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Spontaneously arising mouse mutations have served as the foundation for understanding gene function for more than 100

years. We have used exome sequencing in an effort to identify the causativemutations for 172 distinct, spontaneously arising

mouse models of Mendelian disorders, including a broad range of clinically relevant phenotypes. To analyze the resulting

data, we developed an analytics pipeline that is optimized for mouse exome data and a variation database that allows for

reproducible, user-defined data mining as well as nomination of mutation candidates through knowledge-based integration

of sample and variant data. Using these new tools, putative pathogenic mutations were identified for 91 (53%) of the strains

in our study. Despite the increased power offered by potentially unlimited pedigrees and controlled breeding, about half of

our exome cases remained unsolved. Using a combination of manual analyses of exome alignments and whole-genome se-

quencing, we provide evidence that a large fraction of unsolved exome cases have underlying structural mutations. This

result directly informs efforts to investigate the similar proportion of apparently Mendelian human phenotypes that are

recalcitrant to exome sequencing.

[Supplemental material is available for this article.]

Causative mutation discovery provides the foundation for under-
standing the pathophysiology of genetic disorders. It also enables
development of diagnostic assays and specifies therapeutic targets.
Since the early 20th century (Cuenot 1905; Castle and Little 1910),
the laboratory mouse has served as the primary model organism
for understanding human Mendelian disorders, and in the era of
genetic engineering it remains the most economical, genetically
tractable model organism for bothmechanistic studies and the de-
velopment of therapeutics. With the convergence of massively
parallel DNA sequencing and genome editing technologies, we
are poised to enter a new era of disease gene discovery and parallel
modeling between man and mouse.

In the 5 years since the first demonstrations of whole-exome
sequencing (WES) in the context of Mendelian disorders (Choi

et al. 2009; Ng et al. 2009), more than 100 underlying causative
genes have been discovered using this approach. Similarly, pilot
studies in the mouse demonstrated that implementation of WES
could significantly increase the rate of Mendelian disease gene dis-
covery in spontaneous mutant strains (Fairfield et al. 2011). These
technological advances in mutation discovery have a significant
impact in functional genomics since spontaneously arising alleles
and allelic series provide more complete recapitulation of disease
gene function than can be provided by null alleles alone
(Antonarakis and Beckmann 2006).

Disease gene discovery by WES has been most successful for
rare Mendelian disorders where there is limited locus heterogene-
ity and, often, supporting genetic data and evidence for causation
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(e.g., trio-sequencing for de novo mutations or multiple pedigrees
for linkage analysis). Success rates have steadily improved as re-
sources for human genetic variation have expanded (The 1000
Genomes Project Consortium 2012; Fu et al. 2013), providing
deep reference data for filtering common genetic variation that
drives causative gene discovery.However, causative gene discovery
in Mendelian disorders still suffers from limitations as evidenced
by its <50% success rate (Gilissen et al. 2012; Beaulieu et al.
2014). Possible causes for failed discovery by WES include poor
or incomplete gene annotation, inefficient or incomplete exon
capture, shortcomings of variant calling tools (particularly with re-
spect to insertions/deletions [indels] and structural variation), in-
sufficient ancillary information to successfully narrow catalogs
of potentially causative variation, inaccurate phenotyping, or sam-
ple errors. Moreover, regulatory mutations that reside outside of
coding regions will escape detection by WES.

We previously reported the development and application on
a pilot scale of WES for discovery of spontaneous mutations for
Mendelian disorders in the laboratory mouse (Fairfield et al.
2011). In contrast to human disease gene discovery, disease gene
discovery in the mouse is highly powered by selective breeding,
large consanguineous pedigrees, and genetically defined inbred
strain backgrounds, each of which minimizes genetic heterogene-
ity. Moreover, causation can be readily supported through bulk
segregation analysis and ultimately proven through complemen-
tation testing and/or genetic engineering.

Here we report a large-scale effort to identify the causative
mutations for 172 distinct Mendelian disorders in laboratory
mouse strains with clinically relevant phenotypes. This effort dis-
tinguishes itself from other large-scale functional genomic efforts
in mice (e.g., The Knockout Mouse Project, KOMP) because it is
phenotype driven, and unlike phenotype-driven saturation ENU
mutagenesis projects, the molecular nature of spontaneous muta-
tions is directly comparable to naturally occurring mutations in
the human genome.

Results

We collected DNA samples from individ-
uals representing 172 unique strains of
spontaneous mutant mice, maintained
by the Mouse Mutant Resource at The
Jackson Laboratory and representative of
a diverse spectrum of Mendelian disor-
ders, including spondylocostal dysplasia,
Hermansky-Pudlak syndrome, spinocere-
bellar ataxia, congenital myopathy, and
many others. These strains were identi-
fied by animal care technicians on the
basis of visibly apparent deviations from
standard strain characteristics within a
production scale vivarium that houses a
population of nearly 1millionmice (Sup-
plemental Table 1). The range of phe-
notypes found in our cohort of mice,
therefore, is limited to phenotypes that
are readily detectable in a vivarium set-
ting and to any secondary, co-morbid
phenotypes identified after further study.
The major phenotypes include defects in
behavioral/neurological function (27%),
integument (10%), growth/size (9%),

lifespan (9%), craniofacial development (8%), and skeletal mor-
phology (8%) (Fig. 1).

Because chromosomal linkage data were available for the ma-
jority of the strains in our study, we selected a single affected indi-
vidual for whole-exome sequencing. For the 17 strains lacking
linkage data, we included an additional unaffected sibling control
sample. Ten samples representing the most common inbred strain
backgrounds were also included to maximize our ability to filter
strain-specific genetic variation. Finally, eight of the 172 mutant
strains were from colonies of ENU- (ethylnitrosourea) mutagen-
ized mice.

We developed a pipeline for mouse exome analysis that takes
into account (1) strain background by using high quality inbred
strain-specific SNPs from the Sanger Mouse Genomes Project
(Keane et al. 2011) for base quality recalibration through the
Genome Analysis Toolkit (GATK) (McKenna et al. 2010; DePristo
et al. 2011), and (2) custom variant filters based on coverage, var-
iant quality,mapping quality, presence/absence in dbSNP, overlap
with simple repeats, and observed variant frequency, stemming
from the accumulated false discovery data fromour pilot exome se-
quencing efforts (Fairfield et al. 2011). Genomic annotations were
assigned to the variant calls and summary sample metadata (e.g.,
strain, phenotype, phenotype status, mode of inheritance, read
coverage, etc.) were compiled for each sample.

Mouse exome variation

The total number of raw variants called per sample depended on
the relatedness of each strain to the laboratory mouse genome ref-
erence strain, C57BL/6J, Mus musculus domesticus. As expected,
exome data sets from strains within the sameM.m. domesticus sub-
species contained ∼1500 to ∼120,000 variants per exome, while
data sets from the two other major subspecies represented in our
sample set, M. m. musculus and M. m. castaneous, contained more
than 300,000 variants per exome. As expected, samples with the
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Figure 1. Phenotypic distribution of spontaneous mutant strains in the study. The cohort of mutant
strains selected for exome sequencing represents various phenotypes that have an observable common
characteristic during the course of normal breeding and husbandry. System level or tissue level mamma-
lian phenotype (MP) terms were assigned on the basis of primary phenotypes. Phenotypes are arranged
clockwise from largest to smallest group and similarly from top to bottom in the key.
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fewest exome variants were from the same inbred strain back-
ground as the mouse reference genome, C57BL/6J. For example,
in a C57BL/6J control exome, approximately 18 inbreeding gener-
ations removed from reference (seeDiscussion), we found a total of
1547 unique variants. Seventy percent (1083) of these passed qual-
ity filters and of those, there were 117 homozygous calls that were
shared between other C57BL/6Jmutant strains in our study as well
as mixed background strains with C57BL/6J contributions. There
were six private (not found in any other sample in our study) calls
found in this sample. Of these six variants, two were heterozygous
calls, onewas homozygous, and the remaining three had lowallele
ratios (<0.3) indicative of false positives.

Therewere 943 variants (SNPs/indels) common across 75% or
more of the samples in our study regardless of strain background.
To investigate the origin of these variant calls, we examined a sub-
set (272 that were found in 100% of the samples) and found that
the majority (92%) were clustered (more than two variants within
1 kb) in the genome. To test the idea that these could be false calls
arising from the underlying genome reference assembly, we com-
pared the variant positions to the coordinates of known assembly
issues cataloged by theGenomeReference Consortium (GRC) inci-
dent database (http://www.ncbi.nlm.nih.gov/projects/genome/
assembly/grc/index.shtml; data available for FTP at ftp://ftp.ncbi.
nlm.nih.gov/pub/grc/).We found thatmost (151 variants) overlap
with reported errors in the reference sequence assembly (empirical
P-value = 9.999 × 10−5; mean = 28.74, SD = 5.02). The remaining
common variants (121 variants) are likely due to underlying as-
sembly issues that are as yet unreported.

Genetic variation among inbred strains heavily influences
disease susceptibility and phenotypic variability; failure to consid-
er genetic background is amajor contributor to irreproducibility of
mouse studies (Gerlai 2001; Linder 2001;Wolfer et al. 2002; Perrin
2014). The Sanger Mouse Genomes Project (MGP) maintains a
growing resource of variation data from inbred strains and for 17
of these strains, the sequenced individuals were females sourced
from foundation stocks at The Jackson Laboratory (Keane et al.
2011). We compared variant data from our inbred strain control
samples (males, also sourced from The Jackson Laboratory) to
the MGP variant data and found that the vast majority (>∼93%)
of variant calls were shared between the data sets. Unique calls
were primarily due to differences in sequencing coverage, mini-
mum coverage requirements for SNP/indel calling, and differences
in quality filters between the two projects. This also explains the
smaller proportion of common indel calls (>∼80%), as indels are
lower quality overall. A much smaller proportion of the unique
calls were due to differences between the samples (sex, inbreeding
generation) (Supplemental Table 2). To further examine inbred
strain background and relatedness across our samples, we used a
hierarchical clustering method. Using this method, we success-
fully identified the strain origin for nine samples with “unknown”
strain origin. We also identified six samples for which strain back-
groundwas incorrectly assigned (Supplemental Fig. 1) 107:S10, 18:
S06, 23:S02, 76:S02, 78:S02, and 102:S00).

Discovery and validation of putative pathogenic mutations

We developed the Mouse Mutant Resource Database (https://
mmrdb.jax.org) to host annotated variant calls and sample meta-
data and to facilitate data sorting, filtering, querying, and sharing.
The database employs an algorithm for variant prioritization. The
algorithm makes the following assumptions about causative vari-
ants: they will be rare (<3%) in the database, the allele ratio of

the variant in the sample will fall within expectations for the sam-
ple genotype (>0.9 homozygous; 0.2–0.8 heterozygous), and the
chromosomal position of the variant will be in agreement with
chromosomal linkage data.Weoptimized the algorithm iteratively
by reanalyzing exome data sets with previously confirmed, known
mutations (Fairfield et al. 2011).

The mutation candidate algorithm flagged 8360 variants
across 172 exomes and 1918 of these were variants with high
(e.g., frameshift, exon deleted, start/stop lost, splice site, rare ami-
no acid change) or moderate impact (e.g., codon change, deleted
UTR) annotations. Functional annotation of variants was accom-
plished using SnpEff and ANNOVAR, each of which generate func-
tional predictions on the basis of the genomic location of a variant
with respect to coding sequence and the type of amino acid change
that is predicted (if any). These tools are limited in their capacity to
predict pathogenicity on the basis of amino acid conservation,
RNA processing, transcriptional regulation or translation, and
post-translationalmodification. Because our typicalmapping pan-
el consisted of ∼12 affected and 12 unaffected individuals from a
pedigree, we could further refine ourmap positions to subchromo-
somal intervals of 30–60 cM. This information contributed to a sig-
nificant reduction in our candidate list from 1198 to 108 putative
pathogenic mutations. Mutations were validated using Sanger se-
quencing of PCR amplicons and in some cases, RT-PCR to geno-
type affected and unaffected individuals from each pedigree.
Using this approach, we validated putative pathogenic mutations
in 78 strains. Thesemutations were in 62 genes, each of which has
a single human ortholog (Table 1; Supplemental Tables 3, 4). Six of
these were previously reported in our pilot study and used here as
validated data sets to support the development of our pipeline
(Fairfield et al. 2011). The plurality of the mutations discovered
were missense mutations (43%) followed by nonsense mutations
(21%), single nucleotide mutations in canonical splice sites
(12%), and small indels (13%) (Fig. 2A). Using whole-genome se-
quencing and manual analysis of exome alignment data, we iden-
tified “exome-recalcitrant” structural mutations (insertions,
deletions, duplications >50 base pairs [bp]) in an additional 13
strains, representing 11 additional genes (Fig. 2A; Supplemental
Tables 3, 4) (see “Exome-recalcitrant mutations” below). Taken to-
gether, we found 89 putative pathogenic mutations in 73 genes
across 91 mutant strains.

Approximately 11% (10/89) of themutations discoveredwere
in genes that have yet to be associated with a mouse phenotype;
these novel genes were 4732456N10Rik, 4930453N24Rik, Ddx10,
Kntc1, Rpl31 (two mutations), Myo10, Fdxr, Otop3, and Golga1
(Table 1). While little is known about the function of these genes
in mice, all are well conserved in vertebrates.

In addition to the novel genes, 37% (33/89) are new alleles of
mouse genes that have not yet been associated with a human
Mendeliandisease.Todetermine if ourdatacouldbeused to inform
unsolved human exome projects, we used the GeneMatcher tool
(http://www.genematcher.org/) to compare our gene list to candi-
date gene lists from unsolved human exome sequencing projects.
This search resulted in a corresponding match (1/73 genes) for
Ap3b2/AP3B2, where a splice site variant (NM_004644.3: c.588 +
1G > T, Chr 15: 83349863 C > A, in hg19) was found in two indi-
viduals from a consanguineous family. These individuals were
diagnosed with hypotonia, developmental delay, tonic-clonic sei-
zures, and visual impairments. Similar to the clinical symptoms re-
ported in this family, our recessive Ap3b2 mutation is associated
with behavioral and neurological phenotypes including tonic-
clonic seizures (Table 1). Moreover, an engineered knockout allele
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of Ap3b2 showed identical phenotypes (Seong et al. 2005), consis-
tent with the conclusion that our newly discovered nonsense mu-
tation is likelyanull allele and that the splice sitemutation found in
the human exome data is likely to be pathogenic. This is the first
pathogenicmutation reported for humanAP3B2 and the first asso-
ciation of this gene with a Mendelian disease.

Chromosomal linkage and evidence for causation

There were 17 strains in our study for which chromosome link-
age data were not available and only one of them was solved
(MMR_1370, Ddx10m1J). The remainder had far too many plausi-
ble candidates and in one case a significant false discovery was
made. A candidate mutation was found in Gm15448, which is
one of several orthologs to human LILRA6 (leukocyte immuno-
globulin-like receptor [LIR], subfamily A, member 6), that encodes
a poorly characterized LIR receptor expressed inmonocytes and ca-
pable of associating with an FcR gamma protein family member

(Bashirova et al. 2014). The inflammatory disease phenotypes (der-
matitis, enlarged lymph node and spleen, arthritis, osteomyelitis,
etc.) of affected mice (dwss [dermatitis with small size]) (Supple-
mental Table 1) further supported the case for this variant. Co-seg-
regation analysis in a limited number of individuals from the
pedigree (approximately three affected and three unaffected) also
supported pathogenicity. However, chromosomal linkage map-
ping was completed during our study and the Gm15448 variant
was ultimately excluded. We also found one case where existing
chromosome linkage data were insufficient. Two linked candidate
mutations (<1 Mb apart) were identified for a single ENU strain
(ENU strain MMR_1400716, Fdxrm1J and Otop3m1J), which is not
unusual given the high mutation rates induced by ENUmutagen-
esis. These strains often require more extensive mapping or bulk
co-segregation analysis. When we retrospectively examined the
impact of chromosomal linkage data, we found it reduces the total
number of mutation candidates by up to two orders of magnitude
(Fig. 2B). Therefore, in addition to minimizing false positives,

Table 1. A subset of the pathogenic mutations discovered by exome sequencing in mice with Mendelian disorders

Gene symbol
Allele name
(symbol)

Human
ortholog

Human disease
association(s)/OMIM

Molecular description
(Annovar)

Mutation
category Inheritance

Primary
phenotype

4930453N24Rika dense incisors
(din)

C3orf38 4930453N24Rik:
NM_026273: exon3:
c.T729A:p.C243X

Nonsense Recessive Craniofacial

Ap3b2 mutation 2
Jackson (m2J)

AP3B2 Ap3b2:NM_021492:
exon12:c.C1303T:p.
R435X

Nonsense Recessive Behavior;
neurological

Ddx10a mutation 1
Jackson (m1J)

DDX10 Ddx10:NM_029936:
exon15:c.C2208A:p.
D736E

Missense Recessive Craniofacial

Fdxra mutation 1
Jackson (m1J)

FDXR Fdxr:NM_007997:
exon10:c.G1166A:p.
R389Q

Missense Recessive Behavioral;
neurological

Kntc1a jagged tail like
(jgl)

KNTC1 Kntc1:NM_001042421:
exon30:c.C2596T:p.
R866X

Nonsense Recessive Reproductive;
skeletal

Myo10a mutation 1
Jackson (m1J)

MYO10 Myo10:NM_019472:
exon25:
c.2845_2853A

Small
deletion

Recessive Pigmentation,
skeletal

Otop3a mutation 1
Jackson (m1J)

OTOP3 5′ UTR; NM_172801:
c.190G>A

5′ UTR Recessive Behavior;
neurological

Rpl31a dominant tail
short (Dts)

RPL31 Diamond Blackfan
anemia

3′ UTR;
NM_001252218:
c.12_16delinsC,
NM_001252219:
c.12_16delinsC,
NM_053257:
c.12_16delinsC

3′ UTR Dominant Limbs/digits/tail

Rpl31a dominant tail
short 2 Jackson
(Dts-2J)

RPL31 Diamond Blackfan
anemia

3′ UTR;
NM_001252218:
c.13_26delinsA,
NM_001252219:
c.13_26delinsA,
NM_053257:
c.13_26delinsA

3′ UTR Dominant Skeletal; limbs/
digits/tail

Tshr hypothyroid 3
Jackson (hyt-3J)

TSHR Hyperthyroidism,
nonautoimmune

Large deletion; ∼200
bp

Large
deletion

Recessive Growth/size

Wnt7a postaxial
hemimelia
Jackson (px-J)

WNT7A Fibular aplasia or
hypoplasia, femoral
bowing and poly-,
syn-, and
oligodactyly

Splice donor; deletion
> 20 kb

Large
deletion

Recessive Skeletal; limbs/
digits/tail

For each confirmed mutant allele, the mouse gene symbol, the human ortholog, associated human disease where known, inheritance, allele annotation
(ANNOVAR) as predicted by our pipeline and the primary clinical phenotype by Mammalian Phenotype terms (system or tissue level) are provided. If
the same mutation was found in more than one strain, that allele is represented only once in this table, as is only one associated human disease per
allele. For the full table, see Supplemental Table 3.
aNovel mouse genes for which we report the first allele and phenotype.
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chromosomal linkage data significantly reduce validation burden
for the price of a relatively small mapping cross, and importantly,
these data strengthen the evidence for causation.

Exome-recalcitrant mutations

For nearly half of the samples in our study, the pipeline failed to
predict a single causative mutation. A subset of these had strong
candidate geneswithinmapped intervals, sowe examined any var-
iant calls within these genes.We found thatmanyof these variants
were rare but had unexpected allele ratios given sample genotype
(e.g., <0.8 when a homozygous variant was expected). Moreover,
our attempts to validate these variants often resulted in failed
PCR reactions. When we examined the local alignments around
the variant calls, we found evidence for large copynumber variants
or structural rearrangements (deletions, duplications, or inser-
tions). Three examples are shown in Figure 3; two are deletions
in Tshr and Wnt7a, and one is an insertion in Myo5a (Table 1;
Supplemental Tables 3, 4). All three of these genes have previously
reportedmouse alleles with identical phenotypes, lending support
to the pathogenicity of the structural lesions reported here (Stein
et al. 1994; Huang et al. 1998a,b; Parr et al. 1998).

Based on these data, we surmised that at least one category of
exome-recalcitrant mutation might be larger copy number varia-

tions or structural rearrangements. Alternatively, exome-recalci-
trant mutations may simply be regulatory mutations that reside
outside of the exome or are coding mutations occurring in poorly
annotated regions. To explore this, we used whole-genome se-
quencing (WGS). We selected five strains for which our initial at-
tempts failed to identify causative mutations. For each of these
mutant strains a control with matched strain background was
also included. In addition to standard BWA alignment and SNP/
indel calling, we used Pindel (Ye et al. 2009; Handsaker et al.
2011) for detection of large structural mutations. We discovered
and validated causative mutations in four of the five mutant sam-
ples (Table 2). All four lesions involved coding sequence froma sin-
gle gene and represented a variety of mutation types; sunk was an
∼2.4-kb deletion, hstp was an ∼300-kb duplication, whnl was a
small 7-bp insertion, and bucp was a SNP that went undetected
bywhole-exome sequencing due to poor coverage. Taken together,
our analysis of 13 exome-recalcitrantmutations revealed thatmost
are large copy number variants or structural mutations involving
coding sequence (Supplemental Fig. 2).

Discussion

Wesought to identifyputativepathogenicmutations in172 strains
of mice exhibiting a variety of clinically relevant, Mendelian dis-
ease phenotypes. Using an optimized pipeline for analysis of
mouse exome data and a database that integrates sample and vari-
ant data across strains (http://mmrdb.jax.org), we nominated and
validated putative pathogenic mutations for 91 (53%) of our se-
quenced strains and these mutations were in 73 genes. Our com-
plete data set consists of more than 4 million exonic variants and
is a coding variation resource of extraordinary depth and breadth
for laboratory mouse strains. Our publicly available database pro-
vides tools for reproducible exome data analysis and mining
throughuser-defined searches, aswell as candidate calling for caus-
ative mutations that is informed by sample metadata and relevant
variant features. The total number of raw variants found per strain
per exome ranged from∼1500 tomore than300,000dependingon
the relatedness of the strain to the C57BL/6J reference. By compar-
ison, a typical human exome data set contains∼25,000, highlight-
ing the allelic diversity across laboratory mouse strains and the
genetic consequences of both inbreeding and short generation
times.

Inbred strains and genetic drift

Ninety-seven percent of the variants that we found in any given
C57BL/6J-related sample were also found in other C57BL/6J sam-
ples, but not (by definition) in the C57BL/6J reference. The mouse
reference genome is a haploid assembly consisting of sequence
calls frommultiple individuals spanning several generations of in-
breeding (approximately F208–F214) at The Jackson Laboratory
(Mouse Genome Sequencing Consortium 2002; The Jackson
Laboratory, pers. comm.). The origin of these variants could be “re-
sidual”heterozygosity at F208–F212, not captured in the final hap-
loid assembly.

Mutation is inexorable and in an inbred strain it is the under-
lying cause of heterozygosity in the absence of heterozygous selec-
tion and genetic contamination. We could trace the origins of the
C57BL/6J and C57BL/6J-related strains in our study to generations
>F226, the generation of the archived C57BL/6J embryo stock that
is now used to maintain the C57BL/6J production colonies at The
Jackson Laboratory (Genetic Stability Program [Taft et al. 2006]).
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Figure 2. Distribution of pathogenicmutation types (A) and the value of
chromosomal linkage (B) for mutation discovery in spontaneous mouse
models of Mendelian disease. Pathogenic mutations consisted of a variety
of lesions, the majority of which were single nucleotide substitutions. Due
to ascertainment bias, copy number variants and structural mutations
(>50 bp) were more rare (A). Chromosomal linkage data had a significant
impact on the validation burden and a potential for false positivemutation
calls. The largest effect (two orders of magnitude) was on potentially low-
impact (modifier) variant calls. Variant calls were categorized by predicted
impact according to SnpEff impact annotations (B) (see Methods and
Supplemental File 4).
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Figure 3. Graphical viewof alignments across Tshr (A),Myo5a (B), andWnt7a (C). Graphical views of the alignmentswere generated using the Integrative
Genomics Viewer (IGV) and RefSeq exon annotations are shown. In each case, split reads (arrow) span the junctions of copy number variations and struc-
tural rearrangements. In Tshr, a cluster of four single nucleotide variants (SNVs) with unexpected allele frequencies of 0.3–0.63 was called in a homozygous
sample; three of the four SNVs were soft filtered as a SNP cluster by GATK. Manual analysis of the alignment revealed a homozygous deletion in the final
exon of this gene (A). In another example, a heterozygous SNV was called in a splice donor site of myosin VA (Myo5a) in a sample. In the alignment sur-
rounding the SNV call therewere split reads, as well as flagged reads (B, colored reads) withmatesmapping throughout the genome, providing evidence of
a retroviral or intra-cisternal A-particle (IAP) insertion in exon 3 (B). In a third example, a SNV call was flagged by our algorithm as a mutation candidate but
could not be validated due to multiple failed PCR assays. The SNV was in wingless-related MMTV integration site 7a (Wnt7a) in an affected sample from a
pedigreewith recessive skeletal abnormalities. Manual analysis of the alignment surrounding the SNV call revealed two clusters of flagged reads flanking an
∼23-kb region, spanning intron 3, the 5′ splice site, and a portion of exon 3.Moreover, therewas zero coverage across exon 3 and the 5′ splice site of intron
3, regions that are normally covered by WES (C ).
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Published rates of spontaneousmutations inmammals range from
10−5 to 10−6 per locus per gamete (Schlager andDickie 1967; Bailey
1978), based on breeding and specific locus testing, or 10−8 per bp
per generation, based on sequencing data (Segurel et al. 2014).
Given a per locus per gamete mutation rate of 10−5, the expected
number of spontaneously arising genic mutations that become
fixed through inbreeding is one in five generations, according to
Bailey (1978); therefore, three to four fixed homozygous coding
variants are expected tohaveoccurred by F226 compared to the ref-
erence (F208–F212). Similarly, given the estimatedmutation rate of
0.5–3 × 10−8 per base pair per generation (Segurel et al. 2014),∼12–
60 mutations are expected to arise through genetic drift, genome-
wide, per generation or approximately one coding mutation per
generation (assuming that ∼2% of the mouse genome is protein
coding [Mouse Genome Sequencing Consortium 2002]).
Assuming a rate of fixation similar to the above predictions, ap-
proximately three to four coding homozygous mutations are ex-
pected between F226 and F208–F212. Our observation of one
homozygous “exome” mutation in a C57BL/6J sample at F230 is
slightly lower, but this is not unexpected since this analysis was
limited to single nucleotide variants and small indels.

Novel genes

Approximately 11% of the mutations we discovered were in novel
genes—genes for which phenotypes have not previously been as-
sociated. While this is not a substantial fraction of our data set, it
demonstrates that novel gene discoveries remain after more than
90 years of spontaneous mutation research at The Jackson
Laboratory. Some examples include Golga1, Rpl31 (two muta-
tions), and Ddx10.

Golga1 (golgi autoantigen, golgin sumbfamily a, 1) is a gene that
encodes Golgin 97, a component of the trans-golgi network.
Golgin 97 is a protein that is poorly characterized at a functional
level but nonetheless is a commonly used marker for imaging
the trans-golgi network. Mice homozygous for the recessive awag
(ages with abnormal gait) allele carry a homozygous deletion in
Golga1 and exhibit a late onset abnormal gait with a pronounced
tremor, consistent with a neuromuscular defect. As in many other
cell types, vesicular trafficking is critical to normal neuron func-
tion and has been implicated in a variety of neurodegenerative dis-
eases; the awag mouse model provides the first opportunity to
determine the function of Golga1 in this context. While there is
a human ortholog of Golga1, this gene has yet to be associated
with a human disease.

We also found two dominantmutations (Dsht andDsht-2J) in
Rpl31, which encodes the ribosomal protein L31. Heterozygous

mice have short, kinked tails, and ho-
mozygous mice die during embryogene-
sis. Recently, a mutation in the human
homolog of this gene was implicated
in Diamond Blackfan anemia (Farrar
et al. 2014). While the Rpl31Dsht and
Rpl31Dsht-2J heterozygous mice have not
been tested for anemia, the phenotype
of these mice is strikingly similar to
mice carryingmutations in the related ri-
bosomal subunit, Rpl38. Rpl38Ts mutant
mice also have dominant skeletal defects
(short tail), recessive embryonic lethali-
ty, and hematopoietic defects (Kondra-
shov et al. 2011). Therefore, more

extensive phenotyping of mice carrying the Rpl31Dsht and
Rpl31Dsht-2J alleles will provide in vivo validation of the role of
Rpl31 in Diamond Blackfan anemia and provide animal models
for mechanistic studies.

Ddx10 encodes a DEADbox containing ATP-dependent RNA/
DNA helicase that is likely to be involved in RNA biogenesis.
Ddx10m1J is a missense mutation adjacent to the coiled-coil
domain of the protein that is likely to be involved in protein-pro-
tein interactions.Mice homozygous for thismutation have cranio-
facial defects, including short and split nose/maxilla. While
additional data are needed to demonstrate the functional conse-
quences of the amino acid change and its potential role in cranio-
facial development, an interesting association was recently
reported in a childwith intellectual disabilities and craniofacial ab-
normalities. In this patient, array comparative genome hybrid-
ization revealed a 170-kb microdeletion at 11q22.3, a region
containing only a single gene, DDX10 (Kashevarova et al. 2014).
The clinical features described in the patient included absence of
speech, ADHD, convergent strabismus (paralytic strabismus), lat-
eral nystagmus, hypermetropic astigmatism, low-set ears, pear-
shaped nose, and narrow face. While the study reports lack of pa-
rental DNA to support the pathogenicity of the microdeletion in
the case study, our data provide new and compelling evidence to
support pathogenicity (Kashevarova et al. 2014).

New alleles and new disease associations

In addition to novel genes, 37% of the mutations we found were
newalleles of genes thathavenot yetbeenassociatedwithahuman
disease. One caveat is that these associations rely on existing anno-
tation and curation of published data. Clinical exome sequencing
projects are now generating disease variant data at unprecedented
rates and very little of it is published. To compare our data to un-
published human exome variant data, we used a publicly available
exome data sharing resource for Mendelian disease (i.e.,
GeneMatcher, http://www.genematcher.org), and we were able to
identify a match between our relatively short list of newmouse al-
leles lacking previous human disease associations and candidate
genes from unsolved human exome projects. Extrapolating these
results to the full set of phenotype-associated mouse genes that
havehumanorthologs but donothavehumandisease associations
(∼2000, data fromMouseMine, Mouse Genome Database), we pre-
dict that nearly 100 novel associations could bemade through sim-
ple data integration with the existing gene lists available through
GeneMatcher. While this integration alone is not sufficient to es-
tablish causality, it provides critical evidence as well as potential
disease models with little additional effort.

Table 2. Exome-recalcitrant mutations discovered by whole-genome sequencing

Allele name Gene Lesion
Chromosome location
(GRCm38/mm10)

sunken (sunk) Samd4 Large deletion Chr 14: 46,882,440-46,884,934
highstepper (hstp) Rorb Large duplication Chr 19: 19,010,566-19,336,743
buttercup (bucp) Slc6a19 SNP/indel Chr 13: 73819606
atypical hair loss (aphl) Unknown Unknown Unknown
witchnails (whnl) 4732456N10Rik 7-bp insertion Chr 15: 101,553,337

Five strains for which mutations were not discovered by exome sequencing alone were selected for
whole-genome sequencing and mutations were found in four. The mutations impacted coding se-
quence in every case but were not originally discovered by WES due to the nature of the mutation
(larger structural mutations) or due to poor coverage.
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Structural mutations

The vast majority of the mutations we discovered were single nu-
cleotide changes or small insertions/deletions (indels). However,
this is clearly an ascertainment bias. Our analysis of exome-recalci-
trant mutations revealed that the vast majority were larger CNVs
(duplications, deletions > 50 bp) and structural rearrangements
(insertions) that escape detection by standard WES pipelines.
Themouse genome harbors active endogenous retroviral elements
(ERVs) that underlie the vastmajority of de novo insertions as well
as mutant allele reversion events, especially in strains with partic-
ularly high transposition activity, like C3H (>50% compared to
C57BL/6J) (Maksakova et al. 2006). In fact, of the 52% of exome
cases that we solved, the C3H inbred strain background was
underrepresented.

All of the deletions, duplications, and insertions that were
validated involved coding sequence, and many were below the
detection limit for commercial array-based CNV discovery tools
(<20 kb). A significant fraction of the exome failures in our study
could be resolved by optimizing the repertoire of analytical tools
available for discovery of structural exome variants for WES
and/or by transitioning to WGS. This result also directly informs
efforts to investigate the similar proportion of apparently
Mendelian human phenotypes that are recalcitrant to exome
sequencing.

Conclusions

High-throughput sequencing technologies have revolutionized
the process of Mendelian disease gene discovery. Our efforts to
identify putative pathogenic mutations in mice using high-
throughput sequencing demonstrate the powerof this technology,
as well as its limitations. Understanding the mechanism of
Mendelian disease genes is essential to the development of thera-
peutics, and while some mechanistic studies can be accomplished
in patient-derived cell lines, most require a physiological context
that can only be provided by a mammalian animal model.
Moreover, human development is complex and many Mendelian
disease genes have essential roles during development that can
only be recapitulated in vivo. We anticipate that mouse models
of human disease, whether engineered or spontaneously occur-
ring,will continue toprovide essential tools formechanistic studies
as well as preclinical research.

Methods

Exome sequencing

Spleen and tail tissue were collected from 172 affected mice, each
representing a unique pedigree with a Mendelian disorder. An ad-
ditional 27 samples were collected from unaffected siblings and
from strain background controls. Samples and linkage data
were provided by the Mouse Mutant Resource at The Jackson
Laboratory. Genomic DNA was extracted by phenol chloroform
extraction of nuclear pellets or by using a Qiagen DNeasy
Blood and Tissue kit (Qiagen). Illumina paired-end (PE) libraries
(2 × 76 or 2 × 100) and liquid phase sequence capture were
performed as previously described using the Roche NimbleGen
SeqCap EX Mouse Exome Design (110624_MM9_Exome
L2R_D02_EZ_HX1, #99990-42611) (Fairfield et al. 2011).
Enriched libraries were sequenced on the Illumina GAIIx or the
Illumina HiSeq (Illumina).

Mapping and variant analysis

Sequencing reads were subjected to quality control using NGS QC
Toolkit v2.3, and reads with base qualities≥ 30 and >70% of read
length were used in the downstream analysis (Patel and Jain
2012). High-quality reads were mapped to the mouse genome
(GRCm38, mm10) using BWA v0.5.10-tpx (Li et al. 2009) with de-
fault parameters. The resulting alignment was sorted by coordi-
nates and further converted to binary alignment map (BAM)
format by Picard v1.95 SortSam utility (http://picard.sourceforge.
net). The Picard MarkDuplicates module was used to remove the
duplicates from the data. The Genome Analysis Tool Kit (GATK)
v2.2-16 (McKenna et al. 2010; DePristo et al. 2011) module
IndelRealigner and BaseRecalibrator were used to preprocess the
alignments. During base quality recalibration, dbSNP variants
were used as known sites, andonly variants obtained from the clos-
est strain (based on the strain background of the sample) were used
for training. If the closest strain information was not available or
unknown, then thebase recalibration stepwas skipped. Target-cap-
ture efficiency metrics were determined using Picard HsMetrics.
The realigned and recalibrated BAM file was used as an input to
GATK UnifiedGenotyper at parameters, -stand_call_conf 50.0,
-stand_emit_conf 30.0, -dt NONE. Variant calls were restricted
to the target regions (110624_MM9_Exome L2R_D02_EZ_HX1,
#99990-42611). If the BQSR step was skipped during preprocess-
ing, then the –baqRECALCULATEparameterwas turnedonduring
variant calling. Finally, raw variant calls were soft filtered using
GATK VariantFiltration based on the following parameters:
LowCoverage (DP < 5), LowQual (30 <Q < 50), VeryLowQual (Q <
30), StrandBias (FS P-value > 60), SNV cluster (three or more SNVs
within 10 bp), Poor Mapping quality (>10% of reads have non-
unique alignments). Variants were annotated by SnpEff v2.0.5
(Cingolani et al. 2012) and ANNOVAR (Wang et al. 2010). Those
of highest impact were reported by GATK VariantAnnotator.

Hierarchical clustering

Within each sample, genes were coded “1” or “0” depending on
the presence or absence, respectively, of high-impact mutations
—comprising frameshift, stop gain/loss, start loss, splice site ac-
ceptor/donor variation, and rare amino acid change. The distance
matrix of similarity between samples based on binary-coded gene
values was computed using dist.binary() function from the “ade4”
R package (Dray and Dufour 2007)—the Sokal & Michener dis-
tance metric, which computes the proportion of genes that are
co-present (1 in both) and co-absent (0 in both) between samples,
was considered. Hierarchical clustering on the distancematrix was
performed using the hclust() function. Significance of the result-
ing clusters was assessed via multiscale bootstrap resampling
(with 1000 iterations) using functions from the R “Pvclust” pack-
age (Suzuki and Shimodaira 2006). The resulting approximately
unbiased (AU) P-values were incorporated into the clustering den-
drogram: Clusters with AU P-value > 90% can be considered as sta-
ble clusters at a 10% level of significance.

False negative rate (FNR) and false discovery rate (FDR)

calculations

The FNR for SNP calling was calculated for six of the inbred strains
in our study (AKR/J, BALB/cJ, NOD/ShiLtJ, NZO/HILtJ, PWK/PhJ,
C3H/HeJ). The Broad2 (Kirby et al. 2010) and dbSNP data obtained
from the Mouse Phenome Database (MPD) (http://phenome.jax.
org) (Kirby et al. 2010) were used as a truth set. Variant calls

Mendelian disease gene discovery in mice

Genome Research 955
www.genome.org

http://picard.sourceforge.net
http://picard.sourceforge.net
http://picard.sourceforge.net
http://picard.sourceforge.net
http://picard.sourceforge.net
http://picard.sourceforge.net
http://phenome.jax.org
http://phenome.jax.org
http://phenome.jax.org
http://phenome.jax.org
http://phenome.jax.org
http://phenome.jax.org


from MPD and background samples were restricted to the target
region. Regions with no aligned reads (determined by obtain-
ing regionswith zeromedian coverage across 60 randomly selected
strains) were also removed during analysis. Further, only homozy-
gous variants were selected for analysis. Variants present in both
background strain and C57BL/6J in MPD were considered as true
positives, and variants unique toC57BL/6Jwere considered as false
negatives, i.e., considered missed by our analytical pipeline.

The FDR for SNP calling was calculated by regenotyping SNPs
across the same six inbred strains using Sequenom MASSArray
iPlex technology (Gabriel et al. 2009). Six hundred SNVs/indels
were randomly selected for assay design. Approximately 10% of
this set consisted of variant calls that were soft filtered. Of these,
27 had design issues due to local repetitive sequence. Of the re-
maining 573 assays, 488 had a success rate of >66.7% (at least 4/
6 samples with calls). The FDR was calculated (coverage≥ 5) by di-
viding the number of incorrect calls (false positives, FPs) by the to-
tal number of calls (true positives, TPs, plus FPs). The FDR and FNR
data are shown in Supplemental Table 5.

Database development

The database was developed as a research module of the JAX
Comprehensive Genome Analytics (CGA) system. The CGA sys-
tem integrates analytical genomics pipelines, with a relational da-
tabase of genomic variants and expression profiles organized into
molecular signatures that are associated with biological metadata
and specific sample records. The Mouse Mutant Resource (MMR)
module correlates molecular data with mouse strains and pheno-
types. The database backend runs on aMySQL server relational da-
tabase management system. A custom data loading process parses
variant call format (VCF) files and calls themutation identification
algorithms described above while loading the variant records. The
database user interface is a Java Server Faces (JSF) web application
hosted in Apache Tomcat 7.0. The system is tested to run on
Mozilla Firefox browsers on both Macintosh and Windows PC
computers. The web application is accessible on the Internet at
https://mmrdb.jax.org. User accounts require pre-approval to
search on non-public samples and variants.

Mutation validation

PCR primers flanking each candidate mutation were designed us-
ing Primer3 software, and PCR amplicons were Sanger-sequenced
on an ABI 3730×l DNA sequencer (Applied Biosystems) (Supple-
mental Table 6). Sanger sequencing of PCR amplicons was per-
formed on the originally sequenced sample as well as up to five
additional affected and unaffected individuals from the same ped-
igree. Sequencing data were analyzed using Sequencher 5.0 (Gene
Codes Corp.).

Whole-genome sequencing

Six samples, three positive controls and three background samples,
were sequenced on two full HiSeq flow cells with 101,101 paired-
end reads and a 7-bp sample barcode read. Reads in each lane
were split by barcode, allowing errors in barcode identification
but enforcing a minimum quality score of 10 (Meyer and Kircher
2010; Kircher et al. 2012). Sequencing adapters were trimmed us-
ing information from the paired-end reads; resulting reads shorter
than 50 bp were removed and all other reads were quality filtered
(removing reads with more than five bases below a Phred quality
score of 10) (Kircher et al. 2011). Processed reads were aligned us-

ing BWA to the mouse reference genome (NCBIm37, mm9) with
default parameters; about 12×–16× average coverage was obtained
(assuming an accessible genome size of 2.7 Gb). The BWA output
was directly BAM-converted and sorted using SAMtools (Li et al.
2009); read groups were added using pysam/SAMtools API (Li
et al. 2009) and BAM files merged by sample and subjected to a
GATK v2.2-8 realignment process. SNVs and indels were called
for all sites in the genome using GATK’s UnifiedGenoTyper (with-
out filtering for quality of the variants called to reduce the number
of false negative candidates). The obtainedVCF fileswere restricted
to the previously mapped target regions and annotated using
Ensembl Variant Effect Predictor v67 (VEP) (McLaren et al.
2010). Realigned BAM files were used with Pindel (Ye et al. 2009)
to detect breakpoints of large deletions and insertions, assuming
an average insert size of 220 bp. All samples were used together
for calling structural variants by Pindel. Pindel variants were over-
lapped with Ensembl v66 annotation for prioritization.

Data access

The raw sequencing data for all of the mutant and inbred strains
reported here have been submitted to the NCBI Sequence Read
Archive (SRA; http://www.ncbi.nlm.nih.gov/sra) under accession
number SRP053040. Variant data are available through the
Mouse Mutant Resource Database (https://mmrdb.jax.org); all
strains are available through The Jackson Laboratory Mouse
Mutant Resource (www.jax.org), and mutant allele/phenotype in-
formation is available through the Mouse Genome Database
(search by allele, www.informatics.jax.org).
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