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A B S T R A C T   

In a subset of females, postmenopausal status has been linked to accelerated aging and neurological decline. A 
complex interplay between reproductive-related factors, mental disorders, and genetics may influence brain 
function and accelerate the rate of aging in the postmenopausal phase. Using multiple regressions corrected for 
age, in this preregistered study we investigated the associations between menopause-related factors (i.e., 
menopausal status, menopause type, age at menopause, and reproductive span) and proxies of cellular aging 
(leukocyte telomere length, LTL) and brain aging (white and gray matter brain age gap, BAG) in 13,780 females 
from the UK Biobank (age range 39–82). We then determined how these proxies of aging were associated with 
each other, and evaluated the effects of menopause-related factors, history of depression (= lifetime broad 
depression), and APOE ε4 genotype on BAG and LTL, examining both additive and interactive relationships. We 
found that postmenopausal status and older age at natural menopause were linked to longer LTL and lower BAG. 
Surgical menopause and longer natural reproductive span were also associated with longer LTL. BAG and LTL 
were not significantly associated with each other. The greatest variance in each proxy of biological aging was 
most consistently explained by models with the addition of both lifetime broad depression and APOE ε4 geno-
type. Overall, this study demonstrates a complex interplay between menopause-related factors, lifetime broad 
depression, APOE ε4 genotype, and proxies of biological aging. However, results are potentially influenced by a 
disproportionate number of healthier participants among postmenopausal females. Future longitudinal studies 
incorporating heterogeneous samples are an essential step towards advancing female health.   

1. Introduction 

Characterized by the final menstrual period, menopause marks the 
end of females' reproductive years (Ambikairajah et al., 2022). Meno-
pause typically occurs naturally between the ages of 45 and 55 and can 
only be determined with certainty retrospectively after a female has 
gone without a period for at least 12 consecutive months (Ambikairajah 

et al., 2022). Alternatively, menopause can be triggered by medical in-
terventions such as bilateral oophorectomy (i.e., the removal of both 
ovaries; surgical menopause, C-Pillay and Manyonda (2022)). Preceding 
natural menopause, females undergo perimenopause, which lasts over 
several years and is associated with variability in menstrual cycle length 
and in circulating hormone levels (e.g., 17β-estradiol), ultimately 
resulting in reproductive senescence and the final menstrual period 
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(Hall, 2015; Harlow et al., 2012). After the final menstrual period, fe-
males are considered postmenopausal (Ambikairajah et al., 2022). 

The transition to menopause has been linked to broad-system level 
changes in the female body (Barth et al., 2023; Barth and de Lange, 
2020) and is often described as an inflection point in the female aging 
process (Brinton et al., 2015). For instance, females reportedly have 
longer telomeres – a marker of cellular aging – than males, but this sex 
difference seems to emerge after the age of 50, coinciding with meno-
pause (Lapham et al., 2015). Telomeres are the repetitive structures at 
the ends of eukaryotic chromosomes that protect the chromosome from 
degradation and fusion. Telomere attrition naturally occurs with each 
cell division and is thought to drive cellular senescence (Lapham et al., 
2015). A Mendelian randomization study found a causal relationship 
between genetically predicted leukocyte telomere length (LTL) and age 
at natural menopause, suggesting that an earlier age at natural meno-
pause is linked to shorter telomeres (Schuermans et al., 2023). For 
instance, excessive telomere attrition has been linked to an increased 
risk for Alzheimer's disease (Fani et al., 2020); an age-related neurode-
generative disease most prevalent in postmenopausal females (Mauvais- 
Jarvis et al., 2020). 

On a macroscopic level, menopause has also been linked to a sub-
stantial remodeling of the brain, with relevance to the female brain 
aging process. Studies in animals and humans have found decreases in 
gray matter (GM) and white matter (WM) volume, changes in brain 
functional connectivity, and increases in amyloid-beta deposition – a 
hallmark feature of Alzheimer's disease – during the transition to 
menopause (Ding et al., 2013; Lu et al., 2023; Mosconi et al., 2021; 
Mosconi et al., 2017). Some of these brain changes might stabilize or 
revert once females are postmenopausal (Mosconi et al., 2021). 
Although many females remain in relatively good health during and 
after the transition to menopause, in some females, menopause might 
invoke accelerated brain aging (Brinton et al., 2015). The extent to 
which the female brain is protected during and after the transition to 
menopause might depend on factors related to females' reproductive 
years, mental health, and genetics (Barth et al., 2023). For example, 
earlier age at menopause – occurring spontaneously or due to bilateral 
oophorectomy – has been associated with cognitive decline (Georgakis 
et al., 2019; Sochocka et al., 2023), increased risk of dementia and 
depression (Georgakis et al., 2019; Phung et al., 2010; Rocca et al., 
2008), and morphological brain changes in Alzheimer's disease-sensitive 
brain regions such as the medial temporal lobe (Gervais et al., 2022; 
Steventon et al., 2023). Conversely, older age at menopause, indicative 
of a longer reproductive span, has been linked to lower GM and WM 
brain age based on brain age prediction (Schindler et al., 2022; Sub-
ramaniapillai et al., 2022). Whereas brain age is the estimated age of an 
individual's brain based on neuroimaging data, the brain age gap (BAG) 
represents the difference between brain age and chronological age. A 
positive BAG indicates a higher predicted brain age relative to chrono-
logical age, possibly suggesting that the brain has aged more relative to 
the average age-matched population data. Higher BAG has also been 
linked to disorders which might emerge or are exacerbated with the 
transition to menopause such as depression (Freeman et al., 2014; Han 
et al., 2020; Han et al., 2022). Whether the increased vulnerability for 
depression during the transition to menopause is concomitant to accel-
erated brain aging is debated. However, depression is a known risk 
factor for Alzheimer's disease later in life (Green et al., 2003) and has not 
only been linked to higher BAG, but also to shorter LTL, highlighting its 
influence on the aging process (Caraci et al., 2010; Ridout, 2016). 
Another risk factor for Alzheimer's disease is the apolipoprotein ε4 
(APOE ε4) genotype. Carrying the APOE ε4 allele has been associated 
with an increased risk of depression as well as shorter LTL, but results 
are inconclusive (Dhillon et al., 2020; Wang et al., 2019; Wikgren et al., 
2012). Furthermore, in a previous study we showed that higher estradiol 
levels during postmenopause were associated with higher BAG, but only 
in females with the APOE ε4 allele (de Lange et al., 2020). The associ-
ation was reversed in females without the risk alleles. 

In summary, these findings suggest that age at menopause, a history 
of depression, and APOE ε4 genotype can impact the rate of aging and 
risk for age-related cognitive and neurodegenerative disease in females. 
However, these factors have often been studied in isolation and a 
comprehensive study investigating all these factors and their contribu-
tion to both cellular and brain aging is currently missing. Understanding 
how risk and resilience factors together impact cellular and brain aging 
may help differentiate females who undergo typical aging from those at 
risk of accelerated neurological decline. This knowledge is crucial for 
developing early interventions for high-risk individuals and is of societal 
importance, given that females typically spend one-third of their lives 
postmenopausal (Taylor et al., 2019). 

In this preregistered study, we use data from the UK Biobank to 
investigate whether menopause-related factors, such as menopausal 
status, menopause type (natural vs. surgical), reproductive span (age at 
natural/surgical menopause – age at menarche), and age at menopause 
(natural and surgical) are associated with proxies of cellular aging (i.e., 
shorter LTL) and brain aging (i.e., higher WM BAG and GM BAG), and 
how these proxies of biological aging are associated with each other. We 
then evaluate the effects of menopause-related factors, history of 
depression (= lifetime broad depression; Howard et al., 2018), and 
APOE ε4 genotype on BAG and LTL, examining both additive and 
interactive relationships. 

2. Methods 

2.1. Sample characteristics 

The sample was drawn from the UK Biobank cohort (UKB www.ukb 
iobank.ac.uk). Biological females (identified by genetic sex; XX) with 
diffusion and T1-weighted magnetic resonance imaging (MRI) data and/ 
or LTL data were included. LTL measures were collected at baseline (T0, 
n = 203,627, mean age = 56.02 ± 7.96 standard deviation (SD), range 
39–70 years), and MRI data was collected at the imaging assessment 
point (T2, n = 17,222; mean age = 63.00 ± 7.35 SD, range 45–82 years). 
In line with previous work, females with disorders known to invoke 
brain changes were excluded based on the following ICD10 diagnoses: 
stroke (ICD field code I64), mental and behavioral disorders (ICD field F, 
including F00–F03 for AD and dementia, and F06.7 ‘Mild cognitive 
disorder’, excluding all codes listed in section 2.7. ‘Lifetime broad 
depression’), diseases of the nervous system (ICD field G, diseases of the 
nervous system, including inflammatory and neurodegenerative dis-
eases, excluding G55–59) (de Lange et al., 2020; Schindler et al., 2022; 
Voldsbekk et al., 2021). 

2.2. MRI data acquisition and processing 

See Alfaro-Almagro et al. (2018) and Miller et al. (2016) for a 
detailed overview of MRI data acquisition and protocols from the UKB. 
Processing of the T1-weighted images was conducted using a harmo-
nized analysis pipeline, including the FreeSurfer (version 5.3) auto-
mated surface-based morphometry and subcortical segmentation (Fischl 
et al., 2002). We then extracted cortical thickness, area, and volume for 
180 regions of interest per hemisphere using a standard set of subcor-
tical and cortical summary statistics from FreeSurfer (Fischl et al., 
2002), as well as a fine-grained cortical parcellation scheme (Glasser 
et al., 2016), as done in previously published brain age studies from our 
group (de Lange et al., 2019; Kaufmann et al., 2019; Schindler et al., 
2022; Voldsbekk et al., 2021). The data from Freesurfer was residualized 
with respect to scanning site and intracranial volume, and quality con-
trol was conducted by removing 150 individuals with Euler numbers of 
SD ± 4 (Rosen et al., 2018). These features were used as inputs in the 
GM-specific age prediction model. 

Diffusion MRI data was processed using an optimized diffusion 
pipeline (Maximov et al., 2021). For the WM-specific brain age predic-
tion model, diffusion tensor imaging (DTI, Basser et al. (1994)) and 
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diffusion kurtosis imaging (DKI, Jensen et al. (2005)) derived metrics 
were estimated, as well as WM tract integrity (WMTI, Fieremans et al. 
(2011)) and spherical mean technique (SMT, (Kaden et al., 2016a; 
Kaden et al., 2016b)) metrics. WM features were extracted based on 
John Hopkins University (JHU) atlases for WM tracts and labels (with 
0 thresholding, Mori et al. (2005)) for global mean values and regional 
measures of 12 tracts of interest (Beck et al., 2021; Voldsbekk et al., 
2021). The diffusion-weighted data was residualized with respect to the 
scanning site. Passed tract-based spatial statistics (TBSS) quality control 
was conducted using the YTTRIUM algorithm (Maximov et al., 2021). 

2.3. Brain-age prediction 

BAG was used as a proxy measure of brain aging. GM and WM fea-
tures derived from T1-weighted and diffusion-weighted brain scans, 
respectively, were used to predict age with XGBoost regressor models 
(eXtreme Gradient Boosting). XGBoost is a powerful and efficient algo-
rithm that implements gradient-boosted decision trees. Parameters were 
tuned in a nested cross-validation using 5 inner folds for randomized 
search, and 10 outer folds for model validation (see here for general 
model setup). BAG was then calculated as the difference between pre-
dicted and chronological age, highlighting any divergence from 
normative aging trajectories. 

2.4. Leukocyte telomere length (LTL) 

LTL was used as a proxy measure of cellular aging. During the UKB 
baseline assessment, blood samples were collected from participants and 
DNA was extracted from peripheral blood leukocytes. LTL was measured 
using a quantitative PCR method. The ratio of telomere repeat copy 
number (T) related to that of a single copy gene (S; T/S ratio) was 
calculated. The relative LTL, adjusted for the influence of technical pa-
rameters, was log-transformed to better fit the normal distribution of the 
data, and standardized as z-scores in line with UKB recommendations for 
LTL. More details on measurement and validity can be found in Codd 
et al. (2022). 

2.5. Apolipoprotein ε4 (APOE ε4) genotype 

To assess the APOE ε4 genotype, we used the extensively quality 
controlled UKB version 3 imputed data (Bycroft et al., 2018). The APOE 
ε genotype was approximated based on two APOE ε single-nucleotide 
polymorphisms—rs7412 and rs429358 (Lyall et al., 2016). +APOE ε4 
carrier was based on ε3/ε4 and ε4/ε4 combinations, and -APOE ε4 non- 
carrier for ε2/ε2, ε2/ ε3, and ε3/ ε3 combinations. Due to its ambiguity 
with ε1/ε3, the homozygous ε2/ε4 allele combination was removed 
(https://www.snpedia.com/index.php/APOE). 

2.6. Menopause-related factors 

To assess associations between biological proxies of aging and 
menopausal status, females were split into three groups: premenopause, 
natural menopause, and surgical menopause. General menopausal status 
was based on the self-reported question ‘Have you had your menopause 
(periods stopped)?’ (i.e., yes = postmenopausal; no = premenopausal). 
All females who were ≥ 70 years old were categorized as post-
menopausal irrespective of self-reported menopausal status (Ambikair-
ajah et al., 2020). Postmenopausal females were further stratified into 
natural and surgical menopause (i.e., bilateral oophorectomy prior to 
menopause). Females were included in the surgical menopause group if 
they were postmenopausal and their age at bilateral oophorectomy was 
reported as equal to or prior to their reported age at menopause. All 
females with a history of bilateral oophorectomy were considered 
postmenopausal regardless of self-reported menopausal status. Females 
with a history of hysterectomy (partial or total surgical removal of the 
uterus) and/or bilateral oophorectomy were excluded from the natural 

menopause group. Given that “No” to the self-reported “had meno-
pause” question does not differentiate between pre- and perimenopausal 
females, we additionally used a more sensitive approach to analyze 
natural menopausal status by dividing females into a premenopausal, 
perimenopausal, early postmenopausal, and late postmenopausal group. 
Criteria for fine-grained natural menopausal grouping were based on 
self-reported variables including time since last menstrual period, length 
of menstrual cycle, hormonal contraceptive (HC) use, menopausal hor-
mone therapy (MHT) use, and age at menopause. See Table S1, sup-
plementary materials, for details on the applied stratification criteria, 
which were loosely based on the Stages of Reproductive Aging Work-
shop (STRAW) criteria (Harlow et al., 2012). Both approaches to cate-
gorizing menopausal status were used, as only a small sub-sample of 
females have enough data from the UKB to match the criteria for more 
fine-grained natural menopausal grouping. 

To study the association between reproductive span and proxies of 
biological aging, duration of reproductive span was calculated and 
analyzed separately for females who underwent natural menopause and 
surgical menopause. For natural menopause, reproductive span was 
calculated as self-reported age at menopause minus age at menarche. 
For the surgical menopause group, reproductive span was calculated as 
self-reported age at bilateral oophorectomy minus age at menarche. 

Participants who had responded ‘prefer not to answer’, ‘do not 
know’, or a similar response were excluded when the relevant variable 
was included in a particular analysis. An overview of all UKB variables 
used in the current study can be found in Table S2, supplementary 
materials. For LTL and BAG, menopause-related variables collected at 
T0 and T2 were used respectively, where appropriate. 

2.7. Lifetime broad depression 

Participants were divided into two groups (case and control) based 
on a lifetime broad depression phenotype established by Howard et al. 
(2018). Individuals were included in the case group if they self-reported 
‘yes’ to either of the following questions: ‘Seen a general practitioner 
(GP) for nerves, anxiety, tension or depression’ and ‘Seen a psychiatrist 
for nerves, anxiety, tension or depression’. Individuals were also 
included in the case group if they received a primary or secondary 
diagnosis of the following depressive mood disorders from hospital 
inpatient records: ‘Single episode depression’ (ICD field code F32), 
‘Recurrent depression’ (ICD field code F33), ‘Persistent mood disorders’ 
(ICD field code F34), ‘Other mood disorders’ (ICD field code F38), and 
‘Unspecified mood disorders’ (ICD field code F39). All other individuals 
were included in the control group. Additionally, the following exclu-
sions were carried out from both the case and control groups: individuals 
who self-reported and/or were diagnosed according to hospital records 
with bipolar disorder (ICD field code F30, F31, or non-cancer illness 
code 1291), schizophrenia (ICD field code F2*, or non-cancer illness 
code 1289), or a personality disorder (ICD field code F44.8), as well as 
individuals who were prescribed antipsychotic medications. From the 
control group, individuals were additionally excluded if they had a 
prescription for antidepressants, or if they were diagnosed with a mood 
disorder. 

2.8. Statistical analyses 

All statistical tests were conducted in R 4.2.2 and Python 3.8.0. We 
first created a correlation matrix (Pearson's r) to assess correlations 
between the dependent variables, independent variables, and age (see 
Fig. 1). Continuous variables were z-score standardized by subtracting 
the mean and dividing by the standard deviation prior to analysis. The 
categorical variables of menopausal status (premenopause = 0), fine- 
grained natural menopausal status (premenopause = 0), menopause 
type (natural menopause = 0), lifetime broad depression (control = 0), 
and APOE ε4 status (non-carrier = 0) were dummy coded. Outliers were 
visually inspected with diagnostic plots. To account for multiple 
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comparisons, false discovery rate (FDR) correction was applied across all 
dependent variables (DV, i.e., LTL, WM BAG, GM BAG) for all sets of 
analyses per model (1–3), separately. The sets of FDR corrections are 
reflected in the corresponding results tables. Chronological age was 
included as a covariate in all regression analyses to account for age- 
dependence of predictions (de Lange and Cole, 2020). The study was 
pre-registered on OSF; for deviations from the preregistration (see Note 
S1, supplementary materials). 

To test for associations between proxies of biological aging and 
menopause-related factors, we fit separate regression models for each 
DV and each menopause-related factor as independent variables. 
Menopause-related factors include menopausal status (basic: pre- vs. 
natural and surgical menopause & fine-grained natural: pre- vs. peri-, 
early natural post- and late natural postmenopause), menopause type 
(natural vs. surgical), reproductive span (natural/surgical), and age at 
menopause (natural/surgical). The following linear model setup was 

used: 
DV ~ Menopause-related factor + age (1) 
For the next set of analyses, we assessed whether the addition of 

lifetime broad depression and/or APOE ε4 genotype as main effects as 
well as interaction terms with menopause-related factors better describe 
the variation in the DV than model 1. To this end, the following linear 
regression models were fitted: 

DV ~ Menopause-related factor + age + lifetime broad depression 
(2a) 

DV ~ Menopause-related factor + age + APOE ε4 (2b) 
DV ~ Menopause-related factor + age + lifetime broad depression +

APOE ε4 (2c). 
DV ~ Menopause-related factor*lifetime broad depression +

age (2d) 
DV ~ Menopause-related factor*APOE ε4 + age (2e) 
DV ~ Menopause-related factor*lifetime broad depression*APOE ε4 

Fig. 1. Pearson correlation between primary dependent variables, independent variables, and age. Correlations between each pair of variables were computed using 
all complete pairs of observations on those variables. Empty fields indicate no complete pairs for that pair of variables. All measures were taken from the UKB 
imaging timepoint aside from leukocyte telomere length and APOE ε4 genotype, which was collected at the baseline assessment. Abbreviations: LTL = leukocyte 
telomere length; WM BAG = white matter brain age gap; GM BAG = gray matter brain age gap; Menopause type = Natural vs Surgical Menopause; Repro years (nat) 
= reproductive span in females who underwent natural menopause; Repro years (surg) = reproductive span in females who underwent surgical menopause. 
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+ age (2f). 
To compare these models for each DV and menopause-related factor, 

separately, and to establish which model is the best fit, we used the 
aictab() command from the AICcmodav R package. The aictab() com-
mand constructs model selection tables with number of parameters, 
Akaike Information Criterion (AIC), delta AIC, Akaike weights (model 
probabilities) based on AICc, QAIC, and QAICc for a set of candidate 
models. AIC considers simplicity of the model in addition to goodness of 
fit to improve predictions in new data. A lower AIC score suggests a 
better fit of the model. After establishing the best fitting model across all 
DVs and menopause-related factors (i.e., 2c), we also tested which 
menopause-related factor explained the most variance in the DV 
measures. 

Lastly, we were interested in assessing the relation between cellular 
and brain aging alone and in the context of menopause-related factors. 
This was achieved by fitting an additional regression model with WM 
BAG or GM BAG as DV and LTL as an independent variable (either as 
main effect or interaction term together with menopause-related factors 
at the imaging timepoint) while covarying for years between the base-
line timepoint (LTL) and the imaging timepoint (BAG). As model 2c was 
most consistently the best fit across each DV and menopause-related 
factor, lifetime broad depression and APOE ε4 genotype were added as 
covariates. 

DV ~ LTL + age + lifetime broad depression + APOE ε4 + years 
between timepoints (3a). 

DV ~ LTL*menopause-related factor + age + lifetime broad 
depression + APOE ε4 + years between timepoints (3b). 

2.9. Sensitivity analyses 

First, to test whether known confounders affected our results (Beck 

et al., 2022; de Lange et al., 2020; Schindler et al., 2022; Voldsbekk 
et al., 2021), we reran model 1 adjusting for education, the Townsend 
deprivation index, a lifestyle score, body mass index (BMI), HC use, 
MHT use, and number of childbirths (sensitivity analysis 1). See sup-
plementary Note S2 and Table S2 for details on the Townsend depri-
vation index and lifestyle score. For LTL and BAG, variables collected at 
T0 and T2 were used, respectively, where appropriate. 

Second, to adjust for the potential influence of extreme values on our 
results, we assessed each continuous menopause-related variable (i.e., 
age at menarche, age at menopause, age at bilateral oophorectomy) for 
extreme values using a data-driven approach and excluded the corre-
sponding participants before re-running model 1 (sensitivity analysis 2). 
Extreme values were identified by applying the mean absolute deviation 
(MAD) method from the Routliers R package using default settings (i.e., 
a MAD threshold of ±3). 

Next, we re-ran model 1 without the inclusion of age as a covariate to 
ascertain whether results remained consistent, given the difficulty in 
disentangling chronological and endocrine aging. Models with BAG as a 
DV were run with age-adjusted BAG values to account for age- 
dependence of predictions. 

Finally, earlier age at menopause has been associated with unfa-
vorable health outcomes. Given the wide range of ages at menopause in 
this sample, we reran model 1, splitting postmenopausal females into 
three groups according to age at menopause: premature (up to 40), early 
(40–45), and normal (45+). 

3. Results 

3.1. Sample characteristics 

Demographic and menopause-related characteristics for the MRI 

Table 1 
Sample demographics for premenopause, natural menopause, and surgical menopause groups (MRI sample).   

Menopausal Status  p-values   

Pre Post, nat Post, surg Pre vs 
Post, nat 

Pre vs 
Post, surg 

Post, nat vs 
Post, surg N 920 12,554 306 

Age (years)* 51.3 ± 2.8 63.6 ± 6.7 66.3 ± 6.6 <0.001 <0.001 <0.001 
Education, N (%)    <0.001 <0.001 <0.001 
College/University degree 525 (57.1) 6,278 (50.0) 114 (37.3)    
O levels/GCSEs or equivalent 149 (16.2) 2,346 (18.7) 79 (25.8)    
A levels/AS levels or equivalent 148 (16.1) 1,593 (12.7) 39 (12.7)    
CSEs or equivalent 42 (4.6) 464 (3.7) 11 (3.6)    
NVQ/HND/HNC or equivalent 20 (2.2) 439 (3.5) 7 (2.3)    
Other professional qualifications 27 (2.9) 733 (5.8) 26 (8.5)    
None of the above 5 (0.5) 665 (5.3) 26 (8.5)    
Prefer not to answer 4 (0.4) 36 (0.3) 4 (1.3)    
Ethnic Background, N (%)    <0.001 0.449 0.658 
White 860 (93.5) 12,212 (97.3) 294 (96.1)    
Asian 16 (1.7) 85 (0.7) 3 (1.0)    
Black 10 (1.1) 64 (0.5) 2 (0.7)    
Chinese 10 (1.1) 45 (0.4) 3 (1.0)    
Other ethnic group 6 (0.7) 66 (0.5) 2 (0.7)    
Mixed 17 (1.8) 57 (0.5) 1 (0.3)    
Prefer not to answer 1 (0.1) 15 (0.1) 1 (0.3)    
Do not know 0 (0.0) 5 (0.0) 0 (0.0)    
Townsend Deprivation Index* − 1.5 ± 2.9 − 1.9 ± 2.7 − 2.2 ± 2.6 <0.001 <0.001 0.070 
Lifestyle Score* 1.7 ± 1.3 1.6 ± 1.2 1.7 ± 1.1 0.006 0.787 0.193 
BMI (m2/kg)* 25.9 ± 4.8 25.7 ± 4.5 26.9 ± 4.8 0.098 0.003 <0.001 
Number of Live Births* 1.5 ± 1.2 1.7 ± 1.2 1.7 ± 1.2 <0.001 0.013 0.482 
Lifetime broad depression, yes, N (%) 361 (40.0) 4183 (34.4) 105 (35.6) 0.001 0.203 0.716 
APOE ε4, carrier, N (%) 229 (25.5) 3260 (26.6) 74 (24.7) 0.489 0.848 0.504 
LTL (z-standardized)* 0.2 ± 1.0 − 0.02 ± 1.0 0.08 ± 0.9 <0.001 0.033 0.102 
Age at menopause*◦ 50.8 ± 4.3 46.9 ± 6.6   <0.001 
Reproductive Span*◦ 37.8 ± 4.5 34.2 ± 6.8   <0.001 
Menopause hormone therapy, N (%) 71 (7.7) 4016 (32.1) 230 (75.4) <0.001 <0.001 <0.001  

* Continuous data in mean ± standard deviation and categorical data as number %; ◦ based on age at bilateral oophorectomy for postmenopause, surgical. Ab-
breviations: N = sample size; nat = natural, surg = surgical, GCSE = general certificate of secondary education; NVQ = national vocational qualification; BMI = body 
mass index, APOE = apolipoprotein, LTL = leukocyte telomere length. Significant results are highlighted in bold. The results are based on Chi2 test for categorical data 
and t-test for continuous data. 
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sample, stratified by menopausal status, are summarized in Table 1. 
Sample characteristics for the LTL dataset, also stratified by menopausal 
status, can be found in the supplementary materials, Table S3. Density 
plots of age distribution by menopause group are highlighted in Fig. S1, 
density plots of age at menopause distribution by menopause type are 
shown in Fig. S2, and a detailed description of demographic differences 
between menopause groups is noted in Note S3. The sample sizes for the 
fine-grained natural menopause grouping for the LTL and MRI sample 
were, respectively, 33,346 and 440 premenopausal females, 8,012 and 
259 perimenopausal females, 37,219 and 2,757 early postmenopausal 
females, and 60,222 and 8,050 late postmenopausal females (see section 
2.6 for details on fine-grained natural menopausal grouping). 

3.2. Brain age prediction 

The age prediction accuracy for each brain age prediction model is 
detailed in Table 2. 

The first model is based on white matter (WM) features, and the 
second model is based on gray matter (GM) features. Model accuracy is 
evaluated according to the values for R2, RMSE, MAE, and r between 
predicted and chronological age. Abbreviations: RMSE = root mean 
square error, MAE = mean absolute error, r = Pearson's correlation, CI 
= confidence interval. 

3.3. Menopause-related factors and proxies of biological aging (model 1) 

Contrary to our hypotheses, although LTL was negatively associated 
with age, we found longer LTL in the natural and surgical menopausal 
groups compared to the premenopausal group (natural: β = 0.034, pFDR 
= 1.34e-04; surgical: β = 0.110, pFDR = 1.59e-08). Similarly, both WM 
BAG and GM BAG were lower in the natural and surgical menopausal 
groups compared to the premenopausal group (WM BAG, natural: β =
− 1.175, pFDR = 4.40e-18; surgical: β = − 1.152, pFDR = 4.81e-06; GM 
BAG, natural: β = − 1.564, pFDR = 1.87e-30; surgical: β = − 1.665, pFDR =

2.12e-11). 
When stratifying the females into four menopausal groups, we saw 

that the LTL results for menopausal status were driven by differences 
between premenopausal and early postmenopausal females (β = 0.028, 
pFDR = 0.01). For the brain age measures, the menopausal status results 
were driven by the differences between premenopausal and early post-
menopausal females as well as between premenopausal and late post-
menopausal females. Specifically, BAG was significantly lower in both 
postmenopausal groups compared to the premenopausal females (WM 
BAG, early post: β = − 1.211, pFDR = 1.31e-10; late post: β = − 1.403, 
pFDR = 5.39e-12; GM BAG, early post: β = − 1.660, pFDR = 1.04e-18; late 
post: β = − 1.891, pFDR = 1.50e-20). 

LTL was significantly longer in the surgical menopause group 
compared to the natural menopause group (β = 0.076, pFDR = 2.47e-05). 
There were no statistically significant differences between these groups 
for WM BAG or GM BAG. 

With natural and surgical menopause, a longer reproductive span 
was associated with longer LTL (natural: β = 0.024, pFDR = 4.00e-13; 
surgical: β = 0.045, pFDR = 0.032). However, natural and surgical 
reproductive span were not associated with WM BAG or GM BAG. Older 
age at natural menopause, but not age at surgical menopause, was 
associated with longer LTL (β = 0.030, pFDR = 1.50e-20), and lower WM 
BAG (β = − 0.097, pFDR = 0.007) and GM BAG (β = − 0.085, pFDR =

0.017). 
Associations between menopause-related factors and proxies of 

aging are summarized in Fig. 2 and Table S4, supplementary materials. 

3.4. Menopause-related factors and proxies of biological aging - model 
selection (model 2a-f) 

Model 2c, which included lifetime broad depression and APOE ε4 
genotype as covariates, was most consistently the best fit across all DV 
and menopause-related factors (see Table S5, supplementary materials). 
The addition of both covariates did not change the main results, but we 
did find shorter LTL and higher WM BAG with lifetime broad depression 
in the models with the following menopause-related factors: menopause 
group (basic/fine-grained), menopause type (natural/surgical), repro-
ductive span (natural), and age at natural menopause (see Table S6). We 
found no significant main effect of lifetime broad depression on GM BAG 
in any model. Furthermore, APOE ε4 genotype was associated with 
higher WM BAG in the models including menopause group (basic/fine- 
grained), reproductive span (natural), and age at menopause (natural). 
APOE ε4 genotype showed no significant main effect on GM BAG and 
LTL in any model (see Table S6). 

After establishing the best fitting model across all DV and 
menopause-related factors (i.e., 2c), we further tested which 
menopause-related factor explained the most variance in the DV mea-
sures, when accounting for lifetime broad depression, APOE ε4 geno-
type, and age. Reproductive span (surgical) explained the most 
variances in WM BAG and GM BAG, and age at surgical menopause 
explained most variances for LTL (see Table S7). 

3.5. Associations between proxies of cellular and brain aging (model 3a- 
b) 

We found no statistically significant association between LTL as main 
effect or as interaction-term together with menopause-related factors 
and WM or GM BAG (see Table S8, supplementary materials). 

3.6. Sensitivity analyses 

Most results of model 1 were robust after either (1) adjusting for 
additional covariates (Table S9, supplementary materials), (2) removing 
extreme values (Table S10, supplementary materials), (3) not adjusting 
for age (Table S11, supplementary materials), or (4) splitting post-
menopausal females into groups according to age at menopause 
(Table S13, supplementary materials). Detected extreme values are 
highlighted in Supplementary Table S12. Differences between model 1 
and the sensitivity models are summarized in Note S4. 

4. Discussion 

This study explored the association between menopause-related 
factors, APOE ε4 genotype, and lifetime broad depression with BAG 
and LTL, proxies of brain aging and cellular aging respectively. In 
summary, our findings showed that postmenopausal status and older age 
at natural menopause were linked to longer LTL and lower BAG. Surgical 
menopause and longer natural reproductive span were associated with 
longer LTL. When comparing models, the greatest variance was most 
consistently explained by models with the addition of both lifetime 
broad depression and APOE ε4 genotype. BAG and LTL were not 
significantly associated with each other. Results were largely robust 
after covarying for potential confounders such as MHT, as well as when 
adding lifetime broad depression and the APOEε4 genotype. Taken 

Table 2 
Age prediction accuracy for XGBoost regression models.  

Model R2 RMSE MAE r [95 % CI] p 

WM  0.53 ± 0.015  5.01 ± 0.110  4.00 ± 0.075  0.74 [0.73, 0.74]  <0.0001 
GM  0.60 ± 0.014  4.70 ± 0.083  3.70 ± 0.078  0.77 [0.77, 0.78]  <0.0001  
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together, these results suggest that cellular and brain aging in females 
are influenced by an interplay of protective and risk factors. 

In the present study, postmenopausal females showed longer LTL and 
lower WM and GM BAG across both basic and fine-grained models of 
menopausal status (model 1). Early postmenopausal females were 
driving the significant association for LTL between the premenopausal 
and natural postmenopausal females, and both early and late post-
menopausal females were driving the association for WM and GM BAG. 
There were no significant differences between the premenopausal and 
perimenopausal groups (model 1). Lapham et al. (2015) showed an 
overall negative association between age and LTL similar to the current 
study, but only up to 75 years, after which age and LTL were positively 
associated, indicative of a survival bias. A similar bias could be at play in 
the current study, with postmenopausal females showing an association 
of longer LTL with more years of survival. 

The effects of menopausal status on brain health are debated. 
Menopause has been associated with decreases in GM and WM brain 
structures as well as changes in brain connectivity, metabolic function, 
and amyloid beta deposition (Mosconi et al., 2021; Mosconi et al., 
2017). However, three separate papers studying the impact of meno-
pausal status on total brain volume have reported contradictory results, 
despite all three analyzing data from the UKB. One study reported larger 
total brain volume in postmenopausal compared to premenopausal fe-
males (Ambikairajah et al., 2020), another reported smaller total brain 
volume (Than et al., 2021), and one reported no significant impact of 
menopausal status on total brain volume (Costantino et al., 2023). These 
apparently opposing results highlight the influence of methodological 
considerations when studying menopausal status. For example, in these 

studies, the authors either chose to match for age, covary for age, and/or 
assess the interaction between menopause and age. In the current study, 
we opted to co-vary for age in all primary models, then ran supple-
mentary analyses without covarying for age. We did not age-match, 
given that there was little overlap in age between the premenopausal 
and postmenopausal groups, as seen in Fig. S1. Disentangling the in-
fluence of endocrine and chronological aging in females is a major 
challenge in menopause research. 

Using variables accessible from the UKB, females were stratified into 
more fine-grained natural menopause groups. However, given the 
limited data available for these groupings, it is possible that there 
remained an overlap between the pre- and perimenopausal groups, as 
females may have been misclassified. This may explain why no differ-
ences were seen between the pre- and perimenopausal groups. Further, 
the significant results comparing premenopausal and postmenopausal 
females may have been capturing the difference between perimenopausal 
and postmenopausal females. Perimenopause has been described as a 
neuroendocrine transition state (Brinton et al., 2015). Estradiol acts as a 
master regulator of the metabolic system in the female brain via its 
network of estrogen receptors. The decline in estradiol during peri-
menopause disrupts the bioenergetic system of the brain, which can lead 
to menopausal symptoms such as neurocognitive disturbances. After the 
transition to menopause, most females revert to their baseline health, 
while in a subset of females this uncoupling is thought to increase the 
risk of accelerated aging and neurodegenerative diseases (Brinton et al., 
2015). Our results may be capturing the disturbance during perimeno-
pause that later stabilizes in most postmenopausal females, which could 
explain why the postmenopausal groups are presenting with less 

Fig. 2|. Associations between proxies of biological aging and menopause-related factors. Point plot of estimated marginal means for models with categorical in-
dependent variables (top row) and beta-values with standard error for models with continuous variables (bottom row). Estimates or beta values were derived from 
separate multiple regression analysis with LTL, WM, or GM as dependent variables (DV) and menopause-related variables as independent variables. All models are 
adjusted for age (model 1). All continuous variables were standardized prior to performing the multiple linear regression analysis (subtracting the mean and dividing 
by the standard deviation). 
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apparent aging than the premenopausal group. This can be observed in 
Fig. 2, where a steady decline in estimated marginal means for BAG 
values is seen across all 4 fine-grained natural menopause groups. 

The current results may also be partly explained by a healthy volun-
teer bias in the UKB sample (Fry et al., 2017). We accounted for biases to 
the best of our ability with inclusion/exclusion criteria (e.g., ICD10 di-
agnoses), running analyses both with and without adjusting for age, 
running sensitivity analyses excluding extreme values and adjusting for 
known confounders, and further running subgroup analyses (e.g., fine- 
grained menopause grouping and age at menopause grouping). How-
ever, UKB participants are considered healthier than the general popu-
lation based on several lifestyle and health-related factors (Fry et al., 
2017). Individuals who participate in research studies tend to increas-
ingly diverge from the general population with increased age, with older 
adults proving to be much healthier than their counterparts from the 
population at large (Golomb et al., 2012). This selection bias is unfor-
tunately a common problem in geriatric research, with issues typically 
stemming from survivor bias and bias due to loss at follow-up (Banack 
et al., 2019). In the current study, the postmenopausal groups are 
significantly older than the premenopausal group and the natural 
postmenopausal group appears to be healthier based on lifestyle scores 
and lifetime broad depression levels. Overall, the disproportionate 
number of healthier older adults in this cross-sectional sample is likely 
distorting results between menopausal groups. Moving forward, 
research utilizing longitudinal designs and more inclusive samples is 
needed to eliminate some of these biases. Furthermore, future studies 
should integrate strategies to avoid healthy volunteer biases as early as 
during study design, particularly when including older individuals. For 
example, minimizing barriers to participation by providing alternatives 
such as home visits whenever possible could help reduce some of these 
biases (Banack et al., 2019). 

LTL was significantly longer in the surgical menopause group 
compared to natural menopause, although no effect of menopause type 
was observed for WM or GM BAG (model 1). These results are not in line 
with previous research, which indicates that while shorter LTL is asso-
ciated with premature menopause, the relationship is attenuated in fe-
males with surgical menopause (Schuermans et al., 2023). It is again 
possible that a healthy volunteer bias is seen here, given that surgical 
menopause is often associated with unfavorable health outcomes 
(Parker et al., 2009), yet there are no apparent differences between 
surgical and natural menopause groups based on lifestyle scores. The 
surgical menopause group was also significantly older than the natural 
menopause group, which again might be yielding an amplified diver-
gence between the females who underwent surgical menopause in this 
cohort and those who transitioned naturally. Further, we do not have 
data on reasoning for undergoing a bilateral oophorectomy in this study. 

Both reproductive span and age at menopause are considered proxies 
of lifetime endogenous estrogen exposure. Thus, we expected to see 
similar results between age at menopause and reproductive span. Longer 
reproductive span was associated with longer LTL, but not WM or GM 
BAG, regardless of menopause type (model 1). However, the association 
between LTL and surgical reproductive span lost significance in the 
sensitivity analyses after adding covariates and removing extreme 
values. Older age at natural menopause was linked to longer LTL as well 
as lower WM and GM BAG, but no associations were found with age at 
surgical menopause. After accounting for known confounds, age at 
natural menopause was also no longer significantly linked to GM BAG. 
Overall, natural reproductive span was positively associated with LTL, 
and higher natural age at menopause was linked to longer LTL and lower 
WM BAG. Neither age at surgical menopause nor surgical reproductive 
span were associated with LTL or BAG after sensitivity analyses. These 
findings are consistent with research which describes a positive associ-
ation between LTL and age at natural menopause, but not surgical 
menopause (Gray et al., 2014; Schuermans et al., 2023). The discrep-
ancy in results between age at menopause and reproductive span for 
BAG might be the result of inaccurate recollection of age at menarche. 

Alternatively, reproductive span may be a more precise representation 
of estradiol accumulation than age at menopause, given that age at 
menarche is also considered. Our results align with prior studies which 
have shown an association between older age at natural menopause, 
longer reproductive span, and lower WM BAG (Schindler et al., 2022; 
Subramaniapillai et al., 2022). However, Schindler et al. (2022) also saw 
a significant relation between reproductive span and GM BAG. Both 
sensitivity analysis methods and sample inclusion differed in the current 
study from the study by Schindler and colleagues, which might account 
for this difference in results. 

It has been debated whether cumulative estradiol exposure plays a 
protective role in accelerated aging and neurodegeneration (Suzuki 
et al., 2006; Wise et al., 2009). Inconsistencies in the literature might 
have arisen given that estradiol does not function in isolation. When 
comparing the fit of models with the addition/interaction of lifetime 
broad depression and APOE ε4 genotype, adding both variables was the 
best fit across all DVs and menopause-related factors (model 2). Our 
results are aligned with our previous work showing APOE ε4 genotype as 
a potential modulator for estradiol's impact on brain aging, wherein 
higher estradiol levels among postmenopausal females were associated 
with higher BAG in APOE ε4 carriers, while the reverse was true for non- 
carriers (de Lange et al., 2020). Inconsistent results have been reported 
on the link between APOE ε4 genotype and LTL in nondemented in-
dividuals, with one study reporting longer LTL in APOE ε4 carriers 
(Wikgren et al., 2012), and another reporting shorter LTL in APOE ε4 
carriers (Dhillon et al., 2020). The inconsistencies in these cross- 
sectional studies might be explained by additional factors. For 
example, Jacobs et al. (2013) conducted a longitudinal study to assess 
the link between APOE ε4 genotype, LTL, and MHT in postmenopausal 
females. They found that the APOE ε4 genotype was linked to acceler-
ated LTL shortening. However, an interaction with MHT was reported 
such that APOE ε4 carriers who remained on MHT did not exhibit this 
accelerated LTL shortening. In contrast, the group of non-APOE ε4 car-
riers showed LTL lengthening when they went off MHT, demonstrating 
the dynamic interplay of female-specific factors and genetic risk for AD 
in females. The APOE ε4 genotype is associated with sex differences in 
AD, as female APOE ε4 carriers have an increased risk of developing AD 
compared to their male counterparts (Holland et al., 2013; Ungar et al., 
2014). It is therefore likely that additional factors such as menopausal 
status in females were influencing the contradictory results between 
studies on LTL and APOE ε4 genotype. 

The APOE ε4 genotype has also been associated with increased risk of 
depression, as well as increased severity of depressive symptoms (Wang 
et al., 2019). While depression in isolation has also been associated with 
higher BAG (Han et al., 2020; Han et al., 2022) and LTL (Ridout, 2016), 
to our knowledge this is the first study to consider lifetime broad 
depression and BAG in the context of female-specific factors. Future 
studies are warranted to incorporate female-specific experiences of 
depression such as premenstrual dysphoric disorder, postpartum 
depression, and perimenopausal depression. Overall, our results suggest 
that various factors might function in tandem to impact the rate of 
cellular and brain aging in middle-aged to older females. 

When analyzing the link between cellular and brain aging alone and 
in the context of menopause-related factors, LTL was not significantly 
associated with either WM or GM BAG (model 3). However, baseline and 
follow-up assessments were approximately 8 years apart, which could be 
confounding these results. Two studies linking LTL and brain structures 
in the UKB and the Dallas Heart Study found significant associations 
between LTL with total and regional brain volumes (King et al., 2014; 
Topiwala et al., 2023). Another study reported a significant link between 
LTL and BAG in individuals with mild cognitive impairment (MCI), 
although these results cannot be generalized to healthy aging (Yu et al., 
2022). From all three studies, only one included sex as a variable of 
interest (King et al., 2014), while the others included sex as a covariate, 
omitting to state whether sex differences were apparent. Notably, King 
et al. (2014) found that when accounting for sex, the significant 
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associations observed between LTL and several brain regions were not 
significant in females. These results highlight the necessity to include sex 
and sex-specific variables in aging research. 

The UKB is an excellent large-scale and publicly available dataset. 
However, several limitations apply. The ethnic background of the 
sample is homogeneous, and as highlighted above, a healthy volunteer 
bias might influence the results of this study. Further, while the UKB 
provides access to several female-specific variables, the way these var-
iables are recorded might not be reliable or adhere to best practices. For 
example, menopause is recorded based on whether menstrual periods 
have stopped (yes/no). However, menopause is characterized by the 
absence of a menstrual period for 12 consecutive months, and peri-
menopause is not considered in this self-report questionnaire. The 
STRAW criteria, which is regarded as the gold standard for menopausal 
staging, recommends the usage of a full battery questionnaire in addi-
tion to hormonal assessments (Harlow et al., 2012). The UKB also lacks 
detailed information on menopausal symptoms, which can further 
modulate the risk for accelerated aging at menopause (Brinton et al., 
2015). Initiatives are now being established to address limitations in 
research on female-specific factors by pooling existing datasets (such as 
the Enhancing Neuroimaging Genetics through Meta-Analyses 
(ENIGMA)-Neuroendocrinology Working Group; Heller et al., 2024) 
and harmonizing new data collection (such as the Ann S. Bowers 
Women's Brain Health Initiative). These initiatives can help increase 
power, reproducibility, and generalizability of female brain health 
studies. 

In conclusion, this cross-sectional study demonstrates the complex 
interplay between menopause-related factors, lifetime broad depression, 
APOE ε4 genotype, and proxies of cellular aging and brain aging, with 
results potentially being influenced by a disproportionate number of 
healthier participants among postmenopausal females. In the future, 
longitudinal studies incorporating heterogeneous samples are war-
ranted. Further, standardized practices for the collection of female- 
specific variables in large-scale datasets are an essential step towards 
advancing female health. 
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