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A B S T R A C T   

In mountainous terrain, reliable snow simulations are crucial for many applications. However, except in highly 
instrumented research catchments, meteorological data are usually limited, and so the interpolated spatial fields 
used to force snow models are uncertain. Moreover, certain potentially important processes cannot presently be 
simulated at catchment scales using entirely physical algorithms. It is therefore often appropriate to introduce 
empirical parameters into otherwise physically-based snow models. Many opportunities to incorporate snow 
observations into the parameter estimation process now exist, but they remain to be fully exploited. In this 
context, a novel approach to the calibration of an energy balance-based snow model that additionally accounts 
for gravitational redistribution is presented. Several important parameters were estimated using an efficient, 
gradient-based method with respect to two complementary observation types – Landsat 8-derived snow extent 
maps, and reconstructed snow water equivalent (SWE) time-series. When assessed on a per-pixel basis, observed 
patterns were ultimately reproduced with a mean accuracy of 85%. Spatial performance metrics compared 
favourably with those previously reported, whilst the temporal evolution of SWE at the stations was also 
satisfactorily captured. Subsequent uncertainty and data worth analyses revealed that: i) the propensity for 
model predictions to be erroneous was substantially reduced by calibration, ii) pre-calibration uncertainty was 
largely associated with two parameters which modify the longwave component of the energy balance, but this 
uncertainty was greatly diminished by calibration, and iii) a lower elevation SWE series was particularly valu
able, despite containing comparatively few observations. Overall, our work demonstrates that contemporary 
snow models, observation technologies, and inverse approaches can be combined to both constrain and quantify 
the uncertainty associated with simulations of alpine snow dynamics.   

1. Introduction 

1.1. The significance of mountainous water resources 

Meltwater derived from seasonal snowpacks currently dominates 
annual groundwater recharge and cumulative streamflow of many mid- 
elevation temperate mountainous catchments. At higher elevations, the 
progressive ablation of firn and glacier ice throughout summer periods 
represent major additional inputs of liquid water to the terrestrial hy
drosphere. Globally, these snow and ice-derived meltwaters directly 
sustain millions of people (Pritchard, 2019) and constitute an ecosystem 
service of enormous value (Sturm et al., 2017). However, hydrological 
regimes which have historically been heavily influenced by snow and ice 

are likely to be greatly affected by ongoing warming (Barnett et al., 
2005; Viviroli et al., 2011), with summer low flow magnitudes partic
ularly vulnerable (Jenicek et al., 2016; Dierauer et al., 2018). 

Indeed, a wealth of evidence attesting the widespread decline of 
glaciers and other hydrologically-relevant components of the mountain 
cryosphere now exists (Klein et al., 2016; Huss et al., 2017; Beniston 
et al., 2018; Bolch et al., 2012; Bormann et al., 2018; Vuille et al., 2018), 
and the resultant impacts on stream discharges are increasingly 
detectable (Casassa et al., 2009; Micheletti & Lane, 2016; Lane & Nie
now, 2019). Predictions of the future quantity and timing of mountain 
runoff accordingly remain in high demand, and the substantial body of 
literature in which hydrological models are applied to generate such 
predictions continues to grow (e.g. Fatichi et al., 2015; Huss & Hock, 
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2018). 
Rain-on-snow events, convective thunderstorms, and more sustained 

episodes of frontal rainfall also have high (and potentially increasing) 
importance Alpine terrain, including with respect to floods, debris flows, 
and landslide hazard (Papathoma-Köhle et al., 2011; Rössler et al., 2014; 
Leonarduzzi et al., 2017). As such, spatio-temporal patterns of liquid 
precipitation must also be given due consideration. The same applies to 
evapotransporative losses (Herrnegger et al., 2012; Mutzner et al., 2015; 
Cochand et al., 2019). 

1.2. Progress in incorporating spatial snow information 

Although many widely used box-type hydrological models can often 
consistently reproduce (even independent) discharge observations 
following calibration against measurements of this variable alone, 
observed internal spatial dynamics – including those pertaining to the 
snowpack – may remain poorly captured (Duethmann et al., 2014; 
Shrestha et al., 2014). This can be attributed to the considerable 
“freedom” that traditional calibration approaches afford, as well as the 
fact that discharge measurements provide only indirect, integrated in
formation on internal system functioning. 

Assessing simulated patterns of model state variables against 
spatially distributed observations provides a more stringent test of 
model capabilities, and so represents a means by which the internal 
consistency of hydrological models can be enhanced. Indeed, ensuring 
that the spatio-temporal dynamics of all potentially relevant hydrolog
ical processes can be acceptably reproduced (i.e. that the “right answers” 
in terms of discharge are obtained for the “right reasons”; Kirchner, 
2006) is likely to lead to more reliable future predictions. 

Much progress has already been made in incorporating snow infor
mation into hydrological models. For example, Finger et al. (2011) used 
snow cover images alongside glacier mass balance and discharge mea
surements in a snow-and ice dominated catchment in Switzerland to 
identify the best performing distributed model parameters from a large, 
randomly generated set. Duethmann et al. (2014) also employed a 
Monte Carlo approach, here in an attempt to quantify the relationship 
between the information content and the number of snow cover images 
included in the calibration of a model covering several mountainous 
catchments in central Asia. In comparing two alternative strategies for 
simulating hydrological processes the high-elevation Andes, Ragettli 
et al. (2014) likewise considered snowcover data, although purely for 
evaluative purposes. More recently, Costa et al. (2018) calibrated a 
simple snow model using distributed snow observations to investigate 
the mechanisms responsible for increases in suspended sediment con
centrations that were observed in the upper Rhône in the 1980s. 

Developments in snow remote sensing and modelling have also been 
made recently in the western United States thorough the Airbourne 
Snow Observatory (ASO) and NASA’s SnowEx campaign (Behrangi 
et al., 2018; McGrath et al., 2019; Hedrick et al., 2018). However, these 
efforts are geographically and temporally limited, and generally rely on 
observation technologies that are unavailable in other global mountain 
regions. Finally, some studies have employed distributed snow images 
not as calibration or evaluation criteria, but as model inputs (Berezowski 
et al., 2015; Wulf et al., 2016). 

1.3. Outstanding snow modelling challenges 

Despite these advancements, given the considerable spatio-temporal 
variability and complexity that many of the factors and processes 
influencing snow dynamics in rugged terrain exhibit (Clark et al., 2011), 
many of the simulation approaches that currently prevail in the hydro
logical literature may be somewhat limited in their ability to represent 
snow dynamics reliably – especially in moderately large, topographi
cally complex, and data limited headwater regions. 

For instance, despite the now widespread availability of relevant 
spatial data, spatially lumped (e.g. Wagner et al., 2017) or only partially 

distributed (Duethmann et al., 2014; Staudinger et al., 2017) hydro
logical models remain common. Although such lumped models have 
their uses, they cannot represent heterogeneity below the aggregation 
unit, and so provide little information on spatial snow patterns. This is 
unfortunate because spatial patterns of snowcover are imperative for 
winter tourism (Grünewald et al., 2010) and predicting vegetation 
species distributions (Randin et al., 2015), amongst other applications. 
More specifically, integrating distributed observations with lumped 
models is somewhat complicated; one must resort to comparing 
spatially-averaged snow covered areas (SCAs) (Ragettli et al., 2014), or 
else somehow re-impose spatial variability in the simulations (Parajka & 
Blöschl, 2008). 

Irrespective of their spatial discretisation, most hydrological 
modelling studies that have incorporated distributed snow observations 
have relied on products from the Moderate Resolution Imaging Spec
troradiometer (MODIS) (Clark et al., 2006; Duethmann et al., 2014; 
Ragettli et al., 2014; Engel et al., 2017; Costa et al., 2018). However, the 
500 m pixel resolution at which binary (snow or no-snow) and/or snow 
covered fraction (fSCA) data are provided (Rittger et al., 2013) is simply 
too coarse for certain applications. For instance, both Ragettli et al. 
(2014) and Hanzer et al. (2016) report difficulties capturing the complex 
snow patterns that are commonly observed in rugged terrain, such as 
small patches and snow-free ridges, using MODIS imagery. Such rela
tively fine-scale processes can substantially influence the internal hy
drological functioning of steep mountain catchments. Much higher 
resolution (30 m) and long-term global snow maps can be derived from 
Landsat imagery, but have been mostly applied for model corrobora
tion/evaluation rather than calibration (but see Schattan et al. 2020). 
Additionally, with the notable exceptions of Hanzer et al. (2016) and 
Wayand et al. (2018), previous studies involved only a handful of images 
(Bernhardt et al., 2012; Warscher et al., 2013; Schöber et al., 2010). 

Empirical temperature and other index-based methods for estimating 
snow (and ice) melt rates (Hock, 2003) also remain standard (Ragettli & 
Pellicciotti, 2012; Addor et al., 2014; Etter et al., 2017), despite their 
abilty to satisfactorily reproduce snow dynamics in complex alpine 
terrain being questionable (Warscher et al., 2013). Provided additional 
meteorological data are available, more sophisticated, distributed en
ergy balance approaches (both full physics, multiple snow-layer con
figurations as well as simplified alternatives) have been recommended 
(Magnusson et al., 2015; Meeks et al., 2017). One attraction of such 
models in steep, complex terrain is that they explicitly represent most of 
the fluxes influencing melt, including the (often pronounced) spatio- 
temporal variability thereof (e.g. the effects of slope aspect and topo
graphic shading effects on incoming radiation). Another advantage is 
that they can simulate melt during critical events (e.g. rain-on-snow 
events), which are mainly driven by turbulent fluxes, better than their 
simpler counterparts (Würzer et al., 2017). Finally, energy balance 
models are more likely to perform reliably under forcing conditions that 
exceed the range of historical observations, as is typical in climate 
change impact assessments (Mas et al., 2018). 

The most sophisticated energy balance models (e.g. Alpine3D; 
Lehning et al. 2006) include full-physics, multi-layered snowpack rep
resentations and therefore theoretically provide the most comprehen
sive representation of the complex mass and energy exchange processes 
that affect mountain snowpacks. However, for the purposes of hydro
logical predictions, they are coupled with highly simplified conceptual 
or “bucket-type” representations of subsurface processes and flow 
routing (Gallice et al., 2016). In geologically complex settings, which 
many Alpine regions inherently are, such simplifications may be un
suitable. Moreover, the simulation of wind and gravitational snow 
redistribution processes at catchment or larger scales using physical 
algorithms remains computationally prohibitive (Mott & Lehning, 2010; 
Musselman et al., 2015; Brauchli et al., 2017). Yet in very steep terrain 
in particular, accounting for gravitational snow redistribution is para
mount to produce hydrologically realistic simulations of the evolution of 
snow water equivalent (SWE), and thus patterns of meltwater 
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generation (Bernhardt et al., 2012; Kerr et al., 2013; Sommer et al., 
2015); in extremis, failure to do so can lead to “snow towers”, which are 
undesirable model artifacts (Freudiger et al. 2017). Gravitational 
redistribution is also often critical to glacier accumulation (Mott et al., 
2019). Various pragmatic empirical correction methods and algorithms 
have been developed enable such processes to still be represented (e.g. 
Bernhardt et al., 2012; Vögeli et al., 2016; Marshall et al., 2019). 

A persistent fundamental challenge associated with modelling 
mountain hydrological systems is that the meteorological inputs are 
often very poorly constrained. Due to wind-induced gauge undercatch, 
precipitation measurements at stations are typically underestimated 
(Pan et al., 2016; Kochendorfer et al., 2017). This bias is most pro
nounced when the precipitation phase is solid, and at higher wind 
speeds. In addition, even in comparatively well-instrumented regions 
like the European Alps, meteorological station density decreases sub
stantially with elevation (Pepin et al., 2015). Coupled with the high 
spatial variability that characterises mountain meteorology (Mott et al., 
2014), this means that even if the original ground measurements could 
be made perfectly, subsequent interpolated spatial fields would still be 
highly uncertainty. As such, irrespective of its complexity, snow model 
performance will always be intimately related to forcing data quality. 

1.4. Inverse approaches and uncertainty quantification 

Assessing the error characteristics of common instruments (see e.g. 
the WMO-SPICE project; Kochendorfer et al., 2017) and systematically 
testing various spatial interpolation methods (Tobin et al., 2011) have 
both been pursued to address the aforementioned deficiencies in forcing 
datasets. “Inverse” methods, whereby distributed models and snow ob
servations are combined to estimate the values of important but un
certain “correction” parameters, are also beginning to be applied to this 
end. 

For instance, in a snow model analysis involving both MODIS and 
Landsat-derived snow observations for evaluation, Engel et al. (2017) 
found modifying a “snow correction factor” to be necessary to 
compensate for biased winter precipitation measurement. Shrestha et al. 
(2014) actually calibrated a distributed, multi-layer water and energy 
balance model (WEB-DHM-S) in order to minimise the cumulative error 
in snow cover pattern (again according to MODIS) and discharge sim
ulations. In so doing, an elevation-dependent snowfall correction factor 
was optimised. A particular novelty of this study was that correspon
dence between simulated and observed patterns was expressed at the 
pixel level. Naseer et al. (2019) applied the same code but avoided 
traditional linear, elevation-dependent lapse rates for meteorological 
data interpolation (which may break down in complex terrain) by 
integrating 3D temperature profiles derived from climate model rean
alysis data. The calibration undertaken had no spatial component, 
however. Most recently, Ruelland (2020) sought to infer uncertain 
mountain precipitation and temperature gradients in the French Alps via 
inversion using a very simple snow and hydrological model alongside 
discharge and MODIS snow cover data. 

Lastly, uncertainty quantification should ideally form a central pillar 
of any environmental modelling exercise. Although some previous 
studies have directly assessed uncertainty in SWE reconstructions (Franz 
et al., 2010; He et al., 2011; Slater et al., 2013; Meeks et al., 2017), this 
has largely been undertaken only at discrete station locations (i.e. using 
non-distributed models). As one seeks to progress beyond this situation, 
the efficiency of calibration and uncertainty quantification algorithms 
becomes a crucial consideration, especially as the sophistication, scale, 
and resolution a given “forward” model increases; despite ever- 
increasing computational power, “brute force” approaches involving 
thousands of Monte Carlo simulations can still quickly become 
impractical. 

1.5. The present study 

In this context, and with the intention of improving the representa
tion of meltwater dynamics in relatively data-scarce and rugged 
mountain settings, this study proposes a model-independent framework 
for integrating high-resolution snow observations in distributed snow
pack simulations. It is not our intention to focus here on the develop
ment of combinstion of improved physically-based algorithms for 
representing the various complex individual processes and phenomena 
that can influence snow variability in alpine terrain, but rather to pre
sent a novel means by which complementary snow data can be used to 
constrain a series of generally important but highly uncertain parame
ters within any distributed snow model. The moderate-complexity snow 
code selected for our exemplification of the framework aligns well with 
our expectation that, in this specific setting as well as likely many others 
(especially at larger spatial scales), any uncertainties associated with 
internal snow model structures will often be overshadowed by those 
from other sources (e.g. uncertainties in forcing data fields). In our 
approach, not only are the major uncertainties involved in a typical 
simulation chain explicitly acknowledged, but they are overcome as far 
as is possible 

More specifically, a fully-distributed energy balance-based snow 
model that additionally represents gravitational redistribution is 
initially established at high spatio-temporal resolution (25 m, hourly). 
Then, an objective function incorporating both high-resolution snow 
cover maps derived from satellite imagery and reconstructed SWE time- 
series at two locations is developed and minimised using an efficient, 
iterative calibration algorithm. 

A single layer snowpack configuration is applied in WaSiM 
(v10.04.01; Schulla, 2017). This code provides an appropriate balance 
between snow model simplicity and complexity, and also enabled 
several additional steps to be incorporated relatively easily, namely: i) 
the correction and spatial interpolation of meteorological station data, 
ii) the representation of gravitational snow redistribution (which is 
important given the steepness of the study catchment in questions), iii) 
the representation of glacier mass balance/melt, and iv) the generation 
of commensurate potential evapotranspiration (ETp) estimates for sub
sequent hydrological modelling. 

This is one of the first instances in which Landsat-derived snow cover 
images are included in the calibration of a distributed snow model in a 
spatially-explicit (i.e. per-pixel) fashion. Other distinguishing features of 
this study are that spatial fit metrics are computed for a much larger 
catalogue of images than previously, and that the uncertainties associ
ated with selected key predictions, as well as the contributions of 
different parameters and groups of observations to uncertainty reduc
tion, are elucidated. By including high-resolution distributed snow ob
servations, SWE time-series, and a model that accounts for gravitational 
redistribution, this approach builds somewhat upon that of Shrestha 
et al. (2014), providing a framework that is more suited to steep and 
rugged terrain. Finally, given the open source software used throughout 
and the long temporal coverage and global availability of the Landsat 
archive, our approach has great potential to improve the representation 
of snow dynamics in many mountain regions globally. The input files 
and model-data linking code are provided with the intention of helping 
to facilitate this. Furthermore, because the methodology is fundamen
tally code and data agnostic, alternative distributed codes and snow
cover products can easily be substituted. 

The model is not extended here to generate streamflow outputs. This 
decision was taken because the study catchment under consideration is 
extremely geologically complex, replete with folded, faulted sequences 
of limestones, shales, and marls, whilst the representation of subsurface 
processes in WaSiM – as in most popular hydrological models – is rather 
simplistic. Instead, the resultant high-resolution, spatio-temporal grid
ded datasets representing the arrival of snowmelt, firn melt, ice melt, 
and liquid precipitation at the land surface (collectively, “all liquid 
water”) and ETp have been applied as boundary conditions for a fully 
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integrated (i.e. surface–subsurface-evapotranspiration) model, pre
sented separately (Thornton et al., under review). Such integrated 
models can ingest 3D representations of geology and simulate the 
mechanistic interactions between various components of hydrological 
systems in a physically-based, spatially explicit fashion. As such, they 
offer considerable potential to better understand and predict the nu
ances of such systems, including their possible responses to external 
change, in a more comprehensive and robust fashion than hitherto 
possible. However, most integrated models also rely on simplified 
empirical snow processes representations. Hence, our broader effort 
seeks to leverage the respective benefits of alternative simulation ap
proaches whilst mitigating their respective limitations. 

2. Study area 

The 36.7 km2 study area includes two adjacent headwater catch
ments – the Vallon de Nant and the Vallon de La Vare – of the western 
Swiss Alps (Fig. 1). The elevational range is considerable, extending 
from 950 to over 3050 m a.s.l., and slopes are accordingly extremely 
steep (mean 35◦). The topography is rugged, and lower parts of the study 
area are forested. At the Last Glacial Maximum, only the highest peaks 
protruded above the ice (Bini et al., 2009). An array of Quaternary un
consolidated sedimentary features with glacial, fluvial, and mass 
movement origins overly the complex Mesozoic bedrock, several of 

which likely act as aquifers. 
Approximately 45% of annual precipitation (≥1400 mm) falls as 

snow. Due to the catchment’s steepness, gravitational snow redistribu
tion occurs frequently, as evidenced by snow-free slopes and cliffs in the 
winter months. The photographs of Fig. S1, taken in the Vallon de Nant 
on the 31 January 2018 following a period of exceptional snowfall 
(Bründl et al., 2019), illustrate the considerable redistribution that can 
occur under more extreme conditions. 

Intense summer thunderstorms are a further noteworthy feature of 
the area’s meteorological regime. The surficial hydrology of the Vallon 
de Nant is characterised by numerous temporary torrents whose 
discharge responds rapidly to rainfall and snowmelt. Being shaded by 
surrounding cliffs, several small glaciers persist at relatively low eleva
tions in the north-facing upper reaches of both sub-catchments. The 
region remains in a highly natural state, making it rather unusual in the 
context of the European Alps. Reflecting this, several recent environ
mental investigations have focused upon the area, including those of 
Vittoz et al. (2009), Grand et al. (2016), Lane et al. (2016), Benoit et al. 
(2018), and Giaccone et al. (2019). 

Fig. 1. The study catchment and locations of stations that provided data to the present study. The precipitation data at the SOR station were ultimately removed from 
the inputs because the cumulative totals measured were considered unrealistically low compared with other nearby stations at similar elevations, indicating a 
probable station issue. Background data © swisstopo. 
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3. Data availability and processing 

3.1. Meteorological forcing 

The model required gridded estimates of incoming shortwave radi
ation, precipitation, relative humidity, sunshine duration, air tempera
ture, vapour pressure, and wind speed. No third-party meteorological 
datasets with the desired spatio-temporal resolution and which were 
contemporaneous with the available field measurements, the earliest of 
which began in 2016, existed at the outset. Forcing datasets were 
therefore developed from meteorological station measurements (Fig. 1; 
Table S1). Most of the stations used belonged to the official networks of 
MeteoSwiss and the WSL Institute for Snow and Avalanche Research 
(SLF), and were located several kilometres from the study catchment 
and, crucially, at lower elevations. At these stations, hourly sums for 
precipitation and hourly means for all other variables were downloaded 
from IDAWEB – the online data portal of MeteoSwiss (MeteoSwiss, 
2019) – for the hydrological years 2015–2018 (i.e. 1 October 2014 to 30 
September 2018). 

These data were complemented by observations from stations 
belonging to a local network operated by the University of Lausanne (S. 
Hiscox, pers. comm; Michelon et al. (2017) and subsequent updates via 
personal communication), some of which are located within the study 
catchment itself. Unsurprisingly given the harsh environment and 
limited access (especially in winter), the local stations had a higher 
proportion of missing data than the nationally operated ones, meaning 
intensive processing and quality assurance efforts were required. 

Irrespective of the station operator, precipitation data from unheated 
gauges were not considered. Also, the precipitation data at SOR were 
eventually removed from the input dataset as the cululative totals were 
deemed unrepresentative. Specifically, they were unduly low compared 
with nearby stations at similar elevations (Brauchli et al., 2018). The 
processed time-series were plotted and inspected interactively using 
niVis (SLF, 2019a); the hourly time-series themselves are presented in 
Fig. S14, whilst the temporal coverage of variables between stations and 
overall missing data percentages are shown in Figures S3 to S9. 

The simulation period was limited to the four hydrological years 
2015–2018 by lack of reliable local meteorological data prior to this. 
Although relatively short, the simulation period contains a reasonable 
diversity of snow conditions, including relatively snow-rich and snow- 
poor winters. 

The challenge of obtaining accurate spatial fields of meteorological 
variables in mountainous regions hastwo direct implications for 
modelling. The first is that precipitation measurements made using 
traditional instruments must be corrected for wind-induced undercatch 
and any other factors that induce systematic bias towards underesti
mation. Here, different corrections were applied depending on the 
incident precipitation phase (Equation (1); Schulla, 2017): 

Pcorr = P(snoa⋅WS + snob), TA < rstt
Pcorr = P(liqa⋅WS+ liqb), TA > rstt (1)  

where P is station measured precipitation (mm), Pcorr is corrected pre
cipitation (mm), snoa (-) and snob (-) are global correction factors for 
solid precipitation, liqa (-) and liqb (-) are global correction factors for 
solid precipitation, WS is wind speed (m⋅s− 1), and rstt is the rain-snow 
threshold temperature (◦C). 

The rain-snow threshold temperature, here denoted by rstt, cannot be 
reliably determined a priori because it varies in time and space on large 
scales (Jennings et al., 2018). As such, its value was optimised, alongside 
several others, through our calibration approach. Incorporating atmo
spheric humidity data could have resulted in more reliable phase 
determination. The magnitude of precipitation underestimation is like
wise highly uncertain, although solid precipitation measurements are 
usually more affected than liquid precipitation ones. For this reason, 
both snob and snoa were also calibrated, whilst liqa and liqb were 

assigned fixed values (0.01 and 1.02, respectively). As neither the error 
characteristics of solid nor liquid precipitation were known at individual 
stations and/or for individual events, more targeted corrections were 
not possible. 

The second implication is that spatial interpolation algorithms must 
be carefully selected. Generally speaking, given the pronounced and 
complex topography, both spatial and elevation dependencies in the 
various meteorological variables should ideally be accounted for. A 25 m 
resolution digital terrain model (DTM; swisstopo, 2018) defined the 
model grid. Then, an appropriate algorithm was applied to interpolate 
all available measurements of each variable at every time-step. To ac
count for their strong elevational dependence, air temperature, wind 
speed, relative humidity, and vapour pressure measurements were 
interpolated using Elevation Dependent Regression (EDR). For air tem
perature, the possibility of the linear relationships varying across 
elevation bands (including full temperature inversions) per time-step 
was permitted. For precipitation, meanwhile, a linear combination of 
fields generated independently by Inverse Distance Weighting (IDW) 
and EDR was applied. The ratio of the former to the latter, idwedr, was 
also calibrated. In this way, a certain balance between spatial patterns 
and (spatially constant) elevational dependence in the station mea
surements was achieved. Since incoming shortwave radiation and sun
shine duration demonstrate more limited elevation dependence, they 
were simply interpolated using IDW. Whenever IDW was applied, the 
maximum search radius was set such that no stations were excluded. 

This approach differs from that taken in certain other studies, which 
applied either predefined or else calibrated constant linear temperature- 
elevation gradients or elevation-precipitation gradients. For example, 
Brauchli et al. (2017) distributed corrected single station precipitation 
measurements across their study catchment by applying a constant lapse 
rate of 2%/100 m. This and other studies (e.g. Naseer et al., 2019) 
suggest that in complex terrain, such constant lapse rates may be un
realistic. Avoiding the use of such constant gradients can therefore be 
considered a strength of the present approach, as more of the spatial and 
temporal structure of the local meteorological measurements should be 
retained. 

That said, with such an approach, the temporal coverage or “cross- 
over” between the underlying station data (shown in Figures S3 to S9) 
becomes important. This is because, for a given meteorological variable 
and time-step, only stations returning observations contribute to the 
resultant spatial field. In other words, no temporal gap filling or inter
polation is undertaken, and each time-step’s field is independent from 
the last. Consequently, uncertainty in the interpolated spatial fields is 
not constant in time, but rather varies with both the number and loca
tions of stations providing measurements. 

Finally, the interpolated hourly temperature and radiation grids 
were corrected to account for topographic shading effects using the 
scheme of Oke (1987). An empirical temperature factor involved, radc, 
was also calibrated. The aforementioned steps were all undertaken using 
the distributed model WaSiM (Schulla, 2017). 

3.2. Satellite and in situ snow observations 

Two complementary types of observed snow data were prepared to 
constrain the model; i) binary observed snow extent maps derived from 
Landsat 8 imagery, and ii) SWE time-series at two station locations. The 
former provides complete spatial coverage, but only for temporal 
“snapshots”, and moreover provides no direct information on snowpack 
water storage. Conversely, the latter provide high-frequency, temporally 
continuous information on SWE, but only at discrete locations. 

17 Landsat 8 scenes that fall within the period of meteorological data 
availability (i.e. the hydrological years 2015–2018) and were cloud-free 
over the study area were considired. For each, the Normalised Difference 
Snow Index (NDSI; Dozier, 1989) of every pixel was first calculated 
according to Equation (2): 
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NDSIL8 =
B3 - B6

B3 + B6
(2)  

where B3 and B6 are Bands 3 (0.525–0.600 µm) and 6 (1.560–1.660 µm) 
of a given Landsat 8 (L8) image, respectively. Lakes were masked out 
because their reflectance signatures gave rise to NDSI value “peaks” that 
obscured the boundary between snow and snow-free pixels in some 
image histograms. 

Snow extents were then delineated by applying a threshold to the 
NSDI maps. An iterative process of threshold adjustment and visual 
comparison of the binary snow maps and the corresponding True Colour 
Composite (TCC) images was followed until a satisfactory final classi
fication was reached. Fig. 2 illustrates the main steps involved. The final 
thresholds varied somewhat between images – see Härer et al. (2018) for 
a dedicated exploration of NDSI threshold choice. Whilst the manual 
approach to threshold identification employed here was feasible for this 
fairly small image catalogue, generating accurate snow maps for a larger 
catalogue would require a more automated procedure. 

To facilitate their integration in the automated calibration process, 
the maps were reprojected to the CH1903 system (EPSG: 21781) and 
clipped to the study catchment. Using the nearest neighbour approach, 
they were then downscaled from their native 30 m resolution to align 
with the 25 m resolution model grid. The full catalogue of observed 
snow extents, which encompasses practically the full range of possible 
snow cover conditions, is shown in Fig. 3. Fig. S11, meanwhile, provides 
comparisons of all TCC images and delineated observed snow extents 
(alongside the corresponding final simulated outputs). 

Besides the more general issues of cloud cover and temporal gaps 
between satellite overpasses, dark forest canopies and areas of shadow 
represent the main challenges associated with using mapping snow ex
tents using NDSI in steep mountainous terrain (Wang et al., 2015). In 
this case, whilst a small number of snow-covered pixels under dark 
forest and in heavily shaded snow-covered terrain may have been mis
classified as snow-free, the maps generally compare very well the TCC 
images. Moreover, a sensitivity assessment of the classified snow extents 
to various plausible thresholds (not shown) found it to be small. As such, 
the maps can be taken to represent snow extents with a reasonably high 
degree of accuracy, especially in the more open, upper regions of the 
catchment, where snow patterns are of most interest. 

To provide more direct information on snow water storage to the 

model, SWE time-series were reconstructed at two contrasting station 
locations. (SWE reconstruction was also required to enable direct com
parisons with the model outputs, since the snow model configuration 
employed only provides total water storage, rather than full information 
on the interrelation between snowpack density, depth and SWE). 
Different methods were used at each station according to data 
availability. 

The two stations providing regular snow measurements over the 
period in question are located just outside the study catchment, with 
each lying towards one extreme of its elevational range (see Fig. 1). The 
data were again obtained from IDAWEB. The higher station, Grand Cor 
(COR; Elevation: 2602 m), belongs to the SLF’s Intercantonal Mea
surement and Information System (IMIS) (SLF, 2019b). These stations 
do not measure solid precipitation directly, but instead record snow 
depth and several other variables that can be used to drive the 1D 
physically-based, multi-layer model SNOWPACK (Lehning et al., 2002). 
An hourly time-series SWE evolution at COR over the entire four-year 
simulation period was constructed in this fashion. 

The second, lower elevation station is located in Gryon (GRY; Elevation: 
1146 m). Unlike at COR, only (manual) daily snow height measurements 
are made here, which prevented an application of SNOWPACK. The 
empirical model of Jonas et al. (2009), which was constructed using a large 
sample of snow observations from the Swiss Alps, was therefore applied. 
This approach facilitates the estimation of snow density as a function of 
geographic region, month of the year, and site elevation. Parameters cor
responding to the elevation band < 1400 m and the “Region 1” offset were 
taken (see Tables 1 and 2 of Jonas et al., 2009); these being applicable to 
GRY. The resultant densities were then multiplied by measured snow 
heights to give daily SWE estimates. 

Due to this reconstruction work, neither of the “observed” SWE time- 
series are actually direct measurements. The simulation domain was 
extended slightly to allow these data to be used in the model calibration. 

4. Numerical modelling and calibration 

4.1. Simulating snow accumulation, redistribution, and melt 

As for the previous steps, WaSiM (Schulla, 2017) formed the foun
dation of the snow modelling approach. This decision was made 
following a review and testing of possible alternatives, including 

a) b)

0 10 20 km

c)

<= -0.547
-0.547 - -0.397
-0.397 - -0.248
-0.248 - -0.0986
-0.0986 - 0.0508
0.0508 - 0.2
0.2 - 0.35
0.35 - 0.499
0.499 - 0.648
> 0.648

No snow
Snow

Fig. 2. Illustration of the binary snow extent map generation process, taking the 8 April 2015 as an example: a) True Colour Composite, b) calculated NDSI raster, 
and c) final binary observed extent developed by identifying and applying a threshold to (b). Each image in the catalogue was inspected and classified individually. 
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Alpine3D which – although a strong contender – did not enable gravi
tational snow redistribution to be accounted for. Although slightly more 
sophisticated snow models are available, few fully-distributed codes 
offer such a broad range of functionality as WaSiM. 

Snow accumulation, gravitational redistribution, and melt were 
calculated on the 25 m model grid on an hourly time-step. First, the 
(corrected) precipitation phase per pixel and time-step was estimated 
according to the interpolated air temperature and a transitional range 
within which both solid and precipitation can occur (Equation (3)): 

Sfrac =
rstt + Ttrans − TA

2 × Ttrans
for (rstt − Ttrans) < TA < (rstt + Ttrans) (3)  

where Sfrac is the fraction of the totalprecipitation that is snow (0–1), TA 
is the air temperature (◦C), rstt (◦C) is the same rain-snow threshold 
temperature applied in Equation (1), and Ttrans is half the rain-snow 
transition temperature range (◦C). 

Ttrans was fixed to 1◦C (i.e. the total transition range was 2◦C), whilst 
rstt took the same (calibrated) value as that applied to distinguish pre
cipitation phase (Equation (1)). Snowmelt was then calculated by 
solving the surface energy balance for the energy available for melt 
following the approach of Warscher et al. (2013). In this scheme, the 
snowpack is treated as a single homogeneous layer beneath the surface, 
for which the energy balance is computed (Equation (4)): 

Q+H+E+A+G+Mae = 0 (4)  

where Q is the shortwave and longwave radiation balance, H is the 
sensible heat flux, E is the latent heat flux, A is the advective energy 
supplied by solid or liquid precipitation, G is the soil heat flux (which is 
small compared to other fluxes and here was set equal to 2, and Mae is 
the energy potentially available for melting during a given time-step 
(the units of all terms are W⋅m− 2). 

Melting and non-melting conditions were distinguished according to 
rstt. When the energy balance is positive (i.e. Mae > 0) and air temper
ature favourable, melt (M) can occur (see Warscher et al. (2013) for an 
explanation of the use of air temperature as a proxy to differentiate 

melting from non-melting conditions). Finally, M per time-step, dt, is 
expressed in mm of water by introducing the latent heat of fusion, ci 
(Equation (5)). 

M =
Mae × dt

ci
(5) 

Sublimation, which can be an important component of Alpine water 
balances (Strasser et al., 2008), is explicitly accounted for in this 
approach. 

Two additional scaling parameters, lwin and lwout, were available to 
fine-tune the incoming and outgoing longwave components of the en
ergy balance, respectively. Raleigh et al. (2016) showed that behind 
temperature and precipitation, longwave radiation estimates most 
strongly affect energy balance snow simulations results, and moreover 
noted that longwave measurements are uncommon in high elevation 
terrain; such considerations justify including parameters related to 
longwave radiation in the calibration. Here, both parameters were 
subjected to calibration, albeit within relatively narrow bounds (see 
Table 1). In this way, potential errors in both surface albedo and 
cloudiness (as determined from the interpolated sunshine duration 
fields, used in the calculation of incoming longwave radiation) could be 
accounted for. 

In addition, gravitational redistribution was simulated using a mass- 
conservative algorithm that is underpinned by a topographic analysis. 
This algorithm was implemented in WaSiM by Warscher et al. (2013). 
Several steps are involved; as with the previously summarised algo
rithms, they are comprehensively described in Warscher et al. (2013) 
and Schulla (2017). Here, only the main parameters are discussed. Two 
represent critical local slope limits; mids is the lower inclination limit for 
gravitational slides to occur, and mads is the upper inclination angle 
(above which all incoming snow is immediately transported down
slope). Because these slope angles are dependent on the model grid 
scale, they cannot easily be transferred from previous studies and were 
therefore calibratated. Following the advice of Schulla (2017), two 
further parameters related to gravitational redistribution were also 

Fig. 3. The complete catalogue of 30-metre resolution observed snow extent maps compiled. The date of each image is indicated. Coordinates are in the 
CH1903 system. 
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calibrated. The first is the fraction of the current snow storage in a cell 
that can form a slide in any given time-step, frss. It is recommended that 
its value be set to some small fraction, typically ~1%, although this 
depends somewhat on the time-step at which the model is run. The 
second, scmd, is an upper depositional mass limit (mm) for snow flows, i. 
e. the maximum permitted transfer from one cell to another, again per 
time-step. Whilst such an approach can estimate plausible snow redis
tribution patterns, it should be noted that the specific timing of ava
lanches cannot be predicted (Warscher et al., 2013). 

Warscher et al. (2013) also proposed a simple algorithm designed to 
account for snow redistribution by wind. More recently still, methods 
seeking to improve WaSiM’s representation of snow and coniferous 
forest canopy interactions have been published (Förster et al., 2018). 
However, for several reasons, neither of these algorithm sets was 
included in our final model here. Firstly, given the study area’s steep
ness, we decided to focus on gravitational redistribution. Secondly, 
including wind algorithm actually resulted in poorer model-observation 
fits (see Section 5.7). Finally, the WaSiM release containing the exten
sions of Förster et al. (2018) came too late in the course of our work to be 
evaluated thoroughly. 

4.2. Multi-objective calibration 

The 11 empirical parameters that required estimation are listed, 
alongside the upper and lower bounds that were assigned to each based 
on prior knowledge, in Table 1. For numerical reasons, all parameters 
were log transformed. This step is recommended when using PEST so 
that the linearity assumption (of model outputs to varied parameters) 
holds better, and to normalize parameters with respect to their inherent 
variability. To this end, the lower bounds of three parameters which 
would ordinarily have been zero were marginally raised. The final 
estimated values are also listed in Table 1 to prevent later duplication 
being necessary. 

A novel, multi-objective calibration approach that incorporated both 
the spatial snow extents and the reconstructed SWE time-series was then 
developed. For each of the 17 days with an observed extent map and 

model iteration, the spatial component of goodness-of-fit was quantified 
as follows:  

1. Simulated SWE maps at the end of the days for which observed maps 
were available were extracted and clipped to the study catchment.  

2. Pixels in the simulated SWE maps were reclassified to either snow or 
no-snow using a 5 mm exceedance threshold (i.e. pixels with SWE >
5 mm were classified as snow covered).  

3. All pixels were binned into one of the quadrants of the contingency 
matrix shown in Table 2 according to whether snow presence/ 
absence had been correctly simulated with respect to the observed 
maps.  

4. Three related performance metrics were calculated after Aronica 
et al. (2002) using Equations (6) to (8). 

F1 =

∑n
i=1a+

∑n
i=1d

n
(6)  

F2 =

∑n
i=1a∑n

i=1a+
∑n

i=1b+
∑n

i=1c
(7)  

F3 =

∑n
i=1a −

∑n
i=1b∑n

i=1a+
∑n

i=1b+
∑n

i=1c
(8)  

where a, b, and c are the quadrants of the contingency matrix (Table 2), 
and n is the total number of pixels. 

F1 corresponds to the overall proportion of correctly simulated 
pixels. F2 and F3 expressly discount pixels that are snow free in both 
simulations and observations, and so typically result in lower scores – on 

Table 1 
WaSiM model parameters that were subject to calibration. The final estimated parameter values are also reported here to prevent the later duplication of a very similar 
table. *These parameters had a lower bound of zero, but this had to be raised marginally for practical implementation in PEST.  

Parameter Description Lower Bound Upper Bound Estimated value 

rstt Snow-rain temperature threshold 
(◦C)  

0.0*  3.5  0.0266 

snoa Snow precipitation correction (-)  0.0*  0.15  0.0283 
snob Snow precipitation correction (-)  1.0  1.45  1.4500 
radc Factor for temperature correction 

radc ⋅ (-1.6 ….… + 1.6) in the 
radiation correction module  

0.1  8.0  0.1731 

mads Maximum slope for snow 
deposition (◦)  

45.0  75.0  73.5269 

scmd Upper deposition limit for 
gravitational redistribution (mm)  

0.0*  10.0  1.1497 

mids Minimum slope for gravitational 
slides (◦)  

20.0  48.0  43.3811 

frss Fraction of snowpack that forms 
the slide (0–1)  

0.001  0.05  0.0076 

idwedr Relative weight of IDW to EDR in 
the interpolation of precipitation 
(0–1)  

0.05  0.85  0.05 

lwin Correction factor for incoming 
long wave radiation for energy 
balance fine tuning(accounting 
for errors in cloudiness and 
albedo)  

0.7  1.3  1.2167 

lwou Correction factor for outgoing 
long wave radiation for energy 
balance fine tuning(accounting 
for errors in cloudiness and 
albedo)  

0.7  1.3  1.1920  

Table 2 
Contingency matrix used for the per-pixel classification of distributed snow 
model outputs.    

Observed snow Observed no snow 

Simulated snow  a b 
Simulated no snow  c d  
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many days this quadrant can be heavily populated as snow-free pixels at 
lower elevations are generally relatively easy to reproduce (Warscher 
et al., 2013). In each case, a perfect fit between simulations and obser
vations would return a value of one. Therefore, for each model iteration, 
the squared residuals between the three F-statistics obtained and one 
was calculated. Model performance with respect to the “observed” SWE 
time-series was quantified using the squared residuals between simu
lated and observed values per time-step. 

To construct a single, multi-objective function that could be mini
mised and thus produce the best overall fit according to both types of 
observations, weights had to be assigned to each squared residual. This 
(subjective) process aimed to ensure that each observation maintained a 
certain “visibility” in the calibration process, whilst an appropriate 
balance between the two data types was achieved. The hierarchical 
weighting scheme illustrated in Fig. S2 was ultimately implemented. 

In summary, a slightly higher weighting was applied to the spatial 
data than the time-series (60:40). To reflect their more stringent nature, 
F2 and F3 values were assigned double the weight of F1 values. Finally, to 
account for the disparity in measurement frequency at the snow stations 
– hourly at COR but only daily at GRY – observations at the latter were 
assigned weights 24 times higher than those at the former. The objective 
function (OF) is expressed in Equation (9): 

OF =
∑17

i=1

[
wF1(1 − F1)

2 ]
+

∑17

i=1

[
wF2(1 − F2)

2 ]
+

∑17

i=1

[
wF3(1 − F3)

2 ]

+
∑35063

i=1

[
wCOR(COR.SWEsim − COR.SWEobs) 2 ]

+
∑1461

i=1

[
wGRY(GRY.SWEsim − GRY.SWEobs) 2 ]

(9)  

where wF1,wF2, wF3, wCOR, and wGRY are the relative weights that were 
assigned to each observation belonging to the different observation 
groups, as illustrated in Fig. S2, i.e. 0.706, 1.412, 1.412, 0.0057 and 
0.01368%, respectively, F1, F2, and F3 are the fit statistics calculated for 
each of the 17 pairs of images according to Equations (6) to (8), and 
COR.SWEsim, and COR.SWEobs, GRY.SWEsim, and GRY.SWEobs are the 
observed and simulated SWE values at each time time-step at the COR 
and GRY stations, respectively. 

The WaSiM model was then linked with PEST (Doherty, 2019) – a 
model-independent, gradient-based parameter estimation tool which 
uses the Levenberg-Marquardt algorithm. PEST repeatedly runs the 
model, altering the calibration parameter values each iteration in an 
attempt to minimise the objective function (in a least squares sense). 
PEST was selected primarily due to its efficiency, which is considerably 
higher than that of commonly applied Monte Carlo-oriented approaches. 
Indeed, parameter search efficiency was crucial given the relatively high 
computational demands of the energy balance snow model. The 
coupling was achieved by implementing routines to extract the spatial 
and temporal model outputs corresponding to the observations, and 
then calculate the required statistics (see the Appendix A). The final 
parameters values obtained are presented in Table 1. Note that another 
valid approach to assign weights (and one that may have accounted 
better for their contrasting magnitudes) would have been to run the 
model once and then automatically adjust the weights using PEST’s 
PWTADJ1 utility such that each observation group gave an approxi
mately equal contribution. 

4.3. Predictive uncertainty and data worth analyses 

A linear analysis was then conducted to quantify the pre- and post- 
calibration uncertainty associated with selected individual “pre
dictions” of interest (the term predictions is not used here to allude to 
the future); namely, the SWE at COR on 1 April in each of the simulated 
hydrological years (2015–2018), and the spatial F1 metric for 22 May 

2017. This strategy enables any reduction in uncertainty achieved 
through the calibration process to be evaluated. 

1 April SWE at station locations is an indicator commonly employed 
by environmental managers in snowmelt-dependent regions to predict 
water availability throughout the subsequent summer. The spatial pre
diction was included because few (if any) previous studies have specif
ically considered uncertainty in snow pattern predictions. Analyses 
quantifying the contribution of individual parameters to pre- and post- 
calibration uncertainty variance, as well as the information provided 
by the five observation groups the calibration process (i.e. “data 
worth”), were also undertaken. To achieve these tasks, tools from PEST’s 
GENLINPRED suite were applied. For a through description see Doherty 
(2010, 2019). 

In contrast to the model calibration phase, for these analyses, iden
tical weights were assigned to all non-zero weighted observations (zero- 
weighed observations being the predictions of interest). Following the 
advice of Doherty (2010), this weight was estimated by taking the 
number of non-zero weighted observations (here 36,570), calculating its 
square root, and dividing the result by the calibrated model objective 
function (91,150) – giving a value of 0.002098. 

4.4. Estimating glacial melt, liquid precipitation, and potential 
evapotranspiration 

To generate comprehensive forcing data for subsequent distributed, 
integrated hydrological simulations, four additional datasets were also 
generated using the model; liquid precipitation, firn melt, ice melt, and 
ETp. Firstly, to account for liquid precipitation in addition to snowmelt, 
“snowcover outflow” grids were written at each time-step. These 
represent the snowmelt (as calculated by the snow model) from snow- 
covered pixels plus any liquid precipitation falling on snow-free pixels. 
As Section 3.1 explained, modest fixed corrections were applied to the 
raw liquid precipitation measurements to account for undercatch. 
Accordingly, for snow-free pixels, the “snowcover outflow” values 
correspond to any (corrected, interpolated) rainfall falling. 

As the coverage of glaciers is small (<3%), glacial melt makes a 
much more modest contribution to annual, catchment-averaged melt
water input than snowmelt. Nevertheless, glacial meltwater generation 
can be locally considerable in summer. As such, a “dynamic” glacier 
model (employing a simple volume-area scaling relationship, with 
default parameter values; see Schulla, 2017) that accounts for accu
mulation, dynamics, and ablation (with radiation correction) was 
applied in WaSiM. The parameters of this model were not calibrated due 
to the overall dominance of snowmelt and a lack of glacial data; the 
Glacier des Martinets, for instance, has not been actively monitored 
since 1975 (SCNAT, 2018). Rather, the intention was simply to ensure 
that ice melt was not entirely neglected. 

For snow on the glaciers, an identical approach to the main snow 
model was taken. In this way, distinct (hourly, 25 m resolution) grids 
representing snowmelt, firn melt, and ice melt from glacierised areas 
were produced. Besides containing all the optimised snow-related pa
rameters, the WaSiM control file in Appendix A indicates the values of 
the (fixed) parameters that were applied to generate these additional 
datasets. With only slight modification, possibly related to the distinc
tion between snow and bare glacier ice in the NDSI images, the approach 
could be easily transferred to more glacierised catchments. 

The glacier meltwater estimates had to be normalized according to 
the glacier-covered fraction of each cell per time-step, which ranged 
from 0 to 1. Having done this, the (off glacier) “snowcover outflow” 
rasters were summed together with the corresponding normalised 
“snowmelt on glacier”, “firn melt”, and “ice melt” grids per time-step to 
produce a single set of hourly “all liquid water” grids. These calculations 
were carried out by executing batch GDAL scripts (GDAL, 2019; 
OSGeo4W, 2019). Units were also converted for subsequent hydrologi
cal modelling. 

Finally, the Penman-Monteith method was used to estimate 25 m 
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resolution, hourly ETp. To achieve this, classes in a land cover map 
developed from existing swisstopo datasets (swisstopo, 2019; Fig. S10) 
were attributed with appropriate physical parameters (e.g. Leaf Area 
Index; LIA). Fuhrer and Jasper (2012) describe a dedicated application 
of WaSiM to this end. Apart from unit conversion for subsequent hy
drological modelling, no additional processing of the ETp grids was 
required 

In possessing identical spatio-temporal resolution and having been 
generated using predominantly physically-based approaches, all resul
tant datasets can be considered broadly commensurate with one 
another. 

5. Results and discussion 

5.1. Estimated parameter values 

The parameter values estimated via inversion (Table 1) constitute an 
initial set of “results”. Two in particular are interesting to consider briefly. 
Firstly, the high value of 1.45 taken by the wind speed-independent snow 
correction constant, snob, which actually reached the permitted upper 
bound, attests to the considerable underestimation bias generally con
tained within the winter station precipitation measurements. Recall here 
that this constant factor was combined with the wind speed-dependent 
factor, snoa, which was estimated to be 0.0283 (i.e. an increase of 2.83% 
per additional m⋅s− 1 of wind speed) and the interpolated wind speed to 
determine effective precipitation. Secondly, idwedr took its lowest 
permitted value, i.e. improved fits were obtained when any elevational 
gradients present in the station data were enforced upon the interpolated 
precipitation fields. This likely reflects substantial differences in cumula
tive precipitation between the lowest elevation stations and those at ele
vations that correspond more closely to the study catchment. 

The estimated solid precipitation correction factor magnitude is 
broadly consistent with existing literature. For instance, Sevruk (1985) 
suggested that precipitation in Switzerland is underestimated by be
tween 4% (in summer at low elevations) and approximately 40% (at 
high altitudes in winter). In a simulation of a 200 km2 region of 
Switzerland, Bavera et al. (2014) applied a fixed 30% factor to solid 
precipitation. Pan et al. (2016), meanwhile, found the sheltering effect 
of surrounding vegetation to be an important influence on the magni
tude of any underestimation in northern Canada, with well-sheltered 
sites requiring much less correction. At open sites, the bias corrections 
they applied increased annual precipitation by between 15 and 34%. At 
windy sites with high snowfall proportions, even larger corrections – 
sometimes exceeding 50% – were sometimes be necessary. Finally, 
Jimeno-Sáez et al. (2020) found that very large undercatch uplift factors 

(78% for solid precipitation) were required in a basin in the Sierra 
Nevada, southern Spain. Therefore, the upper bounds of our solid pre
cipitation correction factors could perhaps have been set more 
generously. 

5.2. Correspondence with observations 

The spatial goodness-of-fit statistics (i.e. F1, F2, and F3) obtained 
following calibration are shown in Table 3. The corresponding observed 
and simulated snow maps from which these statistics were calculated 
are shown in Fig. S11. 

The F-statistics returned are generally high; across the 17 days, the 
average percentage of correctly simulated pixels is 85%. As expected, 
the scores decline progressively from F1 to F3. Moreover, the variability 
in the statistics between images was observed, with the highest scores 
naturally being achieved on completely snow covered, mid-winter days. 
The lowest F1 value was for the 29 April 2017, when the model missed a 
late season snowstorm that briefly blanketed the catchment. 

Fig. 4 shows the comparison between simulated and observed SWE 
time-series at the two measurement stations. The dynamics of snowpack 
evolution are replicated adequately, including the contrast between 
seasonal snowpack at the higher elevation station (COR) and the more 
intermittent pattern at the lower one (GRY). The colder prevailing 
conditions at COR allow the results to be discussed explicitly in terms of 
the accumulation and ablation phases. This simulated onset of accu
mulation closely matches the observations here, as do changes in 
accumulation rate. The timing and rate of ablation is likewise broadly 
consistent with the observations. However, there does seem to be a 
general tendency towards underestimation of accumulation totals. A 
similar underestimation is evident in the first three years at GRY. Across 
both stations, observations from winter 2017/2018 are reproduced best, 
perhaps due to increased local data availability. 

In evaluating these results, it must be highlighted that the key 
meteorological variables of precipitation at COR, and both precipitation 
and temperature at GRY, were not actually measured at these locations, 
but rather had to be spatially interpolated (onto the corresponding 
model cells) from station measurements elsewhere. As such, much of the 
remaining post-calibration difference is likely to be associated with 
uncertainties in these interpolated fields. In addition, as explained 
earlier, the “observations” themselves were reconstructed. Finally, the 
observations were made at discrete locations, whilst the simulated 
values correspond to the 25 m pixel within which each station was 
located. Hence, should the terrain at the station locations not be entirely 
representative of its immediate surroundings, this would represent 
another potential source of mismatch. A shaded region corresponding to 
± 20% around the observations – that being roughly the maximum SWE 
mismatch one could expect purely for this reason (T. Jonas, pers. comm.) 
– is shown to reflect this. 

5.3. Comparison of simulated spatial statistics with previous studies 

In Fig. 5, the F-statistics obtained are compared to those reported in 
previous studies that also employed these metrics to quantify the fit 
between distributed snow models and maps derived from Landsat im
agery. Three such studies are known, each of which reported statistics 
for only a small number of days (between one and three); Schöber et al. 
(2010) presented F1 values for two days but numerous catchments, 
while Bernhardt et al. (2012) and Warscher et al. (2013) provided all 
three F-statistics for their respective study catchments and selected days. 
In contrast to the present study, which also included mid-winter and late 
summer days in the calibration catalogue, the previously published 
statistics correspond to spring and early summer periods exclusively (i.e. 
partially snow-covered conditions). As such, to ensure the fairest 
possible comparisons, only our statistics corresponding to this spring 
and early summer are included. The underlying data are compiled in 
Table S2. 

Table 3 
Post-calibration F-statistics quantifying the spatial goodness-of-fit for each of the 
17 days.  

Date F1 F2 F3 

08/04/2015 0.852 0.847 0.696 
24/04/2015 0.786 0.698 0.511 
20/12/2015 0.838 0.798 0.699 
21/01/2016 0.999 0.999 0.999 
10/04/2016 0.871 0.849 0.819 
03/10/2016 0.910 0.621 0.399 
06/12/2016 0.750 0.596 0.199 
13/04/2017 0.744 0.569 0.504 
20/04/2017 0.790 0.752 0.508 
29/04/2017 0.567 0.561 0.561 
22/05/2017 0.846 0.626 0.434 
13/10/2017 0.958 0.131 0.073 
14/11/2017 1.000 1.000 1.000 
02/02/2018 0.997 0.997 0.996 
22/03/2018 0.963 0.963 0.963 
25/05/2018 0.773 0.584 0.348 
19/06/2018 0.844 0.328 0.089 
mean 0.852 0.701 0.576  
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The F-statistic distributions obtained seem to have a tendency to be 
slightly higher than those of previous studies, even if the mean and 
median of F1 are marginally lower than those calculated from the pub
lished values. This tendency appears to be most pronounced for F2 and 
F3; in both cases, the mean values obtained here are higher than their 
previously published counterparts. Importantly, with the possible 
exception of Schöber et al. (2010) who may have used the spatial snow 
observations in an informal fashion to adjust certain model parameters 
(ambiguity remains as this step was not fully explained), the previous 
studies used the spatial data purely for model evaluation (in contrast to 
the present study, in which they formed calibration targets). 

As such, while perhaps slightly disappointing that the explicit cali
bration did not yield higher F1 scores, a real benefit of calibration can 
arguably be seen in the noticeably higher F2 and F3 scores. These metrics 
were assigned enhanced weight in the calibration processes. That said, 
the small sample sizes must be borne in mind when making such in
terpretations. An additional consideration is that our calibration was not 
informed solely by the observed snow extent maps, but rather sought to 
achieve an acceptable balance between fits according to both the maps 
and SWE time-series. Improved spatial fits could probably have been 
achieved if the maps alone comprised the objective function, but this 
may have come at the expense of reduced accuracy in simulated 

Fig. 4. Observed and simulated Snow Water Equivalent (SWE) time-series at the two measurement stations, Fully Grand Cor (a: COR, hourly) and Gryon (b: GRY, 
daily). The observations are not direct measurements of SWE, but rather are reconstructions based on snow depth and other measurements at COR, and purely snow 
depth at GRY. The grey bar of ± 20% is added around the reconstructed “observed” series to reflect the pixel-point nature of these comparisons. 
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catchment-wide snow water storage. 
A much larger catalogue of published F-statistics would be required 

to assess the statistical significance of these results, i.e. whether the 
calibration approach proposed does lead to real improvements in the 
capacity of distributed snow models to reproduce high-resolution 
observed extents. Nevertheless, the comparisons presented confirm the 
overall appropriateness of the approach taken, and perhaps even alludes 
to some added value. Finally, given the variability in the F-statistics 
obtained between days, the larger number of days for which perfor
mance statistics were presented here (which elucidate this) is a strength 
of this study; because previous studies considered fewer days, it is un
clear how consistent in time their (generally good) model performance 
might be. 

5.4. Snowpack evolution and hydrological plausibility 

A key benefit of the model (and indeed any distributed, transient 
simulator) is that it “fills in the gaps” in space and time between the 
available observations. To visualise this, Animation S1 presents the 
simulated evolution of SWE at a daily time-step during Winter 2017/ 
2018. The redistribution of snow from steep slopes is particularly 
apparent, with patterns being broadly consistent with both our local 
field experience during the period (Fig. S1) and the avalanche activity 
that occurred in the region more generally (Bühler et al., 2019). 

Fig. 6 illustrates the spatio-temporal distribution of a) “all liquid 
water” (comprised of liquid precipitation, snowmelt, firn melt and ice 
melt) and b) ETp over the last hydrological year of the simulation period, 
aggregated on a monthly basis. As expected, very little simulated 
meltwater input occurs during the winter months, when temperatures 
are generally below freezing. Conversely, the highest meltwater vol
umes are generated during the spring melt, especially the months of 
April, May, and June. The elevation at which the majority of melt water 
is produced increases as the season progresses, and the localised 

contribution of the glaciers during the summer months is also evident. 
Indeed, extremely high values are generated locally from the glaciers, 
especially in Summer 2018, when heatwave conditions were experi
enced. In our simulation, the glaciers can exhibit strongly negative mass 
balance. 

Liquid precipitation during the summer and autumn months, which 
can be highly concentrated in space and time, is naturally “smoothed 
out” in these plots, appearing as a fairly low and constant daily mean 
value in non-glacierised areas. That said, Fig. S12 presents the same 
underlying data in an alternative fashion – as hourly catchment- 
averaged series – indicating the dynamism of the system. Strong sea
sonality and elevational influences are apparent in the spatial patterns of 
ETp, with estimated values being widely low in winter but restricted to 
higher elevations in summer. 

To further verify the hydrological plausibility of these results 
(without recourse to a full hydrological model), simulated “snowcover 
outflow” and observed discharge were compared for the Vallon de Nant 
sub-catchment. A concrete weir gauging station at the outlet of this sub- 
catchment (Avançon Weir; Fig. 1) provides high-frequency streamflow 
estimates from spring 2016 onwards, from which hourly mean flows 
were calculated. The empirical stage-discharge relationship (i.e. rating 
curve) was developed by salt dilution gauging (Ceperley et al., 2018). 
Despite the regular cross-section, these data are somewhat uncertain, 
especially at flow extremes (at low flows, this is due to shifting channel 
configurations immediately upstream of the weir). 

In Fig. 7(a), hourly catchment-averaged “snowcover outflow” (i.e. 
snowmelt from non-glaciated areas plus any liquid precipitation) is 
plotted against hourly observed, catchment area-normalised discharge 
measured at the Avançon Weir over spring 2018 (April to June 
inclusive). 

Simply comparing the two cumulative totals gives an estimated 
runoff ratio of 0.61 over the three-month period, although this value is 
only tentative given uncertainties associated with precipitation, the 
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Fig. 5. Comparison between the spatial 
model fits obtained in the present study 
and previously reported equivalents (i.e. 
the same metrics generated with respect 
to Landsat imagery). In the interests of 
fairness, only the F-statistics from this 
study that corresponded to spring and 
early summer (i.e. 08/04/2015, 24/04/ 
2015, 10/04/2016, 13/04/2017, 20/ 
04/2017, 29/04/2017, 22/05/2017, 
25/05/2018, 19/06/2018) are included. 
The medians are represented using a 
thick black line in the traditional 
fashion, whilst the red dots indicate the 
means. (For interpretation of the refer
ences to colour in this figure legend, the 
reader is referred to the web version of 
this article.)   
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Fig. 6. Simulated spatio-temporal patterns of a) “all liquid water” arriving at the surface (i.e. liquid precipitation + snowmelt + firn melt + ice melt), and b) 
potential evapotranspiration (ETp) generated using the optimised model configuration over the two hydrological years 2017–2018. The underlying hourly data are 
expressed here as daily mean values in mm, averaged across calendar months. 
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model, and the observed discharge data. At the diurnal timescale, 
simulated snowmelt is associated with increasing observed streamflow, 
which seems reasonable. Dependence remains present on slightly longer 
frequencies also. For example, the decrease in measured streamflow just 
before the start of May coincides with a marked reduction in simulated 
water inputs. Extending this plot to later summer (not shown) revealed 
that a certain proportion of the “excess” spring melt inputs arrive in the 
stream later, reflecting the “buffering” capacity of relatively shallow 
groundwater storage. In reality, a proportion of meltwater will of course 
also be lost to actual evapotranspiration, and perhaps also to deeper 
groundwater storage and/or groundwater exportation across topo
graphic divides. 

Fig. 7(b), meanwhile, shows the relationship between these data 
aggregated to a daily time-step (as the lagged and strongly dampened 
observed streamflow response relative to the simulated melt inputs 
complicates hourly comparisons). A clear relationship between the 
variables is apparent which can be approximated by a power-law 
function (illustrated by the estimated non-linear least squares regres
sion line). A certain hysteresis is also present, meaning that less melt
water is required to produce a given magnitude of flow response as the 

season progresses. This is consistent with increasing groundwater stor
age/saturation throughout the period. 

In subsequent work, the gridded estimates generated here have been 
combined with a specifically developed 3D model of bedrock geology 

Fig. 7. a) Simulated hourly specific (i.e. catchment-averaged) “snowcover outflow” (i.e. snowmelt from non glaciated areas, plus any liquid precipitation) vs. hourly 
observed stream specific discharge for the Vallon de Nant sub-catchment during spring 2018 (discharge gauged at Avancon Weir and normalised according to 
catchment area), and (b) simulated daily sum specific “snowcover outflow” vs. observed daily mean specific stream discharge, again at the Avancon Weir station, 
over the same 3-month period. 

Table 4 
Pre- and post-calibration uncertainty standard deviation of selected snow pre
dictions. The SWE predictions are at COR.  

Prediction Pre-calibration uncertainty 
standard deviation 

Post-calibration uncertainty 
standard deviation 

SWE 01/04/ 
2015 

219.09 (mm) 57.87 (mm) 

SWE 01/04/ 
2016 

200.81 (mm) 57.82 (mm) 

SWE 01/04/ 
2017 

628.54 (mm) 151.63 (mm) 

SWE 01/04/ 
2018 

320.29 (mm) 82.13 (mm) 

F1 22/05/ 
2017 

0.0537 (-) 0.0365 (-)  
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(Thornton et al., 2018) and other data to inform a sophisticated, fully- 
integrated surface–subsurface hydrological model (Thornton et al., 
under review). The generally good simulated streamflow and ground
water level results presented therein further reinforce the hydrological 
plausibly of our snow simulations. 

5.5. Predictive uncertainty and data worth analyses 

Table 4 shows the estimated pre- and post-calibration uncertainty 
standard deviation of the selected predictions. The calibration process 
substantially reduced the uncertainty associated with the predictions 
(by a factor of approximately four). 

Fig. 8 provides an indication of contribution of the different model 
parameters to the uncertainty variance, both pre- and post-calibration, 
for two of the five predictions. In these plots, the uncertainty variance 
contributions have been normalised with respect to the pre-calibration 
uncertainty variance associated with the respective predictions. 

Fig. 8(a), which concerns the prediction of SWE on 1 April 2016, reveals 
firstly that many parameters that either do not (or hardly) contribute to 
predictive uncertainty either before or after calibration, i.e. the prediction 
is insensitive to these parameters. A slight reduction in the contribution to 
uncertainty variance can however be observed for idwedr, snob, and snoa. 
The presence of many parameters that do not contribute to either the pre-or 
post-calibration uncertainty in the SWE prediction is to be expected. This is 
because most of these parameters concern the model’s gravitational 
redistribution component, whereas the COR measurement station will 
have undoubtedly been sited strategically such that the measurements are 
generally unaffected by such processes. Another striking feature of this plot 

is the large reduction in the predictive uncertainty associated with the 
longwave correction parameters, lwin and lwout, that calibration induced. 
The results for the three other 1 April SWE predictions were similar, and so 
are not presented in the interests of space. 

For the prediction of spatial snow extent on the 22 May 2017 
quantified according to the F1 statistic (Fig. 8(b)), practically all pa
rameters make some discernible contribution to uncertainty variance 
both pre-and post-calibration. Interestingly, as with the SWE prediction, 
a large reduction in the post-calibration uncertainty associated with lwin 
is observed, but the post-calibration uncertainty associated with lwou in 
relation to this prediction is actually higher than the pre-calibration 
value. This counterintuitive situation can occasionally arise when a 
parameter to which the prediction is insensitive can only be made in 
conjunction with another parameter to which the prediction is indeed 
sensitive; see Doherty (2010) for further explanation. In this instance, it 
may be because these two parameters are not entirely independent of 
one another. For all other parameters, the uncertainty contribution post- 
calibration is very similar to the pre-calibration level, suggesting a 
certain insensitivity of the simulated snow extents to varying these 
parameter values. The “robustness” that the similarity between pre- and 
post-calibration parameter contributions to uncertainty in the spatial 
prediction indicates could, in fact, be particularly beneficial in appli
cations where only spatial snow patterns, as opposed to water volumes, 
are of primary importance (e.g. assessing the influence of snow patterns 
on vegetation). 

Fig. 9 provides two alternative representations of the worth of the 
observations belonging to the five different groups in the calibration 
process. Fig. 9(a) shows the increase in post-calibration predictive 
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Fig. 8. Parameter contributions to predictive uncertainty variance pre- and post- calibration for the predictions of a) Snow Water Equivalent on 1 April 2016, and b) 
snow pattern (summarised by F1) on 22 May 2017. 
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uncertainty variance associated with each of the five selected pre
dictions – again relative to pre-calibration uncertainty variance – that is 
incurred by omitting each observation group from the calibration 
dataset in turn. Removing either F1, F2, or F3 has very little adverse effect 
on any of the predictions. This may be explained by the fact that when 
one of these groups is omitted, similar information is retained in other 
two groups. The comparatively small number of observations in these 
groups, coupled with the uniform weighing applied to all observations 
for the purposes of this analysis, could also partially explain these re
sults. Combining these observations into a single group, and/or adjust
ing the relative weights assigned, could have suggested enhanced 
importance of these observations. 

This plot furthermore reveals the notable contribution that both 
time-series, but most especially that at GRY, make to the prediction; the 
prediction’s uncertainty variance increases markedly if either of these 
observation groups is removed. Four of the five predictions under 
consideration correspond to the SWE predicted at the high elevation 
COR station. In light of this, the analysis suggests, perhaps surprisingly, 
that removing the data at GRY from the calibration dataset has a more 
detrimental effect than removing the other observations at COR itself 
(the very location of the predictions). 

Fig. 9(b) provides an indication of the decrease in uncertainty vari
ance accrued relative to the pre-calibration uncertainty variance when 
each observation group comprises the sole member of the calibration 
dataset. Including any one of the observation groups F1, F2, or F3 alone in 
the calibration datasets leads to only modest reductions in the pre- 

calibration uncertainty variance associated with the predictions 
(although this is not to say that they do not have a more pronounced 
effect in combination). In contrast, including either of COR or GRY SWE 
time-series observations as the sole calibration dataset leads to similarly 
large reductions in the uncertainty associated with the prediction of 
SWE at COR. The uncertainty around the F1 prediction on 22 May 2017 
is also greatly reduced by including either of these groups as the sole 
calibration dataset, although only by about half as much as the reduc
tion seen for the 1 April SWE predictions. This result, that even including 
only one of the time-series as the sole calibration dataset substantially 
reduces the uncertainty in the spatial prediction, indicates an important 
flow of information from the time-series to the predicted spatial snow 
patterns, and can probably be generalised to the other days on which 
simulated spatial patterns were compared with observations. 

The apparent significance of the GRY data that both analyses indicate 
is especially notable given that the number of observations at this site is 
substantially lower than at GRY (due to lower measurement frequency). 
It could be that, being straddled more frequently by the 0◦C isotherm, 
the SWE time-series at GRY contains more important information about 
temperature (and therefore temperature gradients) and snow limits than 
the COR data, which contains distinct accumulation and ablation phases 
are apparent. 

More generally, the notable contributions that the time-series data 
seem to make demonstrates the importance of obtaining various com
plementary data types and employing them within multi-objective ap
proaches. This result is consistent with the Tuo et al. (2018), for 
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Fig. 9. a) Increase in relative (to the pre-calibration uncertainty variance) post-calibration predictive uncertainty variance associated with each of the five selected 
predictions incurred by omitting each observation group from the calibration dataset in turn, and b) decrease in relative (again to the pre-calibration uncertainty 
variance) uncertainty variance accrued when each observation group comprises the sole member of the calibration dataset. The “redundancy”, or commonality of 
information, between the three spatial observation groups (i.e. F1, F2, and F3) is clearly apparent. 
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instance, who also showed that SWE data can be included to good effect 
in the hydrological model calibration in alpine catchments. 

Lastly, because a consideration in this study was to generate the best 
possible inputs for subsequent hydrological modelling (that also coin
cide in time with other measurements from the study region, such as 
groundwater levels; not shown), no snow observations were specifically 
withheld for evaluation. Future research should certainly explore the 
influence of the chosen calibration period and/or assess model’s per
formance under different condition. Although the uncertainty analysis 
can be considered a partial replacement, traditional split-sample model 
evaluation should be undertaken whenever sufficiently long time-series 
are available. 

5.6. Potential sources of residual mismatch 

Uncertainty in snow observations aside, a large proportion of the 
residual spatio-temporal mismatch between the simulations and obser
vations can probably be attributed to the meteorological forcing data. 
Due to the combination of relatively low station density and variable 
(but sometimes high) data gap frequency (Figures S3 to S9), the inter
polated spatial fields of meteorological variables used to drive the model 
are undoubtedly uncertain. 

More specifically, whilst the temporal coverage and therefore 
crossover of the meteorological data varies throughout the simulation 
period, the parameters in the model are global. This means that the rain- 
snow threshold temperature (rstt) and solid precipitation correction 
factors (snoa and snob), for example, remained constant in time and 
space. Hence, when estimated though the calibration processes, values 
producing “best overall” outcomes with respect to the observations were 
returned. In reality, however, the error distribution associated with 
precipitation measurements likely varies per station and per event. 
Smith et al. (2020) reported difficulties in finding undercatch correction 
factors that perform comparably well across multiple sites. 

In other words, it may be that in not permitting “bespoke” per sta
tion/event corrections, the model structure is insufficiently flexible to 
compensate fully for deficiencies in meteorological measurements dur
ing certain periods and/or at certain locations. In this sense, improved 
fits could perhaps have been achieved by simply scaling relatively 
complete time-series measured at (an) individual location(s) using 
linear, elevation-dependent relationships, although such an approach 
would have been less satisfactorily during periods with high meteoro
logical data availability since much of it would have essentially been 
discarded. In addition, the spatial dependencies in meteorological var
iables away from the station locations, which the interpolation processes 
attempted to characterise, probably also demonstrate some temporal 
non-stationarity in reality (e.g. spatial structures may differ depending 
on whether precipitation is frontal or convective). 

5.7. Some remarks on wind redistribution 

Spatially distributed drift/solid precipitation correction factors have 
been applied to account for the influence of wind transport processes on 
snowpack heterogeneity (e.g. Hanzer et al., 2016; Marshall et al., 2019), 
including based on LiDAR-derived snow depth maps where available 
(Vögeli et al., 2016). However, as mentioned earlier, after testing, 
WaSiM’s wind redistribution algorithm was not included in our final 
model because doing so led to poorer observation fits. 

The algorithm in question computes a temporally invariant, 
spatially-distributed correction factor grid that acts as a multiplier to the 
interpolated precipitation fields, such that precipitation falling on pre
dominantly sheltered slopes and on the leeward side of ridges is 
augmented (deposited), whilst that falling on exposed slopes is reduced 
(scoured). To generate such a grid, a single prevailing wind direction (in 
fact, a sector) must be prescribed. However, an analysis of the rela
tionship between high elevation winter wind speeds (these conditions 
being those under which snow redistribution by wind is most relevant) 

and directions revealed that no such single prevailing wind direction can 
be identified across the study area (Fig. S13); strong winter winds can 
apparently originate from contrasting directions, probably according to 
larger-scale synoptic meteorology. Some influence of the complex local 
topography on wind patterns is also evident. Similar patterns could be 
expected in other mountainous regions. 

Furthermore, the calculated wind redistribution factor range seemed 
somewhat high, leading to both too much “deposition” and “scouring”, 
depending upon pixel exposition, with respect to the (admittedly 
limited) SWE data. Another potential issue is that unlike the gravita
tional redistribution algorithm applied, the wind redistribution 
approach does not conserve mass within a given area (e.g. a catchment). 
Ultimately, it may be that in mountainous regions where large-scale 
meteorological phenomena interacting with extremely complex topog
raphy give rise to considerable spatio-temporal variability in near- 
surface wind fields, such comparatively simple algorithms are unable 
to match highly resolved, site-specific snow observations. 

Thus, the development of extended empirical approaches that could 
include directly measured high-elevation wind directions and/or are 
calibrated explicitly to observed redistribution magnitudes near ridges 
could form an appropriate intermediate objective, until physics-based 
wind-induced snow transport can be simulated in a physically-based 
fashion at high resolution across entire catchments. In any case, in this 
particular study area, snow redistribution by wind is likely of secondary 
hydrological importance to that by gravity. 

5.8. Ongoing debates regarding hydrological model calibration 

Whilst it is increasingly clear that internal states should be verified at 
some stage in the calibration or evaluation of hydrological models, the 
most appropriate approach for including snow data remains under 
debate. On the one hand, it has been argued that since the volumetric 
information contained within discharge measurements complements the 
internal spatial pattern information embedded in distributed snow ob
servations (Finger et al., 2011), these two observation types should be 
considered simultaneously (e.g. Finger et al., 2011; 2014; Shrestha et al., 
2014). The argument runs that the discharge constraint can help ensure 
that, in aggregate, the total simulated system water volume is approxi
mately correct – which is important given uncertain precipitation 
measurements and gridded products – whilst the snow pattern con
straints help ensure that runoff is being generated in the right areas. 

Others, however, posit that calibration is best tackled more 
sequentially, whereby snow simulations are initially optimised inde
pendently before one proceeds to simulate “intermediate” hydrological 
variables and, ultimately, discharge. The principal argument in favour of 
this approach is that simultaneous calibration may enable error 
compensation (Ragettli & Pellicciotti, 2012; Magnusson et al., 2015) 
that can be hidden or easily overlooked, at least unless extremely careful 
evaluative work with respect to observed spatial patterns in undertaken 
(which remains rare). 

Provided a given set of snow observations are sufficiently informa
tive (and it is hoped those employed here are, despite being somewhat 
limited by practical considerations, such as the risks associated with 
conducting regular winter snow surveys in such terrain), then the latter 
approach, which was taken here, should automatically ensure that the 
total water volumes are reasonably accurate. Indeed, both binary spatial 
and volumetric time-series at contrasting sites were considered in the 
snow model calibration for this precise reason. The hydrological plau
sibly assessment undertaken (Section 5.4) and subsequent work 
(Thornton et al., under review) provides reassurance that this is indeed 
the case. Splitting the calibration phases essentially reduced the poten
tial for model parameters related to the surface or subsurface to 
compensate for poor snow simulations (or vice versa), and additionally 
enabled a more advanced, fully integrated code to be applied for the 
simulation of the remaining hydrological processes (Thornton et al., 
under review). 
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6. Conclusions 

This paper has presented and exemplified a novel, computationally 
efficient approach for the calibration and uncertainty analysis of 
distributed snow models in steep, rugged alpine terrain. The physically- 
based core of the model explicitly captures the spatio-temporal vari
ability in energy balance components, which is largely responsible for 
heterogeneous snow patterns and therefore melt rates in such terrain. 
Substantial uncertainties related to biased solid precipitation measure
ments and other observational deficiencies were addressed using 
empirical correction factors. Gravitational redistribution can also sub
stantially influence meltwater patterns in steep regions, but cannot 
presently be represented on an entirely physical basis at catchment or 
larger scales. A pragmatic empirical algorithm was therefore also 
included to represent this process. 

Reliably simulating the spatio-temporal evolution of SWE thus 
hinged upon the estimation of several parameters, which was not trivial 
given the reasonable computational expense associated with the for
ward model; a single parallelized simulation took several hours. To this 
end, a novel multi-objective calibration stratergy that involved a 
gradient-based algorithm and incorporated two complementary types of 
high-resolution snow observations – snow extent maps and SWE time- 
series – was developed. The study represents one of the first such oc
casions on which a distributed snow model has actually been calibrated 
(rather than merely evaluated) according to an objective function that is 
partially spatially explicit, whereby mismatches are penalised at the 
pixel level. This was achieved by quantifying model performance with 
respect to Landsat-derived observed snow maps using so-called F-sta
tistics. Substantial corrections to measured winter precipitation totals 
were required to minimise model-data mismatches. 

Following calibration, spatio-temporal snow dynamics could be 
satisfactorily reproduced with respect to the available observations, and 
the spatial fit metrics obtained moreover compared favourably with the 
few equivalent statistics reported previously. Subsequent uncertainty 
and data worth analyses indicated that: i) the uncertainty variance of 
indicative predictions of snow states, both spatial and volumetric, were 
substantially reduced through calibration, ii) including two parameters 
that enable the longwave component of the surface energy balance to be 
adjusted, and thus potential errors in cloudiness and albedo compen
sated for, was especially beneficial, and iii) the SWE time-series at the 
lower elevation station (GRY) was particularly informative, despite the 
comparatively small number of observations at this site. Any snow 
observation uncertainties notwithstanding, much of the residual 
mismatch between simulations and observations is likely associated 
with the meteorological forcing data; both the raw measurements 
(especially for precipitation) and interpolated spatial fields. As such, 
efforts to better characterise and account for the uncertainties and biases 
in mountain meteorological measurements and interpolated/down
scaled gridded products should be prioritised. 

The generic model-data integration framework presented extends 
well beyond standard treatments of snow in hydrological modelling, and 
could be easily applied in different settings. In addition, in our view, the 
specific application of it presented here achieved an appropriate balance 
between model complexity and data availability. Nevertheless, the im
plications of some potential limitations associated with the “core” of the 
model employed here could be investigated. For instance, fairly basic 
spatial interpolation schemes were used, a single rather than multi-layer 
snow model was employed, and wind redistribution was not accounted 
for. Indeed, acknowledging that even sophisticated multi-physics snow 
models contain uncertain parameters that must be identified (see also 
Günther et al., 2020), future work should explore the extent to which 
using even more sophisticated snow simulation approaches might 
further reduce both pre- and post-calibration predictive uncertainties. 
Specifically, such work could involve testing more sophisticated inter
polation algorithms (e.g. that of Liston and Elder (2006) for wind), 
deploying a more process-rich and advanced snow code that includes at 

least three snow layers, and/or accounts for wind redistribution. Pro
vided increased data availability and quality accompanies increased 
model complexity, a further reduction in uncertainty should be realised, 
although this remains to be tested. However, the outcomes of such ex
periments must be interpreted with respect to the magnitudes of “irre
ducible” uncertainties associated with both forcing and observed 
calibration data, i.e. uncertainties that will persist under many 
circumstances. 

In summary, distributed meltwater datasets generated via 
calibration-constrained simulations of snow dynamics demonstrate 
great potential to inform the next generation of comprehensive, 
physically-based, spatially explicit hydrological simulations in complex 
alpine terrain. Such efforts are urgently needed to provide a sound basis 
for decision making under hydrological system change. A range of other 
applications which also require spatio-temporally comprehensive snow 
information could also benefit from such an approach. Employing 
model-data integration frameworks such as that presented here more 
routinely, perhaps eventually in conjunction with even more advanced 
snow codes (where data availability makes it appropriate to do), will 
lead to improved snow simulations but also greater appreciation of their 
(currently somewhat overlooked) outstanding uncertainties. 
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