighbors. We estimate the expressions for caspj , and

cascj , from equations (5) and (6), respectively, running a non-linear regression (see Davidson and

MacKinnon, 1993) and let the estimator pick the values of kg0 , k
g
1 , and k

g
2 that maximize the
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fit.14 Focussing in column (1) on violence against Protestants and on kc0 and k
c
1 only, we find that

all k-coeffi cients are precisely estimated (both significant at the 1 percent level) and that kc0 is

substantially larger than kc1, showing a clear decay. In line with our hypotheses, there is indeed a

cost of projecting violence over distance, and the attacks decay across ward borders. According

to the estimates of column (1), the violence potential originating from a given ward is about six

times smaller when the ward border needs to be crossed than within-ward.

In column (2), also second degree neighboring wards are included in the analysis (kc2). Again,

the k-coeffi cient gradually decreases when crossing an additional ward border, displaying a clear-

cut ranking of kc2 < kc1 < kc0. Columns (3)-(4) display similar estimations for catholic casualties.

The coeffi cients of kp0 and k
p
1 are somewhat comparable to the ones found for protestant fatalities

in columns (1)-(2), and the ratio of kg1/k
g
0 is of a similar magnitude (i.e. roughly four) as in

columns (1)-(2) (i.e. roughly six). In column (4) we again include second degree neighboring

wards. While the qualitative picture of column (4) is very similar to column (2), the coeffi cients

are less precisely estimated.

It is important to stress that the similarity of results in columns (1) and (3) are not a given.

Many wards had large catholic or protestant majorities so that population composition varied

dramatically between Protestants and Catholics in 1971. This means that the variation used to

identify the parameters kc0 and k
c
1 is quite different to the variation used to identify k

p
0 and k

p
1.

As mentioned above, in Table 2 we have normalized the model’s parameter µ (that determines

how the recruitment of fighters relies on local population) to 1. Given that it seems diffi cult to

find a reliable proxy for µ, this is a reasonable way of proceeding. We include two additional

robustness tables, relaxing this normalization. First, we perform a maximum likelihood grid

search, yielding the value of µ that maximizes the overall fit of the model. The results are

14We use non-linear-least squares to fit the equation. We have also estimated parameters with maximum like-

lihood under the assumption of a negative binomial (overdispersion is a clear problem in the data). Results are

qualitatively similar with precisely estimated k0, k1 and k0 > k1 but point estimates are lower and the model fit is

worse.
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displayed in Table 9 in Appendix B, which replicates Table 2, but using the µ found in the grid

search. First of all, note that in all four columns the µ found is always in the neighborhood of

1, ranging from 0.78 to 1.18. Second, the estimated coeffi cients of kg0 , k
g
1 , and k

g
2 are similar in

terms of size to the ones found in the baseline Table 2.

Further, we also replicate the key results of Table 2 for different values of µ around 1. In

particular, in Table 3 we show that our results for the direct neighborhood go through for µ =

0.5, µ = 0.75, µ = 1.25 and µ = 1.5. Panel A reports the results for protestant casualties and

Panel B reports the results for Catholic casualties. The relative size of the coeffi cients changes

but kg1 < kg0 is always maintained. The estimated parameters fall for larger values of µ. This

can be explained by the fact that higher values of µ imply more fighters per population. If the

number of fighters increases, effectiveness of these fighters needs to decrease in order to maintain

the level of violence. Also, estimates for kg0 fall relative to k
g
1 for larger values of µ. This change

is driven by large mixed wards which generate a lot more within-ward violence for large µ due

to the non-linearity in the recruitment technology. Note that we find that catholic casualties are

best described (highest R2) by a slightly lower µ (close to 0.75 as opposed to close to 1.25 for

protestant casualties). This could be explained by the fact that protestant fighters include state

forces which we expect to move more freely and therefore are less bound by local support by

Protestants.

Our framework also allows us to estimate the total combined death toll of Protestants and

Catholics, casj ≡ caspj + cascj , relying again on the structural equations (5) and (6). This is what

we do in Table 4. In particular, we allow for different kcm 6= kpm, but assume that the relative

decay of distance is similar for both population groups, i.e. kcm/k
c
m = kpm/k

p
m, for m = 1, 2...M .

This is reasonable in the light of Table 2 that indeed found for both population groups similar

spatial weight ratios of k0/k1, and k1/k2. It implies that we can replace the ratio kcm/k
p
m by a

constant for all m. Call Mc ≡ (kcm/k
p
m)2. We can then write casualties in ward j as

caspj + cas
c
j = Mc ×Np

j

kp0F̃ ′cj + kp1 ∑
i∈n1(j)

F̃ ′ci

 (9)

+N c
j

kp0F̃ pj + kp1 ∑
i∈n1(j)

F̃ pi

+ εj ,
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Panel A: protestant casualties
(1) (2) (3) (4)

VARIABLES mu=0.5 mu=0.75 mu=1.25 mu=1.5

k0 18.56*** 13.82*** 8.64*** 6.71***
(3.85) (1.86) (0.57) (0.78)

k1 1.48** 1.84*** 1.55*** 1.31***
(0.62) (0.21) (0.08) (0.08)

Observations 582 582 582 582
R­squared 0.58 0.60 0.60 0.59

Panel B:  catholic casualties
(1) (2) (3) (4)

VARIABLES mu=0.5 mu=0.75 mu=1.25 mu=1.5

k0 12.41* 12.13*** 8.56*** 6.73***
(7.09) (3.00) (2.64) (1.91)

k1 5.24*** 3.89*** 2.24*** 1.70***
(1.45) (0.66) (0.30) (0.18)

Observations 582 582 582 582
R­squared 0.75 0.76 0.74 0.73
Notes: Robust standard errors in parentheses. Standard errors are clustered at the electoral district level
(101 clusters). *** p<0.01, ** p<0.05, * p<0.1. "Protestant casualties" are casualties of state forces and
protestants. "Catholic casualties" are casualties of catholics. "k0­k1" are decay parameters. k0 captures the
transport cost of conducting attacks within the same ward. k1 captures the transport cost of conducting
attacks in the direct (bordering) neighbourhood of the ward. Different columns display results with different
assumptions on the parameter mu which captures how the cost of fighter recruitment changes with group
size.

Table 3: Robustness of main specification with respect to mu
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where εj is the error term of the combined regression, F pi is given by equation (8), and F̃ ′ci

corresponds to F̃ ci of equation (7) besides the fact that k
c
m is replaced by kpm.

This combined estimation of casj also allows us to compute the relative "aggressiveness of

catholic paramilitaries compared to state forces and loyalist paramilitaries", captured by the pa-

rameterMc, which intuitively tells us how many attacks are carried out by Catholics compared to

Protestants for a given availability and proximity of targets. Mc < 1 mean that catholic paramil-

itaries carry out less attacks than protestant fighters for a given availability of targets, while

Mc > 1 implies that catholic fighters are relatively more "aggressive". The interpretation of Mc

of course requires caution, as any Mc 6= 1 could be due to various factors such as e.g. differences

in motivation, organization or logistical capacity of paramilitary groups, differences in population

support, advantages and constraints related to being linked to the political establishment etc.

Our data do not allow us to disentangle the root causes driving the value of Mc.

Table 4 performs this joint estimation of total casualties, and shows that indeed there is

a gradual decay of attack potential when crossing ward borders, with all k-coeffi cients being

statistically significant and kp2 < kp1 < kp0. It is particularly re-assuring that the point estimates

are very close to the estimates of kp2, k
p
1 and k

p
0 in Table 2. Further, theMc coeffi cient is estimated

to be around 0.6, revealing that for an identical availability and proximity of targets, assuming

everything else constant, catholic paramilitaries carry out roughly 20 percent less attacks than

protestant forces.15

A crucial aspect to keep in mind is that, while kp0 > kp1, the latter parameter applies to

a lot more interactions. The neighborhood contains a population that is more than five times

larger than the population of the average ward. This implies that more than half of all attacks,

according to the specification of Table 4, take place across ward boundaries.16

15We calculate this from kcm/k
p
m =

√
0.63 = 0.79.

16For a more detailed discussion see the Appendix C.
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(1) (2)
VARIABLES all casualties all casualties

k0 8.30*** 6.91**
(1.75) (3.01)

k1 3.45*** 2.56***
(0.26) (0.79)

k2 0.75**
(0.34)

Mc 0.63*** 0.55***
(0.05) (0.13)

p value: k0=k1 0.02 0.22
p value: k0=k2 . 0.04
p value: k1=k2 . 0.08
Observations 582 582
R­squared 0.78 0.79
Notes: Robust standard errors in parentheses. Standard errors are clustered at the electoral district level
(101 clusters). *** p<0.01, ** p<0.05, * p<0.1. The model's parameter "mu" (determining how the recruitment
of fighters relies on local population) is normalized to 1. "k0­k2" are decay parameters. k0 captures the
transport cost of conducting attacks within the same ward for state forces and loyalists (kp0 in the text). k1
captures the transport cost of conducting attacks in the direct (bordering) neighbourhood of the ward for
state forces and loyalists. k2 captures the transport cost of crossing one ward to carry out an attack for state
forces and loyalists. Mc captures the relative aggressiveness of republican paramilitaries compared to state
forces and loyalists, (kc/kp)^2.

Table 4: Main estimation of the decay parameters, protestant and catholic casualties combined
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5.2 Comparison to Alternative Models

A clear advantage of modeling the local interaction of the local population is a gain in the

explanatory power of the model. In order to show this we consider two benchmarks. The first

benchmark is an alternative framework where only ward population characteristics matter and

where, accordingly, the violence potential is assumed to fully decay when a ward-border is crossed.

Put differently, this corresponds to a setting often encountered in within-country studies in which

the location of attacks and targets is not separated.

We model this alternative by regressing ward-level casualties on the numbers of Protestants

and Catholics in a given ward and their interaction. In Appendix B, Table 10 depicts the

regression results for this alternative specification in column (1).17

Figure 6 below displays a comparison of our setting (called "model") with the benchmark

alternative model of full distance decay of the Appendix Table 10, column (1) (called "bench-

mark"). The curves represent the distribution of the residuals, i.e. casj − ĉasj . Large numbers

mean that the extent of violence is underestimated. In the benchmark model we predict violence

with the population composition and interactions within the ward, whereas ĉasj in our model is

given by the fitted values from equation (9). The curve capturing our model is drawn in a dashed

red line, while the benchmark curve is drawn in a blue solid line. The curve of our setting is

centered around zero and reaches a very high kernel density close to zero. This reveals that the

fit is very good, with most wards having very similar levels of actual and fitted casualties. In

contrast, the alternative model has a substantially lower fit, revealed by a larger spread away from

zero (running an F-test confirms at the 1% level of significance that the alternative benchmark

has a larger standard deviation of the error terms). The alternative model slightly overestimates

violence in a large number of wards and grossly underestimates it in a few other wards. This is

not only a result of not taking cross-border attacks into account but also of ignoring the changes

17 In column (2) of the Appendix Table 10 we display another alternative specification which is also common in

the literature. This specification ignores population size and predicts casualties with the share of catholics and its

square. This specification has almost no predictive power.
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Figure 6: Our model compared to full decay

in motivation to fight in areas with a lot of potential targets.18

The second natural benchmark to consider is a model assuming no decay of violence potential

over space. This is the implicit assumption of many country-level studies assuming that only the

overall population composition but not their location matters (see Figure 2). According to this

"no spatial decay" benchmark the population composition in a given ward and in its neighborhood

should only affect casualties through the nationwide presence of potential victims, i.e. this boils

down to setting k0 = k1 = k2... = kn. Attacks are then given by

ĉasgj =
Ng
j∑

j N
g
j

Ã−g.

This simply means that total casualties of group g will be distributed according to where group g

18To see this, imagine that k1 is set to 0. This has two effects: First, even if the recruitment of fighters

was unchanged, their effectiveness would decrease. Second, the effect is anticipated and recruitment of fighters

decreases. We discuss this in detail in Appendix A.
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Figure 7: Our model compared to no decay

lives. From this we can calculate ĉasj = ĉascj + ĉas
p
j and casj − ĉasj . In Figure 7 we compare the

fit of our setting (called "model", depicted by the red dashed curve) with this no decay benchmark

(called "benchmark", displayed by the blue solid line). This reveals a substantially less good fit of

the no decay benchmark, with violence in many wards being drastically underestimated (running

an F-test confirms at the 1% level of significance that the alternative benchmark has a larger

standard deviation of the error terms).

5.3 Robustness Checks

This subsection will be devoted to our main robustness checks on clustering and alternative

location subsamples or time frames.

Table 5 shows that the statistical inference is robust to various levels of clustering standard

errors. One natural alternative option for clustering would be at the parliamentary constituency

or district level, although unfortunately the number of parliamentary constituencies and districts

are only 18 and 26, respectively, which is below the typical lower bound of clusters required (50).

Incidentally, if we ignore this issue and still cluster at these levels, as we do in columns (1) and
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(1) (2) (3)
errors clustered at
parl. constituency

level

errors clustered at
district council level no clustering

VARIABLES all casualties all casualties all casualties

k0 8.30*** 8.30*** 8.30***
(1.80) (0.55) (3.01)

k1 3.45*** 3.45*** 3.45***
(0.28) (0.06) (0.54)

Mc 0.63*** 0.63*** 0.63***
(0.10) (0.03) (0.14)

Observations 582 582 582
R­squared 0.78 0.78 0.78
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. "Protestant
casualties" are casualties of state forces and protestants. "Catholic casualties" are
casualties of catholics. "mu" is normalized to 1. "k0­k2" are decay parameters. k0
captures the transport cost of conducting attacks within the same ward. k1
captures the transport cost of conducting attacks in the direct neighbourhood of the
ward. k2 captures the transport cost crossing one ward to conduct an attack. Mc
captures the relative aggressiveness of republican paramilitaries compared to state
forces and loyalists (as detailed in the text). There are 18 parliamentary
constituencies and 26 district councils.

Table 5: Alternative clustering of standard errors

(2) of Table 5, the significance is maintained at the 1 percent level for all coeffi cients. In column

(3) we show that the results are also robust when clustering is absent altogether.19

Table 6 shows that the results continue to hold when fixed effects are included or particular

parts of Northern Ireland are excluded. In columns (1) and (2), we include fixed effects at

the parliamentary constituency, resp. electoral district level. The magnitude and statistical

significance of the estimates remains very similar to our baseline results. In column (3) the

19We have also checked out the sensitivity to clustering by the coordinates of the wards and on a combination

of coordinates and population using a k-means clustering. Our results are robust to this.
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(1) (2) (3) (4) (5)
parl. constituency level

fixed effects
electoral district area fixed

effects
dropping districts of

Belfast dropping districts of Derry only districts of Belfast and
Derry

Dep. Var. all casualties all casualties all casualties all casualties all casualties

k0 9.92*** 10.15*** 21.92*** 7.88*** 8.38***
(1.77) (1.95) (7.14) (1.66) (1.80)

k1 2.89*** 1.60** 7.14*** 3.47*** 3.39***
(0.43) (0.74) (0.78) (0.27) (0.29)

Mc 0.68*** 1.47** 0.08 0.64*** 0.65***
(0.07) (0.72) (0.15) (0.06) (0.14)

Observations 582 582 531 552 81
R­squared 0.83 0.87 0.38 0.80 0.86
Robust standard errors in parentheses. Standard errors are clustered at the electoral district level (101 clusters). *** p<0.01, ** p<0.05, * p<0.1. "Protestant
casualties" are casualties of state forces and protestants. "Catholic casualties" are casualties of catholics. "mu" is normalized to 1. "k0­k2" are decay parameters.
k0 captures the transport cost of conducting attacks within the same ward. k1 captures the transport cost of conducting attacks in the direct neighbourhood of the
ward. k2 captures the transport cost crossing one ward to conduct an attack. Mc captures the relative aggressiveness of republican paramilitaries compared to
state forces and loyalists (as detailed in the text). There are 18 parliamentary constituencies and 101 electoral district areas.

Table 6: Fixed effects and alternative location samples

Belfast area is dropped from the sample. This was by far the most violent part of Northern

Ireland with more than 850 casualties. The decay of violence across distance is still clear-cut,

with k1 < k0 still holding, and both k0 and k1 being highly statistically significant. In column (4)

we drop Derry, the second most violent area from the sample. In column (5) we include instead

in the sample only the wards of Belfast and Derry. In all cases our results continue to hold. This

shows that our findings are not driven by particular regions within Northern Ireland.

Further, Table 7 considers alternative time frames. Using religious group settlement patterns

and violence data from the 1970s was the natural choice for the baseline regressions, as this

reflects pre-conflict location decisions, which are arguably more exogenous than the people’s

location choices in the 1980s. Still, in Table 7 we show robustness of our main results to the

inclusion of data from the 1980s. In particular, in columns (1) and (2) we use data from the

1970s and 1980s to show that parameters do not change significantly from one decade to the

next. In particular, in column (1) we first estimate the same set of parameters as in the baseline

regressions, but for a larger sample containing also data from the 1980s, leading to a similar

overall pattern as in the baseline regressions. Then we estimate in column (2) the difference

between parameters in the 1970s to 1980s.20 To do this we run a regression in which we separate

20 In both columns (1) and (2) we take as values for Ap and Ac the total number of fatalities in the 70s and 80s.
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(1) (2) (3)

70s and 80s
pooled data

70s and 80s
pooled data

placebo test
(80s census, 70s

violence)

VARIABLES all casualties all casualties all casualties

k0 9.56*** 9.61*** ­14.85
(2.24) (2.03) (15.14)

k1 4.01*** 3.99*** 11.17***
(0.39) (0.31) (1.20)

k0 change ­ 80s ­2.49
(8.78)

k1 change ­ 80s 0.50
(1.10)

Mc 0.68*** 0.69*** 0.50***
(0.07) (0.06) (0.17)

Mc change ­ 80s ­0.19
(0.23)

Observations 1,164 1,164 582
R­squared 0.75 0.75 0.67
Notes: Robust standard errors in parentheses.  Standard errors are clustered at the electoral
district level (101 clusters). *** p<0.01, ** p<0.05, * p<0.1. The model's parameter "mu"
(determining how the recruitment of fighters relies on local population) is normalized to 1. "k0­k2"
are decay parameters. k0 captures the transport cost of conducting attacks within the same ward.
k1 captures the transport cost of conducting attacks in the direct (bordering) neighbourhood of the
ward. Mc captures the relative aggressiveness of republican paramilitaries compared to state
forces and loyalists (as detailed in the text).

Table 7: Alternative time windows
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the 1970s and 1980s through two sets of spatial weight dummies. We use “k0 in the 80s”= “k0 in

the 70s”+ “k0 change 80s”to replace for “k0 in the 80s”in the regression equation and estimate

two k0 parameters: “k0 in the 70s”and “k0 change 80s”. We do the same for the k1 parameters

and Mc. We do this in order to be able to conveniently test whether parameters changed from

the 1970s to the 1980s, finding that coeffi cients are stable over time.

The fact that estimates over different decades are similar could be due to either the structure

of our model applying to various periods, or, alternatively, due to the fact that population

movements across Northern Ireland are limited. To discriminate between these two explanations,

we perform a placebo test in column (3). Concretely, we try to explain the violence in the 1970s

with settlement patterns in the 1980s. If the composition of the population is highly persistent

we should find the same result as in the previous two columns, while if population movements

are substantial the placebo test should generate results that are not in line with the first two

columns. This is exactly what we observe in column (3), suggesting that the stability of the

estimates in columns (1) and (2) is not driven by the absence of population movements. This is

consistent with the view that indeed the structure of our model applies to various sub-periods of

the "Troubles" in Northern Ireland.

6 Uses of the Model for Prediction

Our model builds on the assumption that the starting position of an attack is separated from the

location of the attack. Given the parameter estimates of the model from the previous section,

we can "invert" the model to calculate where attacks came from and which path they took. It

is diffi cult to overemphasize the importance of this for the use of disaggregated data. The more

disaggregated the data is, the more often will the location of a target and the origin of violence

differ. Especially for the analysis of and response to sectarian violence taking this into account

can be crucial.

In this section we first discuss where attacks came from. Then we show that the UK gov-

ernment has built walls to inhibit attacks exactly on those ward boundaries where our model

predicts a lot of cross-border attacks. This indicates that the model captures parts of the reality
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of the conflict as it was perceived by its participants. Finally, we use our model to show that

changes in the spatial composition of population reduced violence dramatically, despite the fact

that total population did not change as much.

6.1 Predicting the Origin of Attacks

Our model enables us to compute the expected size of bilateral attacks from any ward against

any other ward. Generally, we are able to calculate the number of attacks originating in a given

ward j from equation (1) as

Aj = F̃ cj
(
Wc

j

)′
Np + F̃ pj

(
Wp

j

)′
Nc. (10)

In the simplified model in Table 4, column (1) we have estimated three parameters. From

these we can calculate the number of attacks on other, contiguous wards that originated in ward

j as

Âj = F̂ cj × M̂c × k̂p1
∑

i∈n1(j)
Np
i + F̂

p
j × k̂

p
1

∑
i∈n1(j)

N c
i , (11)

and the number of attacks that came into the ward from a different ward as

ĉaspj + ĉas
c
j = Np

j × M̂c × k̂p1
∑

i∈n1(j)
F̂ ′ci +N

c
j × k̂

p
1

∑
i∈n1(j)

F̂ pi , (12)

where, in both cases, we use the (fitted) number of attackers in each location is given by

F̂ cj =
Ãp(

Ãc + Ãp
)2 [(k̂c0Np

j + k̂
c
1

∑
i∈n1(j)

Np
n1(i))(N

c
j )
µ],

F̂ pj =
Ãc(

Ãc + Ãp
)2 [(k̂p0N c

j + k̂
p
1

∑
i∈n1(j)

N c
n1(i))(N

p
j )
µ].

The subtle differences between equation (11) and equation (12) illustrate the intuition of

the empirical model. While casualties in equation (11) (i.e. deaths caused) are calculated by

multiplying the number of fighters in ward j with the sum of potential targets in the neighborhood,

casualties in equation (12) (i.e. deaths suffered) are calculated by multiplying the number of

targets in ward j with the sum of fighters in the neighborhood.

Figure 8 displays for each ward on the y-axis the number of attacks originated in a given ward

and on the x-axis the number of attacks suffered from in the ward. Generally more violent wards
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Figure 8: Origin and destination of attacks in the 1970s.

are further away from the origin. Wards with a balanced in- and outflow of attacks are located

close to the 45 degree line while "net contributors" (i.e. wards that create more violence than

they suffer) are located above the 45 degree line.21

An interesting feature of Figure 8 is that wards with low levels of violence tend to receive more

attacks than they commit. However, this reverses for violent wards. This pattern is a feature of

a model in which recruitment of fighters, F gj , is endogenous. Wards with a large population will

generate higher F̃ gj and attack surrounding wards more. A smaller ward next to a larger ward

will therefore become a net recipient of violence. We provide a detailed explanation of this point

using simulations of the model in Appendix C.

Overall there are quite stark differences between how much violence the population in a ward

21 If we included attacks that did not cross ward boundaries this would move points to the north-east in parallel

to the 45 degree line.
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causes as opposed to how much it suffers. In particular, it is not uncommon that wards receive

twice as many attacks as they commit. On the other hand, the most violent ward commits about

20 casualties more than it receives.

6.2 Predicting the Location of Peacewalls

To gauge the plausibility of the model we use detailed data on the position of the barriers built

by the UK government to prevent sectarian violence. Many of these walls were built directly on

or close to ward boundaries. The fact that we have a full description of origins and targets allows

us to predict how many attacks must have crossed each of the 1632 ward boundaries in Northern

Ireland. Walls were built with the explicit goal to prevent this.

We have collected data from various sources on 36 peacewalls which were built on ward

boundaries (see data description in Appendix D). We then take the estimates from column 1

in Table 4 and calculate for each of the 3,264 dyads of neighboring wards the total number of

attacks crossing the boundary between them.22 Similar to the formulas in equations (11) and

(12), the formula for attacks crossing the ward boundary between ward i and j is

̂attacks
e

ij = M̂c ×Np
i k̂

p
1F̂

c
j +N

c
i k̂

p
1F̂

p
j

+M̂c ×Np
j k̂

p
1F̂

c
i +N

c
j k̂

p
1F̂

p
i .

This variable has a mean of 0.47, a standard deviation of 2.1 and a maximum of 33. If our model

is a good description of the reality in Northern Ireland we expect the UK government to build

barriers where most violence crossed the ward boundary. In order to do so we use as a dependant

variable a dummy indicating whether a wall was built between two wards. This variable has a

mean of 0.022, i.e. there is a very low baseline risk of receiving a barrier.

In Table 8 we assess whether the number of predicted attacks using our model is able to explain

the authorities’decisions to construct peace walls. In particular, we do not take the actually

22Each pair of wards i and j appears twice. We conduct the analysis at the dyad level in order to be able

to control for ward fixed effects on both sides of the boundary. We cluster at the boundary level to rule out

double-counting biasing the statistical inference.
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observed attacks (which are an endogenous variable), but the expected numbers of attacks when

feeding the pre-conflict population data in our structural model. Thus, all actual data underlying

our explanatory variable are pre-conflict observations, addressing worries of reversed causation.

Our unit of observation is the dyad, as we regress the construction of peacewalls at the border

separating a ward pair on the violence flows between these two wards predicted by our structural

model.

In column (1) we control for the number of Catholics and Protestants in each ward of the

dyad, while in column (2) we go one step further and introduce 2 x 582 dummies to control

for ward fixed effects on each side of the boundary. In other words, we check whether walls

can be predicted by the expected violence interaction between two wards as our model suggests.

Strikingly, across-ward boundaries predict very well on which dyad boundary peacewalls were

built. The result in column (2) suggests, for example, that an increase of 10 deaths crossing a

ward boundary increases the likelihood of receiving a wall by more than 50 percentage points.

In other words, our model seems to indeed capture a reality which was also perceived by the

government at the time - the interaction between wards is key to understand the conflict.23

23One question that arises from this is whether the construction of peacewalls on ward boundaries had the desired

impact on the spatial weight parameter k1. In order to answer this question one needs to study changes of violence

across time in dyads which received a peacewall and compare them to dyads which did not receive a peacewall.

Unfortunately, while we benefit from detailed data on where walls were built, we only have coarse data on the

precise timing of construction, meaning that any analysis of the impact of peacewall construction may suffer from

attenuation bias (e.g. treating not-yet-constructed walls as already-constructed creates statistical noise biasing

estimated differences towards zero). Further, the expected violence-decreasing effect of peacewalls could also be

biased towards zero by endogeneity bias (i.e. if peacewalls are constructed in places that are expected to have the

largest future violence potential). With these caveats in mind, we have run regressions allowing for different k1

in dyads separated by peacewalls (results available upon request). We find that violence dropped more at ward

boundaries protected by a peacewall, but the difference is not statistically significant, which could either be due to

the statistical biases discussed above or due to peacewalls proving to be by and large ineffective (i.e. many of the

these barriers can be circumvented by well-equipped paramilitaries).
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(1) (2)
Dep. Var. Peaceline built on ward boundary

Expected attacks over ward boundary
(fitted values from structural model using
pre­conflict population) 0.02** 0.05***

(0.01) (0.02)
population controls yes no
ward fixed effects no yes
Observations 3,264 3,264
R­squared 0.27 0.68
Notes: Robust standard errors in parentheses, clustered at the dyad level (to adjust for double­counting). ***
p<0.01, ** p<0.05, * p<0.1. Regression is run on the dyad level of direct neighbours. The left hand side variable
is a dummy that takes a value of 1 if a peacewall was built on the dyad boundary. "Attacks over ward
boundary" is the predicted number of attacks that are taking place between the two wards in the dyad.
Population controls are the number of catholics and protestants in each of the wards. Ward fixed effects control
for two sets of fixed effects ­ one for each ward in the dyad (1164 in total).

Table 8: Predicting the location of peacewalls

6.3 Predicting the Impact of Changes in Population Localisation

Our model is also able to predict how violence evolves with changes in the composition of the

population. One obvious application of this is to use the actual change of composition from the

1971 census to the 1981 census to simulate changes in violence, assuming that parameters stayed

the same.

In Figure 9 below we make use of our model in the baseline Table 4 (which uses 1970s data),

but now apply it to the population composition and location of the 1980s. To visualize the effect

we calculate the predicted change in violence from the 1970s to the 1980s as depicted on the

x-axis of Figure 9. We then compare this to the actual change in violence between the 1970s and

1980s displayed on the y-axis. Most wards are located close to the 45 degree line, highlighting

the strong out-of-sample predictive power of the model. The figure also suggests that a big part

of the violence reduction in the 1980s could have been due to moving decisions of the population

away from the most dangerous areas.

If we interpret the correlation between changes in population and changes in violence as
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Figure 9: Out of sample predictions

causal, the population movement has saved over 600 lives.24 The main reason for this violence

reduction is that population sorted more, moving beyond the reach of perpetrators of violence -

especially in wards which were very violent in the 1970s.

7 Discussion: Relevance for Other Empirical Work

7.1 Relevance for Cross-country Studies

There is an increasing body of cross-country studies of civil wars that focus on nationwide in-

dicators of ethnic polarization or fractionalization (see Fearon and Laitin, 2003; Collier and

Hoeffl er, 2004; Montalvo and Reynal-Querol, 2005; Collier and Rohner, 2008; Collier, Hoeffl er,

and Rohner, 2009; Esteban, Mayoral and Ray, 2012). The emphasis of this literature is solely on

nationwide ethnic diversity, hence neglecting all information on local ethnic diversity. As shown

24The interpretation is obviously to be taken with caution as the spatial weight parameters of the model may

evolve over time.
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in our theory the latter is important: For similar nationwide ethnic polarization scores, a country

with two or three large ethnic groups that are geographically separated has lower local ethnic

tensions than places where ethnic groups inhabit the same geographical areas. According to our

theory, a given level of motivation at the aggregate level will lead to higher levels of violence with

potential attackers and targets being closer together.

One way to illustrate this is to focus on the number of attacks in our model. All violence

conducted by group g can be expressed by

Ag =
A−g

(Ag +A−g)2
RT g,

where

T g ≡ (N−g)′Wgdiag[(Ng)µ]WgN−g.

Taking the sum of Ag and A−g yields, after reformulation, the following expression, which

provides a measure of the aggregate attack potential in a country:

A ≡ Ag +A−g =
√
R
√
T gT−g.

Note that our measure expresses the total predicted attacks A as a function of demographic

and distance parameters only. A is strictly increasing in T g, T−g, and R. When knowing the

sizes and settling patterns of the groups, one can compute predicted attacks A for all countries

around the world. An important characteristic of our measure is that it is not unit-free, i.e. it

explicitly takes into account different population size. This might help explain the huge variation

in violence intensity across conflicts. For example, two of the most intense conflicts, Rwanda and

Lebanon, are countries with diverse population groups living at close range. In contrast, India is

a country with an ongoing conflict and with a very large population, but with settlement patterns

that generate large distances and therefore prevent more intense violence.

A natural benchmark to compare these aggregate total attacks A to are the number of pre-

dicted attacks when distance is small. In particular, one can define a constellation where every-
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body is infinitely close, i.e. where for all bilateral links between people the proximity weight is

maximal (k0). Call the corresponding T g target measure T g. In this case, the maximum attack

potential becomes

A =

√
R
√
T gT−g.

One can then define an index relating the actual availability of targets, T g, to the maximum

target availability T g where all bilateral links have maximum proximity weight k0. This index

can be labelled as "interaction proximity" (IP) and be formally defined as

IP ≡ T gT−g

T gT−g
.

It is easy to show that the actual predicted attacks relative to maximum predicted attacks,

A/A, is a monotonically increasing function of the IP index. In particular,

A

A
=

(
T g

T g
T−g

T−g

)1/4
= (IP )1/4 .

Note also that this novel IP index ranges between 0 and 1 and that one could in future work

compute it for all countries with available data and run a horse-race between it and established

measures such as "ethnic polarization", "ethnic fractionalization" or segregation indices on its

explanatory power of recorded violence.

7.2 Relevance for Within-country Studies

In recent years there has also been a boom of articles studying civil war with the help of geo-

referenced, disaggregated data, as discussed above in the literature review of Section 2. As

shown by our theory, running regressions that explain local violence with only the characteristics

of a given cell or district will be mis-specified when there is significant violence between these

units. And, using simply existing spatial econometrics tools will not solve this problem, as the

extent of such between-cell or between-district killings will depend on the interaction between

relative population characteristics of the cells or districts involved. To capture the full effect of

interactions across space the regression specifications need to rely on an underlying structural

theory of conflict between groups.
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The importance of interactions between characteristics across spatial units also seems of im-

portance for other work inside and outside the conflict literature. There is a large number of

economic decisions that are affected by the interaction of geographic features (plains next to

mountains, for example). In the move towards more and more disaggregated data these interac-

tions should receive close attention.

8 Conclusion

In this paper we have built a novel framework explaining violence as interaction across space.

Neither the characteristics of a ward alone, nor the ward characteristics plus the characteristics of

the neighborhood suffi ce to provide a powerful predictor of violence. In fact, it is the interaction

between neighborhoods that is shown to be a prime driver of violence. As shown in the paper, our

setting outperforms the predictive power of both specifications regressing violence on cell-level

characteristics (i.e. assuming prohibitive transportation costs of violence) and specifications on

the country level (i.e. assuming that group location does not matter and that there is no distance

decay of violence).

Estimating the structural parameters of our model, we find a substantial decay of violence

when crossing ward borders. In particular, the transport cost of violence is 2-6 times larger

between wards than within wards. Our model is shown to generate a better fit and larger

explanatory power than main alternative competing frameworks, and offers several applications.

In particular, the framework allows for backing out the origin and destination of attacks, which

may be particularly useful for organizing counter-terrorism activities. Finally, the setting allows

for projections as well as counter-factual simulations of how group location patterns can drive

current and future conflict. Further, we are able to compute for every country a summary measure

of violence potential based on the group composition and location.

Several avenues seem promising for future research: First, it would be interesting to extend

the model allowing for beneficial effects of inter-group interaction (e.g. with trust-building à la

Rohner, Thoenig, and Zilibotti, 2013). Second, we aim to compute our aggregate measures of

the attack potential and interaction proximity as a function of demographics and geography for a
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variety of countries and to perform a cross-country analysis of the effect of nationwide and local

ethnic composition and location on conflict. Third, we warmly encourage studies that apply

the current framework to the analysis of other cases than Northern Ireland and to the study

of other phenomena than conflict where spatial heterogeneity of intensity and local interactions

play an important role. Migration, for example, is most attractive where rich areas are close

to poor areas. Other examples are research questions in regional science such as the study of

urbanization patterns and local economic activity, topics in electoral politics, such as the study

of local campaigning in national elections, or public health policies such as anti-AIDS campaigns.
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A Changes in Transport Costs

Our model allows us to analyse how much violence is driven by cross-border attacks. A way to

understand this is to set k1 = 0 in our model from equation (9) but keep everything else constant.

Figure 10 below shows what would happen in the 12 most violent wards.

As a point of departure we take our estimates from equation (9) to generate fitted values. In

the most violent ward we predict 100 casualties in the 1970s, in the second most violent ward 65

casualties, and so on (light grey bar). As a first step we then set k1 = 0, but only in the part of

the equation that describes the effectiveness of attacks across boundaries, i.e. we generate fitted

values according to

ĉasej = M̂c ×Np
j k̂

p
0F̂
′c
j +N

c
j k̂

p
0F̂

p
j , (13)

but assume that F̂
′c
j and F̂

p
j stay the same. This implies that the motivation to fight in all wards

is maintained but that there are no attacks across ward boundaries. There is a drastic decrease in

expected attacks in this thought experiment (dark grey bar). Attacks are reduced by more than

half. This illustrates the salience of cross-border attacks that our model predicts for the Northern

Irish conflict. A model which does not take the composition of the neighborhood into account

would miss this violence and instead attribute it to interactions within the same geographic unit.

As a next step we set k1 = 0 everywhere in equation (9).25 This also shuts down the re-

cruitment motivation effect of cross-ward targets (and hence lowers F̂
′c
j and F̂ pj ), leading to an

even sharper drop in casualties (black bar). The point of this exercise is to demonstrate that

motivation is an important factor. The reduction of violence from dark grey to black bars is

again very substantial.26

Taken together, Figure 10 highlights the incentives for policy makers to reduce movements of

people in situations with high-levels of acute violence. Depriving fighters of potential targets can

25This would yield the expression ĉasej = M̂c ×Np
j

Ap

(Ac+Ap)2
k̂o[(k̂oN

p
j )(N

c
j )
µ] +Nc

j
Ac

(Ac+Ap)2
k̂o[(k̂oN

c
j )(N

p
j )
µ].

26 In Appendix C we simulate the effect of composition on violence into and out of a ward of 2,000 inhabitants

in a neighborhood of 20,000 inhabitants. This exercise stresses the importance of motivation for violence levels.
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Figure 10: Counterfactual with k1 = 0

have large effects on violence in the short-run.27

B Further robustness checks and results

In this appendix we include two additional tables that are discussed in more detail above in the

main text. In particular, Table 9 below replicates Table 2, but using in each column the value of

µ that in a maximum likelihood grid search maximizes the overall fit of the model.

Further, Table 10 runs in column (1) an alternative specification for generating Figure 6 in

the main text, while column (2) performs another commonly used alternative specification.

27This result refers to the fighting intensity during conflict. In contrast, in post-conflict reconstruction, fostering

interaction and "building bridges" between communities may be important (see Rohner, Thoenig, and Zilibotti,

2013).
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(1) (2) (3) (4)
VARIABLES protestant casualties protestant casualties catholic casualties catholic casualties

mu 1.04 1.18 0.78 0.87

k0 10.49*** 8.17*** 11.97*** 10.78*
(0.82) (1.04) (2.80) (5.62)

k1 1.74*** 1.05*** 3.76*** 2.01
(0.11) (0.37) (0.59) (2.59)

k2 0.42 0.94
(0.29) (0.91)

Observations 582 582 582 582
R­squared 0.61 0.62 0.76 0.77
Notes: Robust standard errors in parentheses. Standard errors are clustered at the electoral district level (101
clusters). *** p<0.01, ** p<0.05, * p<0.1. "Protestant casualties" are casualties of state forces and protestants.
"Catholic casualties" are casualties of catholics. "mu" is the parameter of the model that determines how the
recruitment of fighters relies on local population and is chosen in a grid search so as to maximize the R squared for
each specification. "k0­k2" are decay parameters. k0 captures the transport cost of conducting attacks within the
same ward. k1 captures the transport cost of conducting attacks in the direct (bordering) neighbourhood of the ward.
k2 captures the transport cost of crossing one ward to carry out an attack.

Table 9: Grid search of mu

(1) (2)
VARIABLES casualties casualties

protestants (in 1000) 2.03***
(0.41)

catholics (in 1000) 2.20***
(0.39)

protestants (in 1000) *
catholics (in 1000) 0.29***

(0.03)
share of catholics 8.01

(5.44)
share of catholics
squared ­7.70

(4.68)
Observations 582 582
R­squared 0.69 0.01
Notes: Standard errors in parentheses. *** p<0.01, ** p<0.05, *
p<0.1

Table 10: Alternative model with violence potential fully decaying in distance
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C Simulation of Violence in and out of Wards

Our model allows us to represent graphically in what type of environment a given ward is most

likely to "send" or "receive" violence. In what follows we simulate a ward (ward 1) of 2000

inhabitants in a neighborhood of 20000 inhabitants - this is roughly a ward of average size in a

neighborhood of average size. To simplify the analysis we assume that the neighborhood consists

of only one ward (ward 2). We will use our estimated model to distinguish between attacks into

the ward and attack originating from the ward. Note that all attacks into ward j from i are given

by

casinj =
Ãp(

Ãc + Ãp
)2Np

j × M̂ck̂
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p
0N

p
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whereas attacks from ward j over the ward boundaries are given by
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We first focus on the simulation of attacks on individuals in ward 1 from ward 2, depending

on the population composition in the two wards.28 Figure 11 depicts the number of attacks into

ward 1 on the z-axis, and the composition of the population in ward 1 and ward 2 on the other

two axis. The axis P1 captures the composition of ward 1. If P1 = 0, all 2, 000 inhabitants

in ward 1 are assumed to be Catholics. If P1 = 2, 000, all are Protestants. Analogously, if

P2 = 0, all 20, 000 inhabitants of the neighborhood (ward 2) are assumed to be Catholics, while

if P2 = 20, 000, all are assumed to be Protestants.

Assume first P1 = 0 and P2 = 0. There are only Catholics living in both wards and there

28We take Ac

(Ac+Ap)2
and Ap

(Ac+Ap)2
from observed fatalities and assume µ = 1. We then use the estimated

coeffi cients Mc = 0.63, ko = 8.30 and k1 = 3.45 from our main results of Table 4, column (1).
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Figure 11: Simulation of attacks against ward 1

are therefore no attacks on individuals in ward 1. Fix P1 = 0 and increase P2. The result is

an inverted U-shape in attacks on the ward 1. Why do attacks from outside take this shape?

The key to understanding the decrease in attacks despite the increasing number of Protestants

in ward 2 is the fact that attacks are driven both by the number of Protestants living close by

and by their motivation to engage in conflict. If P2 = 20, 000, there are no Catholics in ward 2

so that the Protestants in ward 2 are much less motivated to engage in violence (i.e. there are

fewer potential targets at close range). If, however, P2 = 10, 000, then there are a lot of targets

which leads to more fighters per Protestants in ward 2. If we fix P2 = 0 we get an increase in

violence with a rise in P1 because more targets are available in ward 1.

In contrast, Figure 12 focuses on the violence originating in ward 1. Again, fix P1 = 0

and increase P2. Now there is a convex relationship between violence and P2, driven by the

increased motivation due to more targets. The rising number of targets together with the rising

motivation leads to the convexity. Interestingly, the relationship is not convex if one fixes P2 = 0

and increases P1 instead, as there is now a trade-off that kicks in when Protestants become

the majority in ward 1. They are exceedingly "demotivated" by the lack of targets (Catholics)

within-ward.
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Figure 12: Simulation of attacks originating in ward 1

Figure 13: Simulation combining the outflow and inflow of attacks in ward 1
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In Figure 13 we combine the two previous figures. We can now grasp the determinants of a

ward becoming a net contributor to violence. In a nutshell, wards become net contributors to

violence if they are in a very homogenous surrounding with either only Protestants or Catholics.

The reason is that there are a lot more targets for inhabitants of ward 1 in this situation.

D Data on Peacewalls

First, we have collected data on the location of the peace lines. For this we drew on various lists

of peace lines containing geographical information (Jarman, 2005; BBC, 2009; Belfast Interface

Project, 2012), on the geo-referenced map of peace lines from NISRA (2006) and on correspon-

dence with the Department of Justice of Northern Ireland, which provided us with additional

information in response to our freedom of information request DOJ FOI 12/136.

Combining all this sources and using a geo-referenced map of all wards of Northern Ireland, we

have been able to put together a novel dataset on the location of peace lines. Peace lines running

parallel to borders between two wards and lying either directly on the ward border or in-between

the ward border and the nearest street are counted as peace lines separating two wards. Peace

lines located in only one ward and not meeting the above criterion are counted as within-ward

peace lines. We have not encountered problematic cases that could not be associated to neither

of the two categories above (i.e. there have not been peace lines running perpendicular to ward

borders and crossing them etc).
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